QUARKS

The u-, d-, and s-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\rm MS}$ at a scale $\mu \approx 2$ GeV. The c- and b-quark masses are the "running" masses in the $\overline{\rm MS}$ scheme. For the *b*-quark we also quote the 1S mass. These can be different from the heavy quark masses obtained in potential models.

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$m_u = 2.3^{+0.7}_{-0.5}~{
m MeV}~{
m Charge} = {2\over 3}~e~{
m I}_z = +{1\over 2} \ m_u/m_d = 0.38 - 0.58$$

$$\mathsf{Charge} = \frac{2}{3} \ e \quad \mathsf{I}_{\mathsf{Z}} = +\frac{1}{2}$$

d

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$m_d=4.8^{+0.5}_{-0.3}~{
m MeV}$$
 Charge $=-\frac{1}{3}~{
m e}~{\it I}_z=-\frac{1}{2}$ $m_s/m_d=17$ –22 $\overline{m}=(m_u+m_d)/2=3.5^{+0.7}_{-0.2}~{
m MeV}$

5

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$m_s=95\pm 5$$
 MeV Charge $=-\frac{1}{3}$ e Strangeness $=-1$ $m_s \ / \ ((m_u+m_d)/2)=27.5\pm 1.0$

C

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_c = 1.275 \pm 0.025 \; {
m GeV} \qquad {
m Charge} = {2 \over 3} \; e \quad {
m Charm} = +1$$

b

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $\mathsf{Charge} = -\frac{1}{3} \ e \qquad \mathsf{Bottom} = -1$

Created: 7/12/2013 14:49

$$m_b(\overline{\text{MS}}) = 4.18 \pm 0.03 \text{ GeV}$$

 $m_b(1\text{S}) = 4.66 \pm 0.03 \text{ GeV}$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$\mathsf{Charge} = \tfrac{2}{3} \ e \qquad \qquad \mathsf{Top} = +1$$

$$\mathsf{Top} = +1$$

Created: 7/12/2013 14:49

Mass (direct measurements) $m=173.07\pm0.52\pm0.72$ GeV $^{[a,b]}$ Mass ($\overline{\rm MS}$ from cross-section measurements) $m=160^{+5}_{-4}~{\rm GeV}^{[a]}$ $m_t - m_{\overline{t}} = -0.6 \pm 0.6 \text{ GeV} \quad (S = 1.2)$ Full width $\Gamma = 2.0 \pm 0.5 \text{ GeV}$ $\Gamma(Wb)/\Gamma(Wq(q=b, s, d)) = 0.91 \pm 0.04$

t-quark EW Couplings

$$F_0 = 0.70 \pm 0.05$$

 $F_- = 0.32 \pm 0.04$
 $F_+ = -0.017 \pm 0.028$
 $F_{V+A} < 0.29$, CL = 95%

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>р</i> (MeV/ <i>c</i>)
Wq(q = b, s, d)			_
W b			_
ℓu_ℓ anything	$[c,d]$ (9.4 ± 2.4) %		_
$\gamma q(q=u,c)$	$[e] < 5.9 \qquad \times 10^{-}$	95%	_
$\Delta T = 1$ weak neutral current ($T1$) modes			
Zq(q=u,c) T1	$[f] < 2.1 \times 10^{-}$	95%	-

b' (4th Generation) Quark, Searches for

Mass m > 190 GeV, CL = 95% $(p\overline{p}, \text{ quasi-stable } b')$ Mass m > 199 GeV, CL = 95% $(p\overline{p}, \text{ neutral-current decays})$ Mass m > 128 GeV, CL = 95% $(p\overline{p}, \text{ charged-current decays})$ $(e^+e^-, all decays)$ Mass m > 46.0 GeV, CL = 95%

t' (4th Generation) Quark, Searches for

Mass m > 685 GeV, CL = 95% $(p\overline{p}, t'\overline{t}')$ prod., $t' \rightarrow Wq$ Mass m

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
- [b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s}=7$ TeV. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- [c] ℓ means e or μ decay mode, not the sum over them.
- [d] Assumes lepton universality and W-decay acceptance.
- [e] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
- [f] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

Created: 7/12/2013 14:49