QUARKS

The u-, d-, and s-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\rm MS}$ at a scale $\mu \approx 2$ GeV. The c- and b-quark masses are the "running" masses in the $\overline{\rm MS}$ scheme. For the *b*-quark we also quote the 1S mass. These can be different from the heavy quark masses obtained in potential models.

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$m_u = 1.7-3.1 \text{ MeV}$$

 $m_u/m_d = 0.35-0.60$

Charge
$$= \frac{2}{3} e \quad I_z = +\frac{1}{2}$$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$m_d=4.1$$
–5.7 MeV Charge $=-\frac{1}{3}~e~~I_z=-\frac{1}{2}~m_s/m_d=17$ to 22 $\overline{m}=(m_u+m_d)/2=3.0$ –4.8 MeV

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_s=100^{+30}_{-20}$$
 MeV Charge $=-\frac{1}{3}$ e Strangeness $=-1$ m_s / $((m_u+m_d)/2)=22$ to 30

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_c = 1.29^{+0.05}_{-0.11} \text{ GeV}$$

$$m_c = 1.29^{+0.05}_{-0.11} \text{ GeV} \qquad \text{Charge} = \frac{2}{3} \ e \quad \text{Charm} = +1$$

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$\mathsf{Charge} = -\tfrac{1}{3} \ e \qquad \quad \mathsf{Bottom} = -1$$

$$m_b(\overline{\rm MS}) = 4.19^{+0.18}_{-0.06}~{
m GeV} \ m_b(1{
m S}) = 4.67^{+0.18}_{-0.06}~{
m GeV}$$

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$\mathsf{Charge} = \tfrac{2}{3} \ e \qquad \qquad \mathsf{Top} = +1$$

$$\mathsf{Top} = +1$$

Created: 6/16/2011 12:51

Mass $m=172.9\pm0.6\pm0.9$ GeV ^[a] (direct observation of top events) Full width $\Gamma=2.0^{+0.7}_{-0.6}$ GeV $\Gamma(W\, g(q=b,\,s,\,d))=0.99^{+0.09}_{-0.08}$

t DECAY MODES	Fi	raction (Γ_i)	′Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
Wq(q = b, s, d)					_
W b					_
ℓu_ℓ anything	[b,c]	(9.4 ± 2.4)	%		_
$\gamma q(q=u,c)$	[d] <	5.9	$\times 10^{-3}$	95%	_
$\Delta T = 1$ weak neutral current ($T1$) modes					
Zq(q=u,c)	T1 [e] <	< 3.7	%	95%	_

b' (4th Generation) Quark, Searches for

Mass m>190 GeV, CL = 95% ($p\overline{p}$, quasi-stable b') Mass m>199 GeV, CL = 95% ($p\overline{p}$, neutral-current decays) Mass m>128 GeV, CL = 95% ($p\overline{p}$, charged-current decays) Mass m>46.0 GeV, CL = 95% (e^+e^- , all decays)

t' (4th Generation) Quark, Searches for

Mass m > 256 GeV, CL = 95% $(p\overline{p}, t'\overline{t}' \text{ prod.}, t' \rightarrow Wq)$

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] Based on published top mass measurements using data from Tevatron Run-I and Run-II. Including also the most recent unpublished results from Run-II, the Tevatron Electroweak Working Group reports a top mass of $173.1\pm0.6\pm1.1$ GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- [b] ℓ means e or μ decay mode, not the sum over them.
- [c] Assumes lepton universality and W-decay acceptance.
- [d] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
- [e] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

Created: 6/16/2011 12:51