BOTTOM BARYONS

$$(B=-1)$$

$$\Lambda_b^0=u\,d\,b,\, \Xi_b^0=u\,s\,b,\, \Xi_b^-=d\,s\,b,\, \Omega_b^-=s\,s\,b$$

 Λ_b^0

$$I(J^P) = 0(\tfrac{1}{2}^+)$$

 $I(J^P)$ not yet measured; $0(\frac{1}{2}^+)$ is the quark model prediction. Mass $m=5620.2\pm1.6$ MeV $m_{\Lambda_b}-m_{B^0}=339.2\pm1.4$ MeV Mean life $\tau=(1.425\pm0.032)\times10^{-12}$ s $c au=427~\mu{
m m}$

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $\Lambda_b \to \overline{\Lambda}_c$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

$\Lambda_{m{b}}^0$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)$ $\Lambda imes B(b o \Lambda_b^0)$	$(4.7\pm2.3)\times10^{-2}$	-5	1741
$\Lambda_c^+\pi^-$	$(8.8\pm3.2)\times10^{-2}$	-3	2343
$\Lambda_c^+ a_1(1260)^-$	seen		2153
$arLambda_c^+ \ell^- \overline{ u}_\ell$ anything	[a] (11.0 ± 3.2) %		_
$\Lambda_c^+ \ell^- \overline{ u}_\ell$	$(5.0^{+1.9}_{-1.4})\%$		2345
$\Lambda_c^+ \pi^+ \pi^- \ell^- \overline{ u}_\ell$	$(5.6\pm3.1)\%$		2335
$\Lambda_c(2595)^+\ell^-\overline{ u}_\ell$	$(6.3^{\displaystyle +4.0}_{\displaystyle -3.1}) imes 10$	-3	2211
$\Lambda_c(2625)^+\ell^-\overline{ u}_\ell$	$(1.1^{+0.6}_{-0.4})\%$		2196
ρh^-	$[b] < 2.3 \times 10^{\circ}$	-5 90%	2730
$ ho\pi^-$	$(4.0\pm1.3)\times10^{-2}$	_	2730
p K ⁻	$(6.2\pm1.9)\times10^{-1}$	_	2709
$\Lambda \gamma$	< 1.3 × 10	-3 90%	2699

Created: 6/16/2011 12:05

$$\Sigma_b$$

$$I(J^P) = 1(\frac{1}{2}^+)$$
 I, J, P need confirmation.

Mass
$$m(\Sigma_b^+)=5807.8\pm 2.7$$
 MeV Mass $m(\Sigma_b^-)=5815.2\pm 2.0$ MeV

Σ_b DECAY M	ODES
--------------------	------

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 \pi$$

dominant

128

$$I(J^P) = 1(\frac{3}{2}^+)$$

I, J, P need confirmation.

Mass
$$m(\Sigma_b^{*+}) = 5829.0 \pm 3.4 \text{ MeV}$$

Mass $m(\Sigma_b^{*-}) = 5836.4 \pm 2.8 \text{ MeV}$
 $m_{\Sigma_b^*} - m_{\Sigma_b} = 21.2 \pm 2.0 \text{ MeV}$

Σ* DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 \pi$$

dominant

156

$$\Xi_b^0$$
, Ξ_b^-

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

I, J, P need confirmation.

Mass
$$m=5790.5\pm2.7~{\rm MeV}$$

Mean life $\tau_{\Xi_b^-}=(1.56+-0.26)\times10^{-12}~{\rm s}$
Mean life $\tau_{\Xi_b}=(1.49^{+0.19}_{-0.18})\times10^{-12}~{\rm s}$

$=_b$ DEC	CAY MODES	
$\overline{\Xi_b} ightarrow$	$\Xi^-\ell^-\overline{\nu}_\ell X \times B(\overline{b} \to \overline{b})$. <u>=</u>

DEG.W. 140DEG

Fraction
$$(\Gamma_i/\Gamma_i)$$

Scale factor (MeV/c)

$$(3.9\pm1.2)\times10^{-6}$$

1.4

Created: 6/16/2011 12:05

$$I(J^P) = O(\frac{1}{2}^+)$$

I, J, P need confirmation.

Mass
$$m = 6071 \pm 40 \text{ MeV}$$
 (S = 6.2)
Mean life $\tau = (1.1 + 0.5 - 0.4) \times 10^{-12} \text{ s}$

Ω_b^- DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi \Omega^- imes B(b o \Omega_b)$	$(2.4\pm1.2)\times10^{-6}$	1826

b-baryon ADMIXTURE $(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$

Mean life
$$au = (1.382 \pm 0.029) \times 10^{-12} \; \mathrm{s}$$

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates in Z decay (or high-energy $p\overline{p}$), branching ratios, and detection efficiencies. They scale with the LEP b-baryon production fraction B($b \rightarrow b$ -baryon) and are evaluated for our value B($b \rightarrow b$ -baryon) = $(9.2 \pm 1.8)\%$.

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one

b-baryon ADMIXTURE DECAY MODES

$(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$p\mu^-\overline{ u}$ anything	$(5.9^{+}_{-})^{2.7}_{2.4})\%$	_
$ ho \ell \overline{ u}_\ell$ anything	$(5.7\pm~1.7)~\%$	_
<i>p</i> anything	$(71 \pm 27)\%$	_
$\Lambda \ell^- \overline{ u}_\ell$ anything	(3.8± 1.0) %	_
$\Lambda/\overline{\Lambda}$ anything	(40 ± 11)%	_
$ar{arXi}^-\ell^-\overline{ u}_\ell$ anything	$(6.7\pm\ 2.1)\times10^{-3}$	-

NOTES

- [a] Not a pure measurement. See note at head of Λ_b^0 Decay Modes.
- [b] Here h^- means π^- or K^- .

Created: 6/16/2011 12:05