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I.1. Introduction: Supersymmetry (SUSY) is a generaliza-

tion of the space-time symmetries of quantum field theory that

transforms fermions into bosons and vice versa. The existence

of such a non-trivial extension of the Poincaré symmetry of
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ordinary quantum field theory was initially surprising, and its

form is highly constrained by theoretical principles [1]. Su-

persymmetry also provides a framework for the unification of

particle physics and gravity [2–5], which is governed by the

Planck energy scale, MP ≈ 1019 GeV (where the gravitational

interactions become comparable in magnitude to the gauge in-

teractions). In particular, it is possible that supersymmetry will

ultimately explain the origin of the large hierarchy of energy

scales from the W and Z masses to the Planck scale [6–10].

This is the so-called gauge hierarchy. The stability of the gauge

hierarchy in the presence of radiative quantum corrections is

not possible to maintain in the Standard Model, but can be

maintained in supersymmetric theories.

If supersymmetry were an exact symmetry of nature, then

particles and their superpartners (which differ in spin by half a

unit) would be degenerate in mass. Since superpartners have not

(yet) been observed, supersymmetry must be a broken symme-

try. Nevertheless, the stability of the gauge hierarchy can still be

maintained if the supersymmetry breaking is soft [11,12], and

the corresponding supersymmetry-breaking mass parameters

are no larger than a few TeV. In particular, soft-supersymmetry-

breaking terms of the Lagrangian are either linear, quadratic,

or cubic in the fields, with some restrictions elucidated in

Ref. 11. The impact of such terms becomes negligible at energy

scales much larger than the size of the supersymmetry-breaking

masses. The most interesting theories of this type are theories

of “low-energy” (or “weak-scale”) supersymmetry, where the

effective scale of supersymmetry breaking is tied to the scale of

electroweak symmetry breaking [7–10]. The latter is character-

ized by the Standard Model Higgs vacuum expectation value,

v ≃ 246 GeV.

Although there are no unambiguous experimental results (at

present) that require the existence of new physics at the TeV-

scale, expectations of the latter are primarily based on three

theoretical arguments. First, a natural explanation (i.e., one

that is stable with respect to quantum corrections) of the gauge

hierarchy demands new physics at the TeV-scale [10]. Second,

the unification of the three Standard Model gauge couplings
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at a very high energy close to the Planck scale is possible

if new physics beyond the Standard Model (which modifies

the running of the gauge couplings above the electroweak

scale) is present. The minimal supersymmetric extension of the

Standard Model, where supersymmetric masses lie below a

few TeV, provides simple example of successful gauge coupling

unification [13]. Third, the existence of dark matter, which

makes up approximately one quarter of the energy density of

the universe, cannot be explained within the Standard Model of

particle physics [14]. Remarkably, a stable weakly-interacting

massive particle (WIMP) whose mass and interaction rate are

governed by new physics associated with the TeV-scale can

be consistent with the observed density of dark matter (this

is the so-called WIMP miracle, which is reviewed in Ref. 15).

The lightest supersymmetric particle is a promising (although

not the unique) candidate for the dark matter [16,17]. Further

aspects of dark matter can be found in Ref. 18.

I.2. Structure of the MSSM: The minimal supersymmetric

extension of the Standard Model (MSSM) consists of taking the

fields of the two-Higgs-doublet extension of the Standard Model

and adding the corresponding supersymmetric partners [19,20].

The corresponding field content of the MSSM and their gauge

quantum numbers are shown in Table 1. The electric charge

Q = T3 + 1
2Y is determined in terms of the third component of

the weak isospin (T3) and the U(1) hypercharge (Y ).

The gauge super-multiplets consist of the gluons and their

gluino fermionic superpartners, and the SU(2)×U(1) gauge

bosons and their gaugino fermionic superpartners. The Higgs

multiplets consist of two complex doublets of Higgs fields,

their higgsino fermionic superpartners, and the corresponding

antiparticle fields. The matter super-multiplets consist of three

generations of left-handed and right-handed quarks and lepton

fields, their scalar superpartners (squark and slepton fields),

and the corresponding antiparticle fields. The enlarged Higgs

sector of the MSSM constitutes the minimal structure needed to

guarantee the cancellation of anomalies from the introduction of

the higgsino superpartners. Moreover, without a second Higgs

doublet, one cannot generate mass for both “up”-type and
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Table 1: The fields of the MSSM and their
SU(3)×SU(2)×U(1) quantum numbers are listed.
Only one generation of quarks and leptons is ex-
hibited. For each lepton, quark, and Higgs super-
multiplet, there is a corresponding anti-particle
multiplet of charge-conjugated fermions and their
associated scalar partners.

Field Content of the MSSM

Super- Boson Fermionic

Multiplets Fields Partners SU(3) SU(2) U(1)

gluon/gluino g g̃ 8 1 0

gauge/ W± , W 0 W̃± , W̃ 0 1 3 0

gaugino B B̃ 1 1 0

slepton/ (ν̃, ẽ−)L (ν, e−)L 1 2 −1

lepton ẽ−
R

e−
R

1 1 −2

squark/ (ũL, d̃L) (u, d)L 3 2 1/3

quark ũR uR 3 1 4/3

d̃R dR 3 1 −2/3

Higgs/ (H0
d

, H−

d
) (H̃0

d
, H̃−

d
) 1 2 −1

higgsino (H+
u , H0

u) (H̃+
u , H̃0

u) 1 2 1

“down”-type quarks (and charged leptons) in a way consistent

with the supersymmetry [21–23].

A general supersymmetric Lagrangian is determined by

three functions of the superfields (composed of the fields of

the super-multiplets): the superpotential, the Kähler potential,

and the gauge kinetic-energy function [5]. For renormalizable

globally supersymmetric theories, minimal forms for the lat-

ter two functions are required in order to generate canonical

kinetic energy terms for all the fields. A renormalizable su-

perpotential, which is at most cubic in the superfields, yields

supersymmetric Yukawa couplings and mass terms. A combi-

nation of gauge invariance and supersymmetry produces cou-

plings of gaugino fields to matter (or Higgs) fields and their

corresponding superpartners. The (renormalizable) MSSM La-

grangian is then constructed by including all possible super-

symmetric interaction terms (of dimension four or less) that

satisfy SU(3)×SU(2)×U(1) gauge invariance and B−L conser-

vation (where B =baryon number and L =lepton number).
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Finally, the most general soft-supersymmetry-breaking terms

are added [11,12,24]. To generate nonzero neutrino masses,

extra structure is needed as discussed in Section I.8.

I.2.1. R-parity and the lightest supersymmetric parti-

cle: As a consequence of B−L invariance, the MSSM possesses

a multiplicative R-parity invariance, where R = (−1)3(B−L)+2S

for a particle of spin S [25]. Note that this implies that all the

ordinary Standard Model particles have even R parity, whereas

the corresponding supersymmetric partners have odd R parity.

The conservation of R parity in scattering and decay processes

has a crucial impact on supersymmetric phenomenology. For

example, starting from an initial state involving ordinary (R-

even) particles, it follows that supersymmetric particles must be

produced in pairs. In general, these particles are highly unsta-

ble and decay into lighter states. However, R-parity invariance

also implies that the lightest supersymmetric particle (LSP) is

absolutely stable, and must eventually be produced at the end

of a decay chain initiated by the decay of a heavy unstable

supersymmetric particle.

In order to be consistent with cosmological constraints, a

stable LSP is almost certainly electrically and color neutral [26].

(There are some model circumstances in which a colored gluino

LSP is allowed [27], but we do not consider this possibility

further here.) Consequently, the LSP in an R-parity-conserving

theory is weakly interacting with ordinary matter, i.e., it

behaves like a stable heavy neutrino and will escape collider

detectors without being directly observed. Thus, the canonical

signature for conventional R-parity-conserving supersymmetric

theories is missing (transverse) energy, due to the escape of the

LSP. Moreover, as noted at the end of Section I, the LSP is a

promising candidate for dark matter [16,17].

I.2.2. The goldstino and gravitino: In the MSSM, super-

symmetry breaking is accomplished by including the most

general renormalizable soft-supersymmetry-breaking terms con-

sistent with the SU(3)×SU(2)×U(1) gauge symmetry and

R-parity invariance. These terms parameterize our ignorance

of the fundamental mechanism of supersymmetry breaking. If

supersymmetry breaking occurs spontaneously, then a massless

February 16, 2012 14:11



– 6–

Goldstone fermion called the goldstino (G̃1/2) must exist. The

goldstino would then be the LSP, and could play an important

role in supersymmetric phenomenology [28].

However, the goldstino degrees of freedom are physical

only in models of spontaneously-broken global supersymmetry.

If supersymmetry is a local symmetry, then the theory must

incorporate gravity; the resulting theory is called supergrav-

ity [29]. In models of spontaneously-broken supergravity, the

goldstino is “absorbed” by the gravitino (G̃) [sometimes called

g̃3/2 in the older literature], the spin-3/2 superpartner of the

graviton [30]. By this super-Higgs mechanism, the goldstino

is removed from the physical spectrum and the gravitino ac-

quires a mass (m3/2). In processes with center-of-mass energy

E ≫ m3/2, the goldstino–gravitino equivalence theorem [31]

states that the interactions of the helicity ±1
2 gravitino (whose

properties approximate those of the goldstino) dominate those

of the helicity ±3
2 gravitino. The interactions of gravitinos with

with other light fields can be described by a low-energy effective

Lagrangian that is determined by fundamental principles (see,

e.g., Ref. 32).

I.2.3. Hidden sectors and the structure of supersymme-

try breaking [24]: It is very difficult (perhaps impossible) to

construct a realistic model of spontaneously-broken low-energy

supersymmetry where the supersymmetry breaking arises solely

as a consequence of the interactions of the particles of the

MSSM. An alternative scheme posits a theory consisting of at

least two distinct sectors: a hidden sector consisting of parti-

cles that are completely neutral with respect to the Standard

Model gauge group, and a visible sector consisting of the par-

ticles of the MSSM. There are no renormalizable tree-level

interactions between particles of the visible and hidden sectors.

Supersymmetry breaking is assumed to originate in the hid-

den sector, and its effects are transmitted to the MSSM by

some mechanism (often involving the mediation by particles

that comprise an additional messenger sector). Two theoretical

scenarios have been examined in detail: gravity-mediated and

gauge-mediated supersymmetry breaking.
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Supergravity models provide a natural mechanism for trans-

mitting the supersymmetry breaking of the hidden sector to the

particle spectrum of the MSSM. In models of gravity-mediated

supersymmetry breaking, gravity is the messenger of super-

symmetry breaking [33–35]. More precisely, supersymmetry

breaking is mediated by effects of gravitational strength (sup-

pressed by inverse powers of the Planck mass). In this sce-

nario, the gravitino mass is of order the electroweak-symmetry-

breaking scale, while its couplings are roughly gravitational

in strength [2,36]. Such a gravitino typically plays no role

in supersymmetric phenomenology at colliders (except perhaps

indirectly in the case where the gravitino is the LSP [37]) .

In gauge-mediated supersymmetry breaking, gauge forces

transmit the supersymmetry breaking to the MSSM. A typical

structure of such models involves a hidden sector where super-

symmetry is broken, a messenger sector consisting of particles

(messengers) with SU(3)×SU(2)×U(1) quantum numbers, and

the visible sector consisting of the fields of the MSSM [38–40].

The direct coupling of the messengers to the hidden sector gen-

erates a supersymmetry-breaking spectrum in the messenger

sector. Finally, supersymmetry breaking is transmitted to the

MSSM via the virtual exchange of the messengers. In models

of direct gauge mediation, the supersymmetry-breaking sector

includes fields that carry Standard Model quantum numbers, in

which case no separate messenger sector is required [41].

The gravitino mass in models of gauge-mediated supersym-

metry breaking is typically in the eV range (although in some

cases it can be as large as a GeV), which implies that G̃ is

the LSP. In particular, the gravitino is a potential dark matter

candidate (for a recent review and guide to the literature, see

Ref. 17). The couplings of the helicity ±1
2 components of G̃

to the particles of the MSSM (which approximate those of

the goldstino, cf. Section I.2.3) are significantly stronger than

gravitational strength and amenable to experimental collider

analyses.

The concept of a hidden sector is more general than su-

persymmetry. Hidden valley models [42] posit the existence of

a hidden sector of new particles and interactions that are very
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weakly coupled to particles of the Standard Model. The impact

of a hidden valley on supersymmetric phenomenology at collid-

ers can be significant if the LSP lies in the valley sector [43].

I.2.4. Supersymmetry and extra dimensions:

Approaches to supersymmetry breaking have also been devel-

oped in the context of theories in which the number of space

dimensions is greater than three. In particular, a number of

supersymmetry-breaking mechanisms have been proposed that

are inherently extra-dimensional [44]. The size of the extra

dimensions can be significantly larger than M−1
P ; in some cases

on the order of (TeV)−1 or even larger [45,46].

For example, in one approach, the fields of the MSSM

live on some brane (a lower-dimensional manifold embedded

in a higher-dimensional spacetime), while the sector of the

theory that breaks supersymmetry lives on a second-separated

brane. Two examples of this approach are anomaly-mediated

supersymmetry breaking of Ref. 47, and gaugino-mediated su-

persymmetry breaking of Ref. 48; in both cases supersymmetry

breaking is transmitted through fields that live in the bulk (the

higher-dimensional space between the two branes). This setup

has some features in common with both gravity-mediated and

gauge-mediated supersymmetry breaking (e.g., a hidden and

visible sector and messengers).

Alternatively, one can consider a higher-dimensional theory

that is compactified to four spacetime dimensions. In this ap-

proach, supersymmetry is broken by boundary conditions on

the compactified space that distinguish between fermions and

bosons. This is the so-called Scherk-Schwarz mechanism [49].

The phenomenology of such models can be strikingly different

from that of the usual MSSM [50]. All these extra-dimensional

ideas clearly deserve further investigation, although they will

not be discussed further here.

I.2.5. Split-supersymmetry: If supersymmetry is not con-

nected with the origin of the electroweak scale, string theory

suggests that supersymmetry still plays a significant role in

Planck-scale physics. However, it may still be possible that some

remnant of the superparticle spectrum survives down to the

TeV-scale or below. This is the idea of split-supersymmetry [51],
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in which supersymmetric scalar partners of the quarks and

leptons are significantly heavier (perhaps by many orders of

magnitude) than 1 TeV, whereas the fermionic partners of the

gauge and Higgs bosons have masses on the order of 1 TeV or

below (presumably protected by some chiral symmetry). With

the exception of a single light neutral scalar whose properties

are indistinguishable from those of the Standard Model Higgs

boson, all other Higgs bosons are also taken to be very heavy.

The supersymmetry breaking required to produce such a

scenario would destabilize the gauge hierarchy. In particular,

split-supersymmetry cannot provide a natural explanation for

the existence of the light Standard-Model-like Higgs boson,

whose mass lies orders below the mass scale of the heavy

scalars. Nevertheless, models of split-supersymmetry can ac-

count for the dark matter (which is assumed to be the LSP)

and gauge coupling unification. Thus, there is some motivation

for pursuing the phenomenology of such approaches [52]. One

notable difference from the usual MSSM phenomenology is the

existence of a long-lived gluino [53].

I.3. Parameters of the MSSM: The parameters of the

MSSM are conveniently described by considering separately

the supersymmetry-conserving sector and the supersymmetry-

breaking sector. A careful discussion of the conventions used

in defining the tree-level MSSM parameters can be found in

Ref. 54. For simplicity, consider first the case of one generation

of quarks, leptons, and their scalar superpartners.

I.3.1. The supersymmetric-conserving parameters:

The parameters of the supersymmetry-conserving sector consist

of: (i) gauge couplings: gs, g, and g′, corresponding to the

Standard Model gauge group SU(3)×SU(2)×U(1) respectively;

(ii) a supersymmetry-conserving higgsino mass parameter µ;

and (iii) Higgs-fermion Yukawa coupling constants: λu, λd, and

λe (corresponding to the coupling of one generation of left- and

right-handed quarks and leptons, and their superpartners to the

Higgs bosons and higgsinos). Because there is no right-handed

neutrino (and its superpartner) in the MSSM as defined here,

one cannot introduce a Yukawa coupling λν .
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I.3.2. The supersymmetric-breaking parameters:

The supersymmetry-breaking sector contains the following set

of parameters: (i) gaugino Majorana masses M3, M2, and

M1 associated with the SU(3), SU(2), and U(1) subgroups of

the Standard Model; (ii) five scalar squared-mass parameters

for the squarks and sleptons, M2

Q̃
, M2

Ũ
, M2

D̃
, M2

L̃
, and M2

Ẽ

[corresponding to the five electroweak gauge multiplets, i.e.,

superpartners of (u, d)L, uc
L, dc

L, (ν, e−)L, and ec
L, where

the superscript c indicates a charge-conjugated fermion and

flavor indices are suppressed]; and (iii) Higgs-squark-squark

and Higgs-slepton-slepton trilinear interaction terms, with co-

efficients λuAU , λdAD, and λeAE (which define the so-called

“A-parameters”). It is traditional to factor out the Yukawa

couplings in the definition of the A-parameters (originally mo-

tivated by a simple class of gravity-mediated supersymmetry-

breaking models [2,4]). If the A-parameters defined in this way

are parametrically of the same order (or smaller) as compared

to other supersymmetry-breaking mass parameters, then only

the A-parameters of the third generation will be phenomenolog-

ically relevant. Finally, we add: (iv) three scalar squared-mass

parameters–two of which (m2
1 and m2

2) contribute to the diago-

nal Higgs squared-masses, given by m2
1 + |µ|2 and m2

2 + |µ|2, and

a third which contributes to the off-diagonal Higgs squared-mass

term, m2
12 ≡ Bµ (which defines the “B-parameter”).

The breaking of the electroweak symmetry SU(2)×U(1) to

U(1)EM is only possible after introducing the supersymmetry-

breaking Higgs squared-mass parameters. Minimizing the re-

sulting tree-level Higgs scalar potential, these three squared-

mass parameters can be re-expressed in terms of the two Higgs

vacuum expectation values, vd and vu (also called v1 and v2,

respectively, in the literature), and the CP-odd Higgs mass

A0 (cf. Section I.5). Here, vd [vu] is the vacuum expectation

value of the neutral component of the Higgs field Hd [Hu] that

couples exclusively to down-type (up-type) quarks and leptons.

Note that v2
d + v2

u = 4m2
W /g2 ≃ (246 GeV)2 is fixed by the W

mass and the gauge coupling, whereas the ratio

tan β = vu/vd (1)
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is a free parameter of the model. By convention, the phases of

the Higgs field are chosen such that 0 ≤ β ≤ π/2. Equivalently,

the tree-level conditions for the scalar potential minimum relate

the diagonal and off-diagonal Higgs squared-masses in terms of

m2
Z = 1

4(g2 + g′ 2)(v2
d + v2

u), the angle β and the CP-odd Higgs

mass mA:

sin 2β =
2m2

12

m2
1 + m2

2 + 2|µ|2 =
2m2

12

m2
A

, (2)

1
2m2

Z = −|µ|2 +
m2

1 − m2
2 tan2 β

tan2 β − 1
. (3)

Note that supersymmetry-breaking mass terms for the

fermionic superpartners of scalar fields and non-holomorphic

trilinear scalar interactions (i.e., interactions that mix scalar

fields and their complex conjugates) have not been included

above in the soft-supersymmetry-breaking sector. These terms

can potentially destabilize the gauge hierarchy [11] in models

with a gauge-singlet superfield. The latter is not present in the

MSSM; hence as noted in Ref. 12, these so-called non-standard

soft-supersymmetry-breaking terms are benign. However, the

coefficients of these terms (which have dimensions of mass)

are expected to be significantly suppressed compared to the

TeV-scale in a fundamental theory of supersymmetry-breaking.

Consequently, we follow the usual approach and omit these

terms from further consideration.

I.3.3. MSSM-124: The total number of independent physical

parameters that define the MSSM (in its most general form) is

quite large, primarily due to the soft-supersymmetry-breaking

sector. In particular, in the case of three generations of quarks,

leptons, and their superpartners, M2

Q̃
, M2

Ũ
, M2

D̃
, M2

L̃
, and M2

Ẽ
are hermitian 3× 3 matrices, and AU , AD, and AE are complex

3 × 3 matrices. In addition, M1, M2, M3, B, and µ are, in

general, complex. Finally, as in the Standard Model, the Higgs-

fermion Yukawa couplings, λf (f = u, d, and e), are complex

3 × 3 matrices that are related to the quark and lepton mass

matrices via: Mf = λfvf/
√

2, where ve ≡ vd [with vu and vd as

defined above Eq. (1)].
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However, not all these parameters are physical. Some of the

MSSM parameters can be eliminated by expressing interaction

eigenstates in terms of the mass eigenstates, with an appro-

priate redefinition of the MSSM fields to remove unphysical

degrees of freedom. The analysis of Ref. 55 shows that the

MSSM possesses 124 independent parameters. Of these, 18 pa-

rameters correspond to Standard Model parameters (including

the QCD vacuum angle θQCD), one corresponds to a Higgs

sector parameter (the analogue of the Standard Model Higgs

mass), and 105 are genuinely new parameters of the model.

The latter include: five real parameters and three CP -violating

phases in the gaugino/higgsino sector, 21 squark and slepton

masses, 36 real mixing angles to define the squark and slep-

ton mass eigenstates, and 40 CP -violating phases that can

appear in squark and slepton interactions. The most general

R-parity-conserving minimal supersymmetric extension of the

Standard Model (without additional theoretical assumptions)

will be denoted henceforth as MSSM-124 [56].

I.4. The supersymmetric-particle spectrum: The super-

symmetric particles (sparticles) differ in spin by half a unit from

their Standard Model partners. The supersymmetric partners

of the gauge and Higgs bosons are fermions, whose names are

obtained by appending “ino” at the end of the corresponding

Standard Model particle name. The gluino is the color-octet

Majorana fermion partner of the gluon with mass M
g̃

= |M3|.
The supersymmetric partners of the electroweak gauge and

Higgs bosons (the gauginos and higgsinos) can mix. As a result,

the physical states of definite mass are model-dependent linear

combinations of the charged and neutral gauginos and higgsinos,

called charginos and neutralinos, respectively. Like the gluino,

the neutralinos are also Majorana fermions, which provide for

some distinctive phenomenological signatures [57,58]. The su-

persymmetric partners of the quarks and leptons are spin-zero

bosons: the squarks, charged sleptons, and sneutrinos, respec-

tively. A complete set of Feynman rules for the sparticles of the

MSSM can be found in Ref. 59. The MSSM Feynman rules also

are implicitly contained in a number of Feynman diagram and

amplitude generation software packages (see e.g., Refs. 60−62).
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I.4.1. The charginos and neutralinos: The mixing of the

charged gauginos (W̃±) and charged higgsinos (H+
u and H−

d ) is

described (at tree-level) by a 2×2 complex mass matrix [63–65]:

MC ≡
(

M2
1√
2
gvu

1√
2
gvd µ

)
. (4)

To determine the physical chargino states and their masses,

one must perform a singular value decomposition [66,67] of the

complex matrix MC :

U∗MCV −1 = diag(M
χ̃+

1
, M

χ̃+
2
) , (5)

where U and V are unitary matrices, and the right-hand side of

Eq. (5) is the diagonal matrix of (non-negative) chargino masses.

The physical chargino states are denoted by χ̃±
1 and χ̃±

2 . These

are linear combinations of the charged gaugino and higgsino

states determined by the matrix elements of U and V [63–65].

The chargino masses correspond to the singular values [66] of

MC , i.e., the positive square roots of the eigenvalues of M †
CMC :

M2
χ̃+

1 ,χ̃+
2

= 1
2

{
|µ|2 + |M2|2 + 2m2

W ∓
[(
|µ|2 + |M2|2 + 2m2

W

)2

− 4|µ|2|M2|2 − 4m4
W sin2 2β + 8m2

W sin 2β Re(µM2)

]1/2}
, (6)

where the states are ordered such that M
χ̃+

1
≤ M

χ̃+
2
.

It is convenient to choose a convention where tanβ and M2

are real and positive. Note that the relative phase of M2 and µ

is meaningful. (If CP -violating effects are neglected, then µ can

be chosen real but may be either positive or negative.) The sign

of µ is convention-dependent; the reader is warned that both

sign conventions appear in the literature. The sign convention

for µ in Eq. (4) is used by the LEP collaborations [68] in their

plots of exclusion contours in the M2 vs. µ plane derived from

the non-observation of e+e− → χ̃+
1 χ̃−

1 .

The mixing of the neutral gauginos (B̃ and W̃ 0) and neutral

higgsinos (H̃0
d and H̃0

u) is described (at tree-level) by a 4 × 4
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complex symmetric mass matrix [63,64,69,70]:

MN ≡




M1 0 −1
2g′vd

1
2g′vu

0 M2
1
2gvd −1

2gvu

−1
2g′vd

1
2gvd 0 −µ

1
2g′vu −1

2gvu −µ 0




. (7)

To determine the physical neutralino states and their masses,

one must perform a Takagi-diagonalization [66,67,71,72] of the

complex symmetric matrix MN :

W T MNW = diag(Mχ̃0
1
, Mχ̃0

2
, Mχ̃0

3
, Mχ̃0

4
) , (8)

where W is a unitary matrix and the right-hand side of Eq. (8)

is the diagonal matrix of (non-negative) neutralino masses. The

physical neutralino states are denoted by χ̃0
i (i = 1, . . .4), where

the states are ordered such that M
χ̃0

1
≤ M

χ̃0
2
≤ M

χ̃0
3
≤ M

χ̃0
4
.

The χ̃0
i are the linear combinations of the neutral gaugino and

higgsino states determined by the matrix elements of W (in

Ref. 63, W = N−1). The neutralino masses correspond to the

singular values of MN (i.e., the positive square roots of the

eigenvalues of M †
NMN ). Exact formulae for these masses can

be found in Refs. [69] and [73]. A numerical algorithm for

determining the mixing matrix W has been given by Ref. 74.

If a chargino or neutralino state approximates a particular

gaugino or higgsino state, it is convenient to employ the cor-

responding nomenclature. Specifically, if M1 and M2 are small

compared to mZ and |µ|, then the lightest neutralino χ̃0
1 would

be nearly a pure photino, γ̃, the supersymmetric partner of

the photon. If M1 and mZ are small compared to M2 and

|µ|, then the lightest neutralino would be nearly a pure bino,

B̃, the supersymmetric partner of the weak hypercharge gauge

boson. If M2 and mZ are small compared to M1 and |µ|, then

the lightest chargino pair and neutralino would constitute a

triplet of roughly mass-degenerate pure winos, W̃±, and W̃ 0
3 ,

the supersymmetric partners of the weak SU(2) gauge bosons.

Finally, if |µ| and mZ are small compared to M1 and M2, then

the lightest neutralino would be nearly a pure higgsino. Each of

the above cases leads to a strikingly different phenomenology.

February 16, 2012 14:11



– 15–

I.4.2. The squarks, sleptons and sneutrinos: For a given

fermion f , there are two supersymmetric partners, f̃L and f̃R,

which are scalar partners of the corresponding left- and right-

handed fermion. (There is no ν̃R in the MSSM.) However, in

general, f̃L and f̃R are not mass eigenstates, since there is f̃L–f̃R

mixing. For three generations of squarks, one must in general

diagonalize 6 × 6 matrices corresponding to the basis (q̃iL, q̃iR),

where i = 1, 2, 3 are the generation labels. For simplicity, only

the one-generation case is illustrated in detail below. (The

effects of second and third generation squark mixing can be

significant and is treated in Ref. 75.)

Using the notation of the third family, the one-generation

tree-level squark squared-mass matrix is given by [76]

M2
F =

(
M2

Q̃
+ m2

q + Lq mqX
∗
q

mqXq M2

R̃
+ m2

q + Rq

)
, (9)

where

Xq ≡ Aq − µ∗(cotβ)2T3q , (10)

and T3q = 1
2 [−1

2 ] for q = t [b]. The diagonal squared masses

are governed by soft-supersymmetry-breaking squared masses

M2

Q̃
and M2

R̃
≡ M2

Ũ
[M2

D̃
] for q = t [b], the corresponding quark

masses mt [mb], and electroweak correction terms:

Lq ≡ (T3q−eq sin2 θW )m2
Z cos 2β , Rq ≡ eq sin2 θW m2

Z cos 2β ,

(11)

where eq = 2
3 [−1

3 ] for q = t [b]. The off-diagonal squared

squark masses are proportional to the corresponding quark

masses and depend on tanβ [Eq. (1)], the soft-supersymmetry-

breaking A-parameters and the higgsino mass parameter µ.

The signs of the A and µ parameters are convention-dependent;

other choices appear frequently in the literature. Due to the

appearance of the quark mass in the off-diagonal element of the

squark squared-mass matrix, one expects the q̃L–q̃R mixing to

be small, with the possible exception of the third generation,

where mixing can be enhanced by factors of mt and mb tanβ.

In the case of third generation q̃L–q̃R mixing, the mass

eigenstates (usually denoted by q̃1 and q̃2, with mq̃1 < mq̃2)

are determined by diagonalizing the 2 × 2 matrix M2
F given by
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Eq. (9). The corresponding squared masses and mixing angle

are given by [76]:

m2
q̃1,2

=
1

2

[
Tr M2

F ∓
√

(TrM2
F )2 − 4 detM2

F

]
,

sin 2θq̃ =
2mq|Xq|

m2
q̃2
− m2

q̃1

. (12)

The one-generation results above also apply to the charged

sleptons, with the obvious substitutions: q → τ with T3τ = −1
2

and eτ = −1, and the replacement of the supersymmetry-

breaking parameters: M2

Q̃
→ M2

L̃
, M2

D̃
→ M2

Ẽ
, and Aq → Aτ .

For the neutral sleptons, ν̃R does not exist in the MSSM, so ν̃L

is a mass eigenstate.

In the case of three generations, the supersymmetry-

breaking scalar-squared masses [M2

Q̃
, M2

Ũ
, M2

D̃
, M2

L̃
, and M2

Ẽ
]

and the A-parameters that parameterize the Higgs couplings to

up- and down-type squarks and charged sleptons (henceforth

denoted by AU , AD, and AE , respectively) are now 3 × 3

matrices as noted in Section I.3. The diagonalization of the

6 × 6 squark mass matrices yields f̃iL–f̃jR mixing (for i 6= j).

In practice, since the f̃L–f̃R mixing is appreciable only for the

third generation, this additional complication can often be ne-

glected (although see Ref. 75 for examples in which the mixing

between the second and third generations is relevant).

Radiative loop corrections will modify all tree-level results

for masses quoted in this section. These corrections must be

included in any precision study of supersymmetric phenomenol-

ogy [77]. Beyond tree level, the definition of the supersymmet-

ric parameters becomes convention-dependent. For example,

one can define physical couplings or running couplings, which

differ beyond the tree level. This provides a challenge to any

effort that attempts to extract supersymmetric parameters from

data. The Supersymmetry Les Houches Accord (SLHA) [78] has

been adopted, which establishes a set of conventions for speci-

fying generic file structures for supersymmetric model specifica-

tions and input parameters, supersymmetric mass and coupling

spectra, and decay tables. These provide a universal interface

between spectrum calculation programs, decay packages, and
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high energy physics event generators. Ultimately, these efforts

will facilitate the reconstruction of the fundamental supersym-

metric theory (and its breaking mechanism) from high-precision

studies of supersymmetric phenomena at future colliders.

I.5. The Higgs sector of the MSSM: Next, consider the

MSSM Higgs sector [22,23,79]. Despite the large number of

potential CP -violating phases among the MSSM-124 parame-

ters, the tree-level MSSM Higgs sector is automatically CP -

conserving. That is, unphysical phases can be absorbed into the

definition of the Higgs fields such that tanβ is a real parameter

(conventionally chosen to be positive). Consequently, the physi-

cal neutral Higgs scalars are CP eigenstates. The MSSM Higgs

sector contains five physical spin-zero particles: a charged Higgs

boson pair (H±), two CP -even neutral Higgs bosons (denoted

by h0 and H0 where mh < mH), and one CP -odd neutral Higgs

boson (A0).

I.5.1 The Tree-level MSSM Higgs sector: The properties

of the Higgs sector are determined by the Higgs potential, which

is made up of quadratic terms [whose squared-mass coefficients

were specified above Eq. (1)] and quartic interaction terms

governed by dimensionless couplings. The quartic interaction

terms are manifestly supersymmetric at tree level (although

these are modified by supersymmetry-breaking effects at the

loop level). In general, the quartic couplings arise from two

sources: (i) the supersymmetric generalization of the scalar

potential (the so-called “F -terms”), and (ii) interaction terms

related by supersymmetry to the coupling of the scalar fields

and the gauge fields, whose coefficients are proportional to the

corresponding gauge couplings (the so-called “D-terms”).

In the MSSM, F -term contributions to the quartic couplings

are absent (although such terms may be present in extensions

of the MSSM, e.g., models with Higgs singlets). As a result,

the strengths of the MSSM quartic Higgs interactions are fixed

in terms of the gauge couplings. Due to the resulting constraint

on the form of the two-Higgs-doublet scalar potential, all the

tree-level MSSM Higgs-sector parameters depend only on two

quantities: tan β [defined in Eq. (1)] and one Higgs mass usually

taken to be mA. From these two quantities, one can predict the
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values of the remaining Higgs boson masses, an angle α (which

measures the component of the original Y = ±1 Higgs doublet

states in the physical CP -even neutral scalars), and the Higgs

boson self-couplings.

I.5.2 The radiatively-corrected MSSM Higgs sector:

When radiative corrections are incorporated, additional param-

eters of the supersymmetric model enter via virtual loops. The

impact of these corrections can be significant [80]. For example,

the tree-level MSSM-124 prediction for the upper bound of the

lightest CP -even Higgs mass, mh ≤ mZ | cos 2β| ≤ mZ [22,23],

can be substantially modified when radiative corrections are in-

cluded. The qualitative behavior of these radiative corrections

can be most easily seen in the large top-squark mass limit,

where in addition, both the splitting of the two diagonal entries

and the two off-diagonal entries of the top-squark squared-mass

matrix [Eq. (9)] are small in comparison to the average of the

two top-squark squared masses, M2
S ≡ 1

2(M2
t̃1

+ M2
t̃2

). In this

case (assuming mA > mZ), the predicted upper bound for mh

(which reaches its maximum at large tan β) is approximately

given by

m2
h .m2

Z +
3g2m4

t

8π2m2
W

[
ln

(
M2

S/m2
t

)
+

X2
t

M2
S

(
1 − X2

t

12M2
S

)]
, (13)

where Xt ≡ At − µ cotβ is the top-squark mixing factor [see

Eq. (9)].

A more complete treatment of the radiative corrections [81]

shows that Eq. (13) somewhat overestimates the true upper

bound of mh. These more refined computations, which incor-

porate renormalization group improvement and the leading

two-loop contributions, yield mh . 135 GeV (with an accu-

racy of a few GeV) for mt = 175 GeV and MS . 2 TeV [81].

This Higgs-mass upper bound can be relaxed somewhat in

non-minimal extensions of the MSSM, as noted in Section I.9.

In addition, one-loop radiative corrections can introduce

CP -violating effects in the Higgs sector, which depend on some

of the CP -violating phases among the MSSM-124 parame-

ters [82]. Although these effects are more model-dependent,

they can have a non-trivial impact on the Higgs searches at
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future colliders. A summary of the current MSSM Higgs mass

limits can be found in Ref. 83.

I.6. Restricting the MSSM parameter freedom: In Sec-

tions I.4 and I.5, we surveyed the parameters that comprise

the MSSM-124. However, in its most general form, the MSSM-

124 is not a phenomenologically-viable theory over most of

its parameter space. This conclusion follows from the observa-

tion that a generic point in the MSSM-124 parameter space

exhibits: (i) no conservation of the separate lepton numbers

Le, Lµ, and Lτ ; (ii) unsuppressed flavor-changing neutral cur-

rents (FCNC’s); and (iii) new sources of CP violation that are

inconsistent with the experimental bounds.

For example, the MSSM contains many new sources of CP

violation [84]. In particular, some combinations of the com-

plex phases of the gaugino-mass parameters, the A-parameters,

and µ must be less than on the order of 10−2–10−3 (for a

supersymmetry-breaking scale of 100 GeV) to avoid generating

electric dipole moments for the neutron, electron, and atoms

in conflict with observed data [85–87]. The non-observation

of FCNC’s [88–90] places additional strong constraints on the

off-diagonal matrix elements of the squark and slepton soft-

supersymmetry-breaking squared masses and A-parameters (see

Section I.3.3). As a result of the phenomenological deficiencies

listed above, almost the entire MSSM-124 parameter space is

ruled out! This theory is viable only at very special “excep-

tional” regions of the full parameter space.

The MSSM-124 is also theoretically incomplete as it pro-

vides no explanation for the origin of the supersymmetry-

breaking parameters (and in particular, why these parameters

should conform to the exceptional points of the parameter

space mentioned above). Moreover, there is no understanding

of the choice of parameters that leads to the breaking of the

electroweak symmetry. What is needed ultimately is a funda-

mental theory of supersymmetry breaking, which would provide

a rationale for a set of soft-supersymmetry-breaking terms that

is consistent with all phenomenological constraints.

The successful unification of the SU(3)×SU(2)×U(1) gauge

couplings in supersymmetric grand unified theories [8,51,91,92]
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suggests the possibility that the high-energy structure of the

theory may be considerable simpler than its low-energy real-

ization. The desired phenomenological constraints of the low-

energy theory can often be implemented by the dynamics which

govern the more fundamental theory that resides at the high

energy scale.

In this Section, we examine a number of theoretical frame-

works that yield phenomenologically viable regions of the the

general MSSM parameter space. The resulting supersymmet-

ric particle spectrum is then a function of a relatively small

number of input parameters. This is accomplished by imposing

a simple structure on the soft-supersymmetry-breaking terms

at a common high-energy scale MX (typically chosen to be

the Planck scale, MP, the grand unification scale, MGUT, or

the messenger scale, Mmess). Using the renormalization group

equations, one can then derive the low-energy MSSM parame-

ters relevant for collider physics. The initial conditions (at the

appropriate high-energy scale) for the renormalization group

equations depend on the mechanism by which supersymmetry

breaking is communicated to the effective low energy theory.

Examples of this scenario are provided by models of gravity-

mediated and gauge-mediated supersymmetry breaking, to be

discussed in more detail below. In some of these approaches, one

of the diagonal Higgs squared-mass parameters is driven nega-

tive by renormalization group evolution [93]. In such models,

electroweak symmetry breaking is generated radiatively, and

the resulting electroweak symmetry-breaking scale is intimately

tied to the scale of low-energy supersymmetry breaking.

I.6.1. Gaugino mass unification:

One prediction that arises in many grand unified supergrav-

ity models and gauge-mediated supersymmetry-breaking models

is the unification of the (tree-level) gaugino mass parameters at

some high-energy scale MX:

M1(MX) = M2(MX) = M3(MX) = m1/2 . (14)

Consequently, the effective low-energy gaugino mass parameters

(at the electroweak scale) are related:

M3 = (g2
s/g2)M2 ≃ 3.5M2 , M1 = (5g′ 2/3g2)M2 ≃ 0.5M2.

(15)
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In this case, the chargino and neutralino masses and mixing

angles depend only on three unknown parameters: the gluino

mass, µ, and tan β. If in addition |µ| ≫ M1 &mZ , then the

lightest neutralino is nearly a pure bino, an assumption often

made in supersymmetric particle searches at colliders.

Although Eqs. (14) and (15) are often assumed in many

phenomenological studies, a truly model-independent approach

would take the gaugino mass parameters, Mi, to be indepen-

dent parameters to be determined by experiment. For example,

although LEP data yields a lower bound of 46 GeV on the mass

of the lightest neutralino [94], an exactly massless neutralino

cannot be ruled out today in a model-independent analysis [95].

It is possible that the tree-level masses for the gauginos

are absent. In this case, the gaugino mass parameters arise at

one-loop and do not satisfy Eq. (15). In supergravity, there

exists a model-independent contribution to the gaugino mass

whose origin can be traced to the super-conformal (super-Weyl)

anomaly, which is common to all supergravity models [47].

Eq. (15) is then replaced (in the one-loop approximation) by:

Mi ≃
big

2
i

16π2
m3/2 , (16)

where m3/2 is the gravitino mass (assumed to be on the order

of 1 TeV), and bi are the coefficients of the MSSM gauge beta-

functions corresponding to the corresponding U(1), SU(2), and

SU(3) gauge groups: (b1, b2, b3) = (33
5 , 1,−3). Eq. (16) yields

M1 ≃ 2.8M2 and M3 ≃ −8.3M2, which implies that the

lightest chargino pair and neutralino comprise a nearly mass-

degenerate triplet of winos, W̃±, W̃ 0 (c.f. Table 1), over most

of the MSSM parameter space. (For example, if |µ| ≫ mZ , then

Eq. (16) implies that M
χ̃±

1
≃ M

χ̃0
1
≃ M2 [96].)

The corresponding supersymmetric phenomenology differs

significantly from the standard phenomenology based on Eq. (15),

and is explored in detail in Ref. 97. Under certain theoretical as-

sumptions on the structure of the Kähler potential (the so-called

sequestered form introduced in Ref. 47), anomaly-mediated

supersymmetry breaking also generates (approximate) flavor-

diagonal squark and slepton mass matrices. This approach

is called anomaly-mediated supersymmetry breaking (AMSB).
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However in its simplest formulation, AMSB yields negative

squared-mass contributions for the sleptons in the MSSM. It

may be possible to cure this fatal flaw in approaches beyond

the minimal supersymmetric model [98]. Alternatively, one

can assume that anomaly-mediation is not the sole source of

supersymmetry-breaking in the slepton sector.

Finally, it should be noted that the unification of gaugino

masses (and scalar masses) can be accidental. In particular,

the energy scale where unification takes place may not be

directly related to any physical scale. This phenomenon has

been called mirage unification and can occur in certain theories

of fundamental supersymmetry-breaking [99].

I.6.2. The constrained MSSM: mSUGRA, CMSSM, . . .

In the minimal supergravity (mSUGRA) framework [2–4], a

form of the Kähler potential is employed that yields minimal

kinetic energy terms for the MSSM fields [100]. As a result,

the soft-supersymmetry-breaking parameters at the high-energy

scale MX take a particularly simple form in which the scalar

squared masses and the A-parameters are flavor-diagonal and

universal [34]:

M2

Q̃
(MX) = M2

Ũ
(MX) = M2

D̃
(MX) = m2

01 ,

M2

L̃
(MX) = M2

Ẽ
(MX) = m2

01 ,

m2
1(MX) = m2

2(MX) = m2
0 ,

AU (MX) = AD(MX) = AE(MX) = A01 , (17)

where 1 is a 3 × 3 identity matrix in generation space. As

in the Standard Model, this approach exhibits minimal flavor

violation, whose unique source is the nontrivial flavor structure

of the Higgs-fermion Yukawa couplings. The gaugino masses

are also unified according to Eq. (14).

Renormalization group evolution is then used to derive the

values of the supersymmetric parameters at the low-energy

(electroweak) scale. For example, to compute squark masses,

one must use the low-energy values for M2

Q̃
, M2

Ũ
, and M2

D̃

in Eq. (9). Through the renormalization group running with

boundary conditions specified in Eqs. (15) and (17), one can
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show that the low-energy values of M2

Q̃
, M2

Ũ
, and M2

D̃
depend

primarily on m2
0 and m2

1/2. A number of useful approximate

analytic expressions for superpartner masses in terms of the

mSUGRA parameters can be found in Ref. 101.

In the mSUGRA approach, one typically finds that four

flavors of squarks (with two squark eigenstates per flavor) and

b̃R are nearly mass-degenerate. The b̃L mass and the diagonal

t̃L and t̃R masses are reduced compared to the common squark

mass of the first two generations. In addition, there are six

flavors of nearly mass-degenerate sleptons (with two slepton

eigenstates per flavor for the charged sleptons and one per

flavor for the sneutrinos); the sleptons are expected to be

somewhat lighter than the mass-degenerate squarks. Finally,

third-generation squark masses and tau-slepton masses are

sensitive to the strength of the respective f̃L–f̃R mixing, as

discussed below Eq. (9). The LSP is typically the lightest

neutralino, χ̃0
1, which is dominated by its bino component. In

particular, mSUGRA parameter regimes in which the LSP is

a chargino or the τ̃1 (the lightest scalar superpartner of the

τ -lepton) are not phenomenologically viable.

One can count the number of independent parameters in

the mSUGRA framework. In addition to 18 Standard Model

parameters (excluding the Higgs mass), one must specify m0,

m1/2, A0, the Planck-scale values for µ and B-parameters

(denoted by µ0 and B0), and the gravitino mass m3/2. Without

additional model assumptions, m3/2 is independent of the

parameters that govern the mass spectrum of the superpartners

of the Standard Model [34]. In principle, A0, B0, µ0, and m3/2

can be complex, although in the mSUGRA approach, these

parameters are taken (arbitrarily) to be real.

As previously noted, renormalization group evolution is used

to compute the low-energy values of the mSUGRA parameters,

which then fixes all the parameters of the low-energy MSSM.

In particular, the two Higgs vacuum expectation values (or

equivalently, mZ and tan β) can be expressed as a function of the

Planck-scale supergravity parameters. The simplest procedure

is to remove µ0 and B0 in favor of mZ and tan β [the sign

of µ0, denoted sgn(µ0) below, is not fixed in this process]. In
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this case, the MSSM spectrum and its interaction strengths are

determined by five parameters:

m0 , A0 , m1/2 , tanβ , and sgn(µ0) , (18)

in addition to the 18 parameters of the Standard Model and an

independent gravitino mass m3/2. This framework is conven-

tionally called the constrained minimal sypersymmetric exten-

sion of the Standard Model (CMSSM).

In the early literature, additional conditions were obtained

by assuming a simplifying form for the hidden sector that

provides the fundamental source of supersymmetry breaking.

Two additional relations emerged among the mSUGRA param-

eters [100]: B0 = A0 − m0 and m3/2 = m0. These relations

characterize a theory that was called minimal supergravity

when first proposed. In the more recent literature, it has been

more common to omit these extra conditions in defining the

mSUGRA model (in which case the mSUGRA model and the

CMSSM are synonymous). The authors of Ref. 102 advocate

restoring the original nomenclature in which the mSUGRA

model is defined with the extra conditions as originally pro-

posed. Additional mSUGRA variations can be considered where

different relations among the CMSSM parameters are imposed.

One can also relax the universality of scalar masses by

decoupling the squared-masses of the Higgs bosons and the

squarks/sleptons. This leads to the non-universal Higgs mass

models (NUHM), thereby adding one or two new parameters to

the CMSSM depending on whether the diagonal Higgs scalar

squared-mass parameters (m2
1 and m2

2) are set equal (NUHM1)

or taken to be independent (NUHM2) at the high energy scale

M2
X . Clearly, this modification preserves the minimal flavor vi-

olation of the mSUGRA approach. Nevertheless, the mSUGRA

approach and its NUHM generalizations are probably too sim-

plistic. Theoretical considerations suggest that the universality

of Planck-scale soft-supersymmetry-breaking parameters is not

generic [103]. In particular, effective operators at the Planck

scale exist that do not respect flavor universality, and it is

difficult to find a theoretical principle that would forbid them.
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I.6.3. Gauge-mediated supersymmetry breaking: In con-

trast to models of gravity-mediated supersymmetry break-

ing, the universality of the fundamental soft-supersymmetry-

breaking squark and slepton squared-mass parameters is guar-

anteed in gauge-mediated supersymmetry breaking because the

supersymmetry breaking is communicated to the sector of

MSSM fields via gauge interactions [39,40]. In the minimal

gauge-mediated supersymmetry-breaking (GMSB) approach,

there is one effective mass scale, Λ, that determines all low-

energy scalar and gaugino mass parameters through loop effects

(while the resulting A-parameters are suppressed). In order

that the resulting superpartner masses be on the order of 1 TeV

or less, one must have Λ ∼ 100 TeV. The origin of the µ

and B-parameters is quite model-dependent, and lies somewhat

outside the ansatz of gauge-mediated supersymmetry breaking.

The simplest models of this type are even more restrictive

than the CMSSM, with two fewer degrees of freedom. Bench-

mark reference points for GMSB models have been proposed in

Ref. 104 to facilitate collider studies.

The minimal GMSB is not a fully realized model. The sec-

tor of supersymmetry-breaking dynamics can be very complex,

and no complete model of gauge-mediated supersymmetry yet

exists that is both simple and compelling. However, advances in

the theory of dynamical supersymmetry breaking (which exploit

the existence of metastable supersymmetry-breaking vacua in

broad classes of models [105]) have generated new ideas and

opportunities for model building. As a result, simpler mod-

els of successful gauge mediation of supersymmetry breaking

have been achieved with the potential for overcoming a num-

ber of long-standing theoretical challenges [106]. In addition,

model-independent techniques that encompass all known gauge

mediation models have been recently formulated [107]. These

methods are well-suited for a comprehensive analysis [108] of

the phenomenological profile of gauge-mediated supersymmetry

breaking.

It was noted in Section I.2 that the gravitino is the LSP in

GMSB models. As a result, the next-to-lightest supersymmetric

particle (NLSP) now plays a crucial role in the phenomenology
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of supersymmetric particle production and decays. Note that

unlike the LSP, the NLSP can be charged. In GMSB models,

the most likely candidates for the NLSP are χ̃0
1 and τ̃±

R . The

NLSP will decay into its superpartner plus a gravitino (e.g.,

χ̃0
1 → γG̃, χ̃0

1 → ZG̃, or τ̃±R → τ±G̃), with lifetimes and

branching ratios that depend on the model parameters.

Different choices for the identity of the NLSP and its

decay rate lead to a variety of distinctive supersymmetric

phenomenologies [40,109]. For example, a long-lived χ̃0
1-NLSP

that decays outside collider detectors leads to supersymmetric

decay chains with missing energy in association with leptons

and/or hadronic jets (this case is indistinguishable from the

standard phenomenology of the χ̃0
1-LSP). On the other hand, if

χ̃0
1 → γG̃ is the dominant decay mode, and the decay occurs

inside the detector, then nearly all supersymmetric particle

decay chains would contain a photon. In contrast, in the case of

a τ̃±
R -NLSP, the τ̃±

R would either be long-lived or would decay

inside the detector into a τ -lepton plus missing energy.

I.6.4. The phenomenological MSSM: Of course, any of the

theoretical assumptions described in this Section could be wrong

and must eventually be tested experimentally. To facilitate the

exploration of MSSM phenomena in a more model-independent

way while respecting the constraints noted at the beginning of

this Section, the phenomenological MSSM (pMSSM) has been

introduced [110].

The pMSSM is governed by 19 independent real parameters

beyond the Standard Model, which include the three gaugino

masses M1, M2 and M3, the Higgs sector parameters mA

and tanβ, the Higgsino mass parameter µ, five squark and

slepton squared-mass parameters for the degenerate first and

second generations (M2

Q̃
, M2

Ũ
, M2

D̃
, (M2

L̃
and M2

Ẽ
), the five

corresponding squark and slepton squared-mass parameters for

the third generation, and three third-generation A-parameters

(At, Ab and Aτ ). Note that the first and second generation

A-parameters can be neglected as their phenomenological con-

sequences are negligible. Search strategies at the LHC for the

more general pMSSM have been examined in Ref. 111.
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If supersymmetric phenomena are discovered, the measure-

ments of (low-energy) supersymmetric parameters may eventu-

ally provide sufficient information to determine the organizing

principle governing supersymmetry breaking and yield signifi-

cant constraints on the values of the fundamental (high-energy)

supersymmetric parameters. In particular, a number of sophis-

ticated techniques have been recently developed for analyzing

experimental data to test the viability of the particular su-

persymmetric framework and for measuring the fundamental

model parameters and their uncertainties [112].

I.7. Experimental data confronts the MSSM:

Suppose some version of the MSSM satisfies the phenomeno-

logical constraints addressed in Section I.6. What are the ex-

pectations for the magnitude of the parameters that define such

a model, and are these expectations consistent with present

experimental data? For details on the constraints on supersym-

metric particle masses from previous collider studies at LEP

and the Tevatron and the most recent constraints from LHC

data, see Ref. 94. Additional constraints arise from limits on

the contributions of virtual supersymmetric particle exchange

to a variety of Standard Model processes [88–90].

Recent LHC data has been especially effective in ruling out

the existence of colored supersymmetric particles (primarily the

gluino and the first two generations of squarks) with masses

below about 1 TeV in the CMSSM [113]. However, such

constraints are relaxed, in some cases by as much as a factor of

two, in more generic frameworks of the MSSM [114].

I.7.1 Naturalness constraints and the little hierarchy

In Section I, weak-scale supersymmetry was motivated as a

natural solution to the hierarchy problem, which could provide

an understanding of the origin of the electroweak symmetry-

breaking scale without a significant fine-tuning of the funda-

mental MSSM parameters. In this framework, the soft-super-

symmetry-breaking masses must be generally of the order of

1 TeV or below [115]. This requirement is most easily seen

in the determination of mZ by the scalar potential minimum

condition. In light of Eq. (3), to avoid the fine-tuning of MSSM

parameters, the soft-supersymmetry breaking squared-masses
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m2
1 and m2

2 and the higgsino squared-mass |µ|2 should all be

roughly of O(m2
Z). Many authors have proposed quantitative

measures of fine-tuning [115,116]. One of the simplest measures

is the one given by Barbieri and Giudice [115],

∆i ≡
∣∣∣∣
∂ ln m2

Z

∂ ln pi

∣∣∣∣ , ∆ ≡ max ∆i , (19)

where the pi are the MSSM parameters at the high-energy scale

MX , which are set by the fundamental supersymmetry-breaking

dynamics. The theory is more fine-tuned as ∆ becomes larger.

One can apply the fine-tuning measure to any explicit model

of supersymmetry-breaking. For example, in the approaches

discussed in Section I.6, the pi are parameters of the model at

the energy scale MX where the soft-supersymmetry breaking

operators are generated by the dynamics of supersymmetry

breaking. Renormalization group evolution then determines the

values of the parameters appearing in Eq. (3) at the electroweak

scale. In this way, ∆ is sensitive to all the supersymmetry-

breaking parameters of the model (see e.g. Ref. 117).

Consequently, there is a tension between the present ex-

perimental lower limits on the masses of colored supersymmet-

ric particles [118] and the expectation that supersymmetry-

breaking is associated with the electroweak symmetry-breaking

scale. Moreover, this tension is exacerbated [119,120] by the ex-

perimental lower Higgs mass bound (mh & 115 GeV) [83], which

is not far from the the MSSM upper bound (mh . 135 GeV)

[the dependence of the latter on the top-squark mass and

mixing was noted in Section I.5.2]. If MSUSY characterizes the

scale of supersymmetric particle masses, then one would ex-

pect ∆ ∼ M2
SUSY/m2

Z . For example, if MSUSY ∼ 1 TeV then

there must be at least a ∆−1 ∼ 1% fine-tuning of the MSSM

parameters to achieve the observed value of the Z mass. This

separation of the electroweak symmetry breaking and super-

symmetry breaking scales is an example of the little hierarchy

problem [119,121].

However, one must be very cautious when drawing conclu-

sions about the viability of weak-scale supersymmetry to explain

the origin of electroweak symmetry breaking. First, one must
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decide the largest tolerable value of ∆ within the framework of

weak-scale supersymmetry (should it be ∆ ∼ 10? 100? 1000?).

Second, the fine-tuning parameter ∆ depends quite sensitively

on the assumptions of the supersymmetry-breaking dynamics

(e.g. the value of MX and relations among supersymmetry-

breaking parameters in the fundamental high energy theory).

For example, in so-called focus point supersymmetry mod-

els [122], all squark masses can be as heavy as 5 TeV without

significant fine-tuning. This can be attributed to a focusing

behavior of the renormalization group evolution when cer-

tain relations hold among the high-energy values of the scalar

squared-mass supersymmetry-breaking parameters. In this ap-

proach, the mass of the light CP-even Higgs boson can naturally

be near its maximally allowed MSSM upper bound [123]. A

recent reanalysis of focus-point and related models with modest

fine-tuning in the context of CMSSM can be found in Ref. 124.

Among the colored superpartners, the third generation

squarks generically have the most significant impact on the

naturalness constraints [125], whereas their masses are the

least constrained by LHC data. Hence, in the absence of any

relation between third generation squarks and those of the

first two generations, the naturalness constraints due to present

LHC data can be considerably weaker than those obtained in

the CMSSM. Indeed, models with first and second generation

squark masses in the multi-TeV range do not generically require

significant fine tuning. Such models have the added benefit

that undesirable FCNCs mediated by squark exchange are

naturally suppressed [126]. Other MSSM mass spectra that are

compatible with moderate fine tuning have been investigated

in Ref. 127. Moreover, one can also consider extensions of the

MSSM in which the degree of fine-tuning is relaxed [128].

Finally, experimentally reported upper limits for super-

symmetric particle masses are rarely model-independent. For

example, mass limits for the gluino and the first and second gen-

eration squarks obtained under the assumption of the CMSSM

can often be evaded in alternative or extended MSSM models,

e.g., compressed supersymmetry [129] and stealth supersym-

metry [130]. Moreover, experimental limits on the masses for
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the third generation squarks and color-neutral supersymmetric

particles are less constrained than the masses of other colored

supersymmetric states. The simplified models approach [131]

is sometimes advertised as being more model-independent by

focusing narrowly on a specific generic production process and

decay chain. However this approach also depends on assump-

tions of the relative masses of the produced particle and decay

products and the lack of interference from competing processes.

Thus, it is certainly premature in the first few years of the

LHC era to conclude that weak scale supersymmetry is on the

verge of exclusion.

I.7.2 Constraints from virtual exchange of supersym-

metric particles

There are a number of low-energy measurements that are

sensitive to the effects of new physics through supersymmetric

loop effects. For example, the virtual exchange of supersymmet-

ric particles can contribute to the muon anomalous magnetic

moment, aµ ≡ 1
2(g − 2)µ [132], The Standard Model prediction

for aµ exhibits a 3.3σ deviation from the experimentally ob-

served value [133], although a very recent theoretical re-analysis

claims that the deviation exceeds 4σ [134].

The rare inclusive decay b → sγ also provides a sensitive

probe to the virtual effects of new physics beyond the Standard

Model. Experimental measurements of B → Xs + γ by the

BELLE collaboration [135] are in very good agreement with

the theoretical predictions of Ref. 136. In both cases, super-

symmetric corrections can contribute an observable shift from

the Standard Model prediction in some regions of the MSSM

parameter space [137,138].

The rare decay Bs → µ+µ− is especially sensitive to su-

persymmetric loop effects, with some loop contributions that

scale as tan6 β when tan β ≫ 1 [139]. Current experimental

limits [140] are within about a factor of five of the predicted

Standard Model rate. The absence of a significant deviation

in these and other B-physics observables from their Standard

Model predictions places interesting constraints on the low-

energy supersymmetry parameters [141].
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I.8. Massive neutrinos in low-energy supersymmetry:

In the minimal Standard Model and its supersymmetric ex-

tension, there are no right-handed neutrinos, and Majorana

mass terms for the left-handed neutrinos are absent. However,

given the overwhelming evidence for neutrino masses and mix-

ing [142,143], any viable model of fundamental particles must

provide a mechanism for generating neutrino masses [144]. In

extended supersymmetric models, various mechanisms exist

for producing massive neutrinos [145]. Although one can de-

vise models for generating massive Dirac neutrinos [146], the

most common approaches for incorporating neutrino masses are

based on L-violating supersymmetric extensions of the MSSM,

which generate massive Majorana neutrinos. Two classes of

L-violating supersymmetric models will now be considered.

I.8.1. The supersymmetric seesaw: Neutrino masses can

be incorporated into the Standard Model by introducing

SU(3)×SU(2)×U(1) singlet right-handed neutrinos (νR) and

super-heavy Majorana masses (typically on the order of a grand

unified mass) for the νR. In addition, one must also include a

standard Yukawa couplings between the lepton doublets, the

Higgs doublet, and the νR. The Higgs vacuum expectation value

then induces an off-diagonal νL–νR masses on the order of the

electroweak scale. Diagonalizing the neutrino mass matrix (in

the three-generation model) yields three superheavy neutrino

states, and three very light neutrino states that are identified as

the light neutrino states observed in nature. This is the seesaw

mechanism [147].

The supersymmetric generalization of the seesaw model of

neutrino masses is now easily constructed [148,149]. In the

seesaw-extended Standard Model, lepton number is broken due

to the presence of ∆L = 2 terms in the Lagrangian (which

include the Majorana mass terms for the light and super-

heavy neutrinos). Consequently, the seesaw-extended MSSM

conserves R-parity. The supersymmetric analogue of the Ma-

jorana neutrino mass term in the sneutrino sector leads to

sneutrino–antisneutrino mixing phenomena [149,150].

I.8.2. R-parity-violating supersymmetry: A second ap-

proach to incorporating massive neutrinos in supersymmetric
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models is to retain the minimal particle content of the MSSM,

while removing the assumption of R-parity invariance [152].

The most general R-parity-violating (RPV) model involving

the MSSM spectrum introduces many new parameters to

both the supersymmetry-conserving and the supersymmetry-

breaking sectors. Each new interaction term violates either B

or L conservation. For example, consider new scalar-fermion

Yukawa couplings derived from the following interactions:

(λL)pmnL̂pL̂mÊc
n+(λ′

L)pmnL̂pQ̂mD̂c
n+(λB)pmnÛ c

pD̂c
mD̂c

n , (20)

where p, m, and n are generation indices, and gauge group

indices are suppressed. In the notation above, Q̂, Û c, D̂c, L̂,

and Êc respectively represent (u, d)L, uc
L, dc

L, (ν, e−)L, and ec
L

and the corresponding superpartners.

The Yukawa interactions are obtained from Eq. (20) by

taking all possible combinations involving two fermions and

one scalar superpartner. Note that the term in Eq. (20) pro-

portional to λB violates B, while the other two terms violate

L. Even if all the terms of Eq. (20) are absent, there is one

more possible supersymmetric source of R-parity violation. In

the notation of Eq. (20), one can add a term of the form

(µL)pĤuL̂p, where Ĥu represents the Y = 1 Higgs doublet and

its higgsino superpartner. This term is the RPV generalization

of the supersymmetry-conserving Higgs mass parameter µ of the

MSSM, in which the Y = −1 Higgs/higgsino super-multiplet

Ĥd is replaced by the slepton/lepton super-multiplet L̂p. The

RPV-parameters (µL)p also violate L.

Phenomenological constraints derived from data on various

low-energy B- and L-violating processes can be used to establish

limits on each of the coefficients (λL)pmn, (λ′
L)pmn, and (λB)pmn

taken one at a time [152,153]. If more than one coefficient

is simultaneously non-zero, then the limits are, in general,

more complicated [154]. All possible RPV terms cannot be

simultaneously present and unsuppressed; otherwise the proton

decay rate would be many orders of magnitude larger than the

present experimental bound. One way to avoid proton decay is

to impose B or L invariance (either one alone would suffice).
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Otherwise, one must accept the requirement that certain RPV

coefficients must be extremely suppressed.

One particularly interesting class of RPV models is one in

which B is conserved, but L is violated. It is possible to enforce

baryon number conservation, while allowing for lepton-number-

violating interactions by imposing a discrete Z3 baryon triality

symmetry on the low-energy theory [155], in place of the

standard Z2 R-parity. Since the distinction between the Higgs

and matter super-multiplets is lost in RPV models, R-parity

violation permits the mixing of sleptons and Higgs bosons,

the mixing of neutrinos and neutralinos, and the mixing of

charged leptons and charginos, leading to more complicated

mass matrices and mass eigenstates than in the MSSM. Recent

attempts to fit neutrino masses and mixing in this framework

can be found in Ref. 151.

The supersymmetric phenomenology of the RPV mod-

els exhibits features that are quite distinct from that of the

MSSM [152]. The LSP is no longer stable, which implies that

not all supersymmetric decay chains must yield missing-energy

events at colliders. Nevertheless, the loss of the missing-energy

signature is often compensated by other striking signals (which

depend on which R-parity-violating parameters are dominant).

For example, supersymmetric particles in RPV models can

be singly produced (in contrast to R-parity-conserving models

where supersymmetric particles must be produced in pairs).

The phenomenology of pair-produced supersymmetric particles

is also modified in RPV models due to new decay chains not

present in R-parity-conserving supersymmetry [152].

In RPV models with lepton number violation (these include

low-energy supersymmetry models with baryon triality men-

tioned above), both ∆L=1 and ∆L=2 phenomena are allowed,

leading to neutrino masses and mixing [156], neutrinoless

double-beta decay [157], sneutrino-antisneutrino mixing [158],

s-channel resonant production of sneutrinos in e+e− colli-

sions [159] and charged sleptons in pp̄ and pp collisions [160].

I.9. Extensions beyond the MSSM: Extensions of the

MSSM have been proposed to solve a variety of theoretical

problems. One such problem involves the µ parameter of the
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MSSM. Although µ is a supersymmetric-preserving parame-

ter, it must be of order the supersymmetry-breaking scale

to yield a consistent supersymmetric phenomenology. In the

MSSM, one must devise a theoretical mechanism to guaran-

tee that the magnitude of µ is not larger than the TeV-scale

(e.g., in gravity-mediated supersymmetry, the Giudice-Masiero

mechanism of Ref. 161 is the most cited explanation).

In extensions of the MSSM, new compelling solutions to the

so-called µ-problem are possible. For example, one can replace µ

by the vacuum expectation value of a new SU(3)×SU(2)×U(1)

singlet scalar field. In such a model, the Higgs sector of the

MSSM is enlarged and the corresponding fermionic higgsino

superpartner is added. This is the so-called NMSSM (here,

NM stands for non-minimal) [162]. There are some advantages

to extending the model further by adding an additional U(1)

broken gauge symmetry [163] (which yields the USSM [72]) .

Non-minimal extensions of the MSSM involving additional

matter and/or Higgs super-multiplets can also yield a less re-

strictive bound on the mass of the lightest Higgs boson (as

compared to the bound quoted in Section I.5.2). For example,

MSSM-extended models consistent with gauge coupling uni-

fication can be constructed in which the upper limit on the

lightest Higgs boson mass can be as high as 200—300 GeV [164]

(a similar relaxation of the Higgs mass bound occurs in split

supersymmetry [165] and extra-dimensional scenarios [166]) .

Other MSSM extensions considered in the literature include

an enlarged electroweak gauge group beyond SU(2)×U(1) [167];

and/or the addition of new, possibly exotic, matter super-

multiplets (e.g., new U(1) gauge groups and a vector-like color

triplet with electric charge 1
3e that appear as low-energy rem-

nants in E6 grand unification models [168]) . A possible theo-

retical motivation for such new structures arises from the study

of phenomenologically viable string theory ground states [169].
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