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17.1. Lattice regularization of QCD

Gauge theories form the building blocks of the Standard Model. While the SU(2)
and U(1) parts have weak couplings and can be studied accurately with perturbative
methods, the SU(3) component—QCD—is only amenable to a perturbative treatment
at high energies. The growth of the coupling constant in the infrared—the flip-side of
asymptotic freedom—requires the use of non-perturbative methods to determine the low
energy properties of QCD. Lattice gauge theory, proposed by K. Wilson in 1974 [1],
provides such a method, for it gives a non-perturbative definition of vector-like gauge
field theories like QCD. In lattice regularized QCD—commonly called lattice QCD or
LQCD—Euclidean space-time is discretized, usually on a hypercubic lattice with lattice
spacing a, with quark fields placed on sites and gauge fields on the links between sites.
The lattice spacing plays the role of the ultraviolet regulator, rendering the quantum field
theory finite. The continuum theory is recovered by taking the limit of vanishing lattice
spacing, which can be reached by tuning the bare coupling constant to zero according to
the renormalization group.

Unlike dimensional regularization, which is commonly used in continuum QCD
calculations, the definition of LQCD does not rely on the perturbative expansion. Indeed,
LQCD allows non-perturbative calculations by numerical evaluation of the path integral
that defines the theory.

Practical LQCD calculations are limited by the availability of computational resources
and the efficiency of algorithms. Because of this, LQCD results come with both statistical
and systematic errors, the former arising from the use of Monte-Carlo integration, the
latter, for example, from the use of non-zero values of a. There are also different ways
in which the QCD action can be discretized, and all must give consistent results in
the continuum limit, a — 0. It is the purpose of this review to provide an outline of
the methods of LQCD, with particular focus on applications to particle physics, and
an overview of the various sources of error. This should allow the reader to better
understand the LQCD results that are presented in other sections for a variety of
quantities (quark masses, the hadron spectrum and several electroweak matrix elements).
For more extensive explanations the reader should consult the available textbooks or
lecture notes, the most up-to-date of which are Refs. [2-4].

17.1.1. Gauge invariance, gluon fields and the gluon action :

A key feature of the lattice formulation of QCD is that it preserves gauge invariance.
This is in contrast to perturbative calculations, where gauge fixing is an essential step.
The preservation of gauge invariance leads to considerable simplifications, e.g. restricting
the form of operators that can mix under renormalization.

The gauge transformations of lattice quark fields are just as in the continuum:
q(z) — V(z)g(z) and G(z) — @(z)V(z), with V(x) an arbitrary element of SU(3).
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2 17. Lattice QCD

The only difference is that the Euclidean space-time positions x are restricted to lie
on the sites of the lattice, i.e. x = a(ny,ng,n3,ng) for a hypercubic lattice, with the
n; being integers. Quark bilinears involving different lattice points can be made gauge
invariant by introducing the gluon field U, (x). For example, for adjacent points the
bilinear is g(x)Uy(x)q(x+afi), with ji the unit vector in the p’'th direction. (This form
is used in the construction of the lattice covariant derivative.) The gluon field (or
“gauge link”) is an element of the group, SU(3), in contrast to the continuum field
Ay which takes values in the Lie algebra. The bilinear is invariant if U, transforms as
Up(z) — V(:(:)UN(:(:)VT (x+aft). The lattice gluon field is naturally associated with the
link joining x and z+ajf, and corresponds in the continuum to a Wilson line connecting
these two points, Pexp(i [ ;Ha“ dquzont(x)) (where P indicates a path-ordered integral,
and the superscript on A, indicates that it is a continuum field). The trace of a product
of the U, (x) around any closed loop is easily seen to be gauge invariant and is the lattice
version of a Wilson loop.

The simplest possible gauge action, usually called the Wilson gauge action, is given by
the product of gauge links around elementary plaquettes:

Sy=83 - %ReTr[UN)Uy(x+ag)UjL<x+aa)U;(x)]] . (17.1)

x?#?”

For small a, assuming that the fields are slowly varying, one can expand the action in
powers of a using Uy (x) = exp(iaA,(x)). Keeping only the leading non-vanishing term,
and replacing the sum with an integral, one finds the continuum form,

1 .
Sy — / d4a:4g2 Tr[F2,(2)],  (Fu = 0uAy — OvAu +i[Au, A))) (17.2)
lat

as long as one chooses 3 = 6/ 912at for the lattice coupling. In this expression, g is
the bare coupling constant in the lattice scheme, which can be related (by combining
continuum and lattice perturbation theory) to a more conventional coupling constant
such as that in the MS scheme (see Sec. 17.3.4 below).

In practice, the lattice spacing a is non-zero, leading to discretization errors. In
particular, the lattice breaks Euclidean rotational invariance (which is the Euclidean
version of Lorentz invariance) down to a discrete hypercubic subgroup. One wants to
reduce discretization errors as much as possible. A very useful tool for understanding
and then reducing discretization errors is the Symanzik effective action: the interactions
of quarks and gluons with momenta low compared to the lattice cutoff (|p| < 1/a) are
described by a continuum action consisting of the standard continuum terms (e.g. the
gauge action given in Eq. (17.2)) augmented by higher dimensional operators suppressed
by powers of a [5]. For the Wilson lattice gauge action, the leading corrections come in

at O(a?). They take the form > j azché‘j ), with the sum running over all dimension-six

operators Oé‘j ) allowed by the lattice symmetries, and ¢; unknown coefficients. Some of
these operators violate Euclidean invariance, and all of them lead to discretization errors
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17. Lattice QCD 3

of the form a2A2, where A is a typical momentum scale for the quantity being calculated.
These errors can, however, be reduced by adding corresponding operators to the lattice
action and tuning their coefficients to eliminate the dimension-six operators in the
effective action to a given order in perturbation theory or even non-perturbatively. This
is the idea of the Symanzik improvement program [5]. In the case of the gauge action,
one adds Wilson loops involving six gauge links (as opposed to the four links needed for
the original plaquette action, Eq. (17.1)) to define the O(a?) improved (or “Symanzik”)
action [6]. In practical implementations, the improvement is either at tree-level (so
that residual errors are proportional to asa?, where the coupling is evaluated at a scale
~ 1/a), or at one loop order (errors proportional to a2a?). Another popular choice is
motivated by studies of renormalization group (RG) flow. It has the same terms as the
O(a?) improved action but with different coefficients, and is called the RG-improved or
“Iwasaki” action [7].

17.1.2. Lattice fermions :

Discretizing the fermion action turns out to involve subtle issues, and the range of
actions being used is more extensive than for gauge fields. Recall that the continuum
fermion action is Sy = i d493cj[iDM’yu +myglq, where D,, = 0, +1iA,, is the gauge-covariant
derivative. The simplest discretization replaces the derivative with a symmetric difference:

Dya(x) — o= [Up(@)a(a + af) — Ul — i) (e — ai)]. (17.3)
The factors of U, ensure that D,q(x) transforms under gauge transformations in the
same way as ¢(z), so that the discretized version of g(x)D,vuq(x) is gauge invariant.
The choice in Eq. (17.3) leads to the so-called naive fermion action. This, however,
suffers from the fermion doubling problem—in d dimensions it describes 24 equivalent
fermion fields in the continuum limit . The appearance of the extra “doubler” fermions
is related to the deeper theoretical problem of formulating chirally symmetric fermions
on the lattice. This is encapsulated by the Nielsen-Ninomiya theorem [8]: one cannot
define lattice fermions having exact, continuum-like chiral symmetry without producing

doublers. Naive lattice fermions do have chiral symmetry but at the cost of introducing
15 unwanted doublers (for d = 4).

There are a number of different strategies for dealing with the doubling problem, each
with their own theoretical and computational advantages and disadvantages. Wilson
fermions [1] add a term proportional to agAq to the fermion action (the “Wilson
term”—in which A is a covariant lattice Laplacian). This gives a mass of O(1/a) to
the doublers, so that they decouple in the continuum limit. The Wilson term, however,
violates chiral symmetry, and also introduces discretization errors linear in a. A commonly
used variant that eliminates the O(a) discretization error is the O(a)-improved Wilson (or
“clover”) fermion [9]. In this application of Symanzik improvement, methods have been
developed to remove O(a) terms non-perturbatively using auxiliary simulations to tune
parameters [10]. Such “non-perturbative improvement” is of great practical importance
as it brings the discretization error from the fermion action down to the same level as
that from the gauge action. It is used by essentially all simulations using clover fermions.
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4 17. Lattice QCD

The advantages of Wilson fermions are their theoretical simplicity and relatively low
computational cost. Their main disadvantage is the lack of chiral symmetry, which makes
them difficult to use in cases where mixing with wrong chirality operators can occur,
particularly if this involves divergences proportional to powers of 1/a. A related problem
is the presence of potential numerical instabilities due to spurious near-zero modes of
the lattice Dirac operator. Ongoing work has, however, been successful at ameliorating
these problems and increasing the range of quantities for which Wilson fermions can be
used [11,12].

Twisted-mass fermions [13] are a variant of Wilson fermions in which two flavors are
treated together with an isospin-breaking mass term (the “twisted mass” term). The
main advantage of this approach is that all errors linear in a are automatically removed
(without the need for tuning of parameters) by a clever choice of twisted mass and
operators [14]. A disadvantage is the presence of isospin breaking effects (such as a
splitting between charged and neutral pion masses even when up and down quarks are
degenerate), which, however, vanish as a?A? in the continuum limit.

Staggered fermions are a reduced version of naive fermions in which there is only a
single fermion Dirac component on each lattice site, with the full Dirac structure built
up from neighboring sites [15]. They have the advantages of being somewhat faster to
simulate than Wilson-like fermions, of preserving some chiral symmetry, and of having
discretization errors of O(a?). Their disadvantage is that they retain some of the doublers
(3 for d = 4). The action thus describes four degenerate fermions in the continuum limit.
These are usually called “tastes”, to distinguish them from physical flavors, and the
corresponding SU(4) symmetry is referred to as the “taste symmetry”. The preserved
chiral symmetry in this formulation has non-singlet taste. Practical applications usually
introduce one staggered fermion for each physical flavor, and remove contributions from
the unwanted tastes by taking the fourth-root of the fermion determinant appearing in
the path integral. The validity of this “rooting” procedure is not obvious because taste
symmetry is violated for non-zero lattice spacing. Theoretical arguments, supported by
numerical evidence, suggest that the procedure is valid as long as one takes the continuum
limit before approaching the light quark mass region [16]. Additional issues arise for the
valence quarks (those appearing in quark propagators, as described in Sec. 17.2 below),
where rooting is not possible, and one must remove the extra tastes by hand [17].

Just as for Wilson fermions, the staggered action can be improved, so as to reduce
discretization errors. The widely used “asqtad” action [18] removes tree-level O(a?)
errors, and leads to substantial reduction in the breaking of taste symmetry. More
recently, a highly improved staggered quark (“HISQ”) action has been introduced [19],
which further reduces discretization errors, both those which break taste symmetry and
those which do not. It is tuned to reduce discretization errors for both light and heavier
quarks, and is being used to directly simulate charm quarks.

There is an important class of lattice fermions, “Ginsparg-Wilsons fermions”, that
possess a continuum-like chiral symmetry without introducing unwanted doublers.
The lattice Dirac operator D for these fermions satisfies the Ginsparg-Wilson relation
D~5 4+ v5D = aD~5D [20]. In the continuum, the right-hand-side vanishes due to chiral
symmetry. On the lattice, it is non-vanishing, but with a particular form (with two
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factors of D) that restricts the violations of chiral symmetry in Ward-Takahashi identities
to short-distance terms that do not contribute to physical matrix elements [21]. In fact,
one can define a modified chiral transformation on the lattice (by including dependence
on the gauge fields) such that Ginsparg-Wilson fermions have an exact chiral symmetry
for on-shell quantities [22]. The net result is that such fermions essentially have the
same properties under chiral transformations as do continuum fermions, including the
index theorem [21]. Their leading discretization errors are of O(a?).

Two types of Ginsparg-Wilson fermions are currently being used in large-scale
numerical simulations. The first are Domain-wall fermions (DWF). These are defined
on a five-dimensional space, in which the fifth dimension is fictitious [23]. The action
is chosen so that the low-lying modes are chiral, with left- and right-handed modes
localized on opposite four-dimensional surfaces. For an infinite fifth dimension, these
fermions satisfy the Ginsparg-Wilson relation. In practice, the fifth dimension is kept
finite, and there remains a small, controllable violation of chiral symmetry. The second
type are Overlap fermions. These appeared from a completely different context and have
an explicit form that exactly satisfies the Ginsparg-Wilson relation [24]. Their numerical
implementation requires an approximation of the matrix sign function of a Wilson-like
fermion operator, and various approaches are being used. In fact, it is possible to rewrite
these approximations in terms of a five-dimensional formulation, showing that the DWF
and Overlap approaches are essentially equivalent [25]. Numerically, the five-dimensional
approach appears to be the most computationally efficient.

As noted above, each fermion formulation has its own advantages and disadvantages.
For instance, domain-wall and overlap fermions are theoretically preferred as they have
chiral symmetry without doublers, but their computational cost is at least an order of
magnitude greater than for other choices. If the physics application of interest and the
target precision do not require near-exact chiral symmetry, there is no strong motivation
to use these expensive formulations. On the other hand, there is a class of applications
(including the calculation of the AI = 1/2 amplitude for K — 7m decays and the
S-parameter [26]) where chiral symmetry plays an essential role and for which the use of
Ginsparg-Wilson fermions is strongly favored.

17.1.3. Heavy quarks on the lattice :

The fermion formulations described in the previous subsection can be used
straightforwardly only for quarks whose masses are small compared to the lattice
cutoff, mq S1/a. This is because there are discretization errors proportional to powers
of amg, and if amg 21 these errors are large and uncontrolled. Present LQCD
simulations typically have cutoffs in the range of 1/a = 2 — 4 GeV (corresponding to
a ~ 0.1 —0.05 fm). Thus, while for the up, down and strange quarks one has am,; < 1,
for bottom quarks (with my ~ 4.5 GeV) one must use alternative approaches. Charm
quarks (m. = 1.5 GeV) are an intermediate case, allowing simulations using both direct
and alternative approaches.

For the charm quark, the straightforward approach is to simultaneously reduce the
lattice spacing and to improve the fermion action so as to reduce the size of errors
proportional to powers of am,.. This approach has, for example, been followed successfully
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6 17. Lattice QCD

using the HISQ and twisted-mass actions [19,27,28]. It is important to note, however,
that reducing a increases the computational cost because an increased number of lattice
points are needed for the same physical volume. One cannot reduce the spatial size
below 2 — 3 fm without introducing finite volume errors. Present lattices have sizes up
to ~ 963 x 192 (with the long direction being Euclidean time), and thus allow a lattice
cutoff up to 1/a ~ 4 GeV.

Alternative approaches for discretizing heavy quarks are motivated by effective field
theories. For a bottom quark in heavy-light hadrons, one can use Heavy Quark Effective
Theory (HQET) to expand about the infinite quark-mass limit. In this limit, the bottom
quark is a static color source, and one can straightforwardly write the corresponding
lattice action [29]. Corrections, proportional to powers of 1/my, can be introduced as
operator insertions, with coefficients that can be determined non-perturbatively using
existing techniques [30]. This method allows the continuum limit to be taken controlling
all 1/my, corrections.

Another way of introducing the 1/my, corrections is to include the relevant terms in
the effective action. This leads to a non-relativistic QCD (NRQCD) action, in which
the heavy quark is described by a two-component spinor [31]. This approach has the
advantage over HQET that it can also be used for heavy-heavy systems, such as the
Upsilon states. A disadvantage is that some of the parameters in this effective theory
are determined perturbatively (originally at tree-level, but more recently at one-loop),
which limits the precision of the final results. Although discretization effects can be
controlled with good numerical precision for a range of lattice spacings, at fine enough
lattice spacing the NRQCD effective theory no longer applies since power divergent terms
become important, and taking the continuum limit would require fine-tuning a large
number of couplings non-perturbatively.

This problem can be avoided if one uses HQET power counting to analyze and reduce
discretization effects for heavy quarks while using conventional fermion actions [32]. For
instance, one can tune the parameters of an improved Wilson quark action so that the
leading HQET corrections to the static quark limit are correctly accounted for. As the
lattice spacing becomes finer, the action smoothly goes over to that of a light Wilson
quark action, where the continuum limit can be taken as usual. In principle, one can
improve the action in the heavy quark regime up to arbitrarily high orders using HQET,
but so far large-scale simulations have typically used clover improved Wilson quarks,
where tuning the parameters of the action corresponds to including all corrections through
next-to-leading order in HQET. Three different methods for tuning the parameters of
the clover action are being used: the Fermilab [32], Tsukuba [33] and Columbia [34]
approaches. An advantage of this HQET approach is that the ¢ and b quarks can be
treated on the same footing. Parameter tuning has typically been done perturbatively,
as in NRQCD, but recent work using the Columbia approach has used non-perturbative
tuning [35].
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17. Lattice QCD 7

17.1.4. Basic inputs for lattice calculations :

Since LQCD is nothing but a regularization of QCD, the renormalizability of QCD
implies that the number of input parameters in LQCD is the same as for continuum
QCD-—the strong coupling constant as = g2/(4w), the quark masses for each flavor, and
the CP violating phase 6. The 6 parameter is usually assumed to be zero, while the other
parameters must be determined using experimental inputs.

17.1.4.1. Lattice spacing: In QCD, the coupling constant is a function of scale. With
lattice regularization, this scale is the inverse lattice spacing 1/a, and choosing the bare
coupling constant is equivalent to fixing the lattice spacing.

In principle, a can be determined using any dimensionful quantity measured by
experiments. For example, using the mass of hadron H one has a = (amp )2t/ my . (Of
course, one must first tune the quark masses to their physical values, as discussed below.)
In practice, one chooses quantities that can be calculated accurately on the lattice, and
that are only weakly dependent on the light quark masses. The latter property minimizes
errors from extrapolating or interpolating to the physical light quark masses or from
mistuning of these masses. Commonly used choices are the spin-averaged 1S-1P or 1S-2S
splittings in the Upsilon system, the mass of the {2~ baryon, and the pion decay constant
fr- Ultimately, all choices must give the consistent results for a, and that this is the case
provides a highly non-trivial check of both the calculational method and of QCD.

The determination of a using quantities involving light (up and down) quarks—such as
fr—involves particular challenges. Most current lattice simulations are done using light
quark masses heavier than those in nature. One thus has to extrapolate the lattice data
towards the physical quark masses. This “chiral extrapolation” is non-trivial because
the quark mass dependence may involve non-analytic terms due to the loops of nearly
massless pions, as predicted by Chiral Perturbation Theory (ChPT) [36].

17.1.4.2. Light quark masses: In LQCD simulations, the up, down and strange quarks
are usually referred to as the light quarks, in the sense that mg < Aqcp. (The standard
definition of Aqcp is given in the “Quantum Chromodynamics” review; in this review
we are using it only to indicate the approximate non-perturbative scale of QCD.) This
condition is stronger than that used above to distinguish quarks with small discretization
errors, mg < 1/a. Loop effects from light quarks must be included in the simulations to
accurately represent QCD. At present, most simulations are done in the isospin symmetric
limit my, = mg = my, and are often referred to as “Ny = 2 + 1”7 simulations. (If, in
addition, one includes the charm quark, this is denoted as an Ny =2+ 1+1 simulation. )
Precision is now reaching the point where isospin breaking effects, as well as those of
electromagnetism (EM) must be included. This can be done approximately using ChPT
and other theoretical input, but ultimately one needs to simulate directly with m,, # my
and including QED corrections. Such work is now beginning.

To tune my and myg to their physical values, the most commonly used quantities are,
respectively, m, and mpg. If the scale is being set by mgq, then one adjusts the lattice
light quark masses until the ratios my/mgq and mpg /mq take their physical values. At
leading order in ChPT, one has the Gell-Mann-Oakes-Renner relations mio X (my, +mg)
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8 17. Lattice QCD

and mi(o x (mg + ms), which show the sensitivity of these quantities to the quark
masses. In practice one uses higher order ChPT (or other fit functions) to extrapolate or
interpolate the lattice results so as to match the desired ratios, correcting for the (small)
effects of isospin breaking and electromagnetic corrections. Most present calculations
need to extrapolate to the physical value of my, while simulating directly at or near to
the physical value of mg.

17.1.4.3. Heavy quark masses: Heavy quarks (¢ and b) are usually treated only as
valence quarks, with no loop effects included. The errors introduced by this approximation
can be estimated to be ~ as(mc)AéCD /m?2 and are likely to be small. For high precision,
however, dynamical charm quarks may be necessary, and simulations are beginning to
include them.

The heavy quark masses can be tuned by setting heavy-heavy or heavy-light meson
masses to their experimental values. For the charm quark, for example, one could use
the J/1 or the Dg meson. Consistency between these two determinations provides
an important check that the determination of parameters in the heavy quark lattice
formulations is being done correctly (see, e.g. Ref. 37).

17.1.5. Sources of systematic error :

Lattice results have statistical and systematic errors that must be quantified for any
calculation in order for the result to be a useful input to phenomenology. The statistical
error is due to the use of Monte Carlo importance sampling to evaluate the path integral
(a method discussed below). There are, in addition, a number of systematic errors that
are always present to some degree in lattice calculations, although the size of any given
error depends on the particular quantity under consideration and the parameters of the
ensembles being used. The most common lattice errors are reviewed below.

Although not strictly a systematic error, it is important to note that the presence of
long autocorrelations in the sequence of lattice configurations generated by the Monte
Carlo method can lead to uncertainty in the estimates of statistical errors. It is known
that the global topological charge of the gauge fields decorrelates very slowly with certain
algorithms [38]. This issue is particularly important for quantities, like the 7’ mass,
which are sensitive to topology. It is an active area of research.

17.1.5.1. Continuum limit: Physical results are obtained in the limit that the lattice
spacing a goes to zero. The Symanzik effective theory determines the scaling of
lattice artefacts with a. Most lattice calculations use improved actions with leading
discretizations errors of O(a?A2), O(asa?A?), or O(asal), where A is a typical
momentum scale in the system. Knowledge of the scaling of the leading discretization
errors allows controlled extrapolation to a = 0 when multiple lattice spacings are available,
as in current state-of-the-art calculations. Residual errors arise from the exclusion of
subleading a dependence from the fits.

For many quantities the typical momentum scale in the system is ~ Aqcp ~ 300 MeV.
Discretization errors are expected to be larger for quantities involving larger scales, for
example form factors or decays involving particles with momenta larger than Agcp-
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17.1.5.2. Infinite volume limit: LQCD calculations are necessarily carried out in finite
space-time boxes, leading to departures of physical quantities (masses, decay constants,
etc.) from their measured, infinite volume values. These finite-volume shifts are an
important systematic that must be estimated and minimized.

Typical lattices are asymmetric, with Ng points in the three spatial directions and N
in the (Euclidean) temporal direction. The spatial and temporal sizes in physical units
are thus Ls = aNg and Ly = alNy, respectively. (Anisotropic lattice spacings are also
sometimes used, as discussed below in Sec. 1.3.1.) Typically, Ly > 2Ls, a longer temporal
direction being used to allow excited-state contributions to correlators to decay. This
means that the dominant impact of using finite volume is from the presence of a finite
spatial box.

At present, high-precision LQCD calculations are of quantities involving no more than
a single particle in initial and final states. For such quantities, once the volume exceeds
about 2 fm (so that the particle is not “squeezed”), the dominant finite-volume effect
comes from virtual pions wrapping around the lattice in the spatial directions. This effect
is exponentially suppressed as the volume becomes large, roughly as ~ exp(—myLs),
and has been estimated using ChPT [39] or other methods [40]. The estimates suggest
that finite volume shifts are sub-percent effects when m;Lgs >4, and most large-scale
simulations use lattices satisfying this condition. This becomes challenging as one
approaches the physical pion mass, for which Lg 25 fm is required. At present, this can
only be achieved by using relatively coarse lattices, a = 0.07 fm.

Finite volume errors are usually determined by repeating the simulations on two
or more different volumes (with other parameters fixed). If different volumes are not
available, the ChPT estimate can be used, often inflated to account for the fact that the
ChPT calculation is truncated at some order.

In the future, LQCD calculations involving more than a single hadron will become
increasingly precise. Examples include the calculation of resonance parameters and
K — 7 amplitudes. Finite volume effects are much larger in these cases, with power-law
terms (e.g. 1/L3) in addition to exponential dependence. Indeed, as will be discussed
in Sec. 1.2.4., one can use the volume dependence to indirectly extract infinite-volume
quantities such as scattering lengths. Doing so, however, requires a set of lattice volumes
satisfying my Lg =4 and is thus more challenging than for single-particle quantities.

17.1.5.3. Chiral extrapolation: An important source of systematic error in most LQCD
calculations is the need to extrapolate in m, and mg (or, equivalently, in m). To do

this, one needs a functional form that is, at least approximately, valid for pion masses

ranging from the unphysical values used in simulations down to the physical value. A

theoretically favored choice is to use the predictions of SU(3) or SU(2) ChPT. This is

a valid description of QCD for mq < Agep (or mgy < myp), but the extent to which

it applies at larger pion masses is not known a priori. This concern is exacerbated in

practice since one must truncate the ChPT expressions, typically at one-loop or two-loop
order. Experience to date suggests that one-loop expressions are not sufficiently accurate
if my 2400 MeV [41].

Another choice of fit function is based on the observation that one does not need
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10 17. Lattice QCD

to extrapolate to the chiral limit, but only to the physical, non-zero, value of m,, and
thus an analytic description might suffice. In practice, of course, one must truncate
the analytic form at low order, and a concern is whether the curvature from known
non-analytic terms is adequately reproduced.

Extrapolation errors are estimated by comparing fits based on ChPT to those using
analytic fits, or by varying the fit function in some other way, and/or by varying the
number of data points included. We also note that, in many calculations, additional
input to the chiral extrapolation is obtained from “partially quenched” results in which
the valence and sea-quark masses differ [42].

Recently, simulations with physical light quark masses (except that m, = mg =
(mghyS + mghys) /2) have been undertaken [43], and are now becoming increasingly
common [44]. This is a major step forward as it removes the need for chiral extrapolation.
As noted above, such simulations require large boxes, and thus very large lattices, and
to date the results have been used to compute a limited number of observables. In
the future, however, such simulations will play an increasingly important role in the
determination of physical quantities.

17.1.5.4. Operator matching: Many of the quantities that LQCD can precisely calculate
involve hadronic matrix elements of operators from the electroweak Hamiltonian.
Examples include the pion and kaon decay constants, semileptonic form factors and the
kaon mixing parameter By (the latter defined in Eq. (17.13)). The operators in the lattice
matrix elements are defined in the lattice regularization scheme. To be used in tests of the
Standard Model, however, they must be matched to the continuum regularization scheme
in which the corresponding Wilson coefficients have been calculated. The only case in
which such matching is not needed is if the operator is a conserved or partially conserved
current. Similar matching is also needed for the conversion of lattice bare quark masses
to those in the continuum MS scheme.

Three methods are used to calculate the matching factors: perturbation theory (usually
to one- or two-loop order), non-perturbative renormalization (NPR) using Landau-gauge
quark and gluon propagators [45], and NPR using gauge-invariant methods based on
the Schrodinger functional [46]. The NPR methods replace truncation errors (which
can only be approximately estimated) by statistical and systematic errors which can be
determined reliably and systematically reduced.

A common issue that arises in many such calculations (e.g. for quark masses and Bp)
is that, using NPR, one ends up with operators regularized in a MOM-like (or Schrédinger
functional) scheme, rather than the MS scheme mostly used for calculating the Wilson
coefficients. To make contact with this scheme requires a purely continuum perturbative
matching calculation. The resultant truncation error can, however, be minimized by
pushing up the momentum scale at which the matching is done using step-scaling
techniques as part of the NPR calculation [47]. It should also be noted that this final
step in the conversion to the MS scheme could be avoided if continuum calculations used
a MOM-like scheme.
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17.2. Methods and status

Once the lattice action is chosen, it is straightforward to define the quantum theory
using the path integral formulation. The Euclidean-space partition function is

2= [ v Jdag)dag)e 01032 8P (17.4)
f

where link variables are integrated over the SU(3) manifold, ¢y and ¢y are Grassmann
(anticommuting) quark and antiquark fields of flavor f, and D[U] is the chosen lattice
Dirac operator with my the quark mass in lattice units. Integrating out the quark and
antiquark fields, one arrives at a form suitable for simulation:

Z = /[dU]e—Sg[U] [T det(D[U] +my). (17.5)
f

The building blocks for calculations are expectation values of multi-local gauge-invariant
operators, also known as “correlation functions”,

(O, 4,9)) = (1/2) / (U] [ (das][da |0, g, g)e oV 2s arPUEmpay - (17.6)
f

If the operators depend on the (anti-)quark fields gy and ¢y, then integrating these fields
out leads not only to the fermion determinant but also, through Wick’s theorem, to a
series of quark “propagators”, (D[U] +m f)_l, connecting the positions of the fields.

This set-up allows one to choose, by hand, the masses of the quarks in the determinant
(the sea quarks) differently from those in the propagators (valence quarks). This is called
“partial quenching”, and, as noted above, is used by some calculations as a way of
obtaining more data points from which to extrapolate both sea and valence quarks to
their physical values.

17.2.1. Monte-Carlo method :

Since the number of integration variables U is huge (N3 x Ny x 4 x 9), direct
numerical integration is impractical and one has to use Monte-Carlo techniques. In
this method, one generates a Markov chain of gauge configurations (a “configuration”
being the set of U’s on all links) distributed according to the probability measure
[dU]eS9lU] [1det(D[U] + my). Once the configurations are generated, expectation
values (O(U,q,q)) are calculated by averaging over those configurations. In this way
the configurations can be used repeatedly for many different calculations, and there are
several large collections of ensembles of configurations (with a range of values of a, lattice
sizes and quark masses) that are publicly available through the International Lattice Data
Grid (ILDG). As the number of the configurations, N, is increased, the error decreases as
1/V/N.

The most challenging part of the generation of gauge configurations is the need to
include the fermion determinant. Direct evaluation of the determinant is not feasible,
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as it requires O((N3 x N¢)3) computations. Instead, one rewrites it in terms of
“pseudofermion” fields ¢ (auxiliary fermion fields with bosonic statistics). For example,
for two degenerate quarks one has

det(D[U] +my)? = /[d¢]e‘¢T(D[U]+mf)_2¢. (17.7)

By treating the pseudofermions as additional integration variables in the path
integral, one obtains a totally bosonic representation. The price one pays is that the
pseudofermion effective action is highly non-local since it includes the inverse Dirac
operator (D[U] + mf)_l. Thus, the large sparse matrix (D[U] + m) has to be inverted
every time one needs an evaluation of the effective action.

Present simulations generate gauge configurations using the Hybrid Monte Carlo
(HMC) algorithm [48], or variants thereof. This algorithm combines molecular dynamics
(MD) evolution in a fictitious time (which is also discretized) with a Metropolis
“accept-reject” step. It makes a global update of the configuration, and is made exact by
the Metropolis step. In its original form it can be used only for two degenerate flavors,
but extensions (particularly the rational HMC [49]) are available for single flavors.
Considerable speed-up of the algorithms has been achieved over the last two decades
using a variety of techniques.

All these algorithms spend the bulk of their computational time on the repeated
inversion of (D[U] + m) acting on a source (which is required at every step of the MD
evolution). Inversions are done using a variety of iterative algorithms, e.g. the conjugate
gradient algorithm. In this class of algorithms, computational cost is proportional to the
condition number of the matrix, which is the ratio of maximum and minimum eigenvalues.
For (D[U] + m) the smallest eigenvalue is &~ m, so the condition number and cost are
inversely proportional to the quark mass. This is a major reason why simulations at the
physical quark mass are challenging. Recent algorithmic studies are making progress in
significantly reducing this problem.

A practical concern is the inevitable presence of correlations between configurations in
the Markov chain. These are characterized by an autocorrelation length in the fictitious
MD time. One aims to use configurations separated in MD time by greater than this
autocorrelation length. In practice, it is difficult to measure this length accurately, and
this leads to some uncertainty in the resulting statistical errors, as well as the possibility
of insufficient equilibration.

For most of the applications of LQCD discussed in this review, the cost of generating
gauge configurations is larger than that of performing the “measurements” on those
configurations. The computational cost of gauge generation grows with the lattice volume,
Viat = N3Ny, as Vhl;‘s Here § = 1/4 for the HMC algorithm [50] and can be reduced
slightly using modern variants. Such growth with V},; provides a (time-dependent) limit
on the largest lattice volumes that can be simulated. At present, the largest lattices being
used have Ny = 96 and N; = 192. Typically one aims to create an ensemble of ~ 103
statistically independent configurations at each choice of parameters (a, mq and Vig).
For most physical quantities of interest, this is sufficient to make the resulting statistical

errors smaller than or comparable to the systematic errors.
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17.2.2. Two-point functions :
One can extract properties of stable hadrons using two-point correlation functions,
(OX(:L')O;[/(O)). Here Ox y(x) are operators that have non-zero overlaps with the

hadronic state of interest |H), i.e. (0|Ox y(z)[H) # 0. One usually Fourier-transforms in
the spatial directions and considers correlators as a function of Euclidean time:

Cxy (t:5) = Y _(Ox(t, )0} (0)e P2, (17.8)

x

(Here and throughout this section all quantities are expressed in dimensionless lattice
units, so that, for example, § = apppys-) By inserting a complete set of states having
spatial momentum p, the two-point function can be written as

Cxy (t:7) = ﬁ<0|0X<o>|Hz-<m><Hi<m|o;<o>|o>e—Ei<ﬁ>f, (17.9)
i=0 " "

where the energy of the i-th state E;(p) appears as an eigenvalue of the time evolution
operator e H! in the BEuclidean time direction. The factor of 1/[2E;(p)] is due to
the relativistic normalization used for the states. For large enough t, the dominant
contribution is that of the lowest energy state |Hp(p)):

cxy<t>tl°°@<0|ox<o>|ﬂo@><Ho<m\o;<o>\o>e—E0@>t. (17.10)

One can thus obtain the energy Ey(p), which equals the hadron mass my when p = 0,
and the product of matrix elements (O\OX(O)\Hl(ﬁ))(Hl(ﬁﬂOI,(O)\O)

This method can be used to determine the masses of all the stable mesons and baryons
by making appropriate choices of operators. For example, if one uses the axial current,
Ox =0y =4, = J’yufyg)u, then one can determine m_+ from the rate of exponential
fall-off, and in addition the decay constant f; from the coefficient of the exponential.
A complication arises for states with high spins (j > 4 for bosons) because the spatial
rotation group on the lattice is a discrete subgroup of the continuum group SO(3). This
implies that lattice operators, even when chosen to lie in irreducible representations of the
lattice rotation group, have overlap with states that have a number of values of j in the
continuum limit [51]. For example j = 0 operators can also create mesons with j =4. A
method to overcome this problem has recently been introduced [52,53].

The expression given above for the correlator C'xy (; p) shows how, in principle, one
can determine the energies of the excited hadron states having the same quantum numbers
as the operators Ox y, by fitting the correlation function to a sum of exponentials.
In practice, this usually requires using a large basis of operators and adopting the
variational approach such as that of Ref. 54. One can also use an anisotropic lattice in
which a¢, the lattice spacing in the time direction, is smaller than its spatial counterpart
as. This allows better separation of the different exponentials. Using a combination of
these and other technical improvements extensive excited-state spectra have recently been
obtained [53,55,56]( for a recent review, see Ref. 57).
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17.2.3. Three-point functions :

Hadronic matrix elements needed to calculate semileptonic form factors and neutral
meson mixing amplitudes can be computed from three-point correlation functions. We
discuss here, as a representative example, the D — K amplitude. As in the case of
two-point correlation functions one constructs operators Op and Og having overlap,
respectively, with the D and K mesons. We are interested in calculating the matrix
element (K|V,|D), with V, = ¢vy,s the vector current. To obtain this, we use the
three-point correlator

Crv,p(tastyiB) = > (Ok (ta, E)Vu(0)Oh (ty, 7))~ P2, (17.11)

T,y

and focus on the limit ¢, — oo, t;, — —o0. In this example we set the D-meson at rest
while the kaon carries three-momentum p. Momentum conservation then implies that the
weak operator V), inserts three-momentum —p. Inserting a pair of complete sets of states
between each pair of operators, we find

L mpt B @l

Crv,p(te tyiP) = Y
t,J

% (01O (t2, @) K (B)) (K4 (8) [ Via(0) | D; (0)) (D (D) O}, (0)0). (17.12)

The matrix element (K;(p)|V,.(0)|D; (0)) can then be extracted, since all other quantities
in this expression can be obtained from two-point correlation functions. Typically one is
interested in the weak matrix elements of ground states, such as the lightest pseudoscalar
mesons. In the limit of large separation between the three operators in Euclidean time,
the three-point correlation function yields the weak matrix element of the transition
between ground states.

17.2.4. Scattering amplitudes and resonances :

The methods described thus far yield matrix elements involving single, stable particles
(where by stable here we mean absolutely stable to strong interaction decays). Most of
the particles listed in the Review of Particle Properties are, however, unstable—they are
resonances decaying into final states consisting of multiple strongly interacting particles.
LQCD simulations cannot directly calculate resonance properties, but methods have been
developed to do so indirectly for resonances coupled to two-particle final states in the
elastic regime [58].

The difficulty faced by LQCD calculations is that, to obtain resonance properties,
or, more generally, scattering phase-shifts, one must calculate multiparticle scattering
amplitudes in momentum space and put the external particles on their mass-shells. This
requires analytically continuing from Euclidean to Minkowski momenta. Although it is
straightforward in LQCD to generalize the methods described above to calculate four-
and higher-point correlation functions, one necessarily obtains them at a discrete and
finite set of Euclidean momenta. Analytic continuation to p% = —m? is then an ill-posed
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and numerically unstable problem. The same problem arises for single-particle states, but
can be largely overcome by picking out the exponential fall-off of the Euclidean correlator,
as described above. With a multi-particle state, however, there is no corresponding trick,
except for two particles at threshold [59].

What LQCD can calculate are the energies of the eigenstates of the QCD Hamiltonian
in a finite box. The energies of states containing two stable particles, e.g. two pions,
clearly depend on the interactions between the particles. It is possible to invert this
dependence and, with plausible assumptions, determine the scattering phase-shifts at
a discrete set of momenta from a calculation of the two-particle energy levels for a
variety of spatial volumes [58]. This is a challenging calculation, but it has recently
been carried through in several channels with quark masses approaching physical values.
Channels studied include 7r (for I =2, 1 and 0), K7, KD and DD*. For recent reviews
see Ref. 60. Extensions to nucleon interactions are also being actively studied [61].
The generalization of the formalism to the case of three particles is under active
consideration [62].

It is also possible to extend the methodology to calculate electroweak decay amplitudes
to two particles below the inelastic threshold, e.g. I'(K — 7wm) [63]. Results for the
AT = 3/2 amplitude with physical quark masses have been obtained [64], and significant
progress made toward a calculation of the AI = 1/2 amplitude [65]. Partial extensions of
the formalism above the elastic threshold have been worked out, in particular for the case
of multiple two-particle channels [66]. An extension to decays with many multiparticle
channels, e.g. hadronic B decays, has, however, yet to be formulated.

17.2.5. Status of LQCD simulations :

Until the 1990s, most large-scale lattice simulations were limited to the “quenched”
approximation, wherein the fermion determinant is omitted from the path integral.
While much of the basic methodology was developed in this era, the results obtained
had uncontrolled systematic errors and were not suitable for use in placing precision
constraints on the Standard Model. During the 1990s, more extensive simulations
including the fermion determinant (also known as simulations with “dynamical” fermions)
were begun, but with unphysically high light quark masses (my ~ 50 — 100 MeV), such
that the extrapolation to the physical light quark masses was a source of large systematic
errors [67]. In the last 5-10 years, advances in both algorithms and computers have
allowed simulations to reach much smaller quark masses (my ~ 10 — 20 MeV) and even,
as noted above, to work at the physical light quark mass. The net effect is that LQCD
calculations of selected quantities now have all sources of error controlled and small, such
that they can be used effectively in phenomenological analyses.

On a more qualitative level, analytic and numerical results from LQCD have
demonstrated that QCD confines color and spontaneously breaks chiral symmetry.
Confinement can be seen as a linearly rising potential between heavy quark and
anti-quark in the absence of quark loops. Analytically, this can be shown in the
strong coupling limit g1,y — oo [1]. At weaker couplings there are precise numerical
calculations of the potential that clearly show that this behavior persists in the continuum
limit [68,69,70].
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Chiral symmetry breaking was also demonstrated in the strong coupling limit on the
lattice [15,71], and there have been a number of numerical studies showing that this
holds also in the continuum limit. The accumulation of low-lying modes of the Dirac
operator, which is the analog of Cooper pair condensation in superconductors, has been
observed, yielding a determination of the chiral condensate [72,73,74] Many relations
among physical quantities that can be derived under the assumption of broken chiral
symmetry have been confirmed by a number of lattice groups [75].

17.3. Physics applications

In this section we describe the main applications of LQCD that are both computation-
ally mature and relevant for the determination of particle properties.

A general feature to keep in mind is that, since there are many different choices for
lattice actions, all of which lead to the same continuum theory, a crucial test is that
results for any given quantity are consistent. In many cases, different lattice calculations
are completely independent and often have very different systematic errors. Thus final
agreement, if found, is a highly non-trivial check, just as it is for different experimental
measurements.

The number, variety and precision of the calculations has progressed to the point
that an international “Flavour Lattice Averaging Group” (FLAG) has been formed.
The main aims of FLAG include collecting all lattice results of relevance for a variety
of phenomenologically interesting quantities and providing averages of those results
which pass appropriate quality criteria. The averages attempt to account for possible
correlations between results (which can arise, for example, if they use common gauge
configurations). The quantities considered are those we discuss in this section, with the
exception of the hadron spectrum. FLAG has recently completed their review [75], and
we have made extensive use of it in preparing the following summary. We stress that the
results we quote below are those obtained using the physical complement of light quarks
(i.e. Ny =2+1or 2+ 1+ 1 simulations).

17.3.1. Spectrum :

The most basic prediction of LQCD is of the hadron spectrum. Once the input
parameters are fixed as described in Sec. 17.1.4, the masses or resonance parameters of
all other states can be predicted. This includes hadrons composed of light (u, d and s)
quarks, as well as heavy-light and heavy-heavy hadrons. It also includes quark-model
exotics (e.g. JPC = 1=+ mesons) and glueballs. Thus, in principle, LQCD calculations
should be able to reproduce many of the experimental results compiled in the Review
of Particle Properties. Doing so would test both that the error budgets of LQCD
calculations are accurate and that QCD indeed describes the strong interactions in the
low-energy domain. The importance of the latter test can hardly be overstated.

What is the status of this fundamental test? As discussed in Sec. 1.2, LQCD
calculations are most straightforward for stable, low-lying hadrons. Resonances which
can decay into only two particles are more challenging, though substantial progress has
been made. First theoretical work on decays to more than two particles has begun, but
the methodology is not yet practical. It is also more technically challenging to calculate
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masses of flavor singlet states (which can annihilate into purely gluonic intermediate
states) than those of flavor non-singlets, although again algorithmic and computational
advances have made such calculations accessible in some cases. The present status for
light hadrons is that fully controlled results are available for the masses of the octet light
baryons, while results with less than complete control are available for the decuplet baryon
resonances, the vector meson resonances and the  and 7’. There are more extensive
results for heavy-light (D and B systems) and heavy-heavy (J/¢ and T systems). All
present results, which are discussed in the “Quark Model” review, are consistent with
experimental values. For a recent extensive review of lattice results see also Ref. 76.

17.3.2. Decay constants and bag parameters :

The pseudoscalar decay constants can be determined from two point correlation
functions involving the axial-vector current, as discussed in Sec. 17.2.2. The decay
constant fp of a meson P is extracted from the weak matrix element involving the
axial-vector current using the relation (0|A,(x)|P(p)) = fppuexp(—ip - x), where p,
is the momentum of P and A, (x) is the axial-vector current. For the pion and kaon
decay constants, this calculation is by now straightforward. The ratio fx /fr is especially
important for the extraction of |Vis|/|Vyq| from experiment, and many of the systematic
errors in the lattice calculation cancel or are significantly reduced when forming the
ratio [77]. A number of lattice groups have calculated this ratio with precision at the
percent level or better; all the results are in good agreement, with sub-percent precision
in the world average [78,79,75]. A summary is shown in Fig. 17.1. The most significant
advance in the last two years is the addition of a calculation including dynamical charm
quarks (“Ny=2+1+1") [44], the result from which is in complete agreement with the
average of results with Ny =2+ 1.

The heavy-light decay constants fp and fp, involve a charm valence quark, which can
be simulated using various methods, as discussed in Sec. 17.1.3. The most accurate result
uses the same HISQ action for the charm quark as for the light quarks, which means
that the matching factor for the axial currents of interest are unity. This allows Ref. 83
to quote values for the charm decay constants with 1-1.5% errors. Calculations using
alternative quark actions give consistent results, but with larger errors [84,85]. The
FLAG averages are fp = 209(3) MeV, fp, = 249(3) MeV, fp./fp = 1.187(12).

The bottom meson decay constants fp and fp, require a valence b quark. Lattice
calculations of these quantities are available using the Fermilab formulation [84],
NRQCD [86] or HQET [87] to treat the bottom quark or using an interpolation
between results from around m. to infinite quark mass [88,89]. Results have precisions
ranging down to ~ 2%. The FLAG averages are fp = 191(4) MeV, fp, = 228(5) MeV,
f5,/ 5 = 120(2).

The kaon bag parameter B is needed to turn the precise measurement of CP-violation
in kaon mixing into a constraint on the Standard Model. It is defined by

8

sk IR Bic (1) = (K 1Qa g2 (1) | K°). (17.13)

where m is the kaon mass, fx is the kaon decay constant, Qag—2 = 57, (1—75)d5y,(1—
v5)d is the four-quark operator of the effective electroweak Hamiltonian and p is the
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Figure 17.1: Results for fg/fr in the isospin limit from simulations with
Ny =2+1and Ny = 2+ 1+ 1. These are from the HPQCD/UKQCD [37],
BMW [80], MILC [81,44], and RBC/UKQCD collaborations [82]. The MILC
collaboration results have been shifted upward (by ~ 0.2%, following Ref. 75) since
they were originally quoted for m,, # mg. The FLAG average of the Ny = 2 + 1
results is 1.194 £ 0.005 [75].

renormalization scale. The short distance contribution to the electroweak Hamiltonian can
be calculated perturbatively, but the hadronic matrix element parameterized by By must
be computed using non-perturbative methods. In order to be of use to phenomenology,
the renormalization factor of the four-quark operator must be matched to a continuum
renormalization scheme, e.g. to MS, as described in Sec. 17.1.5.4. Determinations with
percent-level precision using different fermion actions are now available with DWF [82],
staggered fermions [90], DWF valence on staggered sea quarks [91], twisted mass
fermions [92] and Wilson fermions [12]. The results are all consistent, and the FLAG
average is By = 0.766(10).

The bag parameters for B and Bs meson mixing are defined analogously to that
for kaon mixing. The B and Bs; mesons contain a valence b-quark so that calculations
of these quantities must use one of the methods for heavy quarks described above.
Calculations have been done using NRQCD [93], the Fermilab formalism [94], the
Columbia formalism [95] and twisted-mass fermions [96]. For fpv/Bp and fp,/Bp, the
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averages are dominated by the HPQCD results [93]. The errors (~ 7%) are dominated
by that from operator matching. For the ratio of these two quantities, &£, the total
error (~ 5%) is somewhat smaller due to cancelations: the dominant errors are due to

chiral extrapolation and statistics. The FLAG averages are fpy/Bp = 216(15) MeV,
fBs\/ BB, = 266(18) Mev and & = 1.268(63).

The results discussed in this section are used in the reviews “The CKM Quark-Mixing
Matrix,” “V,,4, Vus, the Cabibbo Angle and CKM Unitarity,” and “Bg — Bg Mixing.”

17.3.3. Form factors (K — wfv, D — Kfv, B — wév, B — D(*)Eu) :

Semileptonic decay rates can be used to extract CKM matrix elements once the
semileptonic form factors are known from lattice calculations. For example, the matrix
element of a pseudoscalar meson P undergoing semileptonic decay to another pseudoscalar
meson D is mediated by the vector current, and can be written in terms of form factors as

(D(pp)|VulP(pp)) = f+(a*)(pD + 1P — A)pu + fo(d*) Ay, (17.14)

where ¢ = pp — pp, Ay = (m% — mQP)qu/q2 and V, is the quark vector current. The

shape of the form factor is typically well determined by experiment, and the value of

f1(¢?) at some reference value of ¢? is needed from the lattice in order to extract CKM
matrix elements. Typically f+(q2) dominates the decay rate, since the contribution from
fo(q?) is suppressed when the final state lepton is light.

The form factor fy(0) for K — wfr decays is highly constrained by the Ademollo-
Gatto theorem [97] and chiral symmetry. Old estimates using chiral perturbation theory
combined with quark models quote sub-percent precision [98], though they suffer
from some model dependence. The lattice has now matched this precision while also
eliminating the model dependence; good agreement with the old estimate is found
[99,100,101,102]. The FLAG average is f4(0) = 0.967(4).

Charm meson semileptonic decays have been calculated by different groups using
methods similar to those used for charm decay constants, and results are steadily
improving in precision [103,104]. For semileptonic decays involving a bottom quark,
one uses HQET or NRQCD to control the discretization errors of the bottom quark. The
form factors for the semileptonic decay B — mfr have been calculated in unquenched
lattice QCD by HPQCD [105] and Fermilab/MILC Collaborations [106]. These B
semileptonic form factors are difficult to calculate at low ¢2, i.e. when the mass of the
B-meson must be balanced by a large pion momentum, in order to transfer a small
momentum to the lepton pair. The low ¢? region has large discretization errors and very
large statistical errors, while the high ¢2 region is much more accessible to the lattice.
For experiment, the opposite is true. To combine lattice and experimental results it has
proved helpful to use the z-parameter expansion [107]. This provides a theoretically
constrained parameterization of the entire ¢ range, and allows one to obtain Vb
without model dependence [108,106].

The semileptonic decays B — Dfv and B — D*{v can be used to extract |V,p| once
the corresponding form factors are known. At present only one unquenched calculation
exists for the B — D*{v form factor, where the Fermilab formulation of the heavy
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quark was adopted [109]. This calculation is done at zero-recoil because that is where
the lattice systematic errors are smallest. Calculations of the necessary form factors for
both processes at non-zero recoil have been done in the quenched approximation [110]
using a step-scaling approach for the heavy quarks. Lattice calculations at non-zero
recoil are needed in order to decrease the error associated with the extrapolation of the
experimental data to the zero-recoil point.

The results discussed in this section are used in the reviews “The CKM Quark-Mixing
Matrix,” “V,q, Vus, the Cabibbo Angle and CKM Unitarity,” and “V,, and V,; CKM
Matrix Elements.”

17.3.4. Strong coupling constant :

As explained in Sec. 17.1.4.1, for a given lattice action, the choice of bare lattice
coupling constant, gj,¢, determines the lattice spacing a. If one then calculates a as
described in Sec. 17.1.4.1, one knows the strong coupling constant in the bare lattice
scheme at the scale 1/a, ajy = glzat /(4m). This is not, however, useful for comparing to
results for as obtained from other inputs, such as deep inelastic scattering or jet shape
variables. This is because the latter results give a; in the MS scheme, which is commonly
used in such analyses, and the conversion factor between these two schemes is known to
converge extremely poorly in perturbation theory. Instead one must use a method which
directly determines g on the lattice in a scheme closer to MS.

Several such methods have been used, all following a similar strategy. One calculates
a short-distance quantity K both perturbatively (K*T1) and non-perturbatively (KNF)
on the lattice, and requires equality: K NP — gPT _ A cio/;. Solving this equation
one obtains ay at a scale related to the quantity being used. Often, ag thus obtained is
not defined in the conventional MS scheme, and one has to convert among the different
schemes using perturbation theory. Unlike for the bare lattice scheme, the required
conversion factors are reasonably convergent. As a final step, one uses the renormalization
group to run the resulting coupling to a canonical scale (such as My).

In the work of the HPQCD collaboration [111], the short-distance quantities are
Wilson loops of several sizes and their ratios. These quantities are perturbatively
calculated to O(a2) using the V-scheme defined through the heavy quark potential. The
coefficients of even higher orders are estimated using the data at various values of a.

Another choice of short-distance quantities is to use current-current correlators.
Appropriate moments of these correlators are ultraviolet finite, and by matching lattice
results to the continuum perturbative predictions, one can directly extract the MS
coupling. The JLQCD collaboration [112] uses this approach with light overlap fermions,
while the HPQCD collaboration uses charm-quark correlators and HISQ fermions [113].
Yet another choice of short-distance quantity is the static-quark potential, where the
lattice result for the potential is compared to perturbative calculations; this method was
used to compute ag within 241 flavor QCD [114]. The ETM Collaboration obtains ag
by a comparison of lattice data for the ghost-gluon coupling with that of perturbation
theory [115], providing the first determination of ag with 2+1+1 flavors of dynamical
quarks.
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With a definition of «g given using the Schrodinger functional, one can non-
perturbatively control the evolution of as to high-energy scales, such as 100 GeV,
where the perturbative expansion converges very well. This method developed by the
ALPHA collaboration [47] has been applied to 2+1-flavor QCD by the PACS-CS
collaboration [116].

The various lattice methods for calculating ag have significantly different sources of
systematic error. Thus the good agreement between the approaches (which can be seen
in the “Quantum Chromodynamics” review) provides a strong check on the final result.

17.3.5. Quark masses :

Once the quark mass parameters are tuned in the lattice action, the remaining task is
to convert them to those of the conventional definition. Since the quarks do not appear
as asymptotic states due to confinement, the pole mass of the quark propagator is not a
physical quantity. Instead, one defines the quark mass after subtracting the ultra-violet
divergences in some particular way. The conventional choice is again the MS scheme at a
canonical scale such as 2 or 3 GeV.

As discussed in Sec. 17.1.5.4, one must convert the lattice bare quark mass to that in
the MS scheme. The most common approaches used for doing so are perturbation theory
and the NPR method, the latter using an RI/MOM intermediate scheme.

Alternatively, one can use a definition based on the Schrodinger functional, which
allows one to evolve the quark mass to a high scale non-perturbatively [1_17] In practice,

one can reach scales as high as ~100 GeV, at which matching to the MS scheme can be
reliably calculated in perturbation theory.

Another approach available for heavy quarks is to match current-current correlators
at short distances calculated on the lattice to those obtained in continuum perturbation
theory in the MS scheme. This has allowed an accurate determination of m.(MS) [118].

Results are summarized in the review of “Quark Masses”.

17.3.6. Other applications :

In this review we have concentrated on applications of LQCD that are relevant to the
quantities discussed in the Review of Particle Properties. We have not discussed at all
several other applications which are being actively pursued by simulations. Here we list
the major such applications. The reader can consult the texts [2,3,4] for further details,
as well as the proceedings of recent lattice conferences [119].

LQCD can be used, in principle, to simulate QCD at non-zero temperature and density,
and in particular to study how confinement and chiral-symmetry breaking are lost as T’
and p (the chemical potential) are increased. This is of relevance to heavy-ion collisions,
the early Universe and neutron-star structure. In practice, finite temperature simulations
are computationally tractable and relatively mature, while simulations at finite pu suffer
from a “sign problem” and are at a rudimentary stage.

Another topic under active investigation is nucleon structure (generalized structure
functions) and inter-nucleon interactions.
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Finally, we note that there is much recent interest in studying QCD-like theories with
more fermions, possibly in other representations of the gauge group. The main interest
is to find nearly conformal theories which might be candidates for “walking technicolor”
models.

17.4. Outlook

While LQCD calculations have made major strides in the last decade, and are now
playing an important role in constraining the Standard Model, there are many calculations
that could be done in principle but are not yet mature due to limitations in computational
resources. As we move to exascale resources (e.g. 1018 floating point operations per
second), the list of mature calculations will grow. Examples that we expect to mature
in the next few years are results for excited hadrons, including quark-model exotics;
(N|ss|N) and related matrix elements (needed for dark-matter searches); results for
moments of structure functions; K — 7w amplitudes (allowing a prediction of €' /e from
the Standard Model); K «» K and B < B mixing amplitudes from operators arising in
models of new physics (allowing one to constrain these models in a manner complementary
to the direct searches at the LHC); hadronic vacuum polarization contributions to muon
g — 2, the running of agy and ag; m — vy and related amplitudes; and perhaps the
long-distance contribution to K « K mixing and the light-by-light contribution to muon
g — 2. There will also be steady improvement in the precision attained for the mature
quantities discussed above. As already noted, this will ultimately require simulations
with m,, # my and including electromagnetic effects.
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