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32. PROBABILITY

Revised September 2011 by G. Cowan (RHUL).

32.1. General [1–8]

An abstract definition of probability can be given by considering a set S, called the
sample space, and possible subsets A, B, . . . , the interpretation of which is left open.
The probability P is a real-valued function defined by the following axioms due to
Kolmogorov [9]:

1. For every subset A in S, P (A) ≥ 0;

2. For disjoint subsets (i.e., A ∩ B = ∅), P (A ∪ B) = P (A) + P (B);

3. P (S) = 1.

In addition, one defines the conditional probability P (A|B) (read P of A given B) as

P (A|B) =
P (A ∩ B)

P (B)
. (32.1)

From this definition and using the fact that A ∩ B and B ∩ A are the same, one obtains
Bayes’ theorem,

P (A|B) =
P (B|A)P (A)

P (B)
. (32.2)

From the three axioms of probability and the definition of conditional probability, one
obtains the law of total probability,

P (B) =
∑

i

P (B|Ai)P (Ai) , (32.3)

for any subset B and for disjoint Ai with ∪iAi = S. This can be combined with Bayes’
theorem (Eq. (32.2)) to give

P (A|B) =
P (B|A)P (A)

∑

i P (B|Ai)P (Ai)
, (32.4)

where the subset A could, for example, be one of the Ai.

The most commonly used interpretation of the subsets of the sample space are
outcomes of a repeatable experiment. The probability P (A) is assigned a value equal
to the limiting frequency of occurrence of A. This interpretation forms the basis of
frequentist statistics.

The subsets of the sample space can also be interpreted as hypotheses, i.e., statements
that are either true or false, such as ‘The mass of the W boson lies between 80.3 and 80.5
GeV.’ In the frequency interpretation, such statements are either always or never true,
i.e., the corresponding probabilities would be 0 or 1. Using subjective probability, however,
P (A) is interpreted as the degree of belief that the hypothesis A is true. Subjective
probability is used in Bayesian (as opposed to frequentist) statistics. Bayes’ theorem can
be written

P (theory|data) ∝ P (data|theory)P (theory) , (32.5)
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2 32. Probability

where ‘theory’ represents some hypothesis and ‘data’ is the outcome of the experiment.
Here P (theory) is the prior probability for the theory, which reflects the experimenter’s
degree of belief before carrying out the measurement, and P (data|theory) is the
probability to have gotten the data actually obtained, given the theory, which is also
called the likelihood.

Bayesian statistics provides no fundamental rule for obtaining the prior probability,
which may depend on previous measurements, theoretical prejudices, etc. Once this has
been specified, however, Eq. (32.5) tells how the probability for the theory must be
modified in the light of the new data to give the posterior probability, P (theory|data). As
Eq. (32.5) is stated as a proportionality, the probability must be normalized by summing
(or integrating) over all possible hypotheses.

32.2. Random variables

A random variable is a numerical characteristic assigned to an element of the sample
space. In the frequency interpretation of probability, it corresponds to an outcome of
a repeatable experiment. Let x be a possible outcome of an observation. If x can take
on any value from a continuous range, we write f(x; θ)dx as the probability that the
measurement’s outcome lies between x and x + dx. The function f(x; θ) is called the
probability density function (p.d.f.), which may depend on one or more parameters θ. If x
can take on only discrete values (e.g., the non-negative integers), then f(x; θ) is itself a
probability.

The p.d.f. is always normalized to unit area (unit sum, if discrete). Both x and θ may
have multiple components and are then often written as vectors. If θ is unknown, we may
wish to estimate its value from a given set of measurements of x; this is a central topic of
statistics (see Sec. 33).

The cumulative distribution function F (a) is the probability that x ≤ a:

F (a) =

∫ a

−∞

f(x) dx . (32.6)

Here and below, if x is discrete-valued, the integral is replaced by a sum. The endpoint a
is expressly included in the integral or sum. Then 0 ≤ F (x) ≤ 1, F (x) is nondecreasing,
and P (a < x ≤ b) = F (b) − F (a). If x is discrete, F (x) is flat except at allowed values of
x, where it has discontinuous jumps equal to f(x).

Any function of random variables is itself a random variable, with (in general) a
different p.d.f. The expectation value of any function u(x) is

E[u(x)] =

∫

∞

−∞

u(x) f(x) dx , (32.7)

assuming the integral is finite. For u(x) and v(x), any two functions of x, E[u + v] =
E[u] + E[v]. For c and k constants, E[cu + k] = cE[u] + k.

The nth moment of a random variable x is

αn ≡ E[xn] =

∫

∞

−∞

xnf(x) dx , (32.8a)

February 16, 2012 14:08



32. Probability 3

and the nth central moment of x (or moment about the mean, α1) is

mn ≡ E[(x − α1)
n] =

∫

∞

−∞

(x − α1)
nf(x) dx . (32.8b)

The most commonly used moments are the mean µ and variance σ2:

µ ≡ α1 , (32.9a)

σ2 ≡ V [x] ≡ m2 = α2 − µ2 . (32.9b)

The mean is the location of the “center of mass” of the p.d.f., and the variance is a
measure of the square of its width. Note that V [cx + k] = c2V [x]. It is often convenient
to use the standard deviation of x, σ, defined as the square root of the variance.

Any odd moment about the mean is a measure of the skewness of the p.d.f. The
simplest of these is the dimensionless coefficient of skewness γ1 = m3/σ3.

The fourth central moment m4 provides a convenient measure of the tails of a
distribution. For the Gaussian distribution (see Sec. 32.4), one has m4 = 3σ4. The
kurtosis is defined as γ2 = m4/σ4 − 3, i.e., it is zero for a Gaussian, positive for a
leptokurtic distribution with longer tails, and negative for a platykurtic distribution with
tails that die off more quickly than those of a Gaussian.

The quantile xα is the value of the random variable x at which the cumulative
distribution is equal to α. That is, the quantile is the inverse of the cumulative
distribution function, i.e., xα = F−1(α). An important special case is the median, xmed,
defined by F (xmed) = 1/2, i.e., half the probability lies above and half lies below xmed.
(More rigorously, xmed is a median if P (x ≥ xmed) ≥ 1/2 and P (x ≤ xmed) ≥ 1/2. If
only one value exists, it is called ‘the median.’)

Under a monotonic change of variable x → y(x), the quantiles of a distribution (and
hence also the median) obey yα = y(xα). In general the expectation value and mode

(most probable value) of a distribution do not, however, transform in this way.

Let x and y be two random variables with a joint p.d.f. f(x, y). The marginal p.d.f. of
x (the distribution of x with y unobserved) is

f1(x) =

∫

∞

−∞

f(x, y) dy , (32.10)

and similarly for the marginal p.d.f. f2(y). The conditional p.d.f. of y given fixed x (with
f1(x) 6= 0) is defined by f3(y|x) = f(x, y)/f1(x), and similarly f4(x|y) = f(x, y)/f2(y).
From these, we immediately obtain Bayes’ theorem (see Eqs. (32.2) and (32.4)),

f4(x|y) =
f3(y|x)f1(x)

f2(y)
=

f3(y|x)f1(x)
∫

f3(y|x′)f1(x′) dx′
. (32.11)

The mean of x is

µx =

∫

∞

−∞

∫

∞

−∞

x f(x, y) dx dy =

∫

∞

−∞

x f1(x) dx , (32.12)
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4 32. Probability

and similarly for y. The covariance of x and y is

cov[x, y] = E[(x − µx)(y − µy)] = E[xy]− µxµy . (32.13)

A dimensionless measure of the covariance of x and y is given by the correlation

coefficient,
ρxy = cov[x, y]/σxσy , (32.14)

where σx and σy are the standard deviations of x and y. It can be shown that
−1 ≤ ρxy ≤ 1.

Two random variables x and y are independent if and only if

f(x, y) = f1(x)f2(y) . (32.15)

If x and y are independent, then ρxy = 0; the converse is not necessarily true. If x and
y are independent, E[u(x)v(y)] = E[u(x)]E[v(y)], and V [x + y] = V [x] + V [y]; otherwise,
V [x + y] = V [x] + V [y] + 2cov[x, y], and E[uv] does not necessarily factorize.

Consider a set of n continuous random variables x = (x1, . . . , xn) with joint p.d.f.
f(x), and a set of n new variables y = (y1, . . . , yn), related to x by means of a function
y(x) that is one-to-one, i.e., the inverse x(y) exists. The joint p.d.f. for y is given by

g(y) = f(x(y))|J | , (32.16)

where |J | is the absolute value of the determinant of the square matrix Jij = ∂xi/∂yj

(the Jacobian determinant). If the transformation from x to y is not one-to-one, the
x-space must be broken into regions where the function y(x) can be inverted, and the
contributions to g(y) from each region summed.

Given a set of functions y = (y1, . . . , ym) with m < n, one can construct n − m
additional independent functions, apply the procedure above, then integrate the resulting
g(y) over the unwanted yi to find the marginal distribution of those of interest.

For a one-to-one transformation of discrete random variables, simply substitute; no
Jacobian is necessary because now f is a probability rather than a probability density.
If the transformation is not one-to-one, then sum the probabilities for all values of the
original variable that contribute to a given value of the transformed variable. If f depends
on a set of parameters θ, a change to a different parameter set η(θ) is made by simple
substitution; no Jacobian is used.
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32. Probability 5

32.3. Characteristic functions

The characteristic function φ(u) associated with the p.d.f. f(x) is essentially its Fourier
transform, or the expectation value of eiux:

φ(u) = E
[

eiux
]

=

∫

∞

−∞

eiuxf(x) dx . (32.17)

Once φ(u) is specified, the p.d.f. f(x) is uniquely determined and vice versa; knowing
one is equivalent to the other. Characteristic functions are useful in deriving a number of
important results about moments and sums of random variables.

It follows from Eqs. (32.8a) and (32.17) that the nth moment of a random variable x
that follows f(x) is given by

i−n dnφ

dun

∣

∣

∣

∣

u=0
=

∫

∞

−∞

xnf(x) dx = αn . (32.18)

Thus it is often easy to calculate all the moments of a distribution defined by φ(u), even
when f(x) cannot be written down explicitly.

If the p.d.f.s f1(x) and f2(y) for independent random variables x and y have
characteristic functions φ1(u) and φ2(u), then the characteristic function of the weighted
sum ax + by is φ1(au)φ2(bu). The rules of addition for several important distributions
(e.g., that the sum of two Gaussian distributed variables also follows a Gaussian
distribution) easily follow from this observation.

Let the (partial) characteristic function corresponding to the conditional p.d.f. f2(x|z)
be φ2(u|z), and the p.d.f. of z be f1(z). The characteristic function after integration over
the conditional value is

φ(u) =

∫

φ2(u|z)f1(z) dz . (32.19)

Suppose we can write φ2 in the form

φ2(u|z) = A(u)eig(u)z . (32.20)

Then
φ(u) = A(u)φ1(g(u)) . (32.21)

The cumulants (semi-invariants) κn of a distribution with characteristic function φ(u)
are defined by the relation

φ(u) = exp

[

∞
∑

n=1

κn

n!
(iu)n

]

= exp
(

iκ1u − 1
2κ2u

2 + . . .
)

. (32.22)

The values κn are related to the moments αn and mn. The first few relations are

κ1 = α1 (= µ, the mean)

κ2 = m2 = α2 − α2
1 (= σ2, the variance)

κ3 = m3 = α3 − 3α1α2 + 2α3
1 . (32.23)
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6 32. Probability

32.4. Some probability distributions

Table 32.1 gives a number of common probability density functions and corresponding
characteristic functions, means, and variances. Further information may be found in
Refs. [1– 8], [17], and [11], which has particularly detailed tables. Monte Carlo techniques
for generating each of them may be found in our Sec. 34.4 and in Ref. 17. We comment
below on all except the trivial uniform distribution.

32.4.1. Binomial distribution :

A random process with exactly two possible outcomes which occur with fixed
probabilities is called a Bernoulli process. If the probability of obtaining a certain
outcome (a “success”) in an individual trial is p, then the probability of obtaining exactly
r successes (r = 0, 1, 2, . . . , N) in N independent trials, without regard to the order of
the successes and failures, is given by the binomial distribution f(r; N, p) in Table 32.1.
If r and s are binomially distributed with parameters (Nr, p) and (Ns, p), then t = r + s
follows a binomial distribution with parameters (Nr + Ns, p).

32.4.2. Poisson distribution :

The Poisson distribution f(n; ν) gives the probability of finding exactly n events in
a given interval of x (e.g., space or time) when the events occur independently of one
another and of x at an average rate of ν per the given interval. The variance σ2 equals ν.
It is the limiting case p → 0, N → ∞, Np = ν of the binomial distribution. The Poisson
distribution approaches the Gaussian distribution for large ν.

For example, a large number of radioactive nuclei of a given type will result in a certain
number of decays in a fixed time interval. If this interval is small compared to the mean
lifetime, then the probability for a given nucleus to decay is small, and thus the number
of decays in the time interval is well modeled as a Poisson variable.

32.4.3. Normal or Gaussian distribution :

The normal (or Gaussian) probability density function f(x; µ, σ2) given in Table 32.1
has mean E[x] = µ and variance V [x] = σ2. Comparison of the characteristic function
φ(u) given in Table 32.1 with Eq. (32.22) shows that all cumulants κn beyond κ2 vanish;
this is a unique property of the Gaussian distribution. Some other properties are:

P (x in range µ ± σ) = 0.6827,

P (x in range µ ± 0.6745σ) = 0.5,

E[|x − µ|] =
√

2/πσ = 0.7979σ,

half-width at half maximum =
√

2 ln 2 σ = 1.177σ.

For a Gaussian with µ = 0 and σ2 = 1 (the standard Gaussian), the cumulative
distribution, Eq. (32.6), is related to the error function erf(y) by

F (x; 0, 1) = 1
2

[

1 + erf(x/
√

2)
]

. (32.24)

The error function and standard Gaussian are tabulated in many references (e.g.,
Ref. [11,12]) and are available in software packages such as ROOT [5]. For a mean µ

February 16, 2012 14:08



32. Probability 7

and variance σ2, replace x by (x − µ)/σ. The probability of x in a given range can be
calculated with Eq. (33.55).

For x and y independent and normally distributed, z = ax + by follows f(z; aµx +
bµy, a2σ2

x + b2σ2
y); that is, the weighted means and variances add.

The Gaussian derives its importance in large part from the central limit theorem:

If independent random variables x1, . . . , xn are distributed according to any p.d.f. with
finite mean and variance, then the sum y =

∑n
i=1 xi will have a p.d.f. that approaches

a Gaussian for large n. If the p.d.f.s of the xi are not identical, the theorem still holds
under somewhat more restrictive conditions. The mean and variance are given by the
sums of corresponding terms from the individual xi. Therefore, the sum of a large number
of fluctuations xi will be distributed as a Gaussian, even if the xi themselves are not.

(Note that the product of a large number of random variables is not Gaussian, but its
logarithm is. The p.d.f. of the product is log-normal. See Ref. 8 for details.)

For a set of n Gaussian random variables x with means µ and covariances
Vij = cov[xi, xj ], the p.d.f. for the one-dimensional Gaussian is generalized to

f(x; µ, V ) =
1

(2π)n/2
√

|V |
exp

[

−1
2 (x − µ)T V −1(x − µ)

]

, (32.25)

where the determinant |V | must be greater than 0. For diagonal V (independent
variables), f(x; µ, V ) is the product of the p.d.f.s of n Gaussian distributions.

For n = 2, f(x; µ, V ) is

f(x1, x2; µ1, µ2, σ1, σ2, ρ) =
1

2πσ1σ2

√

1 − ρ2

× exp

{ −1

2(1 − ρ2)

[

(x1 − µ1)
2

σ2
1

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

σ2
2

]}

. (32.26)

The characteristic function for the multivariate Gaussian is

φ(u; µ, V ) = exp
[

iµ · u − 1
2uT V u

]

. (32.27)

If the components of x are independent, then Eq. (32.27) is the product of the c.f.s of n
Gaussians.

For a multi-dimensional Gaussian distribution for variables xi, i = 1, . . . , n, the
marginal distribution for any single xi is is a one-dimensional Gaussian with mean µi

and variance Vii. V is n × n, symmetric, and positive definite. For any vector X, the
quadratic form XT V −1X = C, where C is any positive number, traces an n-dimensional
ellipsoid as X varies. If Xi = xi − µi, then C is a random variable obeying the χ2

distribution with n degrees of freedom, discussed in the following section. The probability
that X corresponding to a set of Gaussian random variables xi lies outside the ellipsoid
characterized by a given value of C (= χ2) is given by 1 − Fχ2(C; n), where Fχ2 is
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8 32. Probability

the cumulative χ2 distribution. This may be read from Fig. 33.1. For example, the
“s-standard-deviation ellipsoid” occurs at C = s2. For the two-variable case (n = 2), the
point X lies outside the one-standard-deviation ellipsoid with 61% probability. The use
of these ellipsoids as indicators of probable error is described in Sec. 33.3.2.4; the validity
of those indicators assumes that µ and V are correct.

32.4.4. χ2 distribution :

If x1, . . . , xn are independent Gaussian random variables, the sum z =
∑n

i=1(xi −
µi)

2/σ2
i follows the χ2 p.d.f. with n degrees of freedom, which we denote by χ2(n).

More generally, for n correlated Gaussian variables as components of a vector X with
covariance matrix V , z = XT V −1X follows χ2(n) as in the previous section. For a set
of zi, each of which follows χ2(ni),

∑

zi follows χ2(
∑

ni). For large n, the χ2 p.d.f.
approaches a Gaussian with a mean and variance give by µ = n and σ2 = 2n, respectively
(here the formulae for µ and σ2 are valid for all n).

The χ2 p.d.f. is often used in evaluating the level of compatibility between observed
data and a hypothesis for the p.d.f. that the data might follow. This is discussed further
in Sec. 33.2.2 on tests of goodness-of-fit.

32.4.5. Student’s t distribution :

Suppose that y and x1, . . . , xn are independent and Gaussian distributed with mean 0
and variance 1. We then define

z =
n

∑

i=1

x2
i and t =

y
√

z/n
. (32.28)

The variable z thus follows a χ2(n) distribution. Then t is distributed according to
Student’s t distribution with n degrees of freedom, f(t; n), given in Table 32.1.

The Student’s t distribution resembles a Gaussian but has wider tails. As n → ∞, the
distribution approaches a Gaussian. If n = 1, it is a Cauchy or Breit–Wigner distribution.
This distribution is symmetric about zero (its mode), but the expectation value is
undefined. For the Student’s t, the mean is well defined only for n > 1 and the variance
is finite only for n > 2, so the central limit theorem is not applicable to sums of random
variables following the t distribution for n = 1 or 2.

As an example, consider the sample mean x =
∑

xi/n and the sample variance

s2 =
∑

(xi − x)2/(n − 1) for normally distributed xi with unknown mean µ and variance
σ2. The sample mean has a Gaussian distribution with a variance σ2/n, so the variable

(x − µ)/
√

σ2/n is normal with mean 0 and variance 1. The quantity (n − 1)s2/σ2 is
independent of this and follows χ2(n − 1). The ratio

t =
(x − µ)/

√

σ2/n
√

(n − 1)s2/σ2(n − 1)
=

x − µ
√

s2/n
(32.29)

is distributed as f(t; n− 1). The unknown variance σ2 cancels, and t can be used to test
the hypothesis that the true mean is some particular value µ.

In Table 32.1, n in f(t; n) is not required to be an integer. A Student’s t distribution
with non-integral n > 0 is useful in certain applications.
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32. Probability 9

Table 32.1. Some common probability density functions, with corresponding characteristic functions and

means and variances. In the Table, Γ(k) is the gamma function, equal to (k − 1)! when k is an integer;

1F1 is the confluent hypergeometric function of the 1st kind [11].

Probability density function Characteristic

Distribution f (variable; parameters) function φ(u) Mean Variance σ2

Uniform f(x;a, b) =

{

1/(b − a) a ≤ x ≤ b

0 otherwise

eibu − eiau

(b − a)iu

a + b

2

(b − a)2

12

Binomial f(r;N, p) =
N !

r!(N − r)!
prqN−r (q + peiu)N Np Npq

r = 0, 1, 2, . . . , N ; 0 ≤ p ≤ 1 ; q = 1 − p

Poisson f(n; ν) =
νne−ν

n!
; n = 0, 1, 2, . . . ; ν > 0 exp[ν(eiu − 1)] ν ν

Normal
(Gaussian)

f(x; µ, σ2) =
1

σ
√

2π
exp(−(x − µ)2/2σ2) exp(iµu − 1

2σ2u2) µ σ2

−∞ < x < ∞ ; −∞ < µ < ∞ ; σ > 0

Multivariate
Gaussian

f(x;µ, V ) =
1

(2π)n/2
√

|V |
exp

[

iµ · u − 1
2uT V u

]

µ Vjk

× exp
[

− 1
2 (x − µ)T V −1(x − µ)

]

−∞ < xj < ∞; − ∞ < µj < ∞; |V | > 0

χ2 f(z;n) =
zn/2−1e−z/2

2n/2Γ(n/2)
; z ≥ 0 (1 − 2iu)−n/2 n 2n

Student’s t f(t;n) =
1√
nπ

Γ[(n + 1)/2]

Γ(n/2)

(

1 +
t2

n

)

−(n+1)/2

—
0

for n > 1

n/(n − 2)

for n > 2

−∞ < t < ∞ ; n not required to be integer

Gamma f(x; λ, k) =
xk−1λke−λx

Γ(k)
; 0 ≤ x < ∞ ; (1 − iu/λ)−k k/λ k/λ2

k not required to be integer

Beta f(x; α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1

1F1(α; α + β; iu)
α

α + β

αβ

(α + β)2(α + β + 1)
0 ≤ x ≤ 1

February 16, 2012 14:08



10 32. Probability

32.4.6. Gamma distribution :

For a process that generates events as a function of x (e.g., space or time) according
to a Poisson distribution, the distance in x from an arbitrary starting point (which may
be some particular event) to the kth event follows a gamma distribution, f(x; λ, k). The
Poisson parameter µ is λ per unit x. The special case k = 1 (i.e., f(x; λ, 1) = λe−λx)
is called the exponential distribution. A sum of k′ exponential random variables xi is
distributed as f(

∑

xi; λ, k′).

The parameter k is not required to be an integer. For λ = 1/2 and k = n/2, the
gamma distribution reduces to the χ2(n) distribution.

32.4.7. Beta distribution :

The beta distribution describes a continuous random variable x in the interval [0, 1];
this can easily be generalized by scaling and translation to have arbitrary endpoints. In
Bayesian inference about the parameter p of a binomial process, if the prior p.d.f. is a
beta distribution f(p; α, β) then the observation of r successes out of N trials gives a
posterior beta distribution f(p; r + α, N − r + β) (Bayesian methods are discussed further
in Sec. 33). The uniform distribution is a beta distribution with α = β = 1.
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