Quark and Lepton Compositeness, Searches for Searches for A REVIEW GOES HERE – Check our WWW List of Reviews

SCALE LIMITS for Contact Interactions: $\Lambda(eeee)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

$\Lambda_{\it LL}^+({ m TeV})$	$\Lambda_{LL}^-({\sf TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>8.3	>10.3	95	¹ BOURILKOV	01	RVUE	E _{cm} = 192–208 GeV
• • • We	do not use	e the fol	lowing data for ave			
>4.5	>7.0	95	² SCHAEL	07A	ALEP	$E_{\rm cm} = 189 – 209 \; {\rm GeV}$
>5.3	>6.8	95	ABDALLAH	06 C	DLPH	$E_{\rm cm} = 130-207 {\rm GeV}$
>4.7	>6.1	95	³ ABBIENDI			$E_{\rm cm} = 130-207 {\rm GeV}$
>3.8	>5.6	95	ABBIENDI	00 R	OPAL	$E_{\rm cm} = 189 \text{ GeV}$
>4.4	>5.4	95	ABREU	00 S	DLPH	$E_{\rm cm} = 183 - 189 {\rm GeV}$
>4.3	>4.9	95	ACCIARRI	00P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$
>3.5	>3.2	95	BARATE	001	ALEP	Superseded by SCHAEL 07A
>6.0	>7.7	95	⁴ BOURILKOV	00	RVUE	$E_{\rm cm} = 183 - 189 \; {\rm GeV}$

SCALE LIMITS for Contact Interactions: $\Lambda(ee\mu\mu)$

Limits are for Λ^{\pm}_{LL} only. For other cases, see each reference.

Λ_{LL}^+ (TeV)	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>6.6	>9.5	95	⁵ SCHAEL	07A	ALEP	E _{cm} = 189–209 GeV
> 8.5	>3.8	95	ACCIARRI	00 P	L3	$E_{cm} = 130 - 189 \text{ GeV}$
• • • We	e do not us	e the fo	ollowing data for ave	erages	, fits, lin	nits, etc. • • •
>7.3	>7.6	95	ABDALLAH	06 C	DLPH	$E_{cm} = 130-207 \text{ GeV}$
>8.1	>7.3	95	⁶ ABBIENDI	04 G	OPAL	$E_{\rm cm}^{-} = 130-207 {\rm GeV}$
>7.3	>4.6	95	ABBIENDI	00 R	OPAL	$E_{\rm cm} = 189 \; {\rm GeV}$
>6.6	>6.3	95	ABREU	00 S	DLPH	$E_{\rm cm} = 183 - 189 {\rm GeV}$
>4.0	>4.7	95	BARATE	001	ALEP	Superseded by SCHAEL 07A

 $^{^5}$ SCHAEL 07A limits are from R_c , ${\it Q}_{FB}^{depl}$, and hadronic cross section measurements. 6 ABBIENDI 04G limits are from $e^+\,e^-\,\rightarrow\,\,\mu\mu$ cross section at $\sqrt{s}=$ 130–207 GeV.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\tau\tau)$

Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ_{LL}^+ (TeV)	$\Lambda_{LL}^-(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>7.9	>5.8	95	⁷ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 \; {\rm GeV}$
>7.9	>4.6	95				$E_{\rm cm} = 130-207 \; {\rm GeV}$
>4.9	>7.2	95	⁸ ABBIENDI	04 G	OPAL	$E_{\rm cm} = 130-207 {\rm GeV}$

HTTP://PDG.LBL.GOV Page 1 Created: 6/16/2011 12:05

 $^{^1}$ A combined analysis of the data from ALEPH, DELPHI, L3, and OPAL. 2 SCHAEL 07A limits are from $R_c,~Q_{FB}^{depl}$, and hadronic cross section measurements. 3 ABBIENDI 04G limits are from $e^+\,e^-\to~e^+\,e^-$ cross section at $\sqrt{s}=$ 130–207 GeV.

⁴A combined analysis of the data from ALEPH, L3, and OPAL.

• • • We do not use the following data for averages, fits, limits, etc. • • •

>3.9	>6.5	95	ABBIENDI	00 R	OPAL	$E_{\rm cm} = 189 \; {\rm GeV}$
>5.2	>5.4	95	ABREU	00 S	DLPH	$E_{\rm cm} = 183 - 189 {\rm GeV}$
>5.4	>4.7	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$
>3.9	>3.7	95	BARATE	001	ALEP	Superseded by SCHAEL 07A

 $^{^7}$ SCHAEL 07A limits are from R_c , Q_{FB}^{depl} , and hadronic cross section measurements. 8 ABBIENDI 04G limits are from $e^+\,e^-\,\rightarrow\,\,\tau\tau$ cross section at $\sqrt{s}=$ 130–207 GeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\ell\ell\ell)$

Lepton universality assumed. Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ_{LL}^+ (TeV)	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>7.9	> 10.3	95	9 SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 {\rm GeV}$
>9.1	>8.2	95	ABDALLAH	06 C	DLPH	$E_{cm} = 130-207 \text{ GeV}$
• • • We	e do not use	e the fo	ollowing data for ave	rages	, fits, lim	nits, etc. • • •
>7.7	>9.5	95	10 ABBIENDI	04G	OPAL	$E_{cm} = 130-207 \text{ GeV}$
			¹¹ BABICH	03	RVUE	
>6.4	>7.2	95	ABBIENDI	00 R	OPAL	$E_{\rm cm} = 189 \; {\rm GeV}$
>7.3	>7.8	95	ABREU	00 S	DLPH	$E_{\rm cm} = 183 - 189 {\rm GeV}$
>9.0	>5.2	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$
>5.3	>5.5	95	BARATE	001	ALEP	Superseded by SCHAEL 07A

SCALE LIMITS for Contact Interactions: $\Lambda(eeqq)$

Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ_{LL}^+ (TeV)	$\Lambda_{LL}^-(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
> 8.4	>10.2	95	¹² ABDALLAH	09	DLPH	(eebb)
> 9.4	>5.6	95	¹³ SCHAEL	07A	ALEP	(eecc)
> 9.4	>4.9	95	¹² SCHAEL	07A	ALEP	(eebb)
>23.3	>12.5	95	¹⁴ CHEUNG	01 B	RVUE	(eeuu)
>11.1	>26.4	95	¹⁴ CHEUNG	01 B	RVUE	(eedd)
• • • We	do not use	e the fo	llowing data for av	/erage	s, fits, lii	mits, etc. • • •
>12.9	>7.2	95	¹⁵ SCHAEL	07A	ALEP	(eeqq)
> 3.7	>5.9	95	¹⁶ ABULENCIA	06L	CDF	(eeqq)
> 8.2	>3.7	95	¹⁷ ABBIENDI	04 G	OPAL	(eeqq)
> 5.9	>9.1	95	¹⁷ ABBIENDI	04 G	OPAL	(eeuu)
> 8.6	>5.5	95	¹⁷ ABBIENDI	04 G	OPAL	(eedd)
> 2.7	>1.7	95	CHEKANOV	04 B	ZEUS	(eeqq)
> 2.8	>1.6	95	¹⁸ ADLOFF	03	H1	(eeqq)
> 2.7	>2.7	95	¹⁹ ACHARD	02 J	L3	(eetc)

 $^{^9}$ SCHAEL 07A limits are from $R_c,~Q_{FB}^{depl}$, and hadronic cross section measurements. 10 ABBIENDI 04G limits are from $e^+e^-\to \ell^+\ell^-$ cross section at $\sqrt{s}=130$ –207 GeV. 11 BABICH 03 obtain a bound $-0.175~{\rm TeV}^{-2}<1/\Lambda_{LL}^2<0.095~{\rm TeV}^{-2}$ (95%CL) in a model independent analysis allowing all of $\Lambda_{LL},~\Lambda_{LR},~\Lambda_{RL},~\Lambda_{RR}$ to coexist.

> 5.5	>3.1	95	²⁰ ABBIENDI	00 R	OPAL	(eeqq)
> 4.9	>6.1	95	²⁰ ABBIENDI	00 R	OPAL	(e e u u)
> 5.7	>4.5	95	²⁰ ABBIENDI	00 R	OPAL	(eedd)
> 4.2	>2.8	95	²¹ ACCIARRI	00 P	L3	(eeqq)
> 2.4	>1.3	95	²² ADLOFF	00	H1	(eeqq)
> 5.4	>6.2	95	²³ BARATE	001	ALEP	Superseded by SCHAEL 07A
> 5.6	>4.9	95	²⁴ BARATE	001	ALEP	Superseded by SCHAEL 07A
			²⁵ BREITWEG	00 B	ZEUS	

 $^{^{12}}$ ABDALLAH 09 and SCHAEL 07A limits are from R_b , A_{FB}^b

SCALE LIMITS for Contact Interactions: $\Lambda(\mu\mu qq)$

$\Lambda_{LL}^+({\sf TeV})$	$\Lambda_{LL}^-(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
> 2.9	> 4.2	95 2	⁶ ABE	97T	CDF	$(\mu \mu q q)$ (isosinglet)
• • • We	do not use	e the follow	ing data for aver	ages,	fits, limi	ts, etc. • • •
>1.4	>1.6	95	ABE	92 B	CDF	$(\mu \mu q q)$ (isosinglet)
26 ABE 9	97⊤ limits a	re from μ^+	μ^- mass distrib	ution	in $\overline{p}p$	$\mu^+\mu^-$ X at $E_{ m cm}=$ 1.8 TeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\nu\ell\nu)$

VALUE (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>3.10	90	²⁷ JODIDIO	86	SPEC	$\Lambda_{LR}^{\pm}(u_{\mu} u_{e}\mue)$
• • • We do not us	e the followi	ng data for average	s, fits	, limits, e	etc. • • •
>3.8		²⁸ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^+(au u_ au\mathrm{e} u_e)$
>8.1		²⁸ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^-(au u_ aue u_e)$
>4.1		²⁹ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^+(au u_ au\mu u_\mu)$
>6.5		²⁹ DIAZCRUZ	94	RVUE	$\Lambda_{II}^-(au u_ au\mu u_\mu)$

 $^{^{13}}$ SCHAEL 07A limits are from R_c , Q_{FB}^{depl} , and hadronic cross section measurements.

¹⁴ CHEUNG 01B is an update of BARGER 98E.

 $^{^{15}\,\}mathrm{SCHAEL}$ 07A limit assumes quark flavor universality of the contact interactions.

 $^{^{16}}$ ABULENCIA 06L limits are from $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.

¹⁷ ABBIENDI 04G limits are from $e^+e^- \rightarrow q \overline{q}$ cross section at $\sqrt{s}=130$ –207 GeV.

¹⁸ ADLOFF 03 limits are from the $d\sigma/dQ^2$ measurement of $e^{\pm}p \rightarrow e^{\pm}X$.

 $^{^{19}}$ ACHARD 02J limit is from the bound on the $e^+\,e^-\to t\,\overline{c}$ cross section. $\Lambda_{LL}=\Lambda_{LR}=\Lambda_{RL}=\Lambda_{RR}$ and $m_t=175$ GeV are assumed.

²⁰ ABBIENDI 00R limits are from $e^+e^- \rightarrow q \overline{q}$ cross section at \sqrt{s} = 130–189 GeV.

²¹ ACCIARRI 00P limit is from $e^+e^- \rightarrow qq$ cross section at \sqrt{s} =130–189 GeV.

²² ADLOFF 00 limits are from the Q^2 spectrum measurement of $e^+p \rightarrow e^+X$.

²³ BARATE 001 limits are from $e^+e^- \rightarrow q \overline{q}$ cross section and jet-charge asymmetry at 130–183 GeV.

 $^{^{130-183}}$ GeV. 24 BARATE 001 limits are from R_b and jet-charge asymmetry at 130–183 GeV.

²⁵ BREITWEG 00B limits are from Q^2 spectrum measurement of $e^+ p$ collisions. See their Table 3 for the limits of various models.

- ²⁷ JODIDIO 86 limit is from $\mu^+ \to \overline{\nu}_\mu \, \mathrm{e}^+ \, \nu_e$. Chirality invariant interactions $L = (g^2/\Lambda^2)$ $\left[\eta_{LL} \left(\overline{\nu}_\mu L \gamma^\alpha \mu_L\right) \left(\overline{e}_L \gamma_\alpha \nu_{e\,L}\right) + \eta_{LR} \left(\overline{\nu}_\mu L \gamma^\alpha \nu_{e\,L} \left(\overline{e}_R \gamma_\alpha \mu_R\right)\right] \right]$ with $g^2/4\pi = 1$ and $(\eta_{LL}, \eta_{LR}) = (0, \pm 1)$ are taken. No limits are given for Λ^\pm_{LL} with $(\eta_{LL}, \eta_{LR}) = (\pm 1, 0)$. For more general constraints with right-handed neutrinos and chirality nonconserving contact interactions, see their text.
- ²⁸ DIAZCRUZ 94 limits are from $\Gamma(\tau \to e\nu\nu)$ and assume flavor-dependent contact interactions with $\Lambda(\tau\nu_{\tau}e\nu_{e}) \ll \Lambda(\mu\nu_{\mu}e\nu_{e})$.
- ²⁹ DIAZCRUZ 94 limits are from $\Gamma(\tau \to \mu\nu\nu)$ and assume flavor-dependent contact interactions with $\Lambda(\tau\nu_{\tau}\mu\nu_{\mu}) \ll \Lambda(\mu\nu_{\mu}e\nu_{e})$.

SCALE LIMITS for Contact Interactions: $\Lambda(e\nu qq)$

VALUE (TeV)	CL%	DOCUMENT ID		TECN
>2.81	95	30 AFFOLDER	011	CDF

 $^{^{30}}$ AFFOLDER 001 bound is for a scalar interaction $\overline{q}_R q_I \overline{\nu} e_I$.

SCALE LIMITS for Contact Interactions: $\Lambda(qqqq)$

Limits are for Λ_{LL}^{\pm} with color-singlet isoscalar exchanges among u_L 's and d_L 's only, unless otherwise noted. See EICHTEN 84 for details.

VALUE (TeV)	CL%	DOCUMENT ID	TECN	COMMENT
>4.0	95	31 KHACHATRY10A	CMS	pp ; dijet centrality. Λ_{LL}^+

• • • We do not use the following data for averages, fits, limits, etc. • • •

>2.96	95	³² ABAZOV	09AE D0	$p\overline{p} ightarrow {\sf dijet}$, angl. ${\sf \Lambda}_{LL}^+$
>2.0	95	³³ ABBOTT	00E D0	H_T distribution; Λ_{LL}^+
>2.7	95	³⁴ ABBOTT	99c D0	$p\overline{p} o {\sf dijet}$ mass. Λ_{LL}^+
>2.1	95	³⁵ ABBOTT	98G D0	$p\overline{p} ightarrow$ dijet angl. Λ_{LL}^+
		³⁶ BERTRAM	98 RVUE	$p\overline{p} \rightarrow \text{dijet mass}$

 $^{^{31}}$ The quoted limit is from dijet centrality ratio measurement in pp collisions at \sqrt{s} =7 TeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\nu\nu qq)$

Limits are for Λ_{IJ}^{\pm} only. For other cases, see each reference.

$\Lambda_{\it LL}^+({ m TeV})$	$\Lambda_{LL}^-({\sf TeV})$	CL%	DOCUMENT ID	TECN	COMMENT
>5.0	>5.4	95	37 MCFARLAND 98	CCFR	ν N scattering

HTTP://PDG.LBL.GOV

Page 4

 $^{^{32}\,\}text{ABAZOV}$ 09AE also obtain $\Lambda_{LL}^{-}~>$ 2.96 TeV.

³³ The quoted limit for ABBOTT 00E is from H_T distribution in $p\overline{p}$ collisions at $E_{\rm cm}{=}1.8$ TeV. CTEQ4M PDF and $\mu{=}E_T^{\rm max}$ are assumed. For limits with different assumptions, see their Tables 2 and 3. All quarks are assumed composite.

³⁴ The quoted limit is from inclusive dijet mass spectrum in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. ABBOTT 99C also obtain $\Lambda_{II}^->2.4$ TeV. All quarks are assumed composite.

³⁵ ABBOTT 98G limit is from dijet angular distribution in $p\bar{p}$ collisions at $E_{\rm cm}=1.8$ TeV. All quarks are assumed composite.

 $^{^{36}}$ BERTRAM 98 obtain limit on the scale of color-octet axial-vector flavor-universal contact interactions: $\Lambda_{A8} > 2.1$ TeV. They also obtain a limit $\Lambda_{V8} > 2.4$ TeV on a color-octet flavor-universal vectorial contact interaction.

 $^{
m 37}$ MCFARLAND 98 assumed a flavor universal interaction. Neutrinos were mostly of muon type.

MASS LIMITS for Excited $e(e^*)$

Most e^+e^- experiments assume one-photon or Z exchange. The limits from some e^+e^- experiments which depend on λ have assumed transition couplings which are chirality violating $(\eta_L = \eta_R)$. However they can be interpreted as limits for chirality-conserving interactions after multiplying the coupling value λ by $\sqrt{2}$; see Note.

Excited leptons have the same quantum numbers as other ortholeptons. See also the searches for ortholeptons in the "Searches for Heavy Leptons" section.

Limits for Excited e (e*) from Pair Production

These limits are obtained from $e^+e^- \to e^{*+}e^{*-}$ and thus rely only on the (electroweak) charge of e^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the e^* coupling is assumed to be of sequential type. Possible t channel contribution from transition magnetic coupling is neglected. All limits assume a dominant $e^* \to e\gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>103.2	95	³⁸ ABBIENDI	02G	OPAL	$e^+e^- ightarrow~e^*e^*$ Homodoublet type
• • • We de	o not us	se the following data	for av	verages,	fits, limits, etc. • • •
>102.8	95	³⁹ ACHARD	03 B	L3	$e^+e^- ightarrow~e^*e^*$ Homodoublet type
>100.0	95	⁴⁰ ACCIARRI	01 D	L3	$e^+e^- \rightarrow e^*e^*$ Homodoublet type
> 91.3	95	⁴¹ ABBIENDI	001	OPAL	$e^+e^- \rightarrow e^*e^*$ Homodoublet type
> 94.2	95	⁴² ACCIARRI	00E	L3	$e^+e^- \rightarrow e^*e^*$ Homodoublet type
38 –	L _			a	

³⁸ From e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. f=f' is assumed.

Limits for Excited e (e*) from Single Production

These limits are from $e^+e^- \to e^*e$, $W \to e^*\nu$, or $ep \to e^*X$ and depend on transition magnetic coupling between e and e^* . All limits assume $e^* \to e\gamma$ decay except as noted. Limits from LEP, UA2, and H1 are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{e^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		IECN	COMMENT
>272	95	43 AARON	08A	H1	$e p \rightarrow e^* X$
HTTP://PDG.L	BL.GOV	Page 5		Crea	ted: 6/16/2011 12:05

 $^{^{39}}$ From $e^+\,e^-$ collisions at $\sqrt{s}=189$ –209 GeV. f=f' is assumed. ACHARD 03B also obtain limit for $f=-f'\colon m_{e^*}>96.6$ GeV.

 $^{^{40}}$ From $e^+\,e^-$ collisions at $\sqrt{s}=192$ –202 GeV. f=f' is assumed. ACCIARRI 01D also obtain limit for f=-f': $m_{e^*}>93.4$ GeV.

⁴¹ From e⁺e⁻ collisions at \sqrt{s} =161–183 GeV. f=f' is assumed. ABBIENDI 001 also obtain limit for f=-f' (e* $\rightarrow \ \nu \, W$): $m_{\rho^*} >$ 86.0 GeV.

⁴² From e⁺ e⁻ collisions at \sqrt{s} =189 GeV. f=f' is assumed. ACCIARRI 00E also obtain limit for f=-f' (e* $\rightarrow \nu W$): $m_{a*} > 92.6$ GeV.

• • • We do not use the following data for averages, fits, limits, etc. • • •

		44 ABAZOV	08H D	00	$p\overline{p} \rightarrow e^*e$
>209	95	⁴⁵ ACOSTA	05B C	DF	$p\overline{p} \rightarrow e^*X$
>206	95	⁴⁶ ACHARD	03B L	3	$e^+e^- ightarrow e e^*$
>208	95	⁴⁷ ABBIENDI	02G C	PAL	$e^+e^- ightarrow e e^*$
>255	95	⁴⁸ ADLOFF	02B F	11	$ep \rightarrow e^*X$
>228	95	⁴⁹ CHEKANOV	02D Z	EUS	$ep \rightarrow e^*X$
>202		⁵⁰ ACCIARRI	01D L	3	$e^+e^- ightarrow e e^*$
		⁵¹ ABBIENDI	00ı C	PAL	$e^+e^- ightarrow e e^*$
		⁵² ACCIARRI	00E L	3	$e^+e^- ightarrow e e^*$
>223	95	⁵³ ADLOFF	00E H	11	$ep \rightarrow e^*X$

- ⁴³ AARON 08A search for single e^* production in ep collisions with the decays $e^* \to e\gamma$, eZ, νW . The quoted limit assumes $f = f' = \Lambda/m_{e^*}$. See their Fig. 3 and Fig. 4 for the exclusion plots in the mass-coupling plane.
- 44 ABAZOV 08H search for single e^* production in $p\overline{p}$ collisions with the decays $e^* \rightarrow e\gamma$. The e^* production is assumed to be described by an effective four-fermion interaction. See their Fig. 5 for the exclusion plot in the mass-coupling plane.
- ⁴⁵ ACOSTA 05B search for single e^* production in $p\overline{p}$ collisions with the decays $e^* \to e\gamma$. $f = f' = \Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig.3 for the exclusion limit in the mass-coupling plane.
- 46 ACHARD 03B result is from $e^+\,e^-$ collisions at $\sqrt{s}=189$ –209 GeV. See their Fig. 4 for the exclusion plot in the mass-coupling plane. 47 ABBIENDI 02G result is from $e^+\,e^-$ collisions at $\sqrt{s}=183$ –209 GeV. $f=f'=\Lambda/m_{e^*}$
- ⁴⁷ ABBIENDI 02G result is from e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. $f=f'=\Lambda/m_{e^*}$ is assumed for e^* coupling. See their Fig. 4c for the exclusion limit in the mass-coupling plane.
- ⁴⁸ ADLOFF 02B search for single e^* production in ep collisions with the decays $e^* \to e\gamma$, eZ, νW . $f = f' = \Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig. 3 for the exclusion plot in the mass-coupling plane.
- 49 CHEKANOV 02D search for single e^* production in ep collisions with the decays $e^* \rightarrow e\gamma$, eZ, νW . $f = f' = \Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig. 5a for the exclusion plot in the mass-coupling plane.
- 50 ACCIARRI 01D result is from e^+e^- collisions at $\sqrt{s}=192-202$ GeV. $f=f'=\Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig. 4 for limits in the mass-coupling plane.
- ⁵¹ ABBIENDI 001 result is from e^+e^- collisions at \sqrt{s} =161–183 GeV. See their Fig. 7 for limits in mass-coupling plane.
- ⁵² ACCIARRI 00E result is from e^+e^- collisions at \sqrt{s} =189 GeV. See their Fig. 3 for limits in mass-coupling plane.
- ⁵³ ADLOFF 00E search for single e^* production in ep collisions with the decays $e^* \rightarrow e\gamma$, eZ, ν W. $f=f'=\Lambda/m_{e^*}$ is assumed for the e^* coupling. See their Fig. 9 for the exclusion plot in the mass-coupling plane.

Limits for Excited e (e^*) from $e^+e^- \rightarrow \gamma \gamma$

These limits are derived from indirect effects due to e^* exchange in the t channel and depend on transition magnetic coupling between e and e^* . All limits are for $\lambda_{\gamma}=1$. All limits except ABE 89J and ACHARD 02D are for nonchiral coupling with $\eta_L=\eta_R=1$. We choose the chiral coupling limit as the best limit and list it in the Summary Table.

For limits prior to 1987, see our 1992 edition (Physical Review **D45** S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>310	95	ACHARD	02 D	L3	\sqrt{s} = 192–209 GeV

• • • We do not use the following data for averages, fits, limits, etc. • •

>356	95	⁵⁴ ABDALLAH	04N DLPH	$\sqrt{s} = 161 - 208 \text{GeV}$
>311	95	ABREU	00A DLPH	\sqrt{s} = 189–202 GeV
>283	95	⁵⁵ ACCIARRI	00G L3	\sqrt{s} = 183–189 GeV

⁵⁴ ABDALLAH 04N also obtain a limit on the excited electron mass with $e\,e^*$ chiral coupling, $m_{e^*} > 295$ GeV at 95% CL.

Indirect Limits for Excited e (e*)

These limits make use of loop effects involving e^* and are therefore subject to theoretical uncertainty.

VALUE (GeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

56
 DORENBOS... 89 CHRM $\overline{\nu}_{\mu}\,e \to \overline{\nu}_{\mu}\,e$, $\nu_{\mu}\,e \to \nu_{\mu}\,e$ 57 GRIFOLS 86 THEO $\nu_{\mu}\,e \to \nu_{\mu}\,e$ 58 RENARD 82 THEO $g{-}2$ of electron

 56 DORENBOSCH 89 obtain the limit $\lambda_{\gamma}^2 \Lambda_{\rm cut}^2/m_{e^*}^2 < 2.6$ (95% CL), where $\Lambda_{\rm cut}$ is the cutoff scale, based on the one-loop calculation by GRIFOLS 86. If one assumes that $\Lambda_{\rm cut}=1$ TeV and $\lambda_{\gamma}=1$, one obtains $m_{e^*}>620$ GeV. However, one generally expects $\lambda_{\gamma} \approx m_{e^*}/\Lambda_{\rm cut}$ in composite models.

MASS LIMITS for Excited μ (μ *)

Limits for Excited μ (μ^*) from Pair Production

These limits are obtained from $e^+e^- \to \mu^{*+}\mu^{*-}$ and thus rely only on the (electroweak) charge of μ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the μ^* coupling is assumed to be of sequential type. All limits assume a dominant $\mu^* \to \mu \gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review **D45** S1 (1992)).

<i>VALUE</i> (GeV)	<u>CL%_</u>	DOCUMENT ID		TECN	COMMENT
>103.2	95	⁵⁹ ABBIENDI	02G	OPAL	${ m e^+e^-} ightarrow~\mu^*\mu^*$ Homodoublet type
• • • We do	not use	the following data	for av	verages,	fits, limits, etc. • • •
>102.8	95	⁶⁰ ACHARD	03 B	L3	$e^+e^- ightarrow \ \mu^*\mu^*$ Homodoublet type
>100.2	95	⁶¹ ACCIARRI	01 D	L3	$e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type
> 91.3	95	⁶² ABBIENDI	001	OPAL	$e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type
> 94.2	95	⁶³ ACCIARRI	00E	L3	$e^+e^- ightarrow \mu^*\mu^*$ Homodoublet type

 $^{^{55}}$ ACCIARRI 00G also obtain a limit on e^* with chiral coupling, $m_{e^*} > 213$ GeV.

 $^{^{57}\, {\}rm GRIFOLS}$ 86 uses $\nu_{\mu}\, e \to \nu_{\mu}\, e$ and $\overline{\nu}_{\mu}\, e \to \overline{\nu}_{\mu}\, e$ data from CHARM Collaboration to derive mass limits which depend on the scale of compositeness.

⁵⁸ RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

- 59 From e^+e^- collisions at $\sqrt{s}=$ 183–209 GeV. f=f' is assumed.
- $^{60}\, {\rm From}\ e^+\,e^-$ collisions at $\sqrt{s}=189$ –209 GeV. f=f' is assumed. ACHARD 03B also obtain limit for $f=-f'\colon m_{\mu^*}>96.6$ GeV.
- 61 From $e^+\,e^-$ collisions at $\sqrt{s}=192$ –202 GeV. f=f' is assumed. ACCIARRI 01D also obtain limit for $f=-f'\colon m_{\mu^*}>93.4$ GeV.
- ⁶² From e^+e^- collisions at \sqrt{s} =161–183 GeV. f=f' is assumed. ABBIENDI 001 also obtain limit for f=-f' ($\mu^* \to \nu W$): $m_{\mu^*} >$ 86.0 GeV.
- 63 From $e^+\,e^-$ collisions at $\sqrt{s}{=}189$ GeV. $f{=}f'$ is assumed. ACCIARRI 00E also obtain limit for $f{=}{-}f'$ ($\mu^* \rightarrow \ \nu\,W$): $m_{\mu^*} > 92.6$ GeV.

Limits for Excited μ (μ *) from Single Production

These limits are from $e^+e^- \to \mu^*\mu$ and depend on transition magnetic coupling between μ and μ^* . All limits assume $\mu^* \to \mu\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\mu^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>221	95	64 ABULENCIA,A 06B	CDF	$p\overline{p} \rightarrow \mu\mu^*, \mu^* \rightarrow \mu\gamma$

• • We do not use the following data for averages, fits, limits, etc.

	95	⁶⁵ ABAZOV	06E	D0	$p\overline{p} \rightarrow \mu\mu^*$
>180	95	⁶⁶ ACHARD	03 B	L3	$e^+e^- ightarrow \mu \mu^*$
>190	95	⁶⁷ ABBIENDI	02G	OPAL	$e^+e^- ightarrow \mu \mu^*$
>178	95	⁶⁸ ACCIARRI	01 D	L3	$e^+e^- ightarrow \mu \mu^*$
		⁶⁹ ABBIENDI	001	OPAL	$e^+e^- ightarrow \mu \mu^*$
		⁷⁰ ACCIARRI	00E	L3	$e^+e^- ightarrow \mu \mu^*$

- $^{64}f=f'=\Lambda/m_{\mu^*}$ is assumed for the μ^* coupling. See their Fig.4 for the exclusion limit in the mass-coupling plane. ABULENCIA,A 06B also obtain m_{μ^*} limit in the contact interaction model with $\Lambda=m_{\mu^*}$, $m_{\mu^*}>696$ GeV.
- 65 ABAZOV 06E assume $\mu\mu^*$ production via four-fermion contact interaction $(4\pi/\Lambda^2)(\overline{q}_L\gamma^\mu q_L)(\overline{\mu}_L^*\gamma_\mu\mu).$ The obtained limit is $m_{\mu^*}>618$ GeV $(m_{\mu^*}>688$ GeV) for $\Lambda=1$ TeV $(\Lambda=m_{\mu^*}).$
- ⁶⁶ ACHARD 03B result is from e^+e^- collisions at $\sqrt{s}=189$ –209 GeV. $f=f'=\Lambda/m_{\mu^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.
- is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane. ⁶⁷ ABBIENDI 02G result is from e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. $f=f'=\Lambda/m_{\mu^*}$ is assumed for μ^* coupling. See their Fig. 4c for the exclusion limit in the mass-coupling plane.
- 68 ACCIARRI 01D result is from e^+e^- collisions at $\sqrt{s}=192$ –202 GeV. $f=f'=\Lambda/m_{\mu^*}$ is assumed for the μ^* coupling. See their Fig. 4 for limits in the mass-coupling plane.
- ⁶⁹ ABBIENDI 001 result is from e^+e^- collisions at \sqrt{s} =161–183 GeV. See their Fig. 7 for limits in mass-coupling plane.
- 70 ACCIARRI 00E result is from e^+e^- collisions at \sqrt{s} =189 GeV. See their Fig. 3 for limits in mass-coupling plane.

Indirect Limits for Excited μ (μ *)

These limits make use of loop effects involving μ^* and are therefore subject to theoretical uncertainty.

VALUE (GeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

71 RENARD 82 THEO g-2 of muon

 71 RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

MASS LIMITS for Excited au (au^*)

Limits for Excited τ (τ^*) from Pair Production

These limits are obtained from $e^+e^- \to \tau^{*+}\tau^{*-}$ and thus rely only on the (electroweak) charge of τ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the τ^* coupling is assumed to be of sequential type. All limits assume a dominant $\tau^* \to \tau \gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

<i>VALUE</i> (GeV)	CL%	DOCUMENT ID		TECN	COMMENT	
>103.2	95	⁷² ABBIENDI	02G	OPAL	$e^+e^- ightarrow~ au^* au^*$ Homodoublet type	
• • • We do	not ι	use the following data	for a	verages,	, fits, limits, etc. • • •	

>102.8	95	⁷³ ACHARD	03 B L3	$e^+e^- ightarrow~ au^* au^*$ Homodoublet type
> 99.8	95	⁷⁴ ACCIARRI	01D L3	$e^+e^- ightarrow~ au^* au^*$ Homodoublet type
> 91.2	95	⁷⁵ ABBIENDI	00ı OPAL	$e^+e^- ightarrow~ au^* au^*$ Homodoublet type
> 94.2	95	⁷⁶ ACCIARRI	00E L3	$e^+e^- ightarrow~ au^* au^*$ Homodoublet type

⁷² From e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. f=f' is assumed.

Limits for Excited τ (τ^*) from Single Production

These limits are from $e^+e^- \to \tau^*\tau$ and depend on transition magnetic coupling between τ and τ^* . All limits assume $\tau^* \to \tau\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\tau^*}$ plane. See the original papers.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>185	95	77 ABBIENDI	02G OPAL	$e^+e^- ightarrow au au^*$

 $^{^{73}\,\}rm From~e^+\,e^-$ collisions at $\sqrt{s}=189$ –209 GeV. f=f' is assumed. ACHARD 03B also obtain limit for $f=-f'\colon\,m_{\tau^*}>96.6$ GeV.

 $^{^{74}}$ From $e^+\,e^-$ collisions at $\sqrt{s}=192$ –202 GeV. f=f' is assumed. ACCIARRI 01D also obtain limit for $f=-f'\colon m_{\tau^*}>93.4$ GeV.

⁷⁵ From e^+e^- collisions at \sqrt{s} =161–183 GeV. f=f' is assumed. ABBIENDI 001 also obtain limit for f=-f' ($\tau^* \to \nu W$): $m_{\tau^*} > 86.0$ GeV.

⁷⁶ From e^+e^- collisions at \sqrt{s} =189 GeV. f=f' is assumed. ACCIARRI 00E also obtain limit for f=-f' ($\tau^* \to \ \nu \, W$): $m_{\tau^*} >$ 92.6 GeV.

• • • We do not use the following data for averages, fits, limits, etc. • • •

>180	95	⁷⁸ ACHARD	03 B L3	$e^+e^- ightarrow~ au au^*$
>173	95	⁷⁹ ACCIARRI	01D L3	$e^+e^- ightarrow au au^*$
		⁸⁰ ABBIENDI	00ı OPAL	$e^+e^- ightarrow au au^*$
		⁸¹ ACCIARRI	00F I.3	$e^+e^- ightarrow au au^*$

- ⁷⁷ ABBIENDI 02G result is from e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. $f=f'=\Lambda/m_{\tau^*}$ is assumed for τ^* coupling. See their Fig. 4c for the exclusion limit in the mass-coupling plane.
- 78 ACHARD 03B result is from $e^+\,e^-$ collisions at $\sqrt{s}=189$ –209 GeV. $f=f'=\Lambda/m_{\tau^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.
- 79 ACCIARRI 01D result is from e^+e^- collisions at $\sqrt{s}=192$ –202 GeV. $f=f'=\Lambda/m_{\tau^*}$ is assumed for the τ^* coupling. See their Fig. 4 for limits in the mass-coupling plane.
- ⁸⁰ ABBIENDI 001 result is from e^+e^- collisions at \sqrt{s} =161–183 GeV. See their Fig. 7 for limits in mass-coupling plane.
- ⁸¹ ACCIARRI 00E result is from e^+e^- collisions at \sqrt{s} =189 GeV. See their Fig. 3 for limits in mass-coupling plane.

MASS LIMITS for Excited Neutrino (ν^*)

Limits for Excited ν (ν^*) from Pair Production

These limits are obtained from $e^+e^- \to \nu^*\nu^*$ and thus rely only on the (electroweak) charge of ν^* . Form factor effects are ignored unless noted. The ν^* coupling is assumed to be of sequential type unless otherwise noted. All limits assume a dominant $\nu^* \to \nu \gamma$ decay except the limits from $\Gamma(Z)$.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>102.6	95	⁸² ACHARD	03 B	L3	$e^+e^- ightarrow \ u^* u^*$ Homodoublet type
• • • We do	not use	the following data	for a	verages,	fits, limits, etc. • • •
		83 ABBIENDI	04N	OPAL	
> 99.4	95	⁸⁴ ACCIARRI	01 D	L3	$e^+e^- ightarrow \ u^* u^*$ Homodoublet type
> 91.2	95	⁸⁵ ABBIENDI	001	OPAL	$e^+e^- \rightarrow \nu^*\nu^*$ Homodoublet type
		⁸⁶ ABBIENDI,G		OPAL	
> 94.1	95	⁸⁷ ACCIARRI	00E	L3	$e^+e^- ightarrow \ u^* u^*$ Homodoublet type
$82 \text{From } e^+$	e^{-} coll	isions at $\sqrt{s} = 189$ -	-209	GeV. <i>f</i> =	=-f' is assumed. ACHARD 03B also
					$>$ 101.8 GeV, and $m_{\stackrel{*}{\nu_{\scriptscriptstyle T}}} >$ 92.9 GeV.
		or the exclusion plo			
83 From e^{-}	$^{+}e^{-}$ co	ollisions at \sqrt{s} =	192-	209 Ge	V, ABBIENDI 04N obtain limit on
σ (e $^+$ e $^-$	u $ u$ $ u$	$(\nu^*) \ B^2(\nu^* o \ \nu^*)$	γ). S	ee their	Fig.2. The limit ranges from 20 to
45fb for	$m_{\nu^*} >$	45 GeV.			
0.4	•				

- ⁸⁴ From e^+e^- collisions at $\sqrt{s}=192$ –202 GeV. f=f' is assumed. ACCIARRI 01D also obtain limit for f=-f': $m_{\nu_e^*}>99.1$ GeV, $m_{\nu_\mu^*}>99.3$ GeV, $m_{\nu_\tau^*}>90.5$ GeV.
- ⁸⁵ From e^+e^- collisions at \sqrt{s} =161–183 GeV. f=-f' (photonic decay) is assumed. ABBIENDI 00I also obtain limit for f=f' ($\nu^* \to \ell W$): $m_{\nu_e^*} >$ 91.1 GeV, $m_{\nu_\mu^*} >$ 91.1 GeV, $m_{\nu_\tau^*} >$ 83.1 GeV.

- ⁸⁶ From e^+e^- collisions at $\sqrt{s}=$ 189 GeV. ABBIENDI,G 00D obtain limit on $\sigma(e^+e^-\to \nu^*\nu^*)$ B($\nu^*\to \nu\gamma$)². See their Fig. 14. The limit ranges from 50 to 80 fb for $\sqrt{s}/2=$ 95 GeV> $m_{\nu^*}>$ 45 GeV.
- ⁸⁷ From e^+e^- collisions at \sqrt{s} =189 GeV. f=-f' (photonic decay) is assumed. ACCIARRI 00E also obtain limit for f=f' ($\nu^* \rightarrow \ell W$): $m_{\nu_e^*} > 93.9$ GeV, $m_{\nu_\mu^*} > 94.0$ GeV, $m_{\nu_\mu^*} > 91.5$ GeV.

Limits for Excited ν (ν^*) from Single Production

These limits are from $e^+e^- \to \nu\nu^*$, $Z \to \nu\nu^*$, or $ep \to \nu^*X$ and depend on transition magnetic coupling between ν/e and ν^* . Assumptions about ν^* decay mode are given in footnotes.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>213	95	⁸⁸ AARON	80	H1	$e p \rightarrow \nu^* X$
• • • We do	not use	the following data	for a	verages,	fits, limits, etc. • • •
>190	95	⁸⁹ ACHARD	03 B	L3	$\mathrm{e^{+}e^{-}} ightarrow \ u u^{*}$
none 50-150	95	⁹⁰ ADLOFF	02	H1	$ep \rightarrow \nu^* X$
>158	95	⁹¹ CHEKANOV	02 D	ZEUS	$ep \rightarrow \nu^* X$
>171	95	⁹² ACCIARRI	01 D	L3	$e^+e^- ightarrow u u^*$
		⁹³ ABBIENDI	001	OPAL	$e^+e^- ightarrow u u^*$
		⁹⁴ ABBIENDI,G	00 D	OPAL	
		⁹⁵ ACCIARRI	00E	L3	$e^+e^- ightarrow u u^*$
>114	95	⁹⁶ ADLOFF	00E	H1	$ep \rightarrow \nu^* X$

- ⁸⁸ AARON 08 search for single ν^* production in ep collisions with the decays $\nu^* \to \nu \gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 3 and Fig. 4 for the exclusion plots in the mass-coupling plane.
- ⁸⁹ ACHARD 03B result is from e^+e^- collisions at $\sqrt{s}=189$ –209 GeV. The quoted limit is for ν_e^* . $f=-f'=\Lambda/m_{\nu^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.
- ⁹⁰ ADLOFF 02 search for single ν^* production in ep collisions with the decays $\nu^* \to \nu \gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 1 for the exclusion plots in the mass-coupling plane.
- ⁹¹CHEKANOV 02D search for single ν^* production in ep collisions with the decays $\nu^* \to \nu \gamma$, νZ , eW. $f = -f' = \Lambda/m_{\nu^*}$ is assumed for the e^* coupling. CHEKANOV 02D also obtain limit for $f = f' = \Lambda/m_{\nu^*}$: $m_{\nu^*} > 135$ GeV. See their Fig. 5c and Fig. 5d for the exclusion plot in the mass-coupling plane.
- ⁹² ACCIARRI 01D search for $\nu\nu^*$ production in e^+e^- collisions at $\sqrt{s}=192$ –202 GeV with decays $\nu^* \to \nu\gamma$, $\nu^* \to eW$. $f=-f'=\Lambda/m_{\nu^*}$ is assumed for the ν^* coupling. See their Fig. 4 for limits in the mass-coupling plane.
- 93 ABBIENDI 001 result is from e^+e^- collisions at \sqrt{s} =161–183 GeV. See their Fig. 7 for limits in mass-coupling plane.
- 94 From e^+e^- collisions at $\sqrt{s}=$ 189 GeV. ABBIENDI,G 00D obtain limit on $\sigma(e^+e^- \rightarrow \nu^*\nu^*)$ B($\nu^* \rightarrow \nu\gamma$)². See their Fig. 11.
- 95 ACCIARRI 00E result is from e^+e^- collisions at \sqrt{s} =189 GeV. See their Fig. 3 for limits in mass-coupling plane.
- ⁹⁶ ADLOFF 00E search for single ν^* production in ep collisions with the decays $\nu^* \to \nu \gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 10 for the exclusion plot in the mass-coupling plane.

MASS LIMITS for Excited $q(q^*)$

Limits for Excited $q(q^*)$ from Pair Production

These limits are mostly obtained from $e^+e^- \rightarrow q^* \overline{q}^*$ and thus rely only on the (electroweak) charge of the q^* . Form factor effects are ignored unless noted. Assumptions about the q^* decay are given in the comments and footnotes.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>338	95	⁹⁷ AALTONEN 10H	CDF	$q^* \rightarrow tW^-$

• • • We do not use the following data for averages, fits, limits, etc. • • •

		⁹⁸ BARATE	98 U	ALEP	$Z \rightarrow q^* q^*$
> 45.6	95		93M	L3	u or d type, $Z \rightarrow q^*q^*$
					$Z \rightarrow q^* q^*$
> 41.7	95	¹⁰¹ BARDADIN	92	RVUE	u -type, $\Gamma(Z)$
> 44.7	95	¹⁰¹ BARDADIN	92	RVUE	d -type, $\Gamma(Z)$
> 40.6		¹⁰² DECAMP	92	ALEP	u -type, $\Gamma(Z)$
> 44.2		_	92	ALEP	d -type, $\Gamma(Z)$
> 45		¹⁰³ DECAMP	92	ALEP	u or d type, $Z \rightarrow q^*q^*$
> 45			91F	DLPH	u -type, $\Gamma(Z)$
> 45	95	¹⁰² ABREU	91F	DLPH	<i>d</i> -type, $\Gamma(Z)$

⁹⁷ AALTONEN 10H obtain limits on the $q^* q^*$ production cross section in $p \overline{p}$ collisions. See their Fig. 3.

Limits for Excited $q(q^*)$ from Single Production

These limits are from $e^+e^- \to q^*\overline{q}$, $p\overline{p} \to q^*X$, or $pp \to q^*X$ and depend on transition magnetic couplings between q and q^* . Assumptions about q^* decay mode are given in the footnotes and comments.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
none 300-1260	95				$pp \rightarrow q^*X, q^* \rightarrow qg$
none 500-1580	95		.10	CMS	$pp ightarrow q^* X$, $q^* ightarrow qg$
>775	95		0 4C	D0	$p\overline{p} ightarrow q^*X$, $q^* ightarrow qg$
none 200–520 and 580–760	95	¹⁰⁶ ABE	97 G	CDF	$p\overline{p} \rightarrow q^*X, q^* \rightarrow 2 \text{ jets}$

• • We do not use the following data for averages, fits, limits, etc. • •

>510	95			$p\overline{p} \rightarrow q^*X, q^* \rightarrow qZ$
>205	95	¹⁰⁸ CHEKANOV	02D ZEUS	$ep \rightarrow q^*X$
>188	95	¹⁰⁹ ADLOFF	00E H1	$ep \rightarrow q^*X$
none 80-570	95	¹¹⁰ ABE	95N CDF	$p\overline{p} \rightarrow q^*X, q^* \rightarrow qg$
				$q\gamma$, qW

⁹⁸ BARATE 98U obtain limits on the form factor. See their Fig. 16 for limits in mass-form factor plane.

⁹⁹ ADRIANI 93M limit is valid for B($q^* \rightarrow qg$)> 0.25 (0.17) for up (down) type.

¹⁰⁰ ADRIANI 92F search for $Z \to q^* \overline{q}^*$ followed with $q^* \to q \gamma$ decays and give the limit $\sigma_Z + \mathsf{B}(Z \to q^* \overline{q}^*) + \mathsf{B}^2(q^* \to q \gamma) < 2\,\mathrm{pb}$ at 95%CL. Assuming five flavors of degenerate q^* of homodoublet type, $\mathsf{B}(q^* \to q \gamma) < 4\%$ is obtained for $m_{q^*} < 45\,\mathrm{GeV}$.

 $^{^{101}}$ BARDADIN-OTWINOWSKA 92 limit based on $\Delta\Gamma(Z){<}36$ MeV.

¹⁰² These limits are independent of decay modes.

¹⁰³ Limit is for B($q^* \rightarrow qg$)+B($q^* \rightarrow q\gamma$)=1.

- 104 AAD 10, KHACHATRYAN 10 search for heavy resonance decaying to 2 jets in pp collisions at $\sqrt{s}=7$ TeV. $f_{\rm S}=f=f'=1$ is assumed.
- 105 ABAZOV 04C assume $f_s = f = f' = \Lambda/m_{q^*}$.
- 106 ABE 97G search for new particle decaying to dijets.
- 107 ABAZOV 06F assume q^* production via qg fusion and via contact interactions. The quoted limit is for $\Lambda=m_{q^*}$.
- ¹⁰⁸ CHEKANOV 02D search for single q^* production in ep collisions with the decays $q^* \rightarrow q\gamma$, qZ, qW. $f_s=0$ and $f=f'=\Lambda/m_{q^*}$ is assumed for the q^* coupling. See their Fig. 5b for the exclusion plot in the mass-coupling plane.
- ¹⁰⁹ ADLOFF 00E search for single q^* production in $e\,p$ collisions with the decays $q^* \to q\,\gamma$, $q\,Z$, $q\,W$. f_s =0 and f=f'= Λ/m_{q^*} is assumed for the q^* coupling. See their Fig. 11 for the exclusion plot in the mass-coupling plane.
- ¹¹⁰ ABE 95N assume a degenerate u^* and d^* with $f_s = f = f' = \Lambda/m_{q^*}$. See their Fig. 4 for the excluded region in $m_{q^*} f$ plane.

MASS LIMITS for Color Sextet Quarks (q_6)

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>84	95	¹¹¹ ABE	89 D	CDF	$p\overline{p} \rightarrow q_6\overline{q}_6$

¹¹¹ ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color sextet quark is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. A limit of 121 GeV is obtained for a color decuplet.

MASS LIMITS for Color Octet Charged Leptons (ℓ_8)

$$\lambda \equiv m_{\ell_8}/\Lambda$$

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>86	95	112 ABE	89 D	CDF	Stable ℓ_8 : $p\overline{p} \rightarrow \ell_8\overline{\ell}_8$

• • • We do not use the following data for averages, fits, limits, etc. • • •

		¹¹³ ABT	93	H1	e_8 : $ep \rightarrow e_8 X$
none 3.0-30.3	95	114 KIM	90	AMY	e_8 : $e^+e^- \rightarrow ee + jets$
none 3.5-30.3	95	^{114}KIM	90	AMY	μ_8 : $e^+e^- \rightarrow \mu\mu$ + jets
		^{115}KIM	90	AMY	e_8 : $e^+e^- \rightarrow gg$; R

- ¹¹² ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color octet lepton is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. The limit improves to 99 GeV if it always fragments into a unit-charged hadron.
- ¹¹³ ABT 93 search for e_8 production via e-gluon fusion in ep collisions with $e_8 \rightarrow eg$. See their Fig. 3 for exclusion plot in the m_{e_8} - Λ plane for $m_{e_8}=35$ -220 GeV.
- $^{114}\,\mathrm{KIM}$ 90 is at $E_\mathrm{cm}=50$ –60.8 GeV. The same assumptions as in BARTEL 87B are used.
- $^{115}\,\rm KIM$ 90 result $(m_{e_8}\Lambda_M)^{1/2}>178.4$ GeV (95%CL, $\alpha_s=0.16$ used) is subject to the same restriction as for BARTEL 85K.

MASS LIMITS for Color Octet Neutrinos (ν_8)

 $\lambda \equiv m_{\ell_8}/\Lambda$

<i>VALUE</i> (GeV)	CL%	<u>DOCUMENT ID</u>		TECN	COMMENT
>110	90	¹¹⁶ BARGER	89	RVUE	ν_8 : $p\overline{p} \rightarrow \nu_8\overline{\nu}_8$
• • • We do not u	se the f	ollowing data for ave	erages	, fits, lin	nits, etc. • • •
none 3.8-29.8	95	$^{117}\mathrm{KIM}$	90	AMY	$ u_8$: $e^+e^ ightarrow$ acoplanar jets
none 9–21.9	95	¹¹⁸ BARTEL	87 B	JADE	ν_8 : $e^+e^- o$ acoplanar jets

 $^{^{116}}$ BARGER 89 used ABE 89B limit for events with large missing transverse momentum. Two-body decay $\nu_8 \to ~\nu\,g$ is assumed.

MASS LIMITS for W₈ (Color Octet W Boson)

VALUE (GeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹¹⁹ ALBAJAR 89 UA1 $p\overline{p} \rightarrow W_8 X$, $W_8 \rightarrow W_g$

 $^{119}\,\mathrm{ALBAJAR}$ 89 give $\sigma(W_8\to~W+\mathrm{jet})/\sigma(W)<$ 0.019 (90% CL) for $m_{\slash\hspace{-0.4em}W_8}~>$ 220 GeV.

REFERENCES FOR Searches for Quark and Lepton Compositeness

AAD AALTONEN	10 10H	PRL 105 161801 PRL 104 091801	G. Aad <i>et al.</i> T. Aaltonen <i>et al.</i>	(ATLAS (CDF	Collab.)
KHACHATRY	10	PRL 105 211801	V. Khachatryan et al.		Collab.)
Also		PRL 106 029902E	V. Khachatryan et al.	`	Collab.)
KHACHATRY	10A	PRL 105 262001	V. Khachatryan et al.	(CMS	Collab.)
ABAZOV	09AE	PRL 103 191803	V.M. Abazov et al.	` (D0	Collab.)
ABDALLAH	09	EPJ C60 1	J. Abdallah <i>et al.</i>	(DELPHI	Collab.)
AARON	80	PL B663 382	F.D. Aaron et al.	(H1	Collab.)
AARON	A80	PL B666 131	F.D. Aaron et al.	(H1	Collab.)
ABAZOV	H80	PR D77 091102R	V.M. Abazov <i>et al.</i>	(D0	Collab.)
SCHAEL	07A	EPJ C49 411	S. Schael et al.	(ALEPH	
ABAZOV	06E	PR D73 111102R	V.M. Abazov <i>et al.</i>	(D0	Collab.)
ABAZOV	06F	PR D74 011104R	V.M. Abazov <i>et al.</i>		Collab.)
ABDALLAH	06C	EPJ C45 589	J. Abdallah <i>et al.</i>	(DELPHI	Collab.)
ABULENCIA	06L	PRL 96 211801	A. Abulencia <i>et al.</i>		Collab.)
ABULENCIA,A		PRL 97 191802	A. Abulencia <i>et al.</i>		Collab.)
ACOSTA	05B	PRL 94 101802	D. Acosta <i>et al.</i>	`	Collab.)
ABAZOV	04C	PR D69 111101R	V.M. Abazov <i>et al.</i>	(D0	Collab.)
ABBIENDI	04G	EPJ C33 173	G. Abbiendi <i>et al.</i>	,	Collab.)
ABBIENDI	04N	PL B602 167	G. Abbiendi <i>et al.</i>		Collab.)
ABDALLAH	04N	EPJ C37 405	J. Abdallah <i>et al.</i>	(DELPHI	
CHEKANOV	04B	PL B591 23	S. Chekanov <i>et al.</i>	(ZEUS	Collab.)
ACHARD	03B	PL B568 23	P. Achard et al.	(L3	Collab.)
ADLOFF	03	PL B568 35	C. Adloff <i>et al.</i>	(H1	Collab.)
BABICH	03	EPJ C29 103	A.A. Babich <i>et al.</i>		
ABBIENDI	02G	PL B544 57	G. Abbiendi <i>et al.</i>	`	Collab.)
ACHARD	02D	PL B531 28	P. Achard et al.	(L3	Collab.)
ACHARD	02J	PL B549 290	P. Achard et al.	(L3	Collab.)
ADLOFF	02	PL B525 9	C. Adloff <i>et al.</i>		Collab.)
ADLOFF	02B	PL B548 35	C. Adloff <i>et al.</i>		Collab.)
CHEKANOV	02D	PL B549 32	S. Chekanov <i>et al.</i>		Collab.)
ACCIARRI	01D	PL B502 37	M. Acciarri <i>et al.</i>		Collab.)
AFFOLDER	011	PRL 87 231803	T. Affolder et al.	(CDF	Collab.)

HTTP://PDG.LBL.GOV

Page 14

 $^{^{117}\,\}mathrm{KIM}$ 90 is at $E_\mathrm{cm}=$ 50–60.8 GeV. The same assumptions as in BARTEL 87B are used.

¹¹⁸ BARTEL 87B is at $E_{\rm cm}=46.3$ –46.78 GeV. The limit assumes the ν_8 pair production cross section to be eight times larger than that of the corresponding heavy neutrino pair production. This assumption is not valid in general for the weak couplings, and the limit can be sensitive to its SU(2)_L×U(1)_Y quantum numbers.

BOURILKOV	01	PR D64 071701	D. Bourilkov	
CHEUNG	01B	PL B517 167	K. Cheung	
ABBIENDI	001	EPJ C14 73	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	00R	EPJ C13 553	G. Abbiendi et al.	(OPAL Collab.)
ABBIENDI,G	00D	EPJ C18 253	G. Abbiendi <i>et al</i> .	(OPAL Collab.)
ABBOTT	00E	PR D62 031101	B. Abbott <i>et al.</i>	(D0 Collab.)
ABREU	00A	PL B491 67	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	00S	PL B485 45	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	00E	PL B473 177	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	00G	PL B475 198	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	00P	PL B489 81	M. Acciarri <i>et al.</i>	(L3 Collab.)
ADLOFF	00	PL B479 358	C. Adloff <i>et al.</i>	(H1 Collab.)
ADLOFF	00E	EPJ C17 567	C. Adloff <i>et al.</i>	(H1 Collab.)
AFFOLDER	001	PR D62 012004	T. Affolder et al.	(CDF Collab.)
BARATE	001	EPJ C12 183	R. Barate <i>et al.</i>	(ALEPH Collab.)
BOURILKOV	00	PR D62 076005	D. Bourilkov	(ALLI II Collab.)
BREITWEG	00B	EPJ C14 239	J. Breitweg <i>et al.</i>	(ZEUS Collab.)
ABBOTT	99C	PRL 82 2457	B. Abbott <i>et al.</i>	`
				(D0 Collab.)
ABBOTT BARATE	98G 98U	PRL 80 666 EPJ C4 571	B. Abbott <i>et al.</i>	(D0 Collab.)
	98E		R. Barate <i>et al.</i>	(ALEPH Collab.)
BARGER		PR D57 391	V. Barger <i>et al.</i>	
BERTRAM	98	PL B443 347	I. Bertram, E.H. Simmons	(CCED/N T) (C II I)
MCFARLAND	98	EPJ C1 509	K.S. McFarland et al.	(CCFR/NuTeV Collab.)
ABE	97G	PR D55 R5263	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	97T	PRL 79 2198	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	95N	PRL 74 3538	F. Abe <i>et al.</i>	(CDF Collab.)
DIAZCRUZ	94	PR D49 R2149	J.L. Diaz Cruz, O.A. Sampayo	(CINV)
ABT	93	NP B396 3	I. Abt et al.	(H1 Collab.)
ADRIANI	93M	PRPL 236 1	O. Adriani <i>et al.</i>	(L3 Collab.)
ABE	92B	PRL 68 1463	F. Abe <i>et al.</i>	(CDF Collab.)
ADRIANI	92F	PL B292 472	O. Adriani <i>et al.</i>	(L3 Collab.)
BARDADIN	92	ZPHY C55 163	M. Bardadin-Otwinowska	(CLER)
DECAMP	92	PRPL 216 253	D. Decamp <i>et al.</i>	(ALEPH Collab.)
PDG	92	PR D45 S1	K. Hikasa <i>et al.</i>	(KEK, LBL, BOST+)
ABREU	91F	NP B367 511	P. Abreu <i>et al.</i>	(DELPHI Collab.)
KIM	90	PL B240 243	G.N. Kim <i>et al.</i>	(AMY Collab.)
ABE	89B	PRL 62 1825	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	89D	PRL 63 1447	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	89J	ZPHY C45 175	K. Abe <i>et al.</i>	(VÈNUS Collab.)
ALBAJAR	89	ZPHY C44 15	C. Albajar <i>et al.</i>	` (UA1 Collab.)
BARGER	89	PL B220 464	V. Barger <i>et al.</i>	(WISC, KEK)
DORENBOS	89	ZPHY C41 567	J. Dorenbosch <i>et al.</i>	(CHÀRM Collab.)
BARTEL	87B	ZPHY C36 15	W. Bartel <i>et al.</i>	` (JADE Collab.)
GRIFOLS	86	PL 168B 264	J.A. Grifols, S. Peris	(BARC)
JODIDIO	86	PR D34 1967	A. Jodidio <i>et al.</i>	(LBL, NWES, TRIU)
Also		PR D37 237 (erratum)	A. Jodidio <i>et al.</i>	(LBL, NWES, TRIU)
BARTEL	85K	PL 160B 337	W. Bartel <i>et al.</i>	(JADE Collab.)
EICHTEN	84	RMP 56 579	E. Eichten <i>et al.</i>	(FNAL, LBL, OSU)
RENARD	82	PL 116B 264	F.M. Renard	(CERN)
	-			(32.111)