QUARKS

The u-, d-, and s-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\rm MS}$ at a scale $\mu \approx 2$ GeV. The c- and b-quark masses are the "running" masses in the $\overline{\rm MS}$ scheme. For the *b*-quark we also quote the 1S mass. These can be different from the heavy quark masses obtained in potential models.

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$Charge = \frac{2}{3} e I_z = +\frac{1}{2}$$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$m_d = 4.8^{+0.7}_{-0.3} \text{ MeV}$$
 Charge $= -\frac{1}{3} e$ $I_z = -\frac{1}{2}$ $m_s/m_d = 17$ –22 $\overline{m} = (m_u + m_d)/2 = 3.2$ –4.4 MeV

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$m_s=95\pm 5$$
 MeV Charge $=-rac{1}{3}$ e Strangeness $=-1$ $m_s \ / \ ((m_u+m_d)/2)=27\pm 1$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_c = 1.275 \pm 0.025 \; \mathrm{GeV}$$

$$m_c = 1.275 \pm 0.025 \; {
m GeV} \qquad {
m Charge} = {2 \over 3} \; e \quad {
m Charm} = +1$$

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$\mathsf{Charge} = -\tfrac{1}{3} \; e \qquad \quad \mathsf{Bottom} = -1$$

$$m_b(\overline{\rm MS}) = 4.18 \pm 0.03 \text{ GeV} m_b(1S) = 4.65 \pm 0.03 \text{ GeV}$$

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$\mathsf{Charge} = \tfrac{2}{3} \ e \qquad \mathsf{Top} = +1$$

$$\mathsf{Top} = +1$$

Created: 6/18/2012 15:05

Mass (direct measurements) $m=173.5\pm0.6\pm0.8$ GeV $^{[a,b]}$ Mass ($\overline{\rm MS}$ from cross-section measurements) $m=160^{+5}_{-4}$ GeV $^{[a]}$ $m_t-m_{\overline t}=-1.4\pm2.0$ GeV (S=1.6) Full width $\Gamma=2.0^{+0.7}_{-0.6}$ GeV $\Gamma(W\,b)/\Gamma(W\,q\,(q=b,\,s,\,d))=0.91\pm0.04$

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/ <i>c</i>)
Wq(q = b, s, d)			_
W b			_
ℓu_ℓ anything	$[c,d]$ (9.4 ± 2.4) %		_
$\gamma q(q=u,c)$	$[e] < 5.9 \times 10^{-}$	-3 95%	_
$\Delta T = 1$ weak neutral current ($T1$) modes			
Zq(q=u,c) T1	[f] < 3.2 %	95%	_

b' (4th Generation) Quark, Searches for

```
Mass m>190 GeV, CL = 95% (p\overline{p}, \text{ quasi-stable } b')
Mass m>199 GeV, CL = 95% (p\overline{p}, \text{ neutral-current decays})
Mass m>128 GeV, CL = 95% (p\overline{p}, \text{ charged-current decays})
Mass m>46.0 GeV, CL = 95% (e^+e^-, \text{ all decays})
```

t' (4th Generation) Quark, Searches for

Mass m $(p\overline{p}, t'\overline{t}' \text{ prod.}, t' \rightarrow Wq)$ Mass m

Free Quark Searches

All searches since 1977 have had negative results.

Created: 6/18/2012 15:05

NOTES

- [a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
- [b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s}=7$ TeV. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- [c] ℓ means e or μ decay mode, not the sum over them.
- [d] Assumes lepton universality and W-decay acceptance.
- [e] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
- [f] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

Created: 6/18/2012 15:05