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Table 1.1. Reviewed 2013 by P.J. Mohr (NIST). The set of constants excluding the last group (which come from the Particle Data Group) is
recommended by CODATA for international use. The 1-σ uncertainties in the last digits are given in parentheses after the values. See the full
edition of this Review for references and further explanation.

Quantity Symbol, equation Value Uncertainty (ppb)

speed of light in vacuum c 299 792 458 m s−1 exact∗

Planck constant h 6.626 069 57(29)×10−34 J s 44
Planck constant, reduced ~ ≡ h/2π 1.054 571 726(47)×10−34 J s 44

= 6.582 119 28(15)×10−22 MeV s 22
electron charge magnitude e 1.602 176 565(35)×10−19 C = 4.803 204 50(11)×10−10 esu 22, 22
conversion constant ~c 197.326 9718(44) MeV fm 22
conversion constant (~c)2 0.389 379 338(17) GeV2 mbarn 44

electron mass me 0.510 998 928(11) MeV/c2 = 9.109 382 91(40)×10−31 kg 22, 44
proton mass mp 938.272 046(21) MeV/c2 = 1.672 621 777(74)×10−27 kg 22, 44

= 1.007 276 466 812(90) u = 1836.152 672 45(75) me 0.089, 0.41
deuteron mass md 1875.612 859(41) MeV/c2 22
unified atomic mass unit (u) (mass 12C atom)/12 = (1 g)/(NA mol) 931.494 061(21) MeV/c2 = 1.660 538 921(73)×10−27 kg 22, 44

permittivity of free space ǫ0 = 1/µ0c
2 8.854 187 817 . . . ×10−12 F m−1 exact

permeability of free space µ0 4π × 10−7 N A−2 = 12.566 370 614 . . . ×10−7 N A−2 exact

fine-structure constant α = e2/4πǫ0~c 7.297 352 5698(24)×10−3 = 1/137.035 999 074(44)† 0.32, 0.32

classical electron radius re = e2/4πǫ0mec
2 2.817 940 3267(27)×10−15 m 0.97

(e− Compton wavelength)/2π −λe = ~/mec = reα
−1 3.861 592 6800(25)×10−13 m 0.65

Bohr radius (mnucleus = ∞) a∞ = 4πǫ0~
2/mee

2 = reα
−2 0.529 177 210 92(17)×10−10 m 0.32

wavelength of 1 eV/c particle hc/(1 eV) 1.239 841 930(27)×10−6 m 22
Rydberg energy hcR∞ = mee

4/2(4πǫ0)
2
~
2 = mec

2α2/2 13.605 692 53(30) eV 22
Thomson cross section σT = 8πr2

e/3 0.665 245 8734(13) barn 1.9
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Bohr magneton µB = e~/2me 5.788 381 8066(38)×10−11 MeV T−1 0.65
nuclear magneton µN = e~/2mp 3.152 451 2605(22)×10−14 MeV T−1 0.71

electron cyclotron freq./field ωe
cycl/B = e/me 1.758 820 088(39)×1011 rad s−1 T−1 22

proton cyclotron freq./field ω
p
cycl

/B = e/mp 9.578 833 58(21)×107 rad s−1 T−1 22

gravitational constant‡ GN 6.673 84(80)×10−11 m3 kg−1 s−2 1.2 × 105

= 6.708 37(80)×10−39
~c (GeV/c2)−2 1.2 × 105

standard gravitational accel. g
N

9.806 65 m s−2 exact

Avogadro constant NA 6.022 141 29(27)×1023 mol−1 44
Boltzmann constant k 1.380 6488(13)×10−23 J K−1 910

= 8.617 3324(78)×10−5 eV K−1 910
molar volume, ideal gas at STP NAk(273.15 K)/(101 325 Pa) 22.413 968(20)×10−3 m3 mol−1 910
Wien displacement law constant b = λmaxT 2.897 7721(26)×10−3 m K 910
Stefan-Boltzmann constant σ = π2k4/60~

3c2 5.670 373(21)×10−8 W m−2 K−4 3600

Fermi coupling constant∗∗ GF /(~c)3 1.166 378 7(6)×10−5 GeV−2 500

weak-mixing angle sin2 θ̂(MZ) (MS) 0.231 26(5)†† 2.2 × 105

W± boson mass mW 80.385(15) GeV/c2 1.9 × 105

Z0 boson mass mZ 91.1876(21) GeV/c2 2.3 × 104

strong coupling constant αs(mZ) 0.1185(6) 5.1 × 106

π = 3.141 592 653 589 793 238 e = 2.718 281 828 459 045 235 γ = 0.577 215 664 901 532 861

1 in ≡ 0.0254 m

1 Å ≡ 0.1 nm

1 barn ≡ 10−28 m2

1 G ≡ 10−4 T

1 dyne ≡ 10−5 N

1 erg ≡ 10−7 J

1 eV = 1.602 176 565(35)× 10−19 J

1 eV/c2 = 1.782 661 845(39)× 10−36 kg

2.997 924 58 × 109 esu = 1 C

kT at 300 K = [38.681 731(35)]−1 eV

0 ◦C ≡ 273.15 K

1 atmosphere ≡ 760 Torr ≡ 101 325 Pa

∗ The meter is the length of the path traveled by light in vacuum during a time interval of 1/299 792 458 of a second.
† At Q2 = 0. At Q2

≈ m2
W the value is ∼ 1/128. •

‡ Absolute lab measurements of GN have been made only on scales of about 1 cm to 1 m.
∗∗ See the discussion in Sec. 10, “Electroweak model and constraints on new physics.”
†† The corresponding sin2 θ for the effective angle is 0.23155(5).
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2. ASTROPHYSICAL CONSTANTS AND PARAMETERS

Table 2.1. Figures in parentheses give 1-σ uncertainties in last place(s). This table represents neither a critical review nor an adjustment of the
constants, and is not intended as a primary reference. See the full edition of this Review for references and detailed explanations.

Quantity Symbol, equation Value Reference, footnote

speed of light c 299 792 458 m s−1 exact[4]
Newtonian gravitational constant GN 6.673 8(8)× 10−11 m3 kg−1 s−2 [1,5]
Planck mass

√
~c/GN 1.220 93(7)× 1019 GeV/c2 [1]

= 2.176 51(13)× 10−8 kg

Planck length
√

~GN/c3 1.616 20(10)× 10−35 m [1]
standard gravitational acceleration g

N
9.806 65 m s−2

≈ π2 exact[1]

jansky (flux density) Jy 10−26 W m−2 Hz−1 definition

tropical year (equinox to equinox) (2011) yr 31 556 925.2 s ≈ π × 107 s [6]
sidereal year (fixed star to fixed star) (2011) 31 558 149.8 s ≈ π × 107 s [6]
mean sidereal day (2011) (time between vernal equinox transits) 23h 56m 04.s090 53 [6]

astronomical unit au 149 597 870 700 m exact [7]
parsec (1 au/1 arc sec) pc 3.085 677 581 49× 1016 m = 3.262 . . . ly exact [8]
light year (deprecated unit) ly 0.306 6 . . . pc = 0.946 053 . . .× 1016 m
Schwarzschild radius of the Sun 2GNM⊙/c2 2.953 250 077(2) km [9]
Solar mass M⊙ 1.988 5(2)× 1030 kg [10]
Solar equatorial radius R⊙ 6.9551(4)× 108 m [11]
Solar luminosity L⊙ 3.828 × 1026 W [12]
Schwarzschild radius of the Earth 2GNM⊕/c2 8.870 055 94(2)mm [13]
Earth mass M⊕ 5.972 6(7)× 1024 kg [14]
Earth mean equatorial radius R⊕ 6.378 137× 106 m [6]

luminosity conversion (deprecated) L 3.02 × 1028
× 10−0.4 Mbol W [15]

(Mbol = absolute bolometric magnitude = bolometric magnitude at 10 pc)
flux conversion (deprecated) F 2.52 × 10−8

× 10−0.4 mbol W m−2 from above
(mbol = apparent bolometric magnitude)

ABsolute monochromatic magnitude AB −2.5 log10 fν−56.10 (for fν in Wm−2 Hz−1) [16]
= −2.5 log10 fν + 8.90 (for fν in Jy)

Solar angular velocity around the Galactic center Θ
0
/R0 30.3 ± 0.9 km s−1 kpc−1 [17]

Solar distance from Galactic center R0 8.4(6) kpc [17,18]
circular velocity at R0 v

0
or Θ0 254(16) km s−1 [17]

local disk density ρ disk 3–12 ×10−24 g cm−3
≈ 2–7 GeV/c2 cm−3 [19]

local dark matter density ρ χ canonical value 0.3 GeV/c2 cm−3 within factor 2–3 [20]
escape velocity from Galaxy v esc 498 km/s < v esc < 608 km/s [21]
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present day CMB temperature T0 2.7255(6) K [22,23]
present day CMB dipole amplitude 3.355(8) mK [22,24]
Solar velocity with respect to CMB 369(1) km/s towards (ℓ, b) = (263.99(14)◦, 48.26(3)◦) [22,24]
Local Group velocity with respect to CMB vLG 627(22) km/s towards (ℓ, b) = (276(3)◦, 30(3)◦) [22,24]
entropy density/Boltzmann constant s/k 2 891.2 (T/2.7255)3 cm−3 [25]
number density of CMB photons nγ 410.7(T/2.7255)3 cm−3 [25]
baryon-to-photon ratio η = nb/nγ 6.05(7)×10−10 (CMB); (5.7 − 6.7)×10−10 (95% CL) [26]
present day Hubble expansion rate H0 100 h km s−1 Mpc−1 = h×(9.777 752 Gyr)−1 [29]
scale factor for Hubble expansion rate h 0.673(12) [2,3]
Hubble length c/H0 0.925 0629×1026h−1 m = 1.37(2)×1026 m
scale factor for cosmological constant c2/3H2

0 2.85247× 1051 h−2 m2 = 6.3(2) × 1051 m2

critical density of the Universe ρcrit = 3H2
0/8πGN 2.775 366 27× 1011 h2 M⊙Mpc−3

= 1.878 47(23)× 10−29 h2 g cm−3

= 1.053 75(13)× 10−5 h2 (GeV/c2) cm−3

number density of baryons nb 2.482(32)× 10−7 cm−3 [2,3,27,28]
(2.1 × 10−7 < nb < 2.7 × 10−7) cm−3 (95% CL) η × nγ

baryon density of the Universe Ωb = ρb/ρcrit
‡ 0.02207(27)h−2 = † 0.0499(22) [2,3]

cold dark matter density of the universe Ωcdm = ρcdm/ρcrit
‡ 0.1198(26)h−2 = † 0.265(11) [2,3]

100 × approx to r∗/DA 100 × θMC
‡ 1.0413(6) [2,3]

reionization optical depth τ ‡ 0.091+0.013
−0.014 [2,3]

scalar spectral index ns
‡ 0.958(7) [2,3]

ln pwr primordial curvature pert. (k0=0.05 Mpc−1) ln(1010∆2
R

) ‡ 3.090(25) [2,3]

dark energy density of the ΛCDM Universe ΩΛ 0.685+0.017
−0.016 [2,3]

pressureless matter density of the Universe Ωm = Ωcdm +Ωb 0.315+0.016
−0.017 (From ΩΛ and flatness constraint) [2,3]

dark energy equation of state parameter w ♯
−1.10+0.08

−0.07 (Planck+WMAP+BAO+SN) [32]

CMB radiation density of the Universe Ωγ = ργ/ρc 2.473× 10−5(T/2.7255)4 h−2 = 5.46(19)×10−5 [25]

effective number of neutrinos Neff
† 3.36 ± 0.34 [2]

sum of neutrino masses
∑

mν <0.23 eV (95% CL; CMB+BAO) ⇒ Ωνh2 < 0.0025 [2,30,31]
neutrino density of the Universe Ων < 0.0025 h−2

⇒ < 0.0055 (95% CL;CMB+BAO) [2,30,31]
curvature Ωtot= Ωm + . . . + ΩΛ

♯ 0.96+0.4
−0.5 (95%CL); 1.000(7)(95%CL;CMB+BAO) [2]

fluctuation amplitude at 8h−1 Mpc scale σ8
† 0.828± 0.012 [2,3]

running spectral index slope, k0 = 0.002 Mpc−1 dns/d ln k ♯
−0.015(9) [2]

tensor-to-scalar field perturbations ratio, k0=0.002 Mpc−1 r = T/S ♯ < 0.11 at 95% CL; no running [2,3]
redshift / age at decoupling zdec / t∗

† 1090.2± 0.7 / † 3.72 × 105 yr [2]
sound horizon at decoupling rs(z∗)

† 147.5± 0.6 Mpc (Planck CMB) [32]
redshift of matter-radiation equality zeq

† 3360± 70 [2]

redshift / age at half reionization zreion / treion
† 11.1 ± 1.1 / † 462 Myr [2]

age of the Universe t0
† 13.81± 0.05 Gyr [2]
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TESTS OF CONSERVATION LAWS

Updated May 2014 by L. Wolfenstein (Carnegie-Mellon University)
and C.-J. Lin (LBNL).

In keeping with the current interest in tests of conservation laws,

we collect together a Table of experimental limits on all weak and

electromagnetic decays, mass differences, and moments, and on a

few reactions, whose observation would violate conservation laws.

The Table is given only in the full Review of Particle Physics, not in

the Particle Physics Booklet. For the benefit of Booklet readers, we

include the best limits from the Table in the following text. Limits

in this text are for CL=90% unless otherwise specified. The Table is

in two parts: “Discrete Space-Time Symmetries,” i.e., C, P , T , CP ,

and CPT ; and “Number Conservation Laws,” i.e., lepton, baryon,

hadronic flavor, and charge conservation. The references for these

data can be found in the the Particle Listings in the Review. A

discussion of these tests follows.

CPT INVARIANCE

General principles of relativistic field theory require invariance un-

der the combined transformation CPT . The simplest tests of CPT

invariance are the equality of the masses and lifetimes of a particle

and its antiparticle. The best test comes from the limit on the mass

difference between K0 and K
0
. Any such difference contributes to

the CP -violating parameter ǫ. Assuming CPT invariance, φǫ, the

phase of ǫ should be very close to 44◦. (See the review “CP Viola-

tion in KL decay” in this edition.) In contrast, if the entire source

of CP violation in K0 decays were a K0
− K

0
mass difference, φǫ

would be 44◦ + 90◦.

Assuming that there is no other source of CPT violation than this

mass difference, it is possible to deduce that[1]

m
K

0 − mK0 ≈

2(mK0

L

− mK0

S

) |η| ( 2

3
φ+− + 1

3
φ00 − φSW)

sin φSW

,

where φSW = (43.51 ± 0.05)◦, the superweak angle. Using our

best values of the CP -violation parameters, we get |(m
K

0 −

mK0)/mK0 | ≤ 0.6 × 10−18 at CL=90%. Limits can also be placed

on specific CPT -violating decay amplitudes. Given the small value

of (1 − |η00/η+−|), the value of φ00 − φ+− provides a measure of
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CPT violation in K0

L → 2π decay. Results from CERN [1] and

Fermilab [2] indicate no CPT -violating effect.

CP AND T INVARIANCE

Given CPT invariance, CP violation and T violation are equiv-

alent. The original evidence for CP violation came from the

measurement of |η+−| = |A(K0
L → π+π−)/A(K0

S → π+π−)| =

(2.232± 0.011)× 10−3. This could be explained in terms of K0–K
0

mixing, which also leads to the asymmetry [Γ(K0
L → π−e+ν) −

Γ(K0
L → π+e−ν)]/[sum] = (0.334± 0.007)%. Evidence for CP vio-

lation in the kaon decay amplitude comes from the measurement of

(1 − |η00/η+−|)/3 = Re(ǫ′/ǫ) = (1.66 ± 0.23) × 10−3. In the Stan-

dard Model much larger CP -violating effects are expected. The

first of these, which is associated with B–B mixing, is the param-

eter sin(2β) now measured quite accurately to be 0.682 ± 0.019.

A number of other CP -violating observables are being measured

in B decays; direct evidence for CP violation in the B decay am-

plitude comes from the asymmetry [Γ(B
0
→ K−π+) − Γ(B0

→

K+π−)]/[sum] = −0.082 ± 0.006. Direct tests of T violation are

much more difficult; a measurement by CPLEAR of the difference

between the oscillation probabilities of K0 to K0 and K0 to K0 is

related to T violation [3]. A nonzero value of the electric dipole

moment of the neutron and electron requires both P and T viola-

tion. The current experimental results are < 2.9×10−26 e cm (neu-

tron), and < (10.5 ± 0.07) × 10−28 e cm (electron). The BABAR

experiment has reported the first direct observation of T violation

in the B system. The measured T -violating parameters in the time

evolution of the neutral B mesons are ∆S+
T = −1.37 ± 0.15 and

∆S−

T = 1.17± 0.21, with a significance of 14σ [4]. This observation

of T violation, with exchange of initial and final states of the neutral

B, was made possible in a B-factory using the Einstein-Podolsky-

Rosen Entanglement of the two B’s produced in the decay of the

Υ(4S) and the two time-ordered decays of the B’s as filtering mea-

surements of the meson state [5].

CONSERVATION OF LEPTON NUMBERS

Present experimental evidence and the standard electroweak theory

are consistent with the absolute conservation of three separate lep-

ton numbers: electron number Le, muon number Lµ, and tau num-

ber Lτ , except for the effect of neutrino mixing associated with

neutrino masses. Searches for violations are of the following types:
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a) ∆L = 2 for one type of charged lepton. The best limit

comes from the search for neutrinoless double beta decay (Z, A)

→ (Z + 2, A)+e−+e−. The best laboratory limit is t1/2 > 2.1×1025

yr (CL=90%) for 76Ge.

b) Conversion of one charged-lepton type to another. For

purely leptonic processes, the best limits are on µ → eγ and

µ → 3e, measured as Γ(µ → eγ)/Γ(µ →all) < 5.7 × 10−13 and

Γ(µ → 3e)/Γ(µ → all) < 1.0 × 10−12. For semileptonic pro-

cesses, the best limit comes from the coherent conversion pro-

cess in a muonic atom, µ−+ (Z, A) → e− + (Z, A), measured as

Γ(µ−Ti → e−Ti)/Γ(µ−Ti → all) < 4.3 × 10−12. Of special interest

is the case in which the hadronic flavor also changes, as in KL → eµ

and K+
→ π+e−µ+, measured as Γ(KL → eµ)/Γ(KL → all) <

4.7 × 10−12 and Γ(K+
→ π+e−µ+)/Γ(K+

→ all) < 1.3 × 10−11.

Limits on the conversion of τ into e or µ are found in τ decay

and are much less stringent than those for µ → e conversion, e.g.,

Γ(τ → µγ)/Γ(τ → all) < 4.4 × 10−8 and Γ(τ → eγ)/Γ(τ → all) <

3.3 × 10−8.

c) Conversion of one type of charged lepton into an-

other type of charged antilepton. The case most studied is

µ−+(Z, A) → e+ + (Z − 2, A), the strongest limit being Γ(µ−Ti →

e+Ca)/Γ(µ−Ti → all) < 3.6 × 10−11.

d) Neutrino oscillations. It is expected even in the standard

electroweak theory that the lepton numbers are not separately con-

served, as a consequence of lepton mixing analogous to Cabibbo-

Kobayashi-Maskawa quark mixing. However, if the only source

of lepton-number violation is the mixing of low-mass neutrinos

then processes such as µ → eγ are expected to have extremely

small unobservable probabilities. For small neutrino masses, the

lepton-number violation would be observed first in neutrino os-

cillations, which have been the subject of extensive experimental

studies. Compelling evidence for neutrino mixing has come from

atmospheric, solar, accelerator, and reactor neutrinos. Recently,

the reactor neutrino experiments have measured the last neutrino

mixing angle θ13 and found it to be relatively large. For a compre-

hensive review on neutrino mixing, including the latest results on

θ13, see the review “Neutrino Mass, Mixing, and Oscillations” by

K. Nakamura and S.T. Petcov in this edition of RPP.
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CONSERVATION OF HADRONIC FLAVORS

In strong and electromagnetic interactions, hadronic flavor

is conserved, i.e. the conversion of a quark of one flavor

(d, u, s, c, b, t) into a quark of another flavor is forbidden. In the

Standard Model, the weak interactions violate these conservation

laws in a manner described by the Cabibbo-Kobayashi-Maskawa

mixing (see the section “Cabibbo-Kobayashi-Maskawa Mixing Ma-

trix”). The way in which these conservation laws are violated is

tested as follows:

(a) ∆S = ∆Q rule. In the strangeness-changing semileptonic decay

of strange particles, the strangeness change equals the change in

charge of the hadrons. Tests come from limits on decay rates such

as Γ(Σ+
→ ne+ν)/Γ(Σ+

→ all) < 5 × 10−6, and from a detailed

analysis of KL → πeν, which yields the parameter x, measured to

be (Re x, Im x) = (−0.002±0.006, 0.0012±0.0021). Corresponding

rules are ∆C = ∆Q and ∆B = ∆Q.

(b) Change of flavor by two units. In the Standard Model this

occurs only in second-order weak interactions. The classic example

is ∆S = 2 via K0
− K

0
mixing, which is directly measured by

m(KL) − m(KS) = (0.5293 ± 0.0009) × 1010 h̄s−1. The ∆B =

2 transitions in the B0 and B0
s systems via mixing are also well

established. The measured mass differences between the eigenstates

are (mB0

H

− mB0

L

) = (0.510±0.003)×1012 h̄s−1 and (mB0

sH

− mB0

sL

)

= (17.761 ± 0.022) × 1012 h̄s−1. There is now strong evidence of

∆C = 2 transition in the charm sector with the mass difference

mD0

H

− mD0

L

= (0.95+0.41
−0.44) × 1010 h̄s−1. All results are consistent

with the second-order calculations in the Standard Model.

(c) Flavor-changing neutral currents. In the Standard Model

the neutral-current interactions do not change flavor. The low

rate Γ(KL → µ+µ−)/Γ(KL → all) = (6.84 ± 0.11) × 10−9 puts

limits on such interactions; the nonzero value for this rate is at-

tributed to a combination of the weak and electromagnetic in-

teractions. The best test should come from K+
→ π+νν,

which occurs in the Standard Model only as a second-order weak

process with a branching fraction of (0.4 to 1.2)×10−10. Com-

bining results from BNL-E787 and BNL-E949 experiments yield
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Γ(K+

→ π+νν)/Γ(K+
→ all) = (1.7 ± 1.1) × 10−10[6]. Lim-

its for charm-changing or bottom-changing neutral currents are

less stringent: Γ(D0
→ µ+µ−)/Γ(D0

→ all) < 6.2 × 10−9 and

Γ(B0
→ µ+µ−)/Γ(B0

→ all) < 6.3 × 10−10. One cannot isolate

flavor-changing neutral current (FCNC) effects in non leptonic de-

cays. For example, the FCNC transition s → d+(u+u) is equivalent

to the charged-current transition s → u + (u + d). Tests for FCNC

are therefore limited to hadron decays into lepton pairs. Such de-

cays are expected only in second-order in the electroweak coupling

in the Standard Model. The LHCb and CMS experiments have re-

cently observed the FCNC decay of B0
s → µ+µ−. The current world

average value is Γ(B0
s → µ+µ−)/Γ(B0

s → all) = (3.1± 0.7)× 10−9,

which is consistent with the Standard Model expectation.

See the full Review of Particle Physics for references and Summary Tables.
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9. QUANTUM CHROMODYNAMICS

Revised October 2013 by S. Bethke (Max-Planck-Institute of Physics,
Munich), G. Dissertori (ETH Zurich), and G.P. Salam (CERN and
LPTHE, Paris).

9.1. Basics

Quantum Chromodynamics (QCD), the gauge field theory that
describes the strong interactions of colored quarks and gluons, is the SU(3)
component of the SU(3)×SU(2)×U(1) Standard Model of Particle Physics.

The Lagrangian of QCD is given by

L =
∑

q

ψ̄q,a(iγµ∂µδab − gsγ
µtCabA

C
µ − mqδab)ψq,b −

1

4
FA

µνFA µν , (9.1)

where repeated indices are summed over. The γµ are the Dirac γ-matrices.
The ψq,a are quark-field spinors for a quark of flavor q and mass mq, with
a color-index a that runs from a = 1 to Nc = 3, i.e. quarks come in three
“colors.” Quarks are said to be in the fundamental representation of the
SU(3) color group.

The A
C
µ correspond to the gluon fields, with C running from 1 to

N2
c − 1 = 8, i.e. there are eight kinds of gluon. Gluons transform under

the adjoint representation of the SU(3) color group. The tCab correspond
to eight 3 × 3 matrices and are the generators of the SU(3) group (cf. the
section on “SU(3) isoscalar factors and representation matrices” in this
Review with tCab ≡ λC

ab/2). They encode the fact that a gluon’s interaction
with a quark rotates the quark’s color in SU(3) space. The quantity gs is
the QCD coupling constant. Finally, the field tensor FA

µν is given by

FA
µν = ∂µA

A
ν − ∂νA

A
µ − gs fABCA

B
µ A

C
ν [tA, tB] = ifABCtC , (9.2)

where the fABC are the structure constants of the SU(3) group.

Neither quarks nor gluons are observed as free particles. Hadrons are
color-singlet (i.e. color-neutral) combinations of quarks, anti-quarks, and
gluons.

Ab-initio predictive methods for QCD include lattice gauge theory
and perturbative expansions in the coupling. The Feynman rules of QCD
involve a quark-antiquark-gluon (qq̄g) vertex, a 3-gluon vertex (both
proportional to gs), and a 4-gluon vertex (proportional to g2

s). A full set
of Feynman rules is to be found for example in Ref. 1.

Useful color-algebra relations include: tAabt
A
bc = CF δac, where CF ≡

(N2
c −1)/(2Nc) = 4/3 is the color-factor (“Casimir”) associated with gluon

emission from a quark; fACDfBCD = CAδAB where CA ≡ Nc = 3 is the
color-factor associated with gluon emission from a gluon; tAabt

B
ab = TRδAB,

where TR = 1/2 is the color-factor for a gluon to split to a qq̄ pair.

The fundamental parameters of QCD are the coupling gs (or αs =
g2
s

4π
)

and the quark masses mq.

9.1.1. Running coupling : In the framework of perturbative QCD
(pQCD), predictions for observables are expressed in terms of the renor-
malized coupling αs(µ

2
R), a function of an (unphysical) renormalization

scale µR. When one takes µR close to the scale of the momentum transfer
Q in a given process, then αs(µ

2
R ≃ Q2) is indicative of the effective

strength of the strong interaction in that process.
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The coupling satisfies the following renormalization group equation
(RGE):

µ2
R

dαs

dµ2
R

= β(αs) = −(b0α
2
s + b1α

3
s + b2α

4
s + · · ·) (9.3)

where b0 = (11CA − 4nfTR)/(12π) = (33 − 2nf )/(12π) is referred
to as the 1-loop beta-function coefficient, the 2-loop coefficient is
b1 = (17C2

A −nfTR(10CA +6CF ))/(24π2) = (153−19nf)/(24π2), and the

3-loop coefficient is, in MS scheme, b2 = (2857− 5033
9 nf + 325

27 n2
f )/(128π3)

for the SU(3) values of CA and CF . The 4-loop coefficient, b3, is to
be found in Refs. 10, 11. The minus sign in Eq. (9.3) is the origin of
Asymptotic Freedom, i.e. the fact that the strong coupling becomes weak
for processes involving large momentum transfers (“hard processes”),
αs ∼ 0.1 for momentum transfers in the 100 GeV – TeV range.

The β-function coefficients, the bi, are given for the coupling of an
effective theory in which nf of the quark flavors are considered light
(mq ≪ µR), and in which the remaining heavier quark flavors decouple
from the theory. One may relate the coupling for the theory with nf + 1
light flavors to that with nf flavors through an equation of the form

α
(nf+1)
s (µ2

R) = α
(nf )
s (µ2

R)

(

1 +

∞∑

n=1

n∑

ℓ=0

cnℓ [α
(nf )
s (µ2

R)]n lnℓ µ2
R

m2
h

)

, (9.4)

where mh is the mass of the (nf +1)th flavor, and the first few cnℓ

coefficients are c11 = 1
6π , c10 = 0, c22 = c211, c21 = 19

24π2
, and c20 = −

11
72π2

when mh is the MS mass at scale mh (c20 = 7
24π2

when mh is the pole
mass — mass definitions are discussed below and in the review on “Quark
Masses”). Terms up to c4ℓ are to be found in Refs. 12, 13. Numerically,
when one chooses µR = mh, the matching is a modest effect, owing to the
zero value for the c10 coefficient.

Working in an energy range where the number of flavors is taken
constant, a simple exact analytic solution exists for Eq. (9.3) only if one
neglects all but the b0 term, giving αs(µ

2
R) = (b0 ln(µ2

R/Λ2))−1. Here
Λ is a constant of integration, which corresponds to the scale where
the perturbatively-defined coupling would diverge, i.e. it is the non-
perturbative scale of QCD. A convenient approximate analytic solution to
the RGE that includes also the b1, b2, and b3 terms is given by (see for
example Ref. 15),

αs(µ
2
R) ≃

1

b0t

(

1 −

b1

b20

ln t

t
+

b21(ln
2 t − ln t − 1) + b0b2

b40t
2

(9.5)

−

b31(ln
3 t −

5

2
ln2 t − 2 ln t +

1

2
) + 3b0b1b2 ln t −

1

2
b20b3

b60t
3




 , t ≡ ln

µ2
R

Λ2
,

again parametrized in terms of a constant Λ. Note that Eq. (9.5) is one of
several possible approximate 4-loop solutions for αs(µ

2
R), and that a value

for Λ only defines αs(µ
2
R) once one knows which particular approximation

is being used. An alternative to the use of formulas such as Eq. (9.5)
is to solve the RGE exactly, numerically (including the discontinuities,
Eq. (9.4), at flavor thresholds). In such cases the quantity Λ is not defined
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at all. For these reasons, in determinations of the coupling, it has become
standard practice to quote the value of αs at a given scale (typically the
mass of the Z boson, MZ) rather than to quote a value for Λ.

The value of the coupling, as well as the exact forms of the b2, c10 (and
higher-order) coefficients, depend on the renormalization scheme in which
the coupling is defined, i.e. the convention used to subtract infinities in
the context of renormalization. The coefficients given above hold for a
coupling defined in the modified minimal subtraction (MS) scheme [16],
by far the most widely used scheme.

9.3.4. Determinations of the strong coupling constant : Beside
the quark masses, the only free parameter in the QCD Lagrangian
is the strong coupling constant αs. The coupling constant in itself is
not a physical observable, but rather a quantity defined in the context
of perturbation theory, which enters predictions for experimentally
measurable observables, such as R in Eq. (9.7).

In this review, we update the measurements of αs summarized in the
2012 edition, and we extract a new world average value of αs(M

2
Z) from

the most significant and complete results available today.

We have chosen to determine pre-averages for classes of measurements
which are considered to exhibit a maximum of independence between
each other, considering experimental as well as theoretical issues. The
five pre-averages are summarized in Fig. 9.3. These pre-averages are then
combined to the final world average value of αs(M

2
Z):

αs(M
2
Z) = 0.1185± 0.0006 , (9.23)

with an uncertainty of well below 1 %. This world average value is in
excellent agreement with that from the 2009 [306] and the 2012 version
of this review, although several new contributions have entered this
determination.

The wealth of available results provides a rather precise and stable
world average value of αs(M

2
Z), as well as a clear signature and proof of

the energy dependence of αs, in full agreement with the QCD prediction
of Asymptotic Freedom. This is demonstrated in Fig. 9.4, where results
of αs(Q

2) obtained at discrete energy scales Q, now also including those
based just on NLO QCD, are summarized.

0.11 0.12 0.13
α  (Μ  )s Ζ

Lattice
DIS 
e+e- annihilation

τ-decays 

Z pole fits 

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  
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0.2

0.3

αs (Q)

1 10 100
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DIS jets (NLO)

Sept. 2013

Lattice QCD (NNLO)

(N3LO)

τ decays (N3LO)

1000

pp –> jets (NLO)
(–)

Figures 9.3, 9.4: Left: Summary of measurements of αs(M
2
Z),

used as input for the world average value; Right: Summary of
measurements of αs as a function of the respective energy scale Q.

Further discussion and all references may be found in the full Review.
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10. ELECTROWEAK MODEL AND

CONSTRAINTS ON NEW PHYSICS

Revised Nov. 2013 by J. Erler (U. Mexico) and A. Freitas (Pittsburgh U.).

10.1. Introduction

The standard model of the electroweak interactions (SM) [1] is
based on the gauge group SU(2) × U(1), with gauge bosons W i

µ,
i = 1, 2, 3, and Bµ for the SU(2) and U(1) factors, respectively,
and the corresponding gauge coupling constants g and g′. The left-
handed fermion fields of the ith fermion family transform as doublets

Ψi =

(
νi

ℓ−
i

)

and

(

ui

d′
i

)

under SU(2), where d′i ≡

∑

j Vij dj , and V is

the Cabibbo-Kobayashi-Maskawa mixing matrix. [Constraints on V are
discussed in the Section on “The CKM Quark-Mixing Matrix”. The
extension of the mixing formalism to leptons is discussed in the Section on
“Neutrino Mass, Mixing, and Oscillations”.] The right-handed fields are
SU(2) singlets. In the minimal model there are three fermion families.

A complex scalar Higgs doublet, φ ≡

(
φ+

φ0

)

, is added to the model for

mass generation through spontaneous symmetry breaking with potential
given by,

V (φ) = µ2φ†φ +
λ2

2
(φ†φ)2. (10.1)

For µ2 negative, φ develops a vacuum expectation value, v/
√

2 = µ/λ,
where v ≈ 246 GeV, breaking part of the electroweak (EW) gauge
symmetry, after which only one neutral Higgs scalar, H , remains in the
physical particle spectrum. In non-minimal models there are additional
charged and neutral scalar Higgs particles [3].

After symmetry breaking the Lagrangian for the fermions, ψi, is

LF =
∑

i

ψi

(

i 6∂ − mi −
miH

v

)

ψi

−

g

2
√

2

∑

i

Ψi γµ (1 − γ5)(T+ W+
µ + T− W−

µ )Ψi (10.2)

− e
∑

i

Qi ψi γµ ψi Aµ −

g

2 cos θW

∑

i

ψi γµ(gi
V − gi

Aγ5)ψi Zµ .

Here θW ≡ tan−1(g′/g) is the weak angle; e = g sin θW is the positron
electric charge; and A ≡ B cos θW + W 3 sin θW is the photon field (γ).
W±

≡ (W 1
∓ iW 2)/

√

2 and Z ≡ −B sin θW + W 3 cos θW are the charged
and neutral weak boson fields, respectively. The Yukawa coupling of H to
ψi in the first term in LF , which is flavor diagonal in the minimal model,
is gmi/2MW . The boson masses in the EW sector are given (at tree level,
i.e., to lowest order in perturbation theory) by,

MH = λ v, (10.3a)

MW =
1

2
g v =

e v

2 sin θW
, (10.3b)

MZ =
1

2

√

g2 + g′2 v =
e v

2 sin θW cos θW
=

MW

cos θW
, (10.3c)
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Mγ = 0. (10.3d)

The second term in LF represents the charged-current weak interac-
tion [4–7], where T+ and T− are the weak isospin raising and lowering
operators. For example, the coupling of a W to an electron and a neutrino
is

−

e

2
√

2 sin θW

[

W−

µ e γµ(1 − γ5)ν + W+
µ ν γµ (1 − γ5)e

]

. (10.4)

For momenta small compared to MW , this term gives rise to the effective
four-fermion interaction with the Fermi constant given by GF /

√

2 =
1/2v2 = g2/8M2

W . The third term in LF describes electromagnetic
interactions (QED) [8–10], and the last is the weak neutral-current
interaction [5–7]. Here

gi
V ≡ t3L(i) − 2Qi sin2 θW , gi

A ≡ t3L(i), (10.5)

where t3L(i) and Qi are the weak isospin and charge ψi, respectively.

The first term in Eq. (10.2) also gives rise to fermion masses, and in
the presence of right-handed neutrinos to Dirac neutrino masses. The
possibility of Majorana masses is discussed in the Section on “Neutrino
Mass, Mixing, and Oscillations”.

10.2. Renormalization and radiative corrections

In addition to the Higgs boson mass, MH , the fermion masses
and mixings, and the strong coupling constant, αs, the SM has three
parameters. The set with the smallest experimental errors contains the
Z mass, MZ = 91.1876 ± 0.0021 GeV, which has been determined
from the Z lineshape scan at LEP 1 [11], the Fermi constant,
GF = 1.1663787(6) × 10−5 GeV−2, which is derived from the muon
lifetime, and the fine structure constant, α = 1/137.035999074(44), which
is best determined from the e± anomalous magnetic moment [10]. It

is convenient to define a running α(Q) =
α

1 − ∆α(Q)
dependent on the

energy scale Q of the process. The hadronic contributions to ∆α, ∆α
(5)

had
,

is non-perturbative for low Q and can be derived from e+e− annihilation

and τ decay data. Various evaluations of ∆α
(5)

had
are summarized in

Table 10.1 in the full Review. For the top quark pole mass, we use
mt = 173.24±0.81 GeV, which is an average of Tevatron [48] and LHC [49]
data.

sin2 θW and MW can be calculated from from these inputs, or
conversely, MH can be constrained by sin2 θW and MW . The value
of sin2 θW is extracted from neutral-current processes (see Sec. 10.3
in the full Review) and Z pole observables (see Sec. 10.4 in the full
Review) and depends on the renormalization prescription. There are a
number of popular schemes [52–58] leading to values which differ by
small factors depending on mt and MH , including the on-shell definition
s2
W ≡ 1 − M2

W /M2
Z , the MS definition ŝ 2

Z , and the effective angle

s2
f = sin θf

eff
.

Experiments are at such level of precision that complete one-loop,
dominant two-loop, and partial three-loop radiative corrections must be
applied. These are discussed in the full edition of this Review. A variety
of related cross-section, asymmetry and decay formulae are also discussed
there.
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Figure 10.2: Scale dependence of the weak mixing angle in the MS

scheme [118]. The width of the curve reflects the theory uncertainty
from strong interaction effects which at low energies is at the level
of ±7 × 10−5 [118]. For NuTeV we display the updated value
from Ref. 120. for ν and ν interactions at NuTeV. The Tevatron and
LHC measurements are strongly dominated by invariant masses of
the final state dilepton pair of O(MZ) and can thus be considered as
additional Z pole data points. For clarity we displayed the Tevatron
point horizontally to the left.

10.4.5. H decays :

The ATLAS and CMS collaborations at LHC observed a Higgs
boson [180] with properties appearing well consistent with the SM Higgs
(see the note on “The Higgs Boson H0 ” in the Gauge & Higgs Boson
Particle Listings). The kinematically reconstructed masses from ATLAS
and CMS of the Higgs boson [181,182] average to

MH = 125.6 ± 0.4 GeV. (10.47)

We can include some of the Higgs decay properties into the global analysis
of Sec. 10.6. However, the total Higgs decay width, which in the SM
amounts to ΓH = 4.20±0.08 MeV, is too small to be resolved at the LHC.
On the other hand, Higgs decay rates into WW ∗ and ZZ∗ (with at least
one gauge boson off-shell), as well as γγ have been deduced predominantly
from gluon-gluon fusion (ggF), so that theoretical production uncertainties
mostly cancel in ratios of branching fractions. Thus, we can employ the
results on the signal strength parameters, µXX , quantifying the yields of
Higgs production and decay into XX , normalized to the SM expectation,
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to define
ρXY ≡ ln

µXX

µY Y
. (10.49)

These quantities are constructed to have a SM expectation of zero
(for MH = 125.5 GeV for ATLAS and MH = 125.7 GeV for CMS),
and their physical range is over all real numbers, which allows one
to straightforwardly use Gaussian error propagation (in view of the
fairly large errors). Moreover, possible effects of new physics on Higgs
production rates would also cancel and one may focus on the decay side of
the processes.

For each of the two LHC experiments, we consider the ratios with the
smallest mutual correlations. Assuming that theory errors cancel in the
ρXY while experimental systematics does not, we find for ATLAS [185],

ργW = 0.45 ± 0.31 , ργZ = 0.08 ± 0.28 ,

with a correlation of 25% (induced by the 15% uncertainty in the common
µγγ), while for CMS [182] (using the same relative theory errors as
ATLAS) we obtain,

ργW = 0.12 ± 0.43 , ρZW = 0.30 ± 0.39 ,

with a correlation of 43% (due to the 27% uncertainty in µWW ). We
evaluate the decay rates with the package HDECAY [186].

10.6. Global fit results

The values for mt [48,49], MW [170,219], ΓW [170,220], MH [181,182]
and the ratios of Higgs branching fractions discussed in Sec. 10.4.5,
ν-lepton scattering [79–84], the weak charges of the electron [117], the
proton [122], cesium [125,126] and thallium [127], the weak mixing angle
extracted from eDIS [109], the muon anomalous magnetic moment [196],
and the τ lifetime are listed in Table 10.4. Likewise, the principal Z pole
observables can be found in Table 10.5 where the LEP 1 averages of the
ALEPH, DELPHI, L3, and OPAL results include common systematic
errors and correlations [11]. The heavy flavor results of LEP 1 and SLD
are based on common inputs and correlated, as well [11].

Note that the values of Γ(ℓ+ℓ−), Γ(had), and Γ(inv) are not independent
of ΓZ , the Rℓ, and σhad and that the SM errors in those latter are largely
dominated by the uncertainty in αs. Also shown in both Tables are the
SM predictions for the values of MZ , MH , and mt. The predictions result
from a global least-square (χ2) fit to all data using the minimization
package MINUIT [221] and the EW library GAPP [21]. In most cases, we
treat all input errors (the uncertainties of the values) as Gaussian. The
reason is not that we assume that theoretical and systematic errors are
intrinsically bell-shaped (which they are not) but because in most cases
the input errors are either dominated by the statistical components or they
are combinations of many different (including statistical) error sources,
which should yield approximately Gaussian combined errors by the large
number theorem. Sizes and shapes of the output errors (the uncertainties
of the predictions and the SM fit parameters) are fully determined by the
fit, and 1 σ errors are defined to correspond to ∆χ2 = χ2

− χ2
min = 1, and

do not necessarily correspond to the 68.3% probability range or the 39.3%
probability contour (for 2 parameters).

The agreement is generally very good. Despite the few discrepancies
discussed in the following, the fit describes the data well, with a
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Table 10.4: Principal non-Z pole observables, compared with the
SM best fit predictions. The first MW and ΓW values are from
the Tevatron [219,220] and the second ones from LEP 2 [170].
The value of mt differs from the one in the Particle Listings since
it includes recent LHC results. The world averages for gνe

V,A are

dominated by the CHARM II [82] results, gνe
V = −0.035 ± 0.017

and gνe
A = −0.503 ± 0.017. The errors are the total (experimental

plus theoretical) uncertainties. The ττ value is the τ lifetime world
average computed by combining the direct measurements with values
derived from the leptonic branching ratios [45]; in this case, the
theory uncertainty is included in the SM prediction. In all other SM
predictions, the uncertainty is from MZ , MH , mt, mb, mc, α̂(MZ),
and αs, and their correlations have been accounted for. The column
denoted Pull gives the standard deviations.

Quantity Value Standard Model Pull

mt [GeV] 173.24± 0.95 173.87 ± 0.87 −0.7

MW [GeV] 80.387± 0.016 80.363± 0.006 1.5

80.376± 0.033 0.4

ΓW [GeV] 2.046± 0.049 2.090 ± 0.001 −0.9

2.196± 0.083 1.3

MH [GeV] 125.6 ± 0.4 125.5 ± 0.4 0.1

ργW 0.45 ± 0.31 0.01 ± 0.03 1.4

0.12 ± 0.43 0.00 ± 0.03 0.3

ργZ 0.08 ± 0.28 0.01 ± 0.04 0.2

ρZW 0.30 ± 0.39 0.00 ± 0.01 0.8

gνe
V −0.040± 0.015 −0.0397± 0.0001 0.0

gνe
A −0.507± 0.014 −0.5064 0.0

QW (e) −0.0403± 0.0053 −0.0473± 0.0003 1.3

QW (p) 0.064± 0.012 0.0708± 0.0003 −0.6

QW (Cs) −72.62± 0.43 −73.25± 0.01 1.5

QW (Tl) −116.4± 3.6 −116.90± 0.02 0.1

ŝ2
Z(eDIS) 0.2299± 0.0043 0.23126± 0.00005 −0.3

ττ [fs] 291.13± 0.43 291.19 ± 2.41 0.0

1
2 (gµ − 2 −

α
π ) (4511.07± 0.79) × 10−9 (4508.68± 0.08) × 10−9 3.0

χ2/d.o.f. = 48.3/44. The probability of a larger χ2 is 30%. Only the final
result for gµ − 2 from BNL is currently showing a large (3.0 σ) deviation.

In addition, A
(0,b)
FB from LEP 1 and A0

LR (SLD) from hadronic final states

differ by more than 2 σ. g2
L from NuTeV is nominally in conflict with the

SM, as well, but the precise status is under investigation (see Sec. 10.3 in
the full Review).

Ab can be extracted from A
(0,b)
FB when Ae = 0.1501 ± 0.0016 is taken

from a fit to leptonic asymmetries (using lepton universality). The result,
Ab = 0.881 ± 0.017, is 3.2 σ below the SM predictionand also 1.6 σ below
Ab = 0.923 ± 0.020 obtained from AFB

LR (b) at SLD. Thus, it appears that



196 10. Electroweak model and constraints on new physics

Table 10.5: Principal Z pole observables and their SM predictions
(cf. Table 10.4). The first s2

ℓ is the effective weak mixing angle
extracted from the hadronic charge asymmetry, the second is the
combined value from the Tevatron [163,164,165], and the third
from the LHC [168,169]. The values of Ae are (i) from ALR for
hadronic final states [154]; (ii) from ALR for leptonic final states and
from polarized Bhabba scattering [156]; and (iii) from the angular
distribution of the τ polarization at LEP 1. The Aτ values are from
SLD and the total τ polarization, respectively.

Quantity Value Standard Model Pull

MZ [GeV] 91.1876± 0.0021 91.1880± 0.0020 −0.2
ΓZ [GeV] 2.4952± 0.0023 2.4955± 0.0009 −0.1
Γ(had) [GeV] 1.7444± 0.0020 1.7420± 0.0008 —
Γ(inv) [MeV] 499.0 ± 1.5 501.66± 0.05 —
Γ(ℓ+ℓ−) [MeV] 83.984 ± 0.086 83.995± 0.010 —
σhad[nb] 41.541 ± 0.037 41.479± 0.008 1.7
Re 20.804 ± 0.050 20.740± 0.010 1.3
Rµ 20.785 ± 0.033 20.740± 0.010 1.4
Rτ 20.764 ± 0.045 20.785± 0.010 −0.5
Rb 0.21629± 0.00066 0.21576± 0.00003 0.8
Rc 0.1721± 0.0030 0.17226± 0.00003 −0.1

A
(0,e)
FB 0.0145± 0.0025 0.01616± 0.00008 −0.7

A
(0,µ)
FB 0.0169± 0.0013 0.6

A
(0,τ)
FB 0.0188± 0.0017 1.6

A
(0,b)
FB

0.0992± 0.0016 0.1029± 0.0003 −2.3

A
(0,c)
FB 0.0707± 0.0035 0.0735± 0.0002 −0.8

A
(0,s)
FB 0.0976± 0.0114 0.1030± 0.0003 −0.5

s̄2
ℓ 0.2324± 0.0012 0.23155± 0.00005 0.7

0.23176± 0.00060 0.3
0.2297± 0.0010 −1.9

Ae 0.15138± 0.00216 0.1468± 0.0004 2.1
0.1544± 0.0060 1.3
0.1498± 0.0049 0.6

Aµ 0.142 ± 0.015 −0.3
Aτ 0.136 ± 0.015 −0.7

0.1439± 0.0043 −0.7
Ab 0.923 ± 0.020 0.9347 −0.6
Ac 0.670 ± 0.027 0.6676± 0.0002 0.1
As 0.895 ± 0.091 0.9356 − 0.4

at least some of the problem in Ab is due to a statistical fluctuation or
other experimental effect in one of the asymmetries. Note, however, that

the uncertainty in A
(0,b)
FB is strongly statistics dominated. The combined

value, Ab = 0.899 ± 0.013 deviates by 2.8 σ. If this 4.0% deviation is due
to new physics, it is most likely of tree-level type affecting preferentially
the third generation. Examples include the decay of a scalar neutrino
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Figure 10.4: Fit result and one-standard-deviation (39.35% for
the closed contours and 68% for the others) uncertainties in MH

as a function of mt for various inputs, and the 90% CL region
(∆χ2 = 4.605) allowed by all data. αs(MZ) = 0.1185 is assumed
except for the fits including the Z lineshapeThe width of the
horizontal dashed band is not visible on the scale of the plot.

resonance [223], mixing of the b quark with heavy exotics [224], and
a heavy Z ′ with family non-universal couplings [225,226]. It is difficult,
however, to simultaneously account for Rb, which has been measured on
the Z peak and off-peak [227] at LEP 1. An average of Rb measurements
at LEP 2 at energies between 133 and 207 GeV is 2.1 σ below the SM

prediction, while A
(b)
FB (LEP 2) is 1.6 σ low [171].

The left-right asymmetry, A0
LR = 0.15138 ± 0.00216 [154], based

on all hadronic data from 1992–1998 differs 2.1 σ from the SM
expectation of 0.1468 ± 0.0004. However, it is consistent with the value

Aℓ = 0.1481 ± 0.0027 from LEP 1, obtained from a fit to A
(0,ℓ)
FB , Ae(Pτ ),

and Aτ (Pτ ), assuming lepton universality.

The observables in Table 10.4 and Table 10.5, as well as some other
less precise observables, are used in the global fits described below. In
all fits, the errors include full statistical, systematic, and theoretical
uncertainties. The correlations on the LEP 1 lineshape and τ polarization,
the LEP/SLD heavy flavor observables, the SLD lepton asymmetries, and
the ν-e scattering observables, are included. The theoretical correlations

between ∆α
(5)

had
and gµ − 2, and between the charm and bottom quark

masses, are also accounted for.

One can also perform a fit without the direct mass constraint,
MH = 125.6 ± 0.4 GeV, in Eq. (10.47). In this case we obtain a 2%
indirect mass determination,

MH = 123.7± 2.3 GeV , (10.54)

arising predominantly from the quantities in Eq. (10.49), since the
branching ratio for H → ZZ∗ varies very rapidly as a function of MH for
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Higgs masses near 125 GeV. Removing also the branching ratio constraints
gives the loop-level determination from the precision data alone,

MH = 89+22
−18 GeV , (10.55)

which is 1.5 σ below the kinematical constraint. This is mostly a reflection
of the Tevatron determination of MW , which is 1.5 σ higher than the SM
best fit value in Table 10.4. Another consequence is that the 90% central
confidence range determined from the precision data,

60 GeV < MH < 127 GeV , (10.56)

is only marginally consistent with Eq. (10.47), see Fig. 10.4.

The extracted Z pole value of αs(MZ) is based on a formula with
negligible theoretical uncertainty if one assumes the exact validity
of the SM. One should keep in mind, however, that this value,
αs(MZ) = 0.1197±0.0027, is very sensitive to certain types of new physics
such as non-universal vertex corrections. In contrast, the value derived
from τ decays, αs(MZ) = 0.1193+0.0022

−0.0020, is theory dominated but less
sensitive to new physics. The two values are in remarkable agreement with
each other. They are also in perfect agreement with the averages from jet-
event shapes in e+e− annihilation (0.1177±0.0046) and lattice simulations
(0.1185± 0.0005), whereas the DIS average (0.1154± 0.0020) is somewhat
lower. For more details, see Section 9 on “Quantum Chromodynamics” in
this Review.

10.7. Constraints on new physics

The masses and decay properties of the electroweak bosons and low
energy data can be used to search for and set limits on deviations from
the SM. We will mainly discuss the effects of exotic particles (with
heavy masses Mnew ≫ MZ in an expansion in MZ/Mnew) on the gauge
boson self-energies. Most of the effects on precision measurements can be
described by three gauge self-energy parameters S, T , and U . We will
define these, as well as the related parameter ρ0, to arise from new physics
only. In other words, they are equal to zero (ρ0 = 1) exactly in the SM,
and do not include any (loop induced) contributions that depend on mt or
MH , which are treated separately.

The dominant effect of many extensions of the SM can be described by
the ρ0 parameter,

ρ0 ≡

M2
W

M2
Z ĉ 2

Z ρ̂
, (10.57)

which describes new sources of SU(2) breaking that cannot be accounted
for by the SM Higgs doublet or mt effects. From the global fit,

ρ0 = 1.00040± 0.00024 . (10.58)

The result in Eq. (10.58) is 1.7 σ above the SM expectation, ρ0 = 1.
It can be used to constrain higher-dimensional Higgs representations to
have vacuum expectation values of less than a few percent of those of the
doublets. Furthermore, it implies the following limit on the mass splitting,
∆m2

i , of all new scalar or fermion SU(2) doublets at the 95% CL,

∑

i

Ci

3
∆m2

i ≤ (50 GeV)2. (10.63)

where the sum runs over all new-physics doublets, and C = 1 (3) for color
singlets (triplets).
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A number of authors [236–241] have considered the general effects on
neutral-current and Z and W boson observables of various types of heavy
(i.e., Mnew ≫ MZ) physics which contribute to the W and Z self-energies
but which do not have any direct coupling to the ordinary fermions.
Such effects can be described by just three parameters, S, T , and U .

Denoting the contributions of new physics to the various self-energies by
Πnew

ij , we have

α̂(MZ)T ≡

Πnew
WW (0)

M2
W

−

Πnew
ZZ (0)

M2
Z

, (10.64a)

α̂(MZ)

4 ŝ 2
Z ĉ 2

Z

S ≡

Πnew
ZZ (M2

Z) − Πnew
ZZ (0)

M2
Z

−

ĉ 2
Z − ŝ 2

Z

ĉ Z ŝ Z

Πnew
Zγ (M2

Z)

M2
Z

−

Πnew
γγ (M2

Z)

M2
Z

, (10.64b)

α̂(MZ)

4 ŝ 2
Z

(S + U) ≡
Πnew

WW (M2
W ) − Πnew

WW (0)

M2
W

−

ĉ Z

ŝ Z

Πnew
Zγ (M2

Z)

M2
Z

−

Πnew
γγ (M2

Z)

M2
Z

. (10.64c)

S, T , and U are defined with a factor proportional to α̂ removed, so that
they are expected to be of order unity in the presence of new physics.
A heavy non-degenerate multiplet of fermions or scalars contributes
positively to T , which is related to the ρ0 parameter via ρ0−1 ≃ α̂(MZ)T .
A heavy degenerate ordinary or mirror family would contribute 2/3π to S.
Large positive values S > 0 can also be generated in Technicolor models
with QCD-like dynamics, and in models with warped extra dimensions.

The data allow a simultaneous determination of ŝ 2
Z (from the Z pole

asymmetries), S (from MZ), U (from MW ), T (mainly from ΓZ), αs (from
Rℓ, σhad, and ττ ), MH and mt (from the hadron colliders), with little
correlation among the SM parameters:

S = −0.03 ± 0.10, T = 0.01 ± 0.12, U = 0.05 ± 0.10, (10.70)

ŝ 2
Z = 0.23119 ± 0.00016, and αs(MZ) = 0.1196 ± 0.0017, where the

uncertainties are from the inputs. The parameters in Eqs. (10.70), which
by definition are due to new physics only, are in excellent agreement with
the SM values of zero. There is a strong correlation (90%) between the
S and T parameters. The U parameter is −59% (−81%) anti-correlated
with S (T ).

More examples for constraints on new physics can be found in the full
Review.

Further discussion and all references may be found in the full Review

of Particle Physics; the equation and reference numbering corresponds to
that version.
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11. STATUS OF HIGGS BOSON PHYSICS

Written November 2013 by M. Carena (FNAL and the University
of Chicago), C. Grojean (ICREA at IFAE, Universitat Autònoma de
Barcelona), M. Kado (Laboratoire de l’Accélérateur Linéaire, LAL and
CERN), and V. Sharma (UC San Diego).

I. Introduction

The observation by ATLAS [1] and CMS [2] of a new boson with a
mass of approximately 125GeV decaying into γγ, WW and ZZ bosons
and the subsequent studies of the properties of this particle is a milestone
in the understanding of the mechanism that breaks electroweak symmetry
and generates the masses of the known elementary particles (In the
case of neutrinos, it is possible that the EWSB mechanism plays only a
partial role in generating the observed neutrino masses, with additional
contributions at a higher scale via the so called see-saw mechanism.), one
of the most fundamental problems in particle physics.

In the Standard Model, the mechanism of electroweak symmetry
breaking (EWSB) [3] provides a general framework to keep untouched the
structure of the gauge interactions at high energy and still generate the
observed masses of the W and Z gauge bosons by means of charged and
neutral Goldstone bosons that manifest themselves as the longitudinal
components of the gauge bosons. The discovery of ATLAS and CMS now
strongly suggests that these three Goldstone bosons combine with an extra
(elementary) scalar boson to form a weak doublet.

This picture matches very well with the Standard Model (SM) [4]
which describes the electroweak interactions by a gauge field theory
invariant under the SU(2)

L
× U(1)

Y
symmetry group. In the SM, the

EWSB mechanism posits a self-interacting complex doublet of scalar
fields, and the renormalizable interactions are arranged such that the
neutral component of the scalar doublet acquires a vacuum expectation
value (VEV) v ≈ 246GeV, which sets the scale of electroweak symmetry
breaking.

Three massless Goldstone bosons are generated, which are absorbed to
give masses to the W and Z gauge bosons. The remaining component of
the complex doublet becomes the Higgs boson – a new fundamental scalar
particle. The masses of all fermions are also a consequence of EWSB since
the Higgs doublet is postulated to couple to the fermions through Yukawa
interactions. However, the true structure behind the newly discovered
boson, including the exact dynamics that triggers the Higgs VEV, and the
corresponding ultraviolet completion is still unsolved.

Even if the discovered boson has weak couplings to all known SM
degrees of freedom, it is not impossible that it is part of an extended
symmetry structure or that it emerges from a light resonance of a strongly
coupled sector. It needs to be established whether the Higgs boson is
solitary or whether other states populate the EWSB sector.

Further discussion and references may be found in the full Review of

Particle Physics.
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12. THE CKM QUARK-MIXING MATRIX

Revised February 2014 by A. Ceccucci (CERN), Z. Ligeti (LBNL), and
Y. Sakai (KEK).

12.1. Introduction

The masses and mixings of quarks have a common origin in the
Standard Model (SM). They arise from the Yukawa interactions of the
quarks with the Higgs condensate. When the Higgs field acquires a vacuum
expectation value, quark mass terms are generated. The physical states are
obtained by diagonalizing the up and down quark mass matrices by four

unitary matrices, V
u,d
L,R. As a result, the charged current W± interactions

couple to the physical up and down-type quarks with couplings given by

VCKM ≡ V u
L V

d†
L =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 . (12.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3 × 3
unitary matrix. It can be parameterized by three mixing angles and a
CP -violating phase,

V =





c
12

c
13

s
12

c
13

s
13

e−iδ

−s
12

c
23
−c

12
s
23

s
13

eiδ c
12

c
23
−s

12
s
23

s
13

eiδ s
23

c
13

s
12

s
23
−c

12
c
23

s
13

eiδ
−c

12
s
23
−s

12
c
23

s
13

eiδ c
23

c
13



 , (12.3)

where sij = sin θij , cij = cos θij , and δ is the phase responsible for all
CP -violating phenomena in flavor changing processes in the SM. The
angles θij can be chosen to lie in the first quadrant.

It is known experimentally that s13 ≪ s23 ≪ s12 ≪ 1, and it is
convenient to exhibit this hierarchy using the Wolfenstein parameterization.
We define [4–6]

s12 = λ =
|Vus|

√

|Vud|
2 + |Vus|

2
, s23 = Aλ2 = λ

∣
∣
∣
∣

Vcb

Vus

∣
∣
∣
∣
,

s13e
iδ = V ∗

ub = Aλ3(ρ + iη) =
Aλ3(ρ̄ + iη̄)

√

1 − A2λ4

√

1 − λ2[1 − A2λ4(ρ̄ + iη̄)]
. (12.4)

These ensure that ρ̄ + iη̄ = −(VudV
∗

ub)/(VcdV ∗

cb) is phase-convention
independent and the CKM matrix written in terms of λ, A, ρ̄ and η̄ is
unitary to all orders in λ. To O(λ4),

V =





1 − λ2/2 λ Aλ3(ρ − iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1



 + O(λ4) . (12.5)

Unitarity implies
∑

i VijV
∗

ik = δjk and
∑

j VijV
∗

kj = δik. The six

vanishing combinations can be represented as triangles in a complex plane.
The most commonly used unitarity triangle arises from

Vud V ∗

ub + Vcd V ∗

cb + Vtd V ∗

tb = 0 , (12.6)

by dividing each side by VcdV
∗

cb (see Fig. 1). The vertices are exactly (0, 0),
(1, 0) and, due to the definition in Eq. (12.4), (ρ̄, η̄). An important goal of
flavor physics is to overconstrain the CKM elements, many of which can
be displayed and compared in the ρ̄, η̄ plane.
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Figure 12.1: Sketch of the unitarity triangle.

12.2. Magnitudes of CKM elements

12.2.1. |Vud| :

The most precise determination of |Vud| comes from the study of super-
allowed 0+

→ 0+ nuclear beta decays, which are pure vector transitions.
Taking the average of the twenty most precise determinations [8] yields

|Vud| = 0.97425± 0.00022. (12.7)

12.2.2. |Vus| :

The magnitude of Vus is extracted from semileptonic kaon decays or
leptonic kaon decays. Combining the data on K0

L → πeν, K0
L → πµν,

K±
→ π0e±ν, K±

→ π0µ±ν and K0
S → πeν gives |Vus| = 0.2253 ±

0.0014 with the unquenched lattice QCD calculation value, f+(0) =
0.960+0.005

−0.006 [12]. The KLOE measurement of the K+
→ µ+ν(γ) branching

ratio [18] with the lattice QCD value, fK/fπ = 1.1947 ± 0.0045 [19] leads
to |Vus| = 0.2253 ± 0.0010. The average of these two determinations is
quoted by Ref. [9] as

|Vus| = 0.2253± 0.0008. (12.8)

12.2.3. |Vcd| :

There are two comparable determinations of |Vcd|, from semileptonic
D → πℓν decay and from neutrino and antineutrino interactions. The
former uses lattice QCD for the normalization of the of the form factor [13]
and constraints from analyticity on its shape. The latter utilizes that
the difference of the ratio of double-muon to single-muon production by
neutrino and antineutrino beams [27–30] is proportional to the charm
cross section off valence d-quarks. Averaging the results,

|Vcd| = 0.225± 0.008. (12.9)

12.2.4. |Vcs| :

The determination of |Vcs| is possible from semileptonic D or
leptonic Ds decays. Using the recent D+

s → µ+ν [36–38] and D+
s →

τ+ν [37,40,41,38,36] data gives |Vcs| = 1.008 ± 0.021 with fDs
=

(248.6 ± 2.7)MeV [13]. The recent D → Kℓν measurements [25,26,42]
combined with the lattice QCD calculation of the form factor [13] gives
|Vcs| = 0.953 ± 0.008 ± 0.024. Averaging these two determinations, we
obtain

|Vcs| = 0.986 ± 0.016. (12.10)
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12.2.5. |Vcb| :

The determination of |Vcb| from inclusive semileptonic B decays use
the semileptonic rate measurement together with the leptonic energy
and the hadronic invariant-mass spectra. Determinations from exclusive
B → D(∗)ℓν̄ decays are based on the fact that in the mb,c ≫ ΛQCD limit
all form factors are given by a single Isgur-Wise function [49], which is
normalized at zero recoil. The Vcb and Vub minireview [14] quotes the
combination with a scaled error as

|Vcb| = (41.1 ± 1.3) × 10−3. (12.11)

12.2.6. |Vub| :

The determination of |Vub| from inclusive B → Xuℓν̄ decay suffers from
large B → Xcℓν̄ backgrounds. In most regions of phase space where the
charm background is kinematically forbidden the rate is determined by
nonperturbative shape functions. At leading order in ΛQCD/mb there is
only one such function, which is related to the photon energy spectrum
in B → Xsγ [51,52]. The large and pure BB samples at the B factories
permit the selection of B → Xuℓν̄ decays in events where the other B is
fully reconstructed [57]. With this full-reconstruction tag method, one can
measure the four-momenta of both the leptonic and hadronic systems, and
access wider kinematic regions because of improved signal purity.

To extract |Vub| from exclusive channels, the form factors have to be
known. Unquenched lattice QCD calculations of the B → πℓν̄ form factor
for q2 > 16 GeV2 are available [58,59]. The theoretical uncertainties in
the inclusive and exclusive determinations are different. The Vcb and Vub

minireview [14] quotes the combination

|Vub| = (4.13 ± 0.49)× 10−3. (12.12)

12.2.7. |Vtd| and |Vts| :

These CKM elements are not likely to be precisely measurable
in tree-level processes involving top quarks, so one has to use B–B
oscillations or loop-mediated rare K and B decays. The mass difference
of the two neutral B meson mass eigenstates is well measured,
∆md = (0.510 ± 0.003)ps−1 [62]. In the B0

s system, the average
of the CDF [63] and recent more precise LHCb [64] measurements
yields ∆ms = (17.761 ± 0.022) ps−1. Using unquenched lattice QCD
calculations [13] and assuming |Vtb| = 1, we find

|Vtd| = (8.4 ± 0.6) × 10−3, |Vts| = (40.0 ± 2.7) × 10−3. (12.13)

Several uncertainties are reduced in the lattice QCD calculation of the
ratio ∆md/∆ms, which gives a significantly improved constraint,

∣
∣Vtd/Vts

∣
∣ = 0.216± 0.001 ± 0.011. (12.14)

12.2.8. |Vtb| :

The determination of |Vtb| from top decays uses the ratio of branching
fractions B(t → Wb)/B(t → Wq) = |Vtb|

2/(
∑

q |Vtq |
2) = |Vtb|

2, where

q = b, s, d [73–75]. The direct determination of |Vtb| without assuming
unitarity has become possible from the single top quark production cross
section. The (3.51+0.40

−0.37) pb average Tevatron cross section [76,77] implies
|Vtb| = 1.03 ± 0.06. The average t-channel single-top cross section at the
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LHC at 7TeV, (68.5 ± 5.8) pb [78,79], implies |Vtb| = 1.03 ± 0.05; the
average cross section at 8TeV from a subset of the data, (85 ± 12) pb [80],
implies |Vtb| = 0.99 ± 0.07. The average of these results gives

|Vtb| = 1.021 ± 0.032 . (12.15)

12.3. Phases of CKM elements

The angles of the unitarity triangle are

β = φ1 = arg

(

−

VcdV
∗

cb

VtdV ∗

tb

)

, α = φ2 = arg

(

−

VtdV ∗

tb

VudV
∗

ub

)

,

γ = φ3 = arg

(

−

VudV ∗

ub

VcdV ∗

cb

)

. (12.16)

Since CP violation involves phases of CKM elements, many measurements
of CP -violating observables can be used to constrain these angles and the
ρ̄, η̄ parameters.

12.3.1. ǫ and ǫ′ :

The measurement of CP violation in K0–K0 mixing, |ǫ| = (2.233 ±

0.015) × 10−3 [82], provides constraints in the ρ̄, η̄ plane bounded by
hyperbolas approximately. The dominant uncertainties are due to the bag
parameter and the parametric uncertainty proportional to σ(A4) [i.e.,
σ(|Vcb|

4)].

The measurement of ǫ′ provides a qualitative test of the CKM
mechanism because its nonzero experimental average, Re(ǫ′/ǫ) =
(1.67 ± 0.23) × 10−3 [82], demonstrated the existence of direct CP
violation, a prediction of the KM ansatz. While Re(ǫ′/ǫ) ∝ Im(VtdV ∗

ts),
this quantity cannot easily be used to extract CKM parameters, because
of hadronic uncertainties.

12.3.2. β / φ1 :

The time-dependent CP asymmetry of neutral B decays to a final state
f common to B0 and B0 is given by [92,93]

Af =
Γ(B0(t) → f) − Γ(B0(t) → f)

Γ(B0(t) → f) + Γ(B0(t) → f)
= Sf sin(∆m t) − Cf cos(∆m t),

(12.18)
where Sf = 2 Imλf/(1 + |λf |

2), Cf = (1 − |λf |
2)/(1 + |λf |

2), and

λf = (q/p)(Āf/Af ). Here q/p describes B0–B0 mixing and, to a good

approximation in the SM, q/p = V ∗

tbVtd/VtbV
∗

td = e−2iβ+O(λ4) in the usual

phase convention. Af (Āf ) is the amplitude of B0
→ f (B0

→ f) decay.
If f is a CP eigenstate and amplitudes with one CKM phase dominate,
then |Af | = |Āf |, Cf = 0 and Sf = sin(arg λf ) = ηf sin 2φ, where ηf is

the CP eigenvalue of f and 2φ is the phase difference between the B0
→ f

and B0
→ B0

→ f decay paths.

The b → cc̄s decays to CP eigenstates (B0
→ charmonium K0

S,L)
are the theoretically cleanest examples, measuring Sf = −ηf sin 2β. The
world average is [98]

sin 2β = 0.682 ± 0.019 . (12.20)

This measurement of β has a four-fold ambiguity. Of these, β → π/2 − β
(but not β → π + β) has been resolved by a time-dependent angular
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analysis of B0
→ J/ψK∗0 [99,100] and a time-dependent Dalitz plot

analysis of B0
→ D0h0 (h0 = π0, η, ω) [101,102].

The b → sq̄q penguin dominated decays have the same CKM phase
as the b → cc̄s tree dominated decays, up to corrections suppressed
by λ2. Therefore, decays such as B0

→ φK0 and η′K0 provide sin 2β
measurements in the SM. If new physics contributes to the b → s
loop diagrams and has a different weak phase, it would give rise to
Sf 6= −ηf sin 2β and possibly Cf 6= 0. The results and their uncertainties
are summarized in Fig. 12.3 and Table 12.1 of Ref. [93].

12.3.3. α / φ2 :

Since α is the phase between V ∗

tbVtd and V ∗

ubVud, only time-dependent
CP asymmetries in b → uūd dominated modes can directly measure it.
In such decays the penguin contribution can be sizable. Then Sπ+π− no
longer measures sin 2α, but α can still be extracted using the isospin
relations among the B0

→ π+π−, B0
→ π0π0, and B+

→ π+π0

amplitudes and their CP conjugates [103]. Because the isospin analysis
gives 16 mirror solutions, only a loose constraint is obtained at present.

The B0
→ ρ+ρ− decay can in general have a mixture of CP -even and

CP -odd components. However, the longitudinal polarization fractions in
B+

→ ρ+ρ0 and B0
→ ρ+ρ− are measured to be close to unity [106], which

implies that the final states are almost purely CP -even. Furthermore,
B(B0

→ ρ0ρ0) = (0.97±0.24)×10−6 implies that the effect of the penguin
diagrams is small. The isospin analysis gives α = (89.9 ± 5.4)◦ [105] with
a mirror solution at 3π/2 − α.

The final state in B0
→ ρ+π− decay is not a CP eigenstate, but

mixing induced CP violations can still occur in the four decay amplitudes,
B0,B0

→ ρ±π∓. Because of the more complicated isospin relations, the
time-dependent Dalitz plot analysis of B0

→ π+π−π0 gives the best model
independent extraction of α [109]. The combination of Belle [110] and
BABAR [111] measurements yield α = (54.1+7.7

−10.3)
◦ and (141.8+4.7

−5.4)
◦ [105].

Combining these three decay modes [105], α is constrained as

α = (85.4+3.9
−3.8)

◦. (12.23)

12.3.4. γ / φ3 :

The angle γ does not depend on CKM elements involving the top
quark, so it can be measured in tree-level B decays. This is an important
distinction from α and β, implying that the measurements of γ are unlikely
to be affected by physics beyond the SM.

The interference of B−
→ D0K− (b → cūs) and B−

→ D0K−

(b → uc̄s) transitions can be studied in final states accessible in both
D0 and D0 decays [92]. It is possible to extract from the data the B
and D decay amplitudes, their relative strong phases, and γ. Analyses in
two-body D decays using the GLW [113,114] and ADS methods [115] have
been made by the B factories [116,117], CDF [118], and LHCb [119]. The
Dalitz plot analysis of D0, D0

→ KSπ+π− [120,121] by the B factories
gives the best present determination of γ [122,123].

Combining these analyses [105],

γ = (68.0+8.0
−8.5)

◦. (12.25)
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12.4. Global fit in the Standard Model

Using the independently measured CKM elements mentioned in
the previous sections, the unitarity of the CKM matrix can be
checked. We obtain |Vud|

2 + |Vus|
2 + |Vub|

2 = 0.9999 ± 0.0006 (1st row),
|Vcd|

2 + |Vcs|
2 + |Vcb|

2 = 1.024± 0.032 (2nd row), |Vud|
2 + |Vcd|

2 + |Vtd|
2 =

1.000 ± 0.004 (1st column), and |Vus|
2 + |Vcs|

2 + |Vts|
2 = 1.025 ± 0.032

(2nd column), respectively. For the second row, a more stringent check
is obtained subtracting the sum of the first row from the measurement
of

∑

u,c,d,s,b |Vij |
2 from the W leptonic branching ratio [43], yielding

|Vcd|
2 + |Vcs|

2 + |Vcb|
2 = 1.002 ± 0.027. The sum of the three angles,

α + β + γ = (175 ± 9)◦, is also consistent with the SM expectation.

The CKM matrix elements can be most precisely determined by a
global fit that uses all available measurements and imposes the SM
constraints. There are several approaches to combining the experimental
data [6,105,112,133], which provide similar results. The results for the
Wolfenstein parameters are

λ = 0.22537± 0.00061 , A = 0.814+0.023
−0.024 ,

ρ̄ = 0.117 ± 0.021 , η̄ = 0.353± +0.013 . (12.26)

The allowed ranges of the magnitudes of all nine CKM elements are

VCKM =





0.97427± 0.00014 0.22536± 0.00061 0.00355± 0.00015
0.22522± 0.00061 0.97343± 0.00015 0.0414± 0.0012
0.00886+0.00033

−0.00032 0.0405+0.0011
−0.0012 0.99914± 0.00005



,

(12.27)
and the Jarlskog invariant is J = (3.06+0.21

−0.20) × 10−5. Fig. 12.2 illustrates
the constraints on the ρ̄, η̄ plane from various measurements and the global
fit result. The shaded 95% CL regions all overlap consistently around the
global fit region.

12.5. Implications beyond the SM

The effects in B, K, and D decays and mixings due to high-scale physics
(W , Z, t, h in the SM, or new physics particles) can be parameterized by
operators composed of SM fields, obeying the SU(3)×SU(2)×U(1) gauge
symmetry. The observable effects of non-SM interactions are encoded
in the coefficients of these operators, and are suppressed by powers of
the new physics scale. In the SM, these coefficients are determined by
just the four CKM parameters, and the W , Z, and quark masses. For
example, ∆md, Γ(B → ργ), and Γ(B → Xdℓ

+ℓ−) are all proportional
to |VtdV ∗

tb|
2 in the SM, however, they may receive unrelated new

physics contributions. Similar to measurements of sin 2β in tree- and
loop-dominated decays, overconstraining the magnitudes and phases of
flavor-changing neutral-current amplitudes give good sensitivity to new
physics.

To illustrate the level of suppression required for non-SM contributions,
consider a class of models in which the dominant effect of new physics is to
modify the neutral meson mixing amplitudes [136] by (zij/Λ2)(qiγ

µPLqj)
2.

New physics with a generic weak phase may still contribute to meson
mixings at a significant fraction of the SM [141,133]. The data imply that

Λ/|zij|
1/2 has to exceed about 104 TeV for K0 –K0 mixing, 103 TeV for

D0 – D0 mixing, 500TeV for B0 –B0 mixing, and 100TeV for B0
s –B0

s

mixing [133,138]. Thus, if there is new physics at the TeV scale, |zij | ≪ 1
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Figure 12.2: 95% CL constraints on the ρ̄, η̄ plane.

is required. Even if |zij | are suppressed by a loop factor and |V ∗

tiVtj |
2 (in

the down quark sector), as in the SM, one expects TeV-scale new physics
to give greater than percent-level effects, which may be observable in
forthcoming experiments.

The CKM elements are fundamental parameters, so they should be
measured as precisely as possible. The overconstraining measurements of
CP asymmetries, mixing, semileptonic, and rare decays severely constrain
the magnitudes and phases of possible new physics contributions to
flavor-changing interactions. When new particles are seen at the LHC, it
will be important to know the flavor parameters as precisely as possible to
understand the underlying physics.

Further discussion and all references may be found in the full Review

of Particle Physics. The numbering of references and equations used here
corresponds to that version.
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13. CP VIOLATION IN THE QUARK SECTOR

Revised February 2014 by T. Gershon (University of Warwick) and Y. Nir
(Weizmann Institute).

The CP transformation combines charge conjugation C with parity
P . Under C, particles and antiparticles are interchanged, by conjugating
all internal quantum numbers, e.g., Q → −Q for electromagnetic charge.
Under P , the handedness of space is reversed, ~x → −~x. Thus, for example,
a left-handed electron e−L is transformed under CP into a right-handed

positron, e+

R.

If CP were an exact symmetry, the laws of Nature would be the same
for matter and for antimatter. We observe that most phenomena are
C- and P -symmetric, and therefore, also CP -symmetric. In particular,
these symmetries are respected by the gravitational, electromagnetic, and
strong interactions. The weak interactions, on the other hand, violate
C and P in the strongest possible way. For example, the charged W
bosons couple to left-handed electrons, e−L , and to their CP -conjugate

right-handed positrons, e+

R, but to neither their C-conjugate left-handed

positrons, e+

L , nor their P -conjugate right-handed electrons, e−R. While
weak interactions violate C and P separately, CP is still preserved in
most weak interaction processes. The CP symmetry is, however, violated
in certain rare processes, as discovered in neutral K decays in 1964 [1],
and observed in recent years in B decays. A KL meson decays more often
to π−e+νe than to π+e−νe, thus allowing electrons and positrons to be
unambiguously distinguished, but the decay-rate asymmetry is only at
the 0.003 level. The CP -violating effects observed in the B system are
larger: the parameter describing the CP asymmetry in the decay time

distribution of B0/B
0

meson transitions to CP eigenstates like J/ψKS is

about 0.7 [2,3]. These effects are related to K0
−K

0
and B0

−B
0

mixing,
but CP violation arising solely from decay amplitudes has also been
observed, first in K → ππ decays [4–6], and more recently in B0 [7,8],
B+ [9–11], and B0

s [12] decays. CP violation is not yet experimentally
established in the D system. Moreover, CP violation has not yet been
observed in the decay of any baryon, nor in processes involving the top
quark, nor in flavor-conserving processes such as electric dipole moments,
nor in the lepton sector.

In addition to parity and to continuous Lorentz transformations,
there is one other spacetime operation that could be a symmetry of the
interactions: time reversal T , t → −t. Violations of T symmetry have
been observed in neutral K decays [13]. More recently, exploiting the
fact that for neutral B mesons both flavor tagging and CP tagging can
be used [14], T violation has been observed between states that are
not CP -conjugate [15]. Moreover, T violation is expected as a corollary
of CP violation if the combined CPT transformation is a fundamental
symmetry of Nature [16]. All observations indicate that CPT is indeed
a symmetry of Nature. Furthermore, one cannot build a locally Lorentz-
invariant quantum field theory with a Hermitian Hamiltonian that violates
CPT . (At several points in our discussion, we avoid assumptions about
CPT , in order to identify cases where evidence for CP violation relies on
assumptions about CPT .)

Within the Standard Model, CP symmetry is broken by complex
phases in the Yukawa couplings (that is, the couplings of the Higgs
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scalar to quarks). When all manipulations to remove unphysical phases
in this model are exhausted, one finds that there is a single CP -violating
parameter [17]. In the basis of mass eigenstates, this single phase
appears in the 3 × 3 unitary matrix that gives the W -boson couplings
to an up-type antiquark and a down-type quark. (If the Standard
Model is supplemented with Majorana mass terms for the neutrinos, the
analogous mixing matrix for leptons has three CP -violating phases.) The
beautifully consistent and economical Standard-Model description of CP
violation in terms of Yukawa couplings, known as the Kobayashi-Maskawa
(KM) mechanism [17], agrees with all measurements to date. (Some
measurements are in tension with the predictions, and are discussed in
more detail below. Pending verification, the results are not considered
to change the overall picture of agreement with the Standard Model.)
Furthermore, one can fit the data allowing new physics contributions to
loop processes to compete with, or even dominate over, the Standard
Model amplitudes [18,19]. Such an analysis provides model-independent
proof that the KM phase is different from zero, and that the matrix of
three-generation quark mixing is the dominant source of CP violation in
meson decays.

The current level of experimental accuracy and the theoretical
uncertainties involved in the interpretation of the various observations
leave room, however, for additional subdominant sources of CP violation
from new physics. Indeed, almost all extensions of the Standard Model
imply that there are such additional sources. Moreover, CP violation
is a necessary condition for baryogenesis, the process of dynamically
generating the matter-antimatter asymmetry of the Universe [20].
Despite the phenomenological success of the KM mechanism, it fails (by
several orders of magnitude) to accommodate the observed asymmetry [21].
This discrepancy strongly suggests that Nature provides additional sources
of CP violation beyond the KM mechanism. (The evidence for neutrino
masses implies that CP can be violated also in the lepton sector. This
situation makes leptogenesis [22], a scenario where CP -violating phases in
the Yukawa couplings of the neutrinos play a crucial role in the generation
of the baryon asymmetry, a very attractive possibility.) The expectation
of new sources motivates the large ongoing experimental effort to find
deviations from the predictions of the KM mechanism.

CP violation can be experimentally searched for in a variety of
processes, such as hadron decays, electric dipole moments of neutrons,
electrons and nuclei, and neutrino oscillations. Hadron decays via the
weak interaction probe flavor-changing CP violation. The search for
electric dipole moments may find (or constrain) sources of CP violation
that, unlike the KM phase, are not related to flavor-changing couplings.
Following the discovery of the Higgs boson [23,24], searches for CP
violation in the Higgs sector are becoming feasible. Future searches for
CP violation in neutrino oscillations might provide further input on
leptogenesis.

The present measurements of CP asymmetries provide some of
the strongest constraints on the weak couplings of quarks. Future
measurements of CP violation in K, D, B, and B0

s meson decays
will provide additional constraints on the flavor parameters of the
Standard Model, and can probe new physics. In this review, we give the
formalism and basic physics that are relevant to present and near future
measurements of CP violation in the quark sector.
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Before going into details, we list here the observables where CP
violation has been observed at a level above 5σ [25–27]:

• Indirect CP violation in K → ππ and K → πℓν decays, and in the
KL → π+π−e+e− decay, is given by

|ǫ| = (2.228 ± 0.011)× 10−3 . (13.1)

• Direct CP violation in K → ππ decays is given by

Re(ǫ′/ǫ) = (1.65 ± 0.26) × 10−3 . (13.2)

• CP violation in the interference of mixing and decay in the tree-
dominated b → cc̄s transitions, such as B0

→ ψK0, is given by (we
use K0 throughout to denote results that combine KS and KL modes,
but use the sign appropriate to KS):

SψK0 = +0.682± 0.019 . (13.3)

• CP violation in the interference of mixing and decay in various modes
related to b → qq̄s (penguin) transitions is given by

Sη′K0 = + 0.63 ± 0.06 , (13.4)

SφK0 = + 0.74 +0.11
−0.13 , (13.5)

Sf0K0 = + 0.69 +0.10
−0.12 , (13.6)

SK+K−KS
= + 0.68 +0.09

−0.10 , (13.7)

• CP violation in the interference of mixing and decay in the
B0

→ π+π− mode is given by

Sπ+π− = −0.66 ± 0.06 . (13.8)

• Direct CP violation in the B0
→ π+π− mode is given by

Cπ+π− = −0.31± 0.05 . (13.9)

• CP violation in the interference of mixing and decay in various modes
related to b → cc̄d transitions is given by

Sψπ0 = − 0.93 ± 0.15 , (13.10)

SD+D− = − 0.98 ± 0.17 . (13.11)

SD∗+D∗− = − 0.71 ± 0.09 . (13.12)

• Direct CP violation in the B0
→ K−π+ mode is given by

AB0
→K−π+ = −0.082± 0.006 . (13.13)

• Direct CP violation in B±
→ D+K± decays (D+ is the CP -even

neutral D state) is given by

AB+
→D+K+ = +0.19± 0.03 . (13.14)

• Direct CP violation in the B
0

s → K+π− mode is given by

A
B

0

s→K+π−
= +0.26± 0.04 . (13.15)

In addition, large CP violation effects have recently been observed in
certain regions of the phase space of B±

→ K+K−K±, π+π−K±,
π+π−π± and K+K−π± decays [28,29].

Further discussion and references may be found in the full Review of

Particle Physics.
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14. NEUTRINO MASS, MIXING, AND OSCILLATIONS

Updated May 2014 by K. Nakamura (Kavli IPMU (WPI), U. Tokyo,
KEK), and S.T. Petcov (SISSA/INFN Trieste, Kavli IPMU (WPI), U.
Tokyo, Bulgarian Academy of Sciences).

I. Massive neutrinos and neutrino mixing. It is a well-established
experimental fact that the neutrinos and antineutrinos which take part
in the standard charged current (CC) and neutral current (NC) weak
interaction are of three varieties (types) or flavours: electron, νe and ν̄e,
muon, νµ and ν̄µ, and tauon, ντ and ν̄τ . The notion of neutrino type or
flavour is dynamical: νe is the neutrino which is produced with e+, or
produces an e− in CC weak interaction processes; νµ is the neutrino which
is produced with µ+, or produces µ−, etc. The flavour of a given neutrino
is Lorentz invariant.

The experiments with solar, atmospheric, reactor and accelerator
neutrinos have provided compelling evidences for the existence of neutrino
oscillations [4,5], transitions in flight between the different flavour
neutrinos νe, νµ, ντ (antineutrinos ν̄e, ν̄µ, ν̄τ ), caused by nonzero
neutrino masses and neutrino mixing. The existence of flavour neutrino
oscillations implies that if a neutrino of a given flavour, say νµ, with
energy E is produced in some weak interaction process, at a sufficiently
large distance L from the νµ source the probability to find a neutrino
of a different flavour, say ντ , P (νµ → ντ ; E, L), is different from zero.
P (νµ → ντ ; E, L) is called the νµ → ντ oscillation or transition probability.
If P (νµ → ντ ; E, L) 6= 0, the probability that νµ will not change into
a neutrino of a different flavour, i.e., the “νµ survival probability”
P (νµ → νµ; E, L), will be smaller than one. If only muon neutrinos νµ

are detected in a given experiment and they take part in oscillations, one
would observe a “disappearance” of muon neutrinos on the way from the
νµ source to the detector.

Oscillations of neutrinos are a consequence of the presence of flavour
neutrino mixing, or lepton mixing, in vacuum. In local quantum field
theory, used to construct the Standard Model, this means that the LH
flavour neutrino fields νlL(x), which enter into the expression for the lepton
current in the CC weak interaction Lagrangian, are linear combinations of
the fields of three (or more) neutrinos νj , having masses mj 6= 0:

νlL(x) =
∑

j

Ulj νjL(x), l = e, µ, τ, (14.1)

where νjL(x) is the LH component of the field of νj possessing a mass mj

and U is the unitary neutrino mixing matrix [1,4,5]. Eq. (14.1) implies
that the individual lepton charges Ll, l = e, µ, τ , are not conserved.

All compelling neutrino oscillation data can be described assuming
3-flavour neutrino mixing in vacuum. The number of massive neutrinos
νj , n, can, in general, be bigger than 3, n > 3, if, for instance, there
exist sterile neutrinos and they mix with the flavour neutrinos. From the
existing data, at least 3 of the neutrinos νj , say ν1, ν2, ν3, must be light,
m1,2,3 . 1 eV, and must have different masses. At present there are several
experimental hints for existence of one or two light sterile neutrinos with
masses m4,5 ∼ 1 eV (see the full Review for details).

Being electrically neutral, the neutrinos with definite mass νj can be
Dirac fermions or Majorana particles [39,40]. The first possibility is
realised when there exists a lepton charge carried by the neutrinos νj ,
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which is conserved by the particle interactions. This could be, e.g., the
total lepton charge L = Le + Lµ + Lτ : L(νj) = 1, j = 1, 2, 3. In this case
the neutrino νj has a distinctive antiparticle ν̄j : ν̄j differs from νj by the
value of the lepton charge L it carries, L(ν̄j) = − 1. The massive neutrinos
νj can be Majorana particles if no lepton charge is conserved. A massive
Majorana particle χj is identical with its antiparticle χ̄j : χj ≡ χ̄j . On the
basis of the existing neutrino data it is impossible to determine whether
the massive neutrinos are Dirac or Majorana fermions.

In the case of n neutrino flavours and n massive neutrinos, the n × n
unitary neutrino mixing matrix U can be parametrised by n(n − 1)/2
Euler angles and n(n + 1)/2 phases. If the massive neutrinos νj are Dirac
particles, only (n− 1)(n− 2)/2 phases are physical and can be responsible
for CP violation in the lepton sector. In this respect the neutrino (lepton)
mixing with Dirac massive neutrinos is similar to the quark mixing. For
n = 3 there is just one CP violating phase in U , which is usually called
“the Dirac CP violating phase.” CP invariance holds if (in a certain
standard convention) U is real, U∗ = U .

If, however, the massive neutrinos are Majorana fermions, νj ≡ χj , the
neutrino mixing matrix U contains n(n− 1)/2 CP violation phases [43,44],
i.e., by (n− 1) phases more than in the Dirac neutrino case: in contrast to
Dirac fields, the massive Majorana neutrino fields cannot “absorb” phases.
In this case U can be cast in the form [43]

U = V P (14.2)

where the matrix V contains the (n − 1)(n − 2)/2 Dirac CP violation
phases, while P is a diagonal matrix with the additional (n− 1) Majorana
CP violation phases α21, α31,..., αn1,

P = diag
(

1, ei
α21
2 , ei

α31
2 , ..., ei

αn1
2

)

. (14.3)

The Majorana phases will conserve CP if [45] αj1 = πqj , qj = 0, 1, 2,
j = 2, 3, ..., n. In this case exp[i(αj1 −αk1)] = ±1 is the relative CP-parity
of Majorana neutrinos χj and χk. The condition of CP invariance of the
leptonic CC weak interaction in the case of mixing and massive Majorana
neutrinos reads [41]:

U∗

lj = Ulj ρj , ρj =
1

i
ηCP (χj) = ±1 , (14.4)

where ηCP (χj) = iρj = ±i is the CP parity of the Majorana neutrino
χj [45]. If CP invariance holds, the elements of U are either real or
purely imaginary.

In the case of n = 3 there are 3 CP violation phases - one Dirac and
two Majorana. Even in the mixing involving only 2 massive Majorana
neutrinos there is one physical CP violation Majorana phase.

II. Neutrino oscillations in vacuum. Neutrino oscillations are a
quantum mechanical consequence of the existence of nonzero neutrino
masses and neutrino (lepton) mixing, Eq. (14.1), and of the relatively
small splitting between the neutrino masses. Suppose the flavour neutrino
νl is produced in a CC weak interaction process and after a time T it is
observed by a neutrino detector, located at a distance L from the neutrino
source and capable of detecting also neutrinos νl′ , l′ 6= l. If lepton mixing,
Eq. (14.1), takes place and the masses mj of all neutrinos νj are sufficiently
small, the state of the neutrino νl, |νl〉, will be a coherent superposition of
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the states |νj〉 of neutrinos νj :

|νl〉 =
∑

j

U∗

lj |νj ; p̃j〉, l = e, µ, τ , (14.5)

where U is the neutrino mixing matrix and p̃j is the 4-momentum of
νj [47]. For the state vector of RH flavour antineutrino ν̄l, produced in a
CC weak interaction process we similarly get:

|ν̄l〉 =
∑

j

Ulj |ν̄j ; p̃j〉
∼=

∑

j=1

Ulj |ν̄j , R; p̃j〉, l = e, µ, τ. (14.7)

We will assume in what follows that the neutrino mass spectrum is
not degenerate: mj 6= mk, j 6= k. Then the states |νj ; p̃j〉 in the linear
superposition in the r.h.s. of Eq. (14.5) will have, in general, different
energies and different momenta, independently of whether they are
produced in a decay or interaction process: p̃j 6= p̃k, or Ej 6= Ek, pj 6= pk,

j 6= k, where Ej =
√

p2
j + m2

j , pj ≡ |pj |. The deviations of Ej and pj

from the values for a massless neutrino E and p = E are proportional to
m2

j/E0, E0 is the characteristic energy of the process, and is very small.

Suppose that the neutrinos are observed via a CC weak interaction
process and that in the detector’s rest frame they are detected after time
T after emission, after traveling a distance L. Then the amplitude of the
probability that neutrino νl′ will be observed if neutrino νl was produced
by the neutrino source can be written as [46,48,50]:

A(νl → νl′) =
∑

j

Ul′j Dj U
†

jl , l, l′ = e, µ, τ , (14.8)

where Dj = Dj(pj ; L, T ) describes the propagation of νj between the

source and the detector, U
†

jl
and Ul′j are the amplitudes to find νj in the

initial and in the final flavour neutrino state, respectively. It follows from
relativistic Quantum Mechanics considerations that [46,48]

Dj ≡ Dj(p̃j ; L, T ) = e−ip̃j (xf−x0) = e−i(EjT−pjL) , pj ≡ |pj | , (14.9)

where [51] x0 and xf are the space-time coordinates of the points of
neutrino production and detection, T = (tf − t0) and L = k(xf − x0),
k being the unit vector in the direction of neutrino momentum,
pj = kpj. What is relevant for the calculation of the probability

P (νl → νl′) = |A(νl → νl′)|
2 is the interference factor DjD

∗

k which
depends on the phase

δϕjk = (Ej − Ek)

[

T −

Ej + Ek

pj + pk
L

]

+
m2

j − m2
k

pj + pk
L . (14.10)

Some authors [52] have suggested that the distance traveled by the
neutrinos L and the time interval T are related by T = (Ej + Ek)L/(pj +
pk) = L/v̄, v̄ = (Ej/(Ej + Ek))vj + (Ek/(Ej + Ek))vk being the “average”
velocity of νj and νk, where vj,k = pj,k/Ej,k. In this case the first term in
the r.h.s. of Eq. (14.10) vanishes. The indicated relation has not emerged
so far from any dynamical wave packet calculations. We arrive at the
same conclusion concerning the term under discussion in Eq. (14.10) if one
assumes [53] that Ej = Ek = E0. Finally, it was proposed in Ref. 50 and
Ref. 54 that the states of νj and ν̄j in Eq. (14.5) and Eq. (14.7) have the
same 3-momentum, pj = pk = p. Under this condition the first term in
the r.h.s. of Eq. (14.10) is negligible, being suppressed by the additional
factor (m2

j + m2
k)/p2 since for relativistic neutrinos L = T up to terms

∼ m2
j,k/p2. We arrive at the same conclusion if Ej 6= Ek, pj 6= pk, j 6= k,
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and we take into account that neutrinos are relativistic and therefore, up
to corrections ∼ m2

j,k/E2
j,k, we have L ∼= T .

Although the cases considered above are physically quite different, they
lead to the same result for the phase difference δϕjk. Thus, we have:

δϕjk
∼=

m2
j − m2

k

2p
L = 2π

L

Lv
jk

sgn(m2
j − m2

k) , (14.11)

where p = (pj + pk)/2 and

Lv
jk = 4π

p

|∆m2
jk
|

∼= 2.48 m
p[MeV ]

|∆m2
jk
|[eV 2]

(14.12)

is the neutrino oscillation length associated with ∆m2
jk. We can consider

p to be the zero neutrino mass momentum, p = E. The phase difference
δϕjk, Eq. (14.11), is Lorentz-invariant.

Eq. (14.9) corresponds to a plane-wave description of the propagation
of neutrinos νj . It accounts only for the movement of the center of the
wave packet describing νj . In the wave packet treatment, the interference
between the states of νj and νk is subject to a number of conditions [46],
the localisation condition and the condition of overlapping of the wave
packets of νj and νk at the detection point being the most important.

For the νl → νl′ and ν̄l → ν̄l′ oscillation probabilities we get from
Eq. (14.8), Eq. (14.9), and Eq. (14.11):

P (νl → νl′) =
∑

j

Rl′l
jj + 2

∑

j>k

|Rl′l
jk| cos(

∆m2
jk

2p
L − φl′l

jk), (14.13)

P (ν̄l → ν̄l′) =
∑

j

Rl′l
jj + 2

∑

j>k

|Rl′l
jk| cos(

∆m2
jk

2p
L + φl′l

jk), (14.14)

where l, l′ = e, µ, τ , Rl′l
jk = Ul′j U∗

lj Ulk U∗

l′k
and φl′l

jk = arg
(

Rl′l
jk

)

. It follows

from Eq. (14.8) - Eq. (14.10) that for neutrino oscillations to occur, at
least two neutrinos νj should not be degenerate in mass and lepton mixing
should take place, U 6= 1. The oscillations effects can be large if at least
for one ∆m2

jk we have |∆m2
jk|L/(2p) = 2πL/Lv

jk & 1, i.e. the oscillation

length Lv
jk is of the order of, or smaller, than source-detector distance L.

The conditions of CP invariance read [43,55,56]: P (νl → νl′) = P (ν̄l →

ν̄l′), l, l′ = e, µ, τ . Assuming CPT invariance P (νl → νl′) = P (ν̄l′ → ν̄l),
we get the survival probabilities: P (νl → νl) = P (ν̄l → ν̄l), l, l′ = e, µ, τ .
Thus, the study of the “disappearance” of νl and ν̄l, caused by oscillations
in vacuum, cannot be used to test the CP invariance in the lepton
sector. It follows from Eq. (14.13) - Eq. (14.14) that we can have CP
violation effects in neutrino oscillations only if U is not real. Eq. (14.2)
and Eq. (14.13) - Eq. (14.14) imply that P (νl → νl′) and P (ν̄l → ν̄l′) do
not depend on the Majorana phases in the neutrino mixing matrix U [43].
Thus, i) in the case of oscillations in vacuum, only the Dirac phase(s) in U
can cause CP violating effects leading to P (νl → νl′) 6= P (ν̄l → ν̄l′), l 6= l′,
and ii) the experiments investigating the νl → νl′ and ν̄l → ν̄l′ oscillations
cannot provide information on the nature - Dirac or Majorana, of massive
neutrinos [43,57].

As a measure of CP violation in neutrino oscillations we can consider

the asymmetry: A
(l′l)
CP = P (νl → νl′) − P (ν̄l → ν̄l′) = −A

(ll′)
CP . In the case
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of 3-neutrino mixing one has [58]: A
(µe)
CP = −A

(τe)
CP = A

(τµ)
CP ,

A
(µe)
CP = 4 JCP

(

sin
∆m2

32

2p
L + sin

∆m2
21

2p
L + sin

∆m2
13

2p
L

)

, (14.18)

where JCP = Im
(

Uµ3U
∗

e3Ue2U
∗

µ2

)

is analogous to the rephasing

invariant associated with the CP violation in the quark mixing [59].
Thus, JCP controls the magnitude of CP violation effects in neutrino
oscillations in the case of 3-neutrino mixing. Even if JCP 6= 0, we will

have A
(l′l)
CP = 0 unless all three sin(∆m2

ij/(2p))L 6= 0 in Eq. (14.18).

Consider next neutrino oscillations in the case of one neutrino mass
squared difference “dominance”: suppose that |∆m2

j1| ≪ |∆m2
n1|,

j = 2, ..., (n − 1), |∆m2
n1|L/(2p)&1 and |∆m2

j1|L/(2p) ≪ 1, so that

exp[i(∆m2
j1 L/(2p)] ∼= 1, j = 2, ..., (n − 1). Under these conditions we

obtain from Eq. (14.13) and Eq. (14.14), keeping only the oscillating terms
involving ∆m2

n1: P (νl(l′) → νl′(l))
∼= P (ν̄l(l′) → ν̄l′(l)),

P (νl(l′) → νl′(l))
∼= δll′ − 4|Uln|

2
[

δll′ − |Ul′n|
2
]

sin2 ∆m2
n1

4p
L . (14.20)

It follows from the neutrino oscillation data that one of the two
independent neutrino mass squared differences, say ∆m2

21, is much smaller

in absolute value than the second one, ∆m2
31: |∆m2

21|/|∆m2
31|

∼= 0.03,

|∆m2
31|

∼= 2.5 × 10−3 eV2. Eq. (14.20) with n = 3, describes with a
relatively good precision the oscillations of i) reactor ν̄e ( l, l′ = e) on a
distance L ∼ 1 km, corresponding to the CHOOZ, Double Chooz, Daya
Bay and RENO experiments, and of ii) the accelerator νµ (l, l′ = µ), seen
in the K2K, MINOS and T2K experiments. The νµ → ντ oscillations,
which the OPERA experiment is aiming to detect, can be described in the
case of 3-neutrino mixing by Eq. (14.20) with n = 3 and l = µ, l′ = τ .

In certain cases the dimensions of the neutrino source, ∆L, and/or
the energy resolution of the detector, ∆E, have to be included in
the analysis of the neutrino oscillation data. If [41] 2π∆L/Lv

jk ≫ 1,

and/or 2π(L/Lv
jk)(∆E/E) ≫ 1, the interference terms in P (νl → νl′) and

P (ν̄l′ → ν̄l) will be strongly suppressed and the neutrino flavour conversion
will be determined by the average probabilities: P̄ (νl → νl′) = P̄ (ν̄l →

ν̄l′)
∼=

∑

j |Ul′j |
2
|Ulj |

2. Suppose next that in the case of 3-neutrino mixing,

|∆m2
21|L/(2p) ∼ 1, while |∆m2

31(32)
|L/(2p) ≫ 1, and the oscillations due

to ∆m2
31(32)

are strongly suppressed (averaged out) due to integration

over the region of neutrino production, etc. In this case we get for the νe

and ν̄e survival probabilities: P (νe → νe) = P (ν̄e → ν̄e) ≡ Pee,

Pee
∼= |Ue3|

4 +
(

1 − |Ue3|
2
)2

[

1 − sin2 2θ12 sin2 ∆m2
21

4p
L

]

(14.26)

with θ12 determined by cos2 θ12 = |Ue1|
2/(1 − |Ue3|

2), sin2 θ12 =
|Ue2|

2/(1 − |Ue3|
2). Eq. (14.26) describes the effects of reactor ν̄e

oscillations observed by the KamLAND experiment (L ∼ 180 km).

The data of ν-oscillations experiments is often analyzed assuming
2-neutrino mixing: |νl〉 = |ν1〉 cos θ + |ν2〉 sin θ, |νx〉 = −|ν1〉 sin θ +
|ν2〉 cos θ, where θ is the neutrino mixing angle in vacuum and νx is
another flavour neutrino or sterile (anti-) neutrino, x = l′ 6= l or νx ≡ ν̄s.
In this case we have [54]: ∆m2 = m2

2 − m2
1 > 0,

P 2ν(νl → νl) = 1 − sin2 2θ sin2 π
L

Lv
, Lv = 4π p/∆m2 , (14.30)
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P 2ν(νl → νx) = 1−P 2ν(νl → νl). Eq. (14.30) with l = µ, x = τ was used,
e.g., in the atmospheric neutrino data analysis [17], in which the first
compelling evidence for neutrino oscillations was obtained.

III. Matter effects in neutrino oscillations. When neutrinos
propagate in matter, their coherent forward-scattering from the particles
present in matter can change drastically the pattern of neutrino
oscillations [26,27,69]. Thus, the probabilities of neutrino transitions in
matter can differ significantly from the corresponding vacuum oscillation
probabilities. In the case of solar νe transitions in the Sun and 3-ν
mixing, the oscillations due to ∆m2

31 are suppressed by the averaging
over the region of neutrino production in the Sun. The νe undergo
transitions into (νµ + ντ )/

√

2. Consequently, the effects of the solar
matter, the solar νe transitions observed by the Super-Kamiokande
and SNO experiments exhibit a characteristic dependence on sin2 θ12:
P 3ν
⊙

(νe → νe) ∼= |Ue3|
4 + (1 − |Ue3|

2)2 sin2 θ12. The data show that

P 3ν
⊙

∼= 0.3, which is a strong evidence for matter effects for solar νe.

IV. The evidence for flavour neutrino oscillations. We discuss the
relevant compelling data in the full edition. The best fit values of the
neutrino oscillation parameters and their 3σ allowed ranges, determined
in the latest global analysis of the neutrino oscillation data performed in
[174], are given in Table 14.7.

Table 14.7: The best-fit values and 3σ allowed ranges of the
3-neutrino oscillation parameters, derived from a global fit of the
current neutrino oscillation data (from [174]) . The values (values
in brackets) correspond to m1 < m2 < m3 (m3 < m1 < m2).
The definition of ∆m2 used is: ∆m2 = m2

3 − (m2
2 + m2

1)/2.
Thus, ∆m2 = ∆m2

31 − ∆m2
21/2 > 0, if m1 < m2 < m3, and

∆m2 = ∆m2
32 + ∆m2

21/2 < 0 for m3 < m1 < m2.

Parameter best-fit (±1σ) 3σ

∆m2
21 [10−5 eV 2] 7.54+0.26

−0.22 6.99 − 8.18

|∆m2
| [10−3 eV 2] 2.43 ± 0.06 (2.38 ± 0.06) 2.23 − 2.61 (2.19 − 2.56)

sin2 θ12 0.308 ± 0.017 0.259 − 0.359

sin2 θ23, ∆m2 > 0 0.437+0.033
−0.023 0.374 − 0.628

sin2 θ23, ∆m2 < 0 0.455+0.039
−0.031, 0.380 − 0.641

sin2 θ13, ∆m2 > 0 0.0234+0.0020
−0.0019 0.0176− 0.0295

sin2 θ13, ∆m2 < 0 0.0240+0.0019
−0.0022 0.0178− 0.0298

δ/π (2σ range) 1.39+0.38
−0.27 (1.31+0.29

−0.33) (0.00 − 0.16)⊕ (0.86 − 2.00)

((0.00 − 0.02)⊕ (0.70 − 2.00))
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V. Three neutrino mixing. All compelling data on neutrino oscillations
can be described assuming 3-flavour neutrino mixing in vacuum. In this
case U can be parametrised as

U =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ
−c12s23 − s12c23s13e

iδ c23c13





× diag(1, ei
α21
2 , ei

α31
2 ) . (14.78)

where cij = cos θij , sij = sin θij , the angles θij = [0, π/2], δ = [0, 2π] is
the Dirac CP violation phase and α21, α31 are two Majorana CP violation
phases. Global analyses of the neutrino oscillation data [174,175] available
by the second half of 2013 and including, in particular, the latest Daya
Bay [36], RENO [37] and T2K [151,23] and MINOS [143,147] data,
allowed us to determine the 3-neutrino oscillation parameters ∆m2

21, θ12,

|∆m2
31| (|∆m2

32|), θ23 and θ13 with a relatively high precision.

The existing SK atmospheric neutrino, K2K and MINOS data do not
allow to determine the sign of ∆m2

31(32)
. Maximal solar neutrino mixing,

i.e., θ12 = π/4, is ruled out at more than 6σ by the data. Correspondingly,
one has cos 2θ12 ≥ 0.28 (at 99.73% CL).

No experimental information on the CP violation phases in the neutrino
mixing matrix U is available. With θ13 6= 0, the Dirac phase δ can
generate CP violation effects in neutrino oscillations [43,55,56].

The existing data do not allow one to determine the sign of
∆m2

A = ∆m2
31(2)

. In the case of 3-neutrino mixing, the two possible signs

of ∆m2
31(2)

correspond to two types of neutrino mass spectrum. In the

widely used conventions of numbering the neutrinos with definite mass,
the two spectra read: i) Normal Ordering: m1 < m2 < m3, ∆m2

A =

∆m2
31 > 0, ∆m2

⊙
≡ ∆m2

21 > 0, m2(3) = (m2
1 + ∆m2

21(31)
)
1

2 ; ii) Inverted

Ordering: m3 < m1 < m2, ∆m2
A = ∆m2

32 < 0, ∆m2
⊙

≡ ∆m2
21 > 0,

m2 = (m2
3 + ∆m2

23)
1

2 , m1 = (m2
3 + ∆m2

23 − ∆m2
21)

1

2 .

After the spectacular experimental progress made in the studies of
neutrino oscillations, further understanding of the pattern of neutrino
masses and mixing, of their origins and of the status of CP symmetry are
the major goals of the future studies in neutrino physics.

For details and references, see the full Review.



218 15. Quark model

15. QUARK MODEL

Revised August 2013 by C. Amsler (University of Bern), T. DeGrand
(University of Colorado, Boulder), and B. Krusche (University of Basel).

15.1. Quantum numbers of the quarks

Quarks are strongly interacting fermions with spin 1/2 and, by
convention, positive parity. Antiquarks have negative parity. Quarks have
the additive baryon number 1/3, antiquarks -1/3. Table 15.1 gives the
other additive quantum numbers (flavors) for the three generations of
quarks. They are related to the charge Q (in units of the elementary
charge e) through the generalized Gell-Mann-Nishijima formula

Q = Iz +
B + S + C + B + T

2
, (15.1)

where B is the baryon number. The convention is that the flavor of a
quark (Iz , S, C, B, or T) has the same sign as its charge Q. With this
convention, any flavor carried by a charged meson has the same sign as its
charge, e.g., the strangeness of the K+ is +1, the bottomness of the B+

is +1, and the charm and strangeness of the D−

s are each −1. Antiquarks
have the opposite flavor signs.

15.2. Mesons

Mesons have baryon number B = 0. In the quark model, they are qq ′

bound states of quarks q and antiquarks q ′ (the flavors of q and q′ may
be different). If the orbital angular momentum of the qq ′ state is ℓ, then

the parity P is (−1)ℓ+1. The meson spin J is given by the usual relation
|ℓ − s| ≤ J ≤ |ℓ + s|, where s is 0 (antiparallel quark spins) or 1 (parallel

quark spins). The charge conjugation, or C-parity C = (−1)ℓ+s, is defined
only for the qq̄ states made of quarks and their own antiquarks. The
C-parity can be generalized to the G-parity G = (−1)I+ℓ+s for mesons
made of quarks and their own antiquarks (isospin Iz = 0), and for the
charged ud̄ and dū states (isospin I = 1).

The mesons are classified in JPC multiplets. The ℓ = 0 states are the
pseudoscalars (0−+) and the vectors (1−−). The orbital excitations ℓ = 1
are the scalars (0++), the axial vectors (1++) and (1+−), and the tensors
(2++). Assignments for many of the known mesons are given in Tables
15.2 and 15.3. Radial excitations are denoted by the principal quantum
number n. The very short lifetime of the t quark makes it likely that
bound-state hadrons containing t quarks and/or antiquarks do not exist.

States in the natural spin-parity series P = (−1)J must, according to
the above, have s = 1 and hence, CP = +1. Thus, mesons with natural
spin-parity and CP = −1 (0+−, 1−+, 2+−, 3−+, etc.) are forbidden in

the qq̄ ′ model. The JPC = 0−− state is forbidden as well. Mesons with
such exotic quantum numbers may exist, but would lie outside the qq̄ ′

model (see section below on exotic mesons).

Following SU(3), the nine possible qq̄ ′ combinations containing the
light u, d, and s quarks are grouped into an octet and a singlet of light
quark mesons:

3 ⊗ 3 = 8⊕ 1 . (15.2)

A fourth quark such as charm c can be included by extending SU(3)
to SU(4). However, SU(4) is badly broken owing to the much heavier c
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quark. Nevertheless, in an SU(4) classification, the sixteen mesons are
grouped into a 15-plet and a singlet:

4⊗ 4 = 15⊕ 1 . (15.3)

The weight diagrams for the ground-state pseudoscalar (0−+) and
vector (1−−) mesons are depicted in Fig. 15.1. The light quark mesons
are members of nonets building the middle plane in Fig. 15.1(a) and (b).

Z

Figure 15.1: SU(4) weight diagram showing the 16-plets for the
pseudoscalar (a) and vector mesons (b) made of the u, d, s, and c
quarks as a function of isospin Iz , charm C, and hypercharge Y =

S+B −
C
3

. The nonets of light mesons occupy the central planes to

which the cc̄ states have been added.

Isoscalar states with the same JPC will mix, but mixing between the
two light quark isoscalar mesons, and the much heavier charmonium or
bottomonium states, are generally assumed to be negligible.

15.4. Baryons: qqq states

Baryons are fermions with baryon number B = 1, i.e., in the most
general case, they are composed of three quarks plus any number of
quark - antiquark pairs. So far all established baryons are 3-quark (qqq)
configurations. The color part of their state functions is an SU(3) singlet,
a completely antisymmetric state of the three colors. Since the quarks are
fermions, the state function must be antisymmetric under interchange of
any two equal-mass quarks (up and down quarks in the limit of isospin
symmetry). Thus it can be written as

| qqq 〉A = | color 〉A × | space, spin, flavor 〉S , (15.21)

where the subscripts S and A indicate symmetry or antisymmetry under
interchange of any two equal-mass quarks. Note the contrast with the
state function for the three nucleons in 3H or 3He:

|NNN 〉A = | space, spin, isospin 〉A . (15.22)
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This difference has major implications for internal structure, magnetic
moments, etc.

The “ordinary” baryons are made up of u, d, and s quarks. The three
flavors imply an approximate flavor SU(3), which requires that baryons
made of these quarks belong to the multiplets on the right side of

3⊗ 3⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A . (15.23)

Figure 15.4: SU(4) multiplets of baryons made of u, d, s, and c
quarks. (a) The 20-plet with an SU(3) octet. (b) The 20-plet with
an SU(3) decuplet.

Here the subscripts indicate symmetric, mixed-symmetry, or antisymmetric
states under interchange of any two quarks. The 1 is a uds state (Λ1),
and the octet contains a similar state (Λ8). If these have the same spin
and parity, they can mix. The mechanism is the same as for the mesons
(see above). In the ground state multiplet, the SU(3) flavor singlet Λ1

is forbidden by Fermi statistics. Section 44, on “SU(3) Isoscalar Factors
and Representation Matrices,” shows how relative decay rates in, say,
10 → 8⊗ 8 decays may be calculated.

The addition of the c quark to the light quarks extends the flavor
symmetry to SU(4). However, due to the large mass of the c quark, this
symmetry is much more strongly broken than the SU(3) of the three light
quarks. Figures 15.4(a) and 15.4(b) show the SU(4) baryon multiplets
that have as their bottom levels an SU(3) octet, such as the octet that
includes the nucleon, or an SU(3) decuplet, such as the decuplet that
includes the ∆(1232). All particles in a given SU(4) multiplet have the
same spin and parity. The charmed baryons are discussed in more detail in
the “Note on Charmed Baryons” in the Particle Listings. The addition of
a b quark extends the flavor symmetry to SU(5); the existence of baryons
with t-quarks is very unlikely due to the short lifetime of the t-quark.

For further details, see the full Review of Particle Physics.
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16. GRAND UNIFIED THEORIES

Updated October 2011 by S. Raby (Ohio State University).

In spite of all the successes of the Standard Model [SM] it is unlikely
to be the final theory. It leaves many unanswered questions. Why the
local gauge interactions SU(3)C × SU(2)L × U(1)Y and why 3 families
of quarks and leptons? Moreover why does one family consist of the
states [Q, uc, dc; L, ec] transforming as [(3, 2, 1/3), (3̄, 1,−4/3), (3̄, 1, 2/3);
(1, 2,−1), (1, 1, 2)], where Q = (u, d) and L = (ν, e) are SU(2)L doublets
and uc, dc, ec are charge conjugate SU(2)L singlet fields with the U(1)Y
quantum numbers given? [We use the convention that electric charge
QEM = T3L + Y/2 and all fields are left handed.] Note the SM gauge
interactions of quarks and leptons are completely fixed by their gauge
charges. Thus, if we understood the origin of this charge quantization,
we would also understand why there are no fractionally charged hadrons.
Finally, what is the origin of quark and lepton masses; the family mass
hierarchy and quark mixing angles? Perhaps if we understood this, we
would also understand neutrino masses, the origin of CP violation, the
cosmological matter - antimatter asymmetry or even the nature of dark
matter.

In the Standard Model, quarks and leptons are on an equal footing;
both fundamental particles without substructure. It is now clear that they
may be two faces of the same coin; unified, for example, by extending QCD
(or SU(3)C) to include leptons as the fourth color, SU(4)C . The complete
Pati-Salam gauge group is SU(4)C × SU(2)L × SU(2)R with the states
of one family [(Q, L), (Qc, Lc)] transforming as [(4, 2, 1), (4̄, 1, 2̄)] where
Qc = (dc, uc), Lc = (ec, νc) are doublets under SU(2)R. Electric charge is
now given by the relation QEM = T3L + T3R + 1/2(B − L) and SU(4)C
contains the subgroup SU(3)C × (B − L) where B (L) is baryon (lepton)
number. Note νc has no SM quantum numbers and is thus completely
“sterile.” It is introduced to complete the SU(2)R lepton doublet. This
additional state is desirable when considering neutrino masses.

Although quarks and leptons are unified with the states of one family
forming two irreducible representations of the gauge group; there are
still 3 independent gauge couplings (two if one also imposes parity, i.e.

L ↔ R symmetry). As a result the three low energy gauge couplings
are still independent arbitrary parameters. This difficulty is resolved by
embedding the SM gauge group into the simple unified gauge group,
Georgi-Glashow SU(5), with one universal gauge coupling αG defined
at the grand unification scale MG. Quarks and leptons still sit in
two irreducible representations, as before, with a 10 = [Q, uc, ec] and
5̄ = [dc, L]. Nevertheless, the three low energy gauge couplings are now
determined in terms of two independent parameters : αG and MG. Hence,
there is one prediction.

In order to break the electroweak symmetry at the weak scale and give
mass to quarks and leptons, Higgs doublets are needed which can sit in
either a 5H or 5̄H. The additional 3 states are color triplet Higgs scalars.
The couplings of these color triplets violate baryon and lepton number
and nucleons decay via the exchange of a single color triplet Higgs scalar.
Hence, in order not to violently disagree with the non-observation of
nucleon decay, their mass must be greater than ∼ 1010−11 GeV. Note, in
supersymmetric GUTs, in order to cancel anomalies as well as give mass
to both up and down quarks, both Higgs multiplets 5H, 5̄H are required.
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As we shall discuss later, nucleon decay now constrains the color triplet
Higgs states in a SUSY GUT to have mass significantly greater than MG.

Complete unification is possible with the symmetry group SO(10) with
one universal gauge coupling αG and one family of quarks and leptons
sitting in the 16 dimensional spinor representation 16 = [10 + 5̄ + 1].
The SU(5) singlet 1 is identified with νc. SO(10) has two inequivalent
maximal breaking patterns. SO(10) → SU(5) × U(1)X and SO(10) →

SU(4)C × SU(2)L × SU(2)R. In the first case we obtain Georgi-Glashow
SU(5) if QEM is given in terms of SU(5) generators alone or so-called
flipped SU(5) if QEM is partly in U(1)X . In the latter case we have
the Pati-Salam symmetry. If SO(10) breaks directly to the SM at MG,
then we retain the prediction for gauge coupling unification. However
more possibilities for breaking (hence, more breaking scales and more
parameters) are available in SO(10). Nevertheless, with one breaking
pattern SO(10) → SU(5) → SM, where the last breaking scale is MG,
the predictions from gauge coupling unification are preserved. The
Higgs multiplets in minimal SO(10) are contained in the fundamental
10H = [5H, 5̄H] representation. Note only in SO(10) does the gauge
symmetry distinguish quark and lepton multiplets from Higgs multiplets.
Finally, larger symmetry groups have been considered, e.g. E(6), SU(6),
etc. They however always include extra, unwanted states; making these
larger symmetry groups unattractive starting points for model building.

Let us now consider the primary GUT prediction, i.e gauge coupling
unification. The GUT symmetry is spontaneously broken at the scale
MG and all particles not in the SM obtain mass of order MG. When
calculating Green’s functions with external energies E ≫ MG, we can
neglect the mass of all particles in the loop and hence, all particles
contribute to the renormalization group running of the universal gauge
coupling. However, for E ≪ MG one can consider an effective field theory
(EFT) including only the states with mass < E ≪ MG. The gauge
symmetry of the EFT [valid below MG] is SU(3)C × SU(2)L × U(1)Y
and the three gauge couplings renormalize independently. The states
of the EFT include only those of the SM; 12 gauge bosons, 3 families
of quarks and leptons and one or more Higgs doublets. At MG the
two effective theories [the GUT itself is most likely the EFT of a
more fundamental theory defined at a higher scale] must give identical
results; hence we have the boundary conditions g3 = g2 = g1 ≡ gG

where at any scale µ < MG we have g2 ≡ g and g1 =
√

5/3 g′.
[Note, the hypercharge coupling is rescaled in order for Y to satisfy the
charge quantization of the GUT. Also αs = (g2

3/4π), αEM = (e2/4π)

(e = g sin θW ) and sin2 θW = (g′)2/(g2 + (g′)2).] Then using two low
energy couplings, such as αs(MZ), αEM (MZ), the two independent
parameters αG, MG can be fixed. The third gauge coupling, sin2 θW in
this case, is then predicted. This was the procedure up until about 1991.
Subsequently, the uncertainties in sin2 θW were reduced ten fold. Since
then, αEM (MZ), sin2 θW have been used as input to predict αG, MG and
αs(MZ).

Note, the above boundary condition is only valid when using one
loop renormalization group [RG] running. With precision electroweak
data, however, it is necessary to use two loop RG running. Hence,
one must include one loop threshold corrections to gauge coupling
boundary conditions at both the weak and GUT scales. In this case
it is always possible to define the GUT scale as the point where
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α1(MG) = α2(MG) ≡ α̃G and α3(MG) = α̃G (1 + ǫ3). The threshold
correction ǫ3 is a logarithmic function of all states with mass of order MG

and α̃G = αG + ∆ where αG is the GUT coupling constant above MG and
∆ is a one loop threshold correction. To the extent that gauge coupling
unification is perturbative, the GUT threshold corrections are small and
calculable. This presumes that the GUT scale is sufficiently below the
Planck scale or any other strong coupling extension of the GUT, such as a
strongly coupled string theory.

Supersymmetric grand unified theories [SUSY GUTs] are an extension
of non-SUSY GUTs. The key difference between SUSY GUTs and non-
SUSY GUTs is the low energy effective theory which, in a SUSY GUT,
also satisfies N=1 supersymmetry down to scales of order the weak scale.
Hence, the spectrum includes all the SM states plus their supersymmetric
partners. It also includes one pair (or more) of Higgs doublets; one to give
mass to up-type quarks and the other to down-type quarks and charged
leptons. Two doublets with opposite hypercharge Y are also needed to
cancel fermionic triangle anomalies. Note, a low energy SUSY breaking
scale (the scale at which the SUSY partners of SM particles obtain mass)
is necessary to solve the gauge hierarchy problem.

Simple non-SUSY SU(5) is ruled out; initially by the increased accuracy
in the measurement of sin2 θW and by early bounds on the proton lifetime
(see below). However, by now LEP data has conclusively shown that
SUSY GUTs is the new standard model; by which we mean the theory
used to guide the search for new physics beyond the present SM. SUSY
extensions of the SM have the property that their effects decouple as the
effective SUSY breaking scale is increased. Any theory beyond the SM
must have this property simply because the SM works so well. However,
the SUSY breaking scale cannot be increased with impunity, since this
would reintroduce a gauge hierarchy problem. Unfortunately there is
no clear-cut answer to the question, when is the SUSY breaking scale
too high. A conservative bound would suggest that the third generation
quarks and leptons must be lighter than about 1 TeV, in order that the
one loop corrections to the Higgs mass from Yukawa interactions remains
of order the Higgs mass bound itself.

At present gauge coupling unification within SUSY GUTs works
extremely well. Exact unification at MG, with two loop renormalization
group running from MG to MZ , and one loop threshold corrections at the
weak scale, fits to within 3 σ of the present precise low energy data. A
small threshold correction at MG (ǫ3 ∼ −4%) is sufficient to fit the low
energy data precisely.* This may be compared to non-SUSY GUTs where
the fit misses by ∼ 12 σ and a precise fit requires new weak scale states in
incomplete GUT multiplets or multiple GUT breaking scales.

Baryon number is necessarily violated in any GUT. In SU(5) nucleons
decay via the exchange of gauge bosons with GUT scale masses, resulting
in dimension 6 baryon number violating operators suppressed by (1/M2

G).

The nucleon lifetime is calculable and given by τN ∝ M4
G/(α2

G m5
p). The

* This result implicitly assumes universal GUT boundary conditions for
soft SUSY breaking parameters at MG. In the simplest case we have a
universal gaugino mass M1/2, a universal mass for squarks and sleptons

m16 and a universal Higgs mass m10, as motivated by SO(10). In some
cases, threshold corrections to gauge coupling unification can be exchanged
for threshold corrections to soft SUSY parameters.
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dominant decay mode of the proton (and the baryon violating decay mode
of the neutron), via gauge exchange, is p → e+ π0 (n → e+ π−). In
any simple gauge symmetry, with one universal GUT coupling and scale
(αG, MG), the nucleon lifetime from gauge exchange is calculable. Hence,
the GUT scale may be directly observed via the extremely rare decay
of the nucleon. Experimental searches for nucleon decay began with the
Kolar Gold Mine, Homestake, Soudan, NUSEX, Frejus, HPW, and IMB
detectors. The present experimental bounds come from Super-Kamiokande
and Soudan II. We discuss these results shortly. Non-SUSY GUTs are
also ruled out by the non-observation of nucleon decay. In SUSY GUTs,
the GUT scale is of order 3 × 1016 GeV, as compared to the GUT scale
in non-SUSY GUTs which is of order 1015 GeV. Hence, the dimension
6 baryon violating operators are significantly suppressed in SUSY GUTs
with τp ∼ 1034−38 yrs.

However, in SUSY GUTs there are additional sources for baryon
number violation – dimension 4 and 5 operators. Although the notation
does not change, when discussing SUSY GUTs all fields are implicitly
bosonic superfields and the operators considered are the so-called F
terms which contain two fermionic components and the rest scalars or
products of scalars. Within the context of SU(5) the dimension 4 and
5 operators have the form (10 5̄ 5̄) ⊃ (uc dc dc) + (Q L dc) + (ec L L)
and (10 10 10 5̄) ⊃ (Q Q Q L) + (uc uc dc ec) + B and L conserving
terms, respectively. The dimension 4 operators are renormalizable with
dimensionless couplings; similar to Yukawa couplings. On the other hand,
the dimension 5 operators have a dimensionful coupling of order (1/MG).

The dimension 4 operators violate baryon number or lepton number,
respectively, but not both. The nucleon lifetime is extremely short if
both types of dimension 4 operators are present in the low energy theory.
However both types can be eliminated by requiring R parity. In SU(5) the
Higgs doublets reside in a 5H, 5̄H and R parity distinguishes the 5̄ (quarks
and leptons) from 5̄H (Higgs). R parity (or its cousin, family reflection
symmetry takes F → −F, H → H with F = {10, 5̄}, H = {5̄H, 5H}.
This forbids the dimension 4 operator (10 5̄ 5̄), but allows the Yukawa
couplings of the form (10 5̄ 5̄H) and (10 10 5H). It also forbids the
dimension 3, lepton number violating, operator (5̄ 5H) ⊃ (L Hu) with a
coefficient with dimensions of mass which, like the µ parameter, could be
of order the weak scale and the dimension 5, baryon number violating,
operator (10 10 10 5̄H) ⊃ (Q Q Q Hd) + · · ·. Note, R parity is the
only known symmetry [consistent with a SUSY GUT] which can prevent
unwanted dimension four operators. Hence, by naturalness arguments,
R parity must be a symmetry in the effective low energy theory of any
SUSY GUT. This does not mean to say that R parity is guaranteed to be
satisfied in any GUT.

Dimension 5 baryon number violating operators are generically
generated via color triplet Higgsino exchange. Hence, the color triplet
partners of Higgs doublets must necessarily obtain mass of order the
GUT scale. The dominant decay modes from dimension 5 operators
are p → K+ ν̄ (n → K0 ν̄). Note, final states with a second or third
generation particle are dominant. This is due to a simple symmetry
argument. The operators (Qi Qj Qk Ll), (uc

i uc
j dc

k ec
l ) (where

i, j, k, l = 1, 2, 3 are family indices and color and weak indices are
implicit) must be invariant under SU(3)C and SU(2)L. Hence, their color
and weak doublet indices must be anti-symmetrized. However this product
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of bosonic superfields must be totally symmetric under interchange of all
indices. Thus, the first operator vanishes for i = j = k and the second
vanishes for i = j.

Recent Super-Kamiokande bounds on the proton lifetime severely
constrain these dimension 6 and 5 operators with (172.8 kt-yr) of data
they find τ(p→e+π0) > 1.0 × 1034 yrs, τ(p→K+ν̄) > 3.3 × 1033 yrs and

τ(n→e+π−) > 2 × 1033 yrs at (90% CL). These constraints are now

sufficient to rule out minimal SUSY SU(5). However non-minimal Higgs
sectors in SU(5) or minimal SO(10) theories still survive. The upper
bound on the proton lifetime from these theories are approximately a
factor of 5 above the experimental bounds. Hence, if SUSY GUTs are
correct, nucleon decay must be seen soon.

Is there a way out of this conclusion? String theories, and recent
field theoretic constructions, contain grand unified symmetries realized in
higher dimensions. Upon compactification to four dimensions, the GUT
symmetry is typically broken directly to the MSSM. A positive feature of
this approach is that the color triplet Higgs states are projected out of
the low energy spectrum. At the same time, quark and lepton states now
emanate from different GUT multiplets. As a consequence, proton decay
due to dimension 5 and 6 operators can be severely suppressed, eliminated
all together or sometimes even enhanced. Hence, the observation of proton
decay may distinguish extra-dimensional GUTs from four dimensional
ones. For example, a simple ZR

4 symmetry, consistent with SO(10), with
R parity as a subgroup can also forbid the mu term and dimension 5 B
and L violating operators to all orders in perturbation theory. They may
then be generated, albeit sufficiently suppressed, via non-perturbative
effects. In this case, proton decay is completely dominated by dimension 6
operators.

Grand unification of the strong and electroweak interactions at a
unique high energy scale MG ∼ 3 × 1016 GeV requires [1] gauge coupling
unification, [2] low energy supersymmetry [with a large SUSY desert], and
[3] nucleon decay. The first prediction has already been verified. Perhaps
the next two will be seen soon. Whether or not Yukawa couplings unify is
more model dependent. Nevertheless, the 16 dimensional representation
of quarks and leptons in SO(10) is very compelling and may yet lead
to an understanding of fermion masses and mixing angles. GUTs also
make predictions for Yukawa coupling unification, they provide a natural
framework for neutrino masses and mixing angles, magnetic monopoles,
baryogenesis, etc. For a more comprehensive discussion of GUTs, see the
unabridged particle data book. In any event, the experimental verification
of the first three pillars of SUSY GUTs would forever change our view
of Nature. Moreover, the concomitant evidence for a vast SUSY desert
would expose a huge lever arm for discovery. For then it would become
clear that experiments probing the TeV scale could reveal physics at the
GUT scale and perhaps beyond.

Further discussion and references may be found in the full Review .
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19. STRUCTURE FUNCTIONS

Updated September 2013 by B. Foster (University of Hamburg/DESY),
A.D. Martin (University of Durham), and M.G. Vincter (Carleton
University).

This section has been abridged from the full version of the Review.

19.1. Deep inelastic scattering

High-energy lepton-nucleon scattering (deep inelastic scattering) plays
a key role in determining the partonic structure of the proton. The
process ℓN → ℓ′X is illustrated in Fig. 19.1. The filled circle in this figure
represents the internal structure of the proton which can be expressed in
terms of structure functions.

k

k

q

P, M W

Figure 19.1: Kinematic quantities for the description of deep
inelastic scattering. The quantities k and k′ are the four-momenta
of the incoming and outgoing leptons, P is the four-momentum of a
nucleon with mass M , and W is the mass of the recoiling system X .
The exchanged particle is a γ, W±, or Z; it transfers four-momentum
q = k − k′ to the nucleon.

Invariant quantities:

ν =
q · P

M
= E − E′ is the lepton’s energy loss in the nucleon rest frame

(in earlier literature sometimes ν = q · P ). Here, E and E′

are the initial and final lepton energies in the nucleon rest
frame.

Q2 = −q2 = 2(EE′
−

−→
k ·

−→
k ′) − m2

ℓ − m2
ℓ′

where mℓ(mℓ′) is the initial

(final) lepton mass. If EE′ sin2(θ/2) ≫ m2
ℓ , m2

ℓ′
, then

≈ 4EE′ sin2(θ/2), where θ is the lepton’s scattering angle with respect
to the lepton beam direction.

x =
Q2

2Mν
where, in the parton model, x is the fraction of the nucleon’s

momentum carried by the struck quark.

y =
q · P

k · P
=

ν

E
is the fraction of the lepton’s energy lost in the nucleon

rest frame.

W 2 = (P + q)2 = M2 + 2Mν − Q2 is the mass squared of the system X
recoiling against the scattered lepton.

s = (k + P )2 =
Q2

xy
+ M2 + m2

ℓ is the center-of-mass energy squared of the

lepton-nucleon system.

The process in Fig. 19.1 is called deep (Q2
≫ M2) inelastic (W 2

≫ M2)
scattering (DIS). In what follows, the masses of the initial and scattered
leptons, mℓ and mℓ′ , are neglected.
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19.1.1. DIS cross sections :
d2σ

dx dy
= x (s − M2)

d2σ

dx dQ2
=

2π Mν

E′

d2σ

dΩNrest dE′
. (19.1)

In lowest-order perturbation theory, the cross section for the scattering of
polarized leptons on polarized nucleons can be expressed in terms of the
products of leptonic and hadronic tensors associated with the coupling of
the exchanged bosons at the upper and lower vertices in Fig. 19.1 (see
Refs. 1–4)

d2σ

dxdy
=

2πyα2

Q4

∑

j

ηj L
µν
j W j

µν . (19.2)

For neutral-current processes, the summation is over j = γ, Z and γZ
representing photon and Z exchange and the interference between them,
whereas for charged-current interactions there is only W exchange,
j = W . (For transverse nucleon polarization, there is a dependence on
the azimuthal angle of the scattered lepton.) The lepton tensor Lµν is
associated with the coupling of the exchange boson to the leptons. For
incoming leptons of charge e = ±1 and helicity λ = ±1,

Lγ
µν = 2

(

kµk′ν + k′µkν − (k · k′ − m2
ℓ )gµν − iλεµναβkαk′β

)

,

LγZ
µν =(ge

V + eλge
A) Lγ

µν , LZ
µν = (ge

V + eλge
A)2 Lγ

µν ,

LW
µν =(1 + eλ)2 Lγ

µν , (19.3)

where ge
V = −

1
2

+ 2 sin2 θW , ge
A = −

1
2

.

Although here the helicity formalism is adopted, an alternative approach
is to express the tensors in Eq. (19.3) in terms of the polarization of the
lepton.

The factors ηj in Eq. (19.2) denote the ratios of the corresponding
propagators and couplings to the photon propagator and coupling squared

ηγ = 1 ; ηγZ =

(

GF M2
Z

2
√

2πα

) (

Q2

Q2 + M2
Z

)

;

ηZ = η2
γZ ; ηW = 1

2

(

GF M2
W

4πα

Q2

Q2 + M2
W

)2

. (19.4)

The hadronic tensor, which describes the interaction of the appropriate
electroweak currents with the target nucleon, is given by

Wµν =
1

4π

∫

d4z eiq·z
〈

P, S
∣
∣
∣

[

J†

µ(z), Jν(0)
]∣
∣
∣ P, S

〉

, (19.5)

where S denotes the nucleon-spin 4-vector, with S2 = −M2 and S ·P = 0.

19.2. Structure functions of the proton

The structure functions are defined in terms of the hadronic tensor (see
Refs. 1–3)

Wµν =

(

−gµν +
qµqν

q2

)

F1(x, Q2) +
P̂µP̂ν

P · q
F2(x, Q2)

− iεµναβ
qαPβ

2P · q
F3(x, Q2)

+ iεµναβ
qα

P · q

[

Sβg1(x, Q2) +

(

Sβ
−

S · q

P · q
Pβ

)

g2(x, Q2)

]
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+
1

P · q

[

1
2

(

P̂µŜν + ŜµP̂ν

)

−

S · q

P · q
P̂µP̂ν

]

g3(x, Q2)

+
S · q

P · q

[

P̂µP̂ν

P · q
g4(x, Q2) +

(

−gµν +
qµqν

q2

)

g5(x, Q2)

]

(19.6)

where

P̂µ = Pµ −

P · q

q2 qµ, Ŝµ = Sµ −

S · q

q2 qµ . (19.7)

The cross sections for neutral- and charged-current deep inelastic
scattering on unpolarized nucleons can be written in terms of the structure
functions in the generic form

d2σi

dxdy
=

4πα2

xyQ2
ηi

{(

1 − y −

x2y2M2

Q2

)

F i
2

+ y2xF i
1 ∓

(

y −

y2

2

)

xF i
3

}

, (19.8)

where i = NC, CC corresponds to neutral-current (eN → eX) or charged-
current (eN → νX or νN → eX) processes, respectively. For incoming

neutrinos, LW
µν of Eq. (19.3) is still true, but with e, λ corresponding to

the outgoing charged lepton. In the last term of Eq. (19.8), the − sign is
taken for an incoming e+ or ν and the + sign for an incoming e− or ν.
The factor ηNC = 1 for unpolarized e± beams, whereas

ηCC = (1 ± λ)2ηW (19.9)

with ± for ℓ±; and where λ is the helicity of the incoming lepton and
ηW is defined in Eq. (19.4); for incoming neutrinos ηCC = 4ηW . The CC
structure functions, which derive exclusively from W exchange, are

FCC
1 = FW

1 , FCC
2 = FW

2 , xFCC
3 = xFW

3 . (19.10)

The NC structure functions F
γ
2 , F

γZ
2 , FZ

2 are, for e±N → e±X , given by
Ref. 5,

FNC
2 = F γ

2 − (ge
V ±λge

A)ηγZF γZ
2 + (ge 2

V +ge 2
A ±2λge

V ge
A) ηZFZ

2 (19.11)

and similarly for FNC
1 , whereas

xFNC
3 = −(ge

A±λge
V )ηγZxF

γZ
3 +[2ge

V ge
A±λ(ge 2

V +ge 2
A )]ηZxFZ

3 . (19.12)

The polarized cross-section difference

∆σ = σ(λn = −1, λℓ) − σ(λn = 1, λℓ) , (19.13)

where λℓ, λn are the helicities (±1) of the incoming lepton and nucleon,
respectively, may be expressed in terms of the five structure functions
g1,...5(x, Q2) of Eq. (19.6). Thus,

d2∆σi

dxdy
=

8πα2

xyQ2
ηi

{

−λℓy

(

2 − y − 2x2y2 M2

Q2

)

xgi
1 + λℓ4x3y2 M2

Q2
gi
2

+ 2x2y
M2

Q2

(

1 − y − x2y2 M2

Q2

)

gi
3

−

(

1 + 2x2y
M2

Q2

) [(

1 − y − x2y2 M2

Q2

)

gi
4 + xy2gi

5

]}

(19.14)
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with i = NC or CC as before. In the M2/Q2
→ 0 limit, Eq. (19.8) and

Eq. (19.14) may be written in the form

d2σi

dxdy
=

2πα2

xyQ2 ηi
[

Y+F i
2 ∓ Y−xF i

3 − y2F i
L

]

,

d2∆σi

dxdy
=

4πα2

xyQ2
ηi

[

−Y+gi
4 ∓ Y−2xgi

1 + y2gi
L

]

, (19.16)

with i = NC or CC, where Y± = 1 ± (1 − y)2 and

F i
L = F i

2 − 2xF i
1 , gi

L = gi
4 − 2xgi

5 . (19.17)

In the naive quark-parton model, the analogy with the Callan-Gross
relations [6] F i

L = 0, are the Dicus relations [7] gi
L = 0. Therefore,

there are only two independent polarized structure functions: g1 (parity
conserving) and g5 (parity violating), in analogy with the unpolarized
structure functions F1 and F3.

19.2.1. Structure functions in the quark-parton model :

In the quark-parton model [8,9], contributions to the structure
functions F i and gi can be expressed in terms of the quark distribution
functions q(x, Q2) of the proton, where q = u, u, d, d etc.The quantity
q(x, Q2)dx is the number of quarks (or antiquarks) of designated flavor
that carry a momentum fraction between x and x + dx of the proton’s
momentum in a frame in which the proton momentum is large.

For the neutral-current processes ep → eX ,
[

F γ
2 , F γZ

2 , FZ
2

]

= x
∑

q

[

e2
q , 2eqg

q
V

, gq 2
V

+ gq 2
A

]

(q + q) ,

[

F
γ
3 , F

γZ
3 , FZ

3

]

=
∑

q

[
0, 2eqg

q
A, 2g

q
V g

q
A

]
(q − q) ,

[

gγ
1 , gγZ

1 , gZ
1

]

= 1
2

∑

q

[

e2
q , 2eqg

q
V , gq 2

V + gq 2
A

]

(∆q + ∆q) ,

[

g
γ
5 , g

γZ
5 , gZ

5

]

=
∑

q

[
0, eqg

q
A, g

q
V g

q
A

]
(∆q − ∆q) , (19.18)

where g
q
V = ±

1
2
− 2eq sin2 θW and g

q
A = ±

1
2
, with ± according to whether

q is a u− or d−type quark respectively. The quantity ∆q is the difference
q ↑ −q ↓ of the distributions with the quark spin parallel and antiparallel
to the proton spin.

For the charged-current processes e−p → νX and νp → e+X , the
structure functions are:

FW−

2 = 2x(u + d + s + c . . .) , FW−

3 = 2(u − d − s + c . . .) , (19.19)

gW−

1 = (∆u + ∆d + ∆s + ∆c . . .) , gW−

5 = (−∆u + ∆d + ∆s − ∆c . . .) ,

where only the active flavors are to be kept and where CKM mixing has
been neglected. For e+p → νX and νp → e−X , the structure functions

FW+

, gW+

are obtained by the flavor interchanges d ↔ u, s ↔ c in the

expressions for FW−

, gW−

. The structure functions for scattering on a
neutron are obtained from those of the proton by the interchange u ↔ d.
For both the neutral- and charged-current processes, the quark-parton
model predicts 2xF i

1 = F i
2 and gi

4 = 2xgi
5.

Further discussion may be found in the full Review of Particle Physics .
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Figure 19.8: The proton structure function F
p
2

measured in
electromagnetic scattering of electrons and positrons on protons
(collider experiments H1 and ZEUS for Q2

≥ 2 GeV2), in the
kinematic domain of the HERA data (see Fig. 19.10 for data at
smaller x and Q2), and for electrons (SLAC) and muons (BCDMS,
E665, NMC) on a fixed target. Statistical and systematic errors
added in quadrature are shown. The data are plotted as a function
of Q2 in bins of fixed x. Some points have been slightly offset in
Q2 for clarity. The H1+ZEUS combined binning in x is used in this
plot; all other data are rebinned to the x values of these data. For
the purpose of plotting, F p

2
has been multiplied by 2ix , where ix is

the number of the x bin, ranging from ix = 1 (x = 0.85) to ix = 24
(x = 0.00005).
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22. BIG-BANG COSMOLOGY

Revised September 2013 by K.A. Olive (University of Minnesota) and
J.A. Peacock (University of Edinburgh).

22.1. Introduction to Standard Big-Bang Model

The observed expansion of the Universe [1–3] is a natural (almost
inevitable) result of any homogeneous and isotropic cosmological model
based on general relativity. In order to account for the possibility that the
abundances of the elements had a cosmological origin, Alpher and Herman
proposed that the early Universe which was once very hot and dense
(enough so as to allow for the nucleosynthetic processing of hydrogen),
and has expanded and cooled to its present state [4,5]. In 1948, Alpher
and Herman predicted that a direct consequence of this model is the
presence of a relic background radiation with a temperature of order a
few K [6,7]. It was the observation of the 3 K background radiation that
singled out the Big-Bang model as the prime candidate to describe our
Universe. Subsequent work on Big-Bang nucleosynthesis further confirmed
the necessity of our hot and dense past. These relativistic cosmological
models face severe problems with their initial conditions, to which the best
modern solution is inflationary cosmology.

22.1.1. The Robertson-Walker Universe :
The observed homogeneity and isotropy enable us to describe the overall

geometry and evolution of the Universe in terms of two cosmological
parameters accounting for the spatial curvature and the overall expansion
(or contraction) of the Universe. These two quantities appear in the most
general expression for a space-time metric which has a (3D) maximally
symmetric subspace of a 4D space-time, known as the Robertson-Walker
metric:

ds2 = dt2 − R2(t)

[
dr2

1 − kr2
+ r2 (dθ2 + sin2 θ dφ2)

]

. (22.1)

Note that we adopt c = 1 throughout. By rescaling the radial coordinate,
we can choose the curvature constant k to take only the discrete values
+1, −1, or 0 corresponding to closed, open, or spatially flat geometries.

22.1.2. The redshift :
The cosmological redshift is a direct consequence of the Hubble

expansion, determined by R(t). A local observer detecting light from a
distant emitter sees a redshift in frequency. We can define the redshift as

z ≡

ν1 − ν2

ν2
≃ v12 , (22.3)

where ν1 is the frequency of the emitted light, ν2 is the observed frequency
and v12 is the relative velocity between the emitter and the observer.
While the definition, z = (ν1 − ν2)/ν2 is valid on all distance scales,
relating the redshift to the relative velocity in this simple way is only true
on small scales (i.e., less than cosmological scales) such that the expansion
velocity is non-relativistic. For light signals, we can use the metric given
by Eq. (22.1) and ds2 = 0 to write

1 + z =
ν1

ν2
=

R2

R1
. (22.5)

This result does not depend on the non-relativistic approximation.

22.1.3. The Friedmann-Lemâıtre equations of motion :
The cosmological equations of motion are derived from Einstein’s

equations
Rµν −

1
2gµνR = 8πGNTµν + Λgµν . (22.6)



232 22. Big-Bang cosmology

Gliner [17] and Zeldovich [18] have pioneered the modern view, in
which the Λ term is taken to the rhs and interpreted as an effective
energy–momentum tensor Tµν for the vacuum of Λgµν/8πGN. It is
common to assume that the matter content of the Universe is a perfect
fluid, for which

Tµν = −pgµν + (p + ρ)uµuν , (22.7)

where gµν is the space-time metric described by Eq. (22.1), p is the
isotropic pressure, ρ is the energy density and u = (1, 0, 0, 0) is the
velocity vector for the isotropic fluid in co-moving coordinates. With the
perfect fluid source, Einstein’s equations lead to the Friedmann-Lemâıtre
equations

H2
≡

(

Ṙ

R

)2

=
8π GN ρ

3
−

k

R2
+

Λ

3
, (22.8)

and R̈

R
=

Λ

3
−

4πGN

3
(ρ + 3p) , (22.9)

where H(t) is the Hubble parameter and Λ is the cosmological constant.
The first of these is sometimes called the Friedmann equation. Energy
conservation via T

µν
;µ = 0, leads to a third useful equation

ρ̇ = −3H (ρ + p) . (22.10)
Eq. (22.10) can also be simply derived as a consequence of the first law
of thermodynamics. For Λ = 0, it is clear that the Universe must be
expanding or contracting.

22.1.4. Definition of cosmological parameters :
The Friedmann equation can be used to define a critical density such

that k = 0 when Λ = 0,

ρc ≡

3H2

8π GN

= 1.88 × 10−26 h2 kg m−3

= 1.05 × 10−5 h2 GeV cm−3 ,

(22.11)

where the scaled Hubble parameter, h, is defined by

H ≡ 100 h km s−1 Mpc−1

⇒ H−1 = 9.78 h−1 Gyr

= 2998 h−1 Mpcρc .

(22.12)

The cosmological density parameter Ωtot is defined as the energy density
relative to the critical density,

Ωtot = ρ/ρc . (22.13)
Note that one can now rewrite the Friedmann equation as

k/R2 = H2(Ωtot − 1) . (22.14)

From Eq. (22.14), one can see that when Ωtot > 1, k = +1 and the
Universe is closed, when Ωtot < 1, k = −1 and the Universe is open, and
when Ωtot = 1, k = 0, and the Universe is spatially flat.

It is often necessary to distinguish different contributions to the
density. It is therefore convenient to define present-day density parameters
for pressureless matter (Ωm) and relativistic particles (Ωr), plus the
quantity ΩΛ = Λ/3H2. In more general models, we may wish to drop the
assumption that the vacuum energy density is constant, and we therefore
denote the present-day density parameter of the vacuum by Ωv. The
Friedmann equation then becomes

k/R2
0 = H2

0 (Ωm + Ωr + Ωv − 1) , (22.15)
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where the subscript 0 indicates present-day values. Thus, it is the sum of
the densities in matter, relativistic particles, and vacuum that determines
the overall sign of the curvature. Note that the quantity −k/R2

0H
2
0 is

sometimes (unfortunately) referred to as Ωk.

22.1.5. Standard Model solutions :
During inflation and again today the expansion rate for the Universe

is accelerating, and domination by a cosmological constant or some other
form of dark energy should be considered.

Let us first assume a general equation of state parameter for a single
component, w = p/ρ which is constant. In this case, Eq. (22.10) can be

written as ρ̇ = −3(1 + w)ρṘ/R and is easily integrated to yield

ρ ∝ R−3(1+w) . (22.16)
Note that at early times when R is small, k/R2 in the Friedmann equation
can be neglected so long as w > −1/3. Curvature domination occurs at
rather late times (if a cosmological constant term does not dominate
sooner). For w 6= −1,

R(t) ∝ t2/[3(1+w)] . (22.17)

22.1.5.2. A Radiation-dominated Universe:

In the early hot and dense Universe, it is appropriate to assume an
equation of state corresponding to a gas of radiation (or relativistic
particles) for which w = 1/3. In this case, Eq. (22.16) becomes ρ ∝ R−4.
Similarly, one can substitute w = 1/3 into Eq. (22.17) to obtain

R(t) ∝ t1/2 ; H = 1/2t . (22.18)

22.1.5.3. A Matter-dominated Universe:

Non-relativistic matter eventually dominates the energy density over
radiation. A pressureless gas (w = 0) leads to the expected dependence
ρ ∝ R−3, and, if k = 0, we get

R(t) ∝ t2/3 ; H = 2/3t . (22.19)

If there is a dominant source of vacuum energy, acting as a cosmological
constant with equation of state w = −1. This leads to an exponential
expansion of the Universe

R(t) ∝ e
√

Λ/3t . (22.20)
The equation of state of the vacuum need not be the w = −1 of Λ, and may
not even be constant [19–21]. There is now much interest in the more
general possibility of a dynamically evolving vacuum energy, for which the
name ‘dark energy’ has become commonly used. A variety of techniques
exist whereby the vacuum density as a function of time may be measured,
usually expressed as the value of w as a function of epoch [22,23]. The
best current measurement for the equation of state (assumed constant,
but without assuming zero curvature) is w = −1.00 ± 0.06 [24]. Unless
stated otherwise, we will assume that the vacuum energy is a cosmological
constant with w = −1 exactly.

The presence of vacuum energy can dramatically alter the fate of the
Universe. For example, if Λ < 0, the Universe will eventually recollapse
independent of the sign of k. For large values of Λ > 0 (larger than
the Einstein static value needed to halt any cosmological expansion or
contraction), even a closed Universe will expand forever. One way to
quantify this is the deceleration parameter, q0, defined as

q0 = −

RR̈

Ṙ2

∣
∣
∣
∣
∣
0

=
1

2
Ωm + Ωr +

(1 + 3w)

2
Ωv . (22.21)
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This equation shows us that w < −1/3 for the vacuum may lead to
an accelerating expansion. Current data indicate that vacuum energy is
indeed the largest contributor to the cosmological density budget, with
Ωv = 0.68± 0.02 and Ωm = 0.32± 0.01 if k = 0 is assumed (Planck) [32].

The existence of this constituent is without doubt the greatest puzzle
raised by the current cosmological model; the final section of this review
discusses some of the ways in which the vacuum-energy problem is being
addressed.

22.2. Introduction to Observational Cosmology

22.2.1. Fluxes, luminosities, and distances :
The key quantities for observational cosmology can be deduced quite

directly from the metric.
(1) The proper transverse size of an object seen by us to subtend an

angle dψ is its comoving size dψ r times the scale factor at the time of
emission:

dℓ = dψ R0r/(1 + z) . (22.22)

(2) The apparent flux density of an object is deduced by allowing
its photons to flow through a sphere of current radius R0r; but photon
energies and arrival rates are redshifted, and the bandwidth dν is reduced.
These relations lead to the following common definitions:

angular-diameter distance: DA = (1 + z)−1R0r

luminosity distance: DL = (1 + z) R0r .
(22.24)

These distance-redshift relations are expressed in terms of observables
by using the equation of a null radial geodesic plus the Friedmann
equation:

R0

R(t)
dt =

1

H(z)
dz =

1

H0

[

(1 − Ωm − Ωv − Ωr)(1 + z)2

+ Ωv(1 + z)3+3w + Ωm(1 + z)3 + Ωr(1 + z)4
]
−1/2

dz .

(22.25)

The main scale for the distance here is the Hubble length, 1/H0.
In combination with Cepheid data from the HST and a direct

geometrical distance to the maser galaxy NGC4258, SNe results
extend the distance ladder to the point where deviations from uniform
expansion are negligible, leading to the best existing direct value for H0:
72.0 ± 3.0 km s−1Mpc−1 [33]. Better still, the analysis of high-z SNe has
allowed a simple and direct test of cosmological geometry to be carried
out.

22.2.3. Age of the Universe :

The dynamical result for the age of the Universe may be written as

H0t0 =

∫
∞

0

dz

(1 + z) [(1 + z)2(1 + Ωmz) − z(2 + z)Ωv]1/2
, (22.28)

where we have neglected Ωr and chosen w = −1. Over the range of interest
(0.1 <

∼
Ωm

<
∼

1, |Ωv|
<
∼

1), this exact answer may be approximated to a

few % accuracy by
H0t0 ≃

2
3 (0.7Ωm + 0.3 − 0.3Ωv)−0.3 . (22.29)

For the special case that Ωm + Ωv = 1, the integral in Eq. (22.28) can be
expressed analytically as

H0t0 =
2

3
√

Ωv
ln

1 +
√

Ωv
√

1 − Ωv
(Ωm < 1) . (22.30)
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The present consensus favors ages for the oldest clusters of about
12 Gyr [37,38].

These methods are all consistent with the age deduced from studies
of structure formation, using the microwave background and large-scale
structure: t0 = 13.81± 0.05 Gyr [32], where the extra accuracy comes at
the price of assuming the Cold Dark Matter model to be true.

22.3. The Hot Thermal Universe

22.3.1. Thermodynamics of the early Universe :
Through much of the radiation-dominated period, thermal equilibrium

is established by the rapid rate of particle interactions relative to the
expansion rate of the Universe. In equilibrium, it is straightforward to
compute the thermodynamic quantities, ρ, p, and the entropy density, s.

In the Standard Model, a chemical potential is often associated with
baryon number, and since the net baryon density relative to the photon
density is known to be very small (of order 10−10), we can neglect any
such chemical potential when computing total thermodynamic quantities.

For photons, we have (in units where ~ = kB = 1)

ργ =
π2

15
T 4 ; pγ =

1

3
ργ ; sγ =

4ργ

3T
; nγ =

2ζ(3)

π2
T 3 . (22.39)

Eq. (22.10) can be converted into an equation for entropy conservation,

d(sR3)/dt = 0 . (22.40)
For radiation, this corresponds to the relationship between expansion and
cooling, T ∝ R−1 in an adiabatically expanding universe. Note also that
both s and nγ scale as T 3.

22.3.2. Radiation content of the Early Universe :
At the very high temperatures associated with the early Universe,

massive particles are pair produced, and are part of the thermal bath.
If for a given particle species i we have T ≫ mi, then we can neglect
the mass and the thermodynamic quantities are easily computed. In
general, we can approximate the energy density (at high temperatures) by
including only those particles with mi ≪ T . In this case, we have

ρ =

(
∑

B

gB +
7

8

∑

F

gF

)

π2

30
T 4

≡

π2

30
N(T )T 4 , (22.41)

where gB(F ) is the number of degrees of freedom of each boson (fermion)

and the sum runs over all boson and fermion states with m ≪ T .
Eq. (22.41) defines the effective number of degrees of freedom, N(T ), by
taking into account new particle degrees of freedom as the temperature is
raised.

The value of N(T ) at any given temperature depends on the particle
physics model. In the standard SU(3)×SU(2)×U(1) model, we can specify
N(T ) up to temperatures of O(100) GeV. The change in N (ignoring mass
effects) can be seen in the table below. At higher temperatures, N(T ) will
be model-dependent.

In the radiation-dominated epoch, Eq. (22.10) can be integrated
(neglecting the T -dependence of N) giving us a relationship between the
age of the Universe and its temperature

t =

(
90

32π3GNN(T )

)1/2

T−2 . (22.42)

Put into a more convenient form
t T 2

MeV = 2.4[N(T )]−1/2 , (22.43)
where t is measured in seconds and TMeV in units of MeV.
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Temperature New Particles 4N(T )

T < me γ’s + ν’s 29
me < T < mµ e± 43

mµ < T < mπ µ± 57

mπ < T < T †

c π’s 69
Tc < T < mstrange π’s + u, ū, d, d̄ + gluons 205
ms < T < mcharm s, s̄ 247
mc < T < mτ c, c̄ 289
mτ < T < mbottom τ± 303
mb < T < mW,Z b, b̄ 345

mW,Z < T < mHiggs W±, Z 381

mH < T < mtop H0 385
mt < T t, t̄ 427

†Tc corresponds to the confinement-deconfinement transition between
quarks and hadrons.

22.3.7. Nucleosynthesis :
An essential element of the standard cosmological model is Big-Bang

nucleosynthesis (BBN), the theory which predicts the abundances of
the light element isotopes D, 3He, 4He, and 7Li. Nucleosynthesis takes
place at a temperature scale of order 1 MeV. The nuclear processes lead
primarily to 4He, with a primordial mass fraction of about 25%. Lesser
amounts of the other light elements are produced: about 10−5 of D and
3He and about 10−10 of 7Li by number relative to H. The abundances of
the light elements depend almost solely on one key parameter, the baryon-
to-photon ratio, η. The nucleosynthesis predictions can be compared with
observational determinations of the abundances of the light elements.
Consistency between theory and observations driven primarily by recent
D/H measurements [69] leads to a range of

5.7 × 10−10 < η < 6.7 × 10−10 . (22.54)
η is related to the fraction of Ω contained in baryons, Ωb

Ωb = 3.66 × 107η h−2 , (22.55)
or 1010η = 274Ωbh2.

22.4. The Universe at late times

We are beginning to inventory the composition of the Universe:

total: Ω = 1.001± 0.003 (from CMB anisotropy)

matter: Ωm = 0.32 ± 0.02
baryons: Ωb = 0.049 ± 0.001

CDM: ΩCDM = Ωm − Ωb

neutrinos: 0.001 <
∼ Ων

<
∼ 0.05

dark energy: Ωv = 0.68 ± 0.02
photons: Ωγ = 4.6 × 10−5

Further discussion and all references may be found in the full Review of
Particle Physics. The numbering of references and equations used here
corresponds to that version.
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24. THE COSMOLOGICAL PARAMETERS

Updated November 2013, by O. Lahav (University College London) and
A.R. Liddle (University of Edinburgh).

24.1. Parametrizing the Universe

The term ‘cosmological parameters’ is forever increasing in its scope,
and nowadays often includes the parameterization of some functions, as
well as simple numbers describing properties of the Universe. The original
usage referred to the parameters describing the global dynamics of the
Universe, such as its expansion rate and curvature. Also now of great
interest is how the matter budget of the Universe is built up from its
constituents: baryons, photons, neutrinos, dark matter, and dark energy.
We need to describe the nature of perturbations in the Universe, through
global statistical descriptors such as the matter and radiation power
spectra. There may also be parameters describing the physical state of the
Universe, such as the ionization fraction as a function of time during the
era since recombination. Typical comparisons of cosmological models with
observational data now feature between five and ten parameters.

24.1.1. The global description of the Universe :

The complete present state of the homogeneous Universe can be
described by giving the current values of all the density parameters
and the Hubble constant h. A typical collection would be baryons Ωb,
photons Ωγ , neutrinos Ων , and cold dark matter Ωc. These parameters
also allow us to track the history of the Universe back in time, at
least until an epoch where interactions allow interchanges between the
densities of the different species, which is believed to have last happened
at neutrino decoupling, shortly before Big Bang Nucleosynthesis (BBN).
To probe further back into the Universe’s history requires assumptions
about particle interactions, and perhaps about the nature of physical laws
themselves.

24.1.3. The standard cosmological model :

Observations are consistent with spatial flatness, and indeed the
inflation models so far described automatically generate negligible spatial
curvature, so we can set k = 0; the density parameters then must sum to
unity, and so one can be eliminated. The neutrino energy density is often
not taken as an independent parameter. Provided the neutrino sector has
the standard interactions, the neutrino energy density, while relativistic,
can be related to the photon density using thermal physics arguments, and
a minimal assumption takes the neutrino mass sum to be that of the lowest
mass solution to the neutrino oscillation constraints, namely 0.06 eV. In
addition, there is no observational evidence for the existence of tensor
perturbations (though the upper limits are fairly weak), and so r could
be set to zero. This leaves seven parameters, which is the smallest set
that can usefully be compared to the present cosmological data set. This
model is referred to by various names, including ΛCDM, the concordance
cosmology, and the standard cosmological model.

Of these parameters, only Ωr is accurately measured directly. The
radiation density is dominated by the energy in the CMB, and the
COBE satellite FIRAS experiment determined its temperature to be
T = 2.7255 ± 0.0006 K [10], corresponding to Ωr = 2.47 × 10−5h−2. The
minimum number of cosmological parameters varied in fits to data is six,
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though as described below there may additionally be many ‘nuisance’
parameters necessary to describe astrophysical processes influencing the
data.

24.2. Extensions to the standard model

24.2.1. More general perturbations :

The standard cosmology assumes adiabatic, Gaussian perturbations.
Adiabaticity means that all types of material in the Universe share a
common perturbation, so that if the space-time is foliated by constant-
density hypersurfaces, then all fluids and fields are homogeneous on those
slices, with the perturbations completely described by the variation of
the spatial curvature of the slices. Gaussianity means that the initial
perturbations obey Gaussian statistics, with the amplitudes of waves of
different wavenumbers being randomly drawn from a Gaussian distribution
of width given by the power spectrum. Note that gravitational instability
generates non-Gaussianity; in this context, Gaussianity refers to a property
of the initial perturbations, before they evolve.

The simplest inflation models, based on one dynamical field, predict
adiabatic perturbations and a level of non-Gaussianity which is too small
to be detected by any experiment so far conceived. For present data, the
primordial spectra are usually assumed to be power laws.

24.2.1.2. Isocurvature perturbations:

An isocurvature perturbation is one which leaves the total density
unperturbed, while perturbing the relative amounts of different materials.
If the Universe contains N fluids, there is one growing adiabatic mode and
N − 1 growing isocurvature modes (for reviews see Ref. 12 and Ref. 7).
These can be excited, for example, in inflationary models where there are
two or more fields which acquire dynamically-important perturbations.
If one field decays to form normal matter, while the second survives to
become the dark matter, this will generate a cold dark matter isocurvature
perturbation.

24.3. Probes

24.3.1. Direct measures of the Hubble constant :

One of the most reliable results on the Hubble constant comes
from the Hubble Space Telescope Key Project [19]. This study
used the empirical period–luminosity relations for Cepheid variable
stars to obtain distances to 31 galaxies, and calibrated a number
of secondary distance indicators—Type Ia Supernovae (SNe Ia), the
Tully–Fisher relation, surface-brightness fluctuations, and Type II
Supernovae—measured over distances of 400 to 600 Mpc. They estimated
H0 = 72 ± 3 (statistical) ± 7 (systematic) km s−1 Mpc−1.

A recent study [20] of over 600 Cepheids in the host galaxies of
eight recent SNe Ia, observed with an improved camera on board the
Hubble Space Telescope, was used to calibrate the magnitude–redshift
relation for 240 SNe Ia. This yielded an even more precise figure,
H0 = 73.8 ± 2.4 kms−1 Mpc−1 (including both statistical and systematic
errors). The major sources of uncertainty in this result are due to the
heavy element abundance of the Cepheids and the distance to the fiducial
nearby galaxy, the Large Magellanic Cloud, relative to which all Cepheid
distances are measured.
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The indirect determination of H0 by the Planck Collaboration [2] found
a lower value, H0 = 67.3 ± 1.2 km s−1 Mpc−1. As discussed in that paper,
there is strong degeneracy of H0 with other parameters, e.g. Ωm and
the neutrino mass. The tension between the H0 from Planck and the
traditional cosmic distance-ladder methods is under investigation.

24.3.4.4. Limits on neutrino mass from galaxy surveys and other probes:

Large-scale structure data constraints on Ων due to the neutrino
free-streaming effect [41]. Presently there is no clear detection, and
upper limits on neutrino mass are commonly estimated by comparing the
observed galaxy power spectrum with a four-component model of baryons,
cold dark matter, a cosmological constant, and massive neutrinos. Such
analyses also assume that the primordial power spectrum is adiabatic,
scale-invariant, and Gaussian. Potential systematic effects include biasing
of the galaxy distribution and non-linearities of the power spectrum.
An upper limit can also be derived from CMB anisotropies alone, while
additional cosmological data-sets can improve the results.

Results using a photometric redshift sample of LRGs combined with
WMAP, BAO, Hubble constant and SNe Ia data gave a 95% confidence
upper limit on the total neutrino mass of 0.28eV [42]. Recent spectroscopic
redshift surveys, with more accurate redshifts but fewer galaxies, yielded
similar upper limits for assumed flat ΛCDM model and additional
data-sets: 0.34eV from BOSS [43] and 0.29eV from WiggleZ [44]. Planck

+ WMAP polarization + highL CMB [2] give an upper limit of 0.66eV,
and with additional BAO data 0.23eV. The effective number of relativistic
degrees of freedom is Neff = 3.30 ± 0.27 in good agreement with the
standard value Neff = 3.046. While the latest cosmological data do not yet
constrain the sum of neutrino masses to below 0.2eV, as the lower limit on
neutrino mass from terrestrial experiments is 0.06eV, it looks promising
that future cosmological surveys will detect the neutrino mass.

24.4. Bringing observations together

The most powerful data source is the CMB, which on its own supports
all these main tenets. Values for some parameters, as given in Ade et al. [2]
and Hinshaw et al. [4], are reproduced in Table 24.1. These particular
results presume a flat Universe.

One parameter which is very robust is the age of the Universe, as there
is a useful coincidence that for a flat Universe the position of the first peak
is strongly correlated with the age. The CMB data give 13.81 ± 0.05 Gyr
(assuming flatness). This is in good agreement with the ages of the oldest
globular clusters and radioactive dating.

The baryon density Ωb is now measured with high accuracy from
CMB data alone, and is consistent with the determination from BBN;
Fields et al. in this volume quote the range 0.021 ≤ Ωbh2

≤ 0.025 (95%
confidence).

While ΩΛ is measured to be non-zero with very high confidence, there
is no evidence of evolution of the dark energy density. Mortonson et al. in
this volume quote the constraint w = −1.13+0.13

−0.11 on a constant equation
of state from a compilation of CMB and BAO data, with the cosmological
constant case w = −1 giving an excellent fit to the data. Allowing more
complicated forms of dark energy weakens the limits.

The data provide strong support for the main predictions of the
simplest inflation models: spatial flatness and adiabatic, Gaussian, nearly
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Table 24.1: Parameter constraints reproduced from Ref. 2 (Table
5) and Ref. 4 (Table 4), with some additional rounding. All columns
assume the ΛCDM cosmology with a power-law initial spectrum, no
tensors, spatial flatness, and a cosmological constant as dark energy.
Above the line are the six parameter combinations actually fit to the
data in the Planck analysis (θMC is a measure of the sound horizon
at last scattering); those below the line are derived from these. Two
different data combinations including Planck are shown to highlight
the extent to which additional data improve constraints. The first
column is a combination of CMB data only — Planck temperature
plus WMAP polarization data plus high-resolution data from ACT
and SPT — while the second column adds BAO data from the SDSS,
BOSS, 6dF, and WiggleZ surveys. For comparison the last column
shows the final nine-year results from the WMAP satellite, combined
with the same BAO data and high-resolution CMB data (which they
call eCMB). Uncertainties are shown at 68% confidence.

Planck+WP Planck+WP WMAP9+eCMB

+highL +highL+BAO +BAO

Ωbh2 0.02207± 0.00027 0.02214± 0.00024 0.02211± 0.00034

Ωch
2 0.1198± 0.0026 0.1187± 0.0017 0.1162± 0.0020

100 θMC 1.0413± 0.0006 1.0415± 0.0006 −

ns 0.958± 0.007 0.961 ± 0.005 0.958± 0.008

τ 0.091+0.013
−0.014 0.092 ± 0.013 0.079+0.011

−0.012

ln(1010∆2
R

) 3.090± 0.025 3.091 ± 0.025 3.212± 0.029

h 0.673± 0.012 0.678 ± 0.008 0.688± 0.008

σ8 0.828± 0.012 0.826 ± 0.012 0.822+0.013
−0.014

Ωm 0.315+0.016
−0.017 0.308 ± 0.010 0.293± 0.010

ΩΛ 0.685+0.017
−0.016 0.692 ± 0.010 0.707± 0.010

scale-invariant density perturbations. But it is disappointing that there is
no sign of primordial gravitational waves, with the CMB data compilation
providing an upper limit r < 0.11 at 95% confidence [2] (weakening to
0.26 if running is allowed). The spectral index is clearly required to be less
than one by this data, though the strength of that conclusion can weaken
if additional parameters are included in the model fits.

For further details and all references, see the full Review of Particle

Physics. See also “Astrophysical Constants,” Table 2.1 in this Booklet.
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25. DARK MATTER

Revised September 2013 by M. Drees (Bonn University) and G. Gerbier
(Saclay, CEA).

25.1. Theory

25.1.1. Evidence for Dark Matter :

The existence of Dark (i.e., non-luminous and non-absorbing) Matter
(DM) is by now well established [1,2]. An important example is the
measurement of galactic rotation curves. The rotational velocity v of an
object on a stable Keplerian orbit with radius r around a galaxy scales
like v(r) ∝

√
M(r)/r, where M(r) is the mass inside the orbit. If r lies

outside the visible part of the galaxy and mass tracks light, one would
expect v(r) ∝ 1/

√

r. Instead, in most galaxies one finds that v becomes
approximately constant out to the largest values of r where the rotation
curve can be measured. This implies the existence of a dark halo, with
mass density ρ(r) ∝ 1/r2, i.e., M(r) ∝ r and a lower bound on the DM
mass density, ΩDM

>
∼

0.1.

The observation of clusters of galaxies tends to give somewhat larger
values, ΩDM ≃ 0.2. These observations include measurements of the
peculiar velocities of galaxies in the cluster, which are a measure of their
potential energy if the cluster is virialized; measurements of the X-ray

temperature of hot gas in the cluster, which again correlates with the
gravitational potential felt by the gas; and—most directly—studies of
(weak) gravitational lensing of background galaxies on the cluster.

The currently most accurate, if somewhat indirect, determination of
ΩDM comes from global fits of cosmological parameters to a variety of
observations; see the Section on Cosmological Parameters for details. For
example, using measurements of the anisotropy of the cosmic microwave
background (CMB) and of the spatial distribution of galaxies, Ref. 3 finds
a density of cold, non-baryonic matter

Ωnbmh2 = 0.1198± 0.0026 , (25.1)

where h is the Hubble constant in units of 100 km/(s·Mpc). Some part of
the baryonic matter density [3],

Ωbh2 = 0.02207± 0.00027 , (25.2)

may well contribute to (baryonic) DM, e.g., MACHOs [4] or cold molecular
gas clouds [5].

The most recent estimate finds a quite similar result for the smooth
component of the local Dark Matter density [6]: (0.39 ± 0.03)GeVcm−3.

25.1.2. Candidates for Dark Matter :

Candidates for non-baryonic DM in Eq. (25.1) must satisfy several
conditions: they must be stable on cosmological time scales (otherwise
they would have decayed by now), they must interact very weakly
with electromagnetic radiation (otherwise they wouldn’t qualify as dark

matter), and they must have the right relic density. Candidates include
primordial black holes, axions, sterile neutrinos, and weakly interacting
massive particles (WIMPs).

The existence of axions [10] was first postulated to solve the strong
CP problem of QCD; they also occur naturally in superstring theories.
They are pseudo Nambu-Goldstone bosons associated with the (mostly)
spontaneous breaking of a new global “Peccei-Quinn” (PQ) U(1) symmetry
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at scale fa; see the Section on Axions in this Review for further details.
Although very light, axions would constitute cold DM, since they were
produced non-thermally. At temperatures well above the QCD phase
transition, the axion is massless, and the axion field can take any value,
parameterized by the “misalignment angle” θi. At T <

∼
1 GeV, the axion

develops a mass ma ∼ fπmπ/fa due to instanton effects. Unless the axion
field happens to find itself at the minimum of its potential (θi = 0),
it will begin to oscillate once ma becomes comparable to the Hubble
parameter H . These coherent oscillations transform the energy originally
stored in the axion field into physical axion quanta. The contribution of
this mechanism to the present axion relic density is [1]

Ωah2 = κa

(

fa/1012 GeV
)1.175

θ2
i , (25.5)

where the numerical factor κa lies roughly between 0.5 and a few.
If θi ∼ O(1), Eq. (25.5) will saturate Eq. (25.1) for fa ∼ 1011 GeV,
comfortably above laboratory and astrophysical constraints [10]; this
would correspond to an axion mass around 0.1 meV. However, if the post-
inflationary reheat temperature TR > fa, cosmic strings will form during
the PQ phase transition at T ≃ fa. Their decay will give an additional
contribution to Ωa, which is often bigger than that in Eq. (25.5) [1],
leading to a smaller preferred value of fa, i.e., larger ma. On the other
hand, values of fa near the Planck scale become possible if θi is for some
reason very small.

Weakly interacting massive particles (WIMPs) χ are particles with
mass roughly between 10 GeV and a few TeV, and with cross sections of
approximately weak strength. Within standard cosmology, their present
relic density can be calculated reliably if the WIMPs were in thermal
and chemical equilibrium with the hot “soup” of Standard Model (SM)
particles after inflation. Their present relic density is then approximately
given by (ignoring logarithmic corrections) [12]

Ωχh2
≃ const. ·

T 3
0

M3
Pl〈σAv〉

≃

0.1 pb · c

〈σAv〉
. (25.6)

Here T0 is the current CMB temperature, MPl is the Planck mass, c is
the speed of light, σA is the total annihilation cross section of a pair
of WIMPs into SM particles, v is the relative velocity between the two
WIMPs in their cms system, and 〈. . .〉 denotes thermal averaging. Freeze
out happens at temperature TF ≃ mχ/20 almost independently of the
properties of the WIMP. Notice that the 0.1 pb in Eq. (25.6) contains
factors of T0 and MPl; it is, therefore, quite intriguing that it “happens”
to come out near the typical size of weak interaction cross sections.

The currently best motivated WIMP candidate is, therefore, the lightest
superparticle (LSP) in supersymmetric models [13] with exact R-parity
(which guarantees the stability of the LSP). Detailed calculations [1] show
that the lightest neutralino will have the desired thermal relic density
Eq. (25.1) in at least four distinct regions of parameter space. χ could be
(mostly) a bino or photino (the superpartner of the U(1)Y gauge boson
and photon, respectively), if both χ and some sleptons have mass below
∼ 150 GeV, or if mχ is close to the mass of some sfermion (so that its relic
density is reduced through co-annihilation with this sfermion), or if 2mχ

is close to the mass of the CP-odd Higgs boson present in supersymmetric
models. Finally, Eq. (25.1) can also be satisfied if χ has a large higgsino
or wino component.
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25.2. Experimental detection of Dark Matter

25.2.2. Axion searches :

Axions can be detected by looking for a → γ conversion in a strong
magnetic field [1]. Such a conversion proceeds through the loop-induced
aγγ coupling, whose strength gaγγ is an important parameter of axion
models. There is currently only one experiment searching for axionic DM:
the ADMX experiment [30], originally situated at the LLNL in California
but now running at the University of Washington, started taking data in
the first half of 1996. It employs a high quality cavity, whose “Q factor”
enhances the conversion rate on resonance, i.e., for ma(c2 + v2

a/2) = ~ωres.
One then needs to scan the resonance frequency in order to cover a
significant range in ma or, equivalently, fa.

25.2.4. Basics of direct WIMP search :

The WIMP mean velocity inside our galaxy relative to its center is
expected to be similar to that of stars, i.e., a few hundred kilometers per
second at the location of our solar system. For these velocities, WIMPs
interact with ordinary matter through elastic scattering on nuclei. With
expected WIMP masses in the range 10 GeV to 10 TeV, typical nuclear
recoil energies are of order of 1 to 100 keV.

Expected interaction rates depend on the product of the local WIMP
flux and the interaction cross section. The first term is fixed by the local
density of dark matter, taken as 0.39 GeV/cm3, the mean WIMP velocity,
typically 220 km/s, the galactic escape velocity, typically 544 km/s [26]
and the mass of the WIMP. The expected interaction rate then mainly
depends on two unknowns, the mass and cross section of the WIMP (with
some uncertainty [6] due to the halo model). This is why the experimental
observable, which is basically the scattering rate as a function of energy, is
usually expressed as a contour in the WIMP mass–cross section plane.

The cross section depends on the nature of the couplings. For non-
relativistic WIMPs, one in general has to distinguish spin-independent
and spin-dependent couplings. The former can involve scalar and vector
WIMP and nucleon currents (vector currents are absent for Majorana
WIMPs, e.g., the neutralino), while the latter involve axial vector currents
(and obviously only exist if χ carries spin). Due to coherence effects, the
spin-independent cross section scales approximately as the square of the
mass of the nucleus, so higher mass nuclei, from Ge to Xe, are preferred
for this search. For spin-dependent coupling, the cross section depends on
the nuclear spin factor; used target nuclei include 19F, 23Na, 73Ge, 127I,
129Xe, 131Xe, and 133Cs.

Cross sections calculated in MSSM models [27] induce rates of at most
1 evt day−1 kg−1 of detector, much lower than the usual radioactive
backgrounds. This indicates the need for underground laboratories to
protect against cosmic ray induced backgrounds, and for the selection of
extremely radio-pure materials.

The typical shape of exclusion contours can be anticipated from this
discussion: at low WIMP mass, the sensitivity drops because of the
detector energy threshold, whereas at high masses, the sensitivity also
decreases because, for a fixed mass density, the WIMP flux decreases
∝ 1/mχ. The sensitivity is best for WIMP masses near the mass of the
recoiling nucleus.

For further discussion and references, see the full Review.
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26. DARK ENERGY

Written November 2013 by M. J. Mortonson (UCB, LBL), D. H. Weinberg
(OSU), and M. White (UCB, LBL).

26.1. Repulsive Gravity and Cosmic Acceleration

In the late 1990s, supernova surveys by two independent teams provided
direct evidence for accelerating cosmic expansion [8,9], establishing the
cosmological constant model (with Ωm ≈ 0.3, ΩΛ ≈ 0.7) as the preferred
alternative to the Ωm = 1 scenario. Shortly thereafter, CMB evidence
for a spatially flat universe [10,11], and thus for Ωtot ≈ 1, cemented
the case for cosmic acceleration by firmly eliminating the free-expansion
alternative with Ωm ≪ 1 and ΩΛ = 0. Today, the accelerating universe
is well established by multiple lines of independent evidence from a tight
web of precise cosmological measurements.

As discussed in the Big Bang Cosmology article of this Review (Sec. 22),
the scale factor R(t) of a homogeneous and isotropic universe governed by

GR grows at an accelerating rate if the pressure p < −
1
3ρ. A cosmological

constant has ρΛ = const. and pressure pΛ = −ρΛ (see Eq. 22.10), so it
will drive acceleration if it dominates the total energy density. However,
acceleration could arise from a more general form of “dark energy” that
has negative pressure, typically specified in terms of the equation-of-state-
parameter w = p/ρ (= −1 for a cosmological constant). Furthermore, the
conclusion that acceleration requires a new energy component beyond
matter and radiation relies on the assumption that GR is the correct
description of gravity on cosmological scales.

26.2. Theories of Cosmic Acceleration

A cosmological constant is the mathematically simplest, and perhaps
the physically simplest, theoretical explanation for the accelerating
universe. The problem is explaining its unnaturally small magnitude, as
discussed in Sec. 22.4.7 of this Review. An alternative (which still requires
finding a way to make the cosmological constant zero or at least negligibly
small) is that the accelerating cosmic expansion is driven by a new form
of energy such as a scalar field [13] with potential V (φ). In the limit that
1
2 φ̇2

≪ |V (φ)|, the scalar field acts like a cosmological constant, with
pφ ≈ −ρφ. In this scenario, today’s cosmic acceleration is closely akin to
the epoch of inflation, but with radically different energy and timescale.

More generally, the value of w = pφ/ρφ in scalar field models evolves
with time in a way that depends on V (φ) and on the initial conditions

(φi, φ̇i); some forms of V (φ) have attractor solutions in which the late-time
behavior is insensitive to initial values. Many forms of time evolution are
possible, including ones where w is approximately constant and broad
classes where w “freezes” towards or “thaws” away from w = −1, with
the transition occurring when the field comes to dominate the total
energy budget. If ρφ is even approximately constant, then it becomes
dynamically insignificant at high redshift, because the matter density
scales as ρm ∝ (1 + z)3.

Further discussion and references may be found in the full Review of

Particle Physics.
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27. COSMIC MICROWAVE BACKGROUND

Revised Sept. 2013 by D. Scott (U. of BC) and G.F. Smoot (UCB/LBNL).

27.2. Description of CMB Anisotropies

Observations show that the CMB contains anisotropies at the 10−5

level, over a wide range of angular scales. These anisotropies are usually
expressed by using a spherical harmonic expansion of the CMB sky:

T (θ, φ) =
∑

ℓm

aℓmYℓm(θ, φ).

The vast majority of the cosmological information is contained in the
temperature 2-point function, i.e., the variance as a function only of
angular separation, since we notice no preferred direction. Equivalently,
the power per unit ln ℓ is ℓ

∑

m |aℓm|
2 /4π.

27.2.1. The Monopole :
The CMB has a mean temperature of Tγ = 2.7255 ± 0.0006 K (1σ) [15]

, which can be considered as the monopole component of CMB maps,
a00. Since all mapping experiments involve difference measurements,
they are insensitive to this average level. Monopole measurements
can only be made with absolute temperature devices, such as the
FIRAS instrument on the COBE satellite [16] . Such measurements
of the spectrum are consistent with a blackbody distribution over
more than three decades in frequency (with some recent suggestions
of a possible deviation at low frequencies [17]) . A blackbody of the
measured temperature corresponds to nγ = (2ζ(3)/π2)T 3

γ ≃ 411 cm−3 and

ργ = (π2/15)T 4
γ ≃ 4.64 × 10−34 g cm−3

≃ 0.260 eVcm−3.

27.2.2. The Dipole :
The largest anisotropy is in the ℓ = 1 (dipole) first spherical harmonic,

with amplitude 3.355 ± 0.008 mK [7]. The dipole is interpreted to be the
result of the Doppler shift caused by the solar system motion relative to the
nearly isotropic blackbody field, as broadly confirmed by measurements of
the radial velocities of local galaxies (although with some debate [18]) .

The dipole is a frame-dependent quantity, and one can thus determine
the ‘absolute rest frame’ as that in which the CMB dipole would be zero.

27.2.3. Higher-Order Multipoles :
The variations in the CMB temperature maps at higher multipoles

(ℓ ≥ 2) are interpreted as being mostly the result of perturbations in the
density of the early Universe, manifesting themselves at the epoch of the
last scattering of the CMB photons. In the hot Big Bang picture, the
expansion of the Universe cools the plasma so that by a redshift z ≃ 1100
(with little dependence on the details of the model), the hydrogen and
helium nuclei can bind electrons into neutral atoms, a process usually
referred to as recombination [22]. Before this epoch, the CMB photons
were tightly coupled to the baryons, while afterwards they could freely
stream towards us. By measuring the aℓms we are thus learning directly
about physical conditions in the early Universe.

A statistically isotropic sky means that all ms are equivalent, i.e., there
is no preferred axis, so that the temperature correlation function between
two positions on the sky depends only on angular separation and not
orientation. Together with the assumption of Gaussian statistics (i.e. no
correlations between the modes), the variance of the temperature field
(or equivalently the power spectrum in ℓ) then fully characterizes the
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anisotropies. The power summed over all ms at each ℓ is (2ℓ + 1)Cℓ/(4π),
where Cℓ ≡

〈
|aℓm|

2
〉
. Thus averages of aℓms over m can be used as

estimators of the Cℓs to constrain their expectation values, which are
the quantities predicted by a theoretical model. For an idealized full-sky
observation, the variance of each measured Cℓ (i.e., the variance of
the variance) is [2/(2ℓ + 1)]C2

ℓ . This sampling uncertainty (known as

‘cosmic variance’) comes about because each Cℓ is χ2 distributed with
(2ℓ + 1) degrees of freedom for our observable volume of the Universe. For
fractional sky coverage, fsky, this variance is increased by 1/fsky and the
modes become partially correlated.

It is important to understand that theories predict the expectation
value of the power spectrum, whereas our sky is a single realization.
Hence the cosmic variance is an unavoidable source of uncertainty when
constraining models; it dominates the scatter at lower ℓs, while the effects
of instrumental noise and resolution dominate at higher ℓs [23].

Theoretical models generally predict that the aℓm modes are Gaussian
random fields to high precision, matching the empirical tests, e.g., standard
slow-roll inflation’s non-Gaussian contribution is expected to be at least
an order of magnitude below current observational limits [24]. Although
non-Gaussianity of various forms is possible in early Universe models, tests
show that Gaussianity is an extremely good simplifying approximation [25]
. The only current indications of any non-Gaussianity or statistical
anisotropy are some relatively weak signatures at large scales, seen in both
WMAP [26] and Planck data [27], but not of high enough significance to
reject the simplifying assumption.

27.2.4. Angular Resolution and Binning :
There is no one-to-one conversion between multipole ℓ and the angle

subtended by a particular spatial scale projected onto the sky. However,
a single spherical harmonic Yℓm corresponds to angular variations of
θ ∼ π/ℓ. CMB maps contain anisotropy information from the size of the
map (or in practice some fraction of that size) down to the beam-size
of the instrument, σ (the standard deviation of the beam, in radians).
One can think of the effect of a Gaussian beam as rolling off the power

spectrum with the function e−ℓ(ℓ+1)σ2

.

27.5. Current Temperature Anisotropy Data

There has been a steady improvement in the quality of CMB data
that has led to the development of the present-day cosmological model.
Probably the most robust constraints currently available come from Planck
satellite [43] data combined with smaller scale results from the ACT [44]
and SPT [45] experiments (together with constraints from non-CMB
cosmological data-sets). We plot power spectrum estimates from these
experiments in Fig. 27.1, along with WMAP data to show the consistency
(see previous versions of this review for data from earlier experiments).

27.6. CMB Polarization

Since Thomson scattering of an anisotropic radiation field also generates
linear polarization, the CMB is predicted to be polarized at the level
of roughly 5% of the temperature anisotropies [46] . Polarization is a
spin-2 field on the sky, and the algebra of the modes in ℓ-space is
strongly analogous to spin-orbit coupling in quantum mechanics [47] .
The linear polarization pattern can be decomposed in a number of ways,
with two quantities required for each pixel in a map, often given as the
Q and U Stokes parameters. However, the most intuitive and physical
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Figure 27.1: Band-power estimates from the Planck, WMAP, ACT,
and SPT experiments.

decomposition is a geometrical one, splitting the polarization pattern into
a part that comes from a divergence (often referred to as the ‘E-mode’)
and a part with a curl (called the ‘B-mode’) [48] . More explicitly, the
modes are defined in terms of second derivatives of the polarization
amplitude, with the Hessian for the E-modes having principle axes in
the same sense as the polarization, while the B-mode pattern can be
thought of as a 45◦ rotation of the E-mode pattern. Globally one sees
that the E-modes have (−1)ℓ parity (like the spherical harmonics), while

the B-modes have (−1)ℓ+1 parity.
Since inflationary scalar perturbations give only E-modes, while

tensors generate roughly equal amounts of E- and B-modes, then the
determination of a non-zero B-mode signal is a way to measure the
gravitational wave contribution (and thus potentially derive the energy
scale of inflation), even if it is rather weak. However, one must first
eliminate the foreground contributions and other systematic effects down
to very low levels.

27.8. Constraints on Cosmological Parameters

Within the context of a six parameter family of models (which fixes
Ωtot = 1, dns/d ln k = 0, r = 0, and w = −1) the Planck results, together
with a low-ℓ polarization constraint from WMAP and high-ℓ data from
ACT and SPT, yields [10]: ln(1010A) = 3.090±0.025; ns = 0.958±0.007;
Ωbh2 = 0.02207±0.00027; Ωch

2 = 0.1198±0.0026; 100θ∗ = 1.0415±0.0006;
and τ = 0.091 ± 0.014. Other parameters can be derived from this basic
set, including h = 0.673 ± 0.012, ΩΛ = 0.685 ± 0.016 (= 1 − Ωm) and
σ8 = 0.828± 0.012. The evidence for non-zero reionization optical depth is
convincing, but still not of very high significance. However, the evidence
for ns < 1 is now above the 5σ level.

The 95% confidence upper limit on r (measured at k = 0.002 Mpc−1)
is 0.11. This limit depends on how the slope n is restricted and whether
dns/d ln k 6= 0 is allowed. A combination of constraints on n and r allows
specific inflationary models to be tested [72].

Further discussion and all references may be found in the full Review.
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28. COSMIC RAY FLUXES
∗

In the lower half of the atmosphere (altitude <
∼ 5 km) most cosmic rays

are muons. Some typical sea-level values for charged particles are given
below, where

Iv flux per unit solid angle per unit horizontal area about vertical
direction
≡ j(θ = 0, φ)[θ = zenith angle, φ = azimuthal angle] ;

J1 total flux crossing unit horizontal area from above

≡

∫

θ≤π/2

j(θ, φ) cos θ dΩ [dΩ = sin θ dθ dφ] ;

J2 total flux from above (crossing a sphere of unit cross-
sectional area)

≡

∫

θ≤π/2

j(θ, φ) dΩ .

Total Hard (≈ µ±) Soft (≈ e±)
Intensity Component Component

Iv 110 80 30 m−2 s−1 sr−1

J1 180 130 50 m−2 s−1

J2 240 170 70 m−2 s−1

At 4300 m (e.g., Mt. Evans or Mauna Kea) the hard component is 2.3
times more intense than at sea level.

The p/µ± vertical flux ratio at sea level is about 3.5% at 1 GeV/c,
decreasing to about 0.5% at 10 GeV/c. The π±/µ± ratio is an order of
magnitude smaller.

The mean energy of muons at the ground is ≈ 4 GeV. The energy
spectrum is almost flat below 1 GeV, steepens gradually to reflect the
primary spectrum (∝ E−2.7) in the 10–100 GeV range, and asymptotically
becomes one power steeper (Eµ ≫ 1 TeV). The measurements reported
above are for Eµ >

∼ 225 MeV. The angular distribution is very nearly

proportional to cos2 θ, changing to sec θ at energies above a TeV (where θ
is the zenith angle at production). The µ+/µ− ratio is 1.25–1.30.

The mean energy of muons originating in the atmosphere is roughly
300 GeV at slant depths underground & a few hundred meters. Beyond
slant depths of ≈ 10 km water-equivalent, the muons are due primarily to
in-the-earth neutrino interactions (roughly 1/8 interaction ton−1 yr−1 for
Eν > 300 MeV, ≈ constant throughout the earth). These muons arrived
with a mean energy of 20 GeV, and have a flux of 2 × 10−9 m−2 s−1 sr−1

in the vertical direction and about twice that in the horizontal, down at
least as far as the deepest mines.

∗ Reprint of “Cosmic-ray fluxes” from the 1986 Review, as updated by
D.E. Groom (2000). The data (by Greisen) are reported in B. Rossi,
Rev. Mod. Phys. 20, 537 (1948). See the full Review on Cosmic Rays
for a more extensive discussion and references.
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29. ACCELERATOR PHYSICS OF COLLIDERS

Revised August 2013 by M.J. Syphers (MSU) and F. Zimmermann (CERN)

29.1. Luminosity

The number of events, Nexp, is the product of the cross section of
interest, σexp, and the time integral over the instantaneous luminosity, L :

Nexp = σexp ×

∫

L (t)dt. (29.1)

If two bunches containing n1 and n2 particles collide head-on with
frequency f , a basic expression for the luminosity is

L = f
n1n2

4πσxσy
(29.2)

where σx and σy characterize the rms transverse beam sizes in the
horizontal (bend) and vertical directions. In this form it is assumed
that the bunches are identical in transverse profile, that the profiles
are Gaussian and independent of position along the bunch, and the
particle distributions are not altered during bunch crossing. Nonzero beam
crossing angles and long bunches will reduce the luminosity from this
value.

Whatever the distribution at the source, by the time the beam reaches
high energy, the normal form is a useful approximation as suggested by
the σ-notation.

The beam size can be expressed in terms of two quantities, one termed
the transverse emittance, ǫ, and the other, the amplitude function, β. The
transverse emittance is a beam quality concept reflecting the process of
bunch preparation, extending all the way back to the source for hadrons
and, in the case of electrons, mostly dependent on synchrotron radiation.
The amplitude function is a beam optics quantity and is determined by
the accelerator magnet configuration. When expressed in terms of σ and
β the transverse emittance becomes

ǫ = σ2/β .

Of particular significance is the value of the amplitude function at the
interaction point, β∗. Clearly one wants β∗ to be as small as possible; how
small depends on the capability of the hardware to make a near-focus at
the interaction point.

Eq. (29.2) can now be recast in terms of emittances and amplitude
functions as

L = f
n1n2

4π
√

ǫx β∗

x ǫy β∗

y

. (29.10)

Thus, to achieve high luminosity, all one has to do is make high population
bunches of low emittance to collide at high frequency at locations where
the beam optics provides as low values of the amplitude functions as
possible.

Further discussion and references may be found in the full Review of

Particle Physics.
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30. HIGH-ENERGY COLLIDER PARAMETERS

Updated in September 2013 with numbers received from representatives of the colliders (contact J. Beringer, LBNL). Except for SuperKEKB, where design
values are quoted, the table shows parameter values as achieved by July 1, 2013. Quantities are, where appropriate, r.m.s.; energies refer to beam energy;
H and V indicate horizontal and vertical directions. Only selected colliders operating in 2014 or 2015 are included. See full Review for complete tables.

VEPP-2000
(Novosibirsk)

VEPP-4M
(Novosibirsk)

BEPC-II
(China)

DAΦNE
(Frascati)

SuperKEKB
(KEK)

LHC†

(CERN)

Physics start date 2010 1994 2008 1999 2015 2009 (2015)

Particles collided e+e− e+e− e+e− e+e− e+e− pp

Maximum beam energy (GeV) 1.0 6 1.89 (2.3 max) 0.510 e−: 7, e+: 4 4.0 (6.5)

Luminosity (1030 cm−2s−1) 100 20 649 453 8 × 105 7.7 × 103

((1 − 2) × 104)

Time between collisions (ns) 40 600 8 2.7 4 49.9 (24.95)

Energy spread (units 10−3) 0.64 1 0.52 0.40 e−/e+: 0.64/0.81 0.1445 (0.105)

Bunch length (cm) 4 5 ≈ 1.5 1 - 2 e−/e+: 0.5/0.6 9.4 (9)

Beam radius (10−6 m) 125 (round) H : 1000
V : 30

H : 380
V : 5.7

H : 260
V : 4.8

e−: 11 (H), 0.062 (V )

e+: 10 (H), 0.048 (V )
18.8 (11.1)

Free space at interaction
point (m)

±1 ±2 ±0.63 ±0.295 e− : +1.20/− 1.28

e+ : +0.78/− 0.73
38

β∗, amplitude function at
interaction point (m)

H : 0.06 − 0.11
V : 0.06 − 0.10

H : 0.75
V : 0.05

H : 1.0
V : 0.015

H : 0.26
V : 0.009

e−: 0.025 (H), 3 × 10−4 (V )

e+: 0.032 (H), 2.7 × 10−4 (V )
0.6 (0.45)

Interaction regions 2 1 1 1 1 4

† Parameters expected for LHC in 2015 given in parenthesis.
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32. PASSAGE OF PARTICLES THROUGH MATTER

Revised September 2013 by H. Bichsel (University of Washington), D.E.
Groom (LBNL), and S.R. Klein (LBNL).

32.1. Notation
Table 32.1: Summary of variables used in this section. The
kinematic variables β and γ have their usual relativistic meanings.

Symbol Definition Value or (usual) units

α fine structure constant

e2/4πǫ0~c 1/137.035 999 074(44)

M incident particle mass MeV/c2

E incident part. energy γMc2 MeV

T kinetic energy, (γ − 1)Mc2 MeV

W energy transfer to an electron MeV

in a single collision

k bremsstrahlung photon energy MeV

mec
2 electron mass × c2 0.510 998 928(11) MeV

re classical electron radius

e2/4πǫ0mec
2 2.817 940 3267(27) fm

NA Avogadro’s number 6.022 141 29(27)× 1023 mol−1

z charge number of incident particle

Z atomic number of absorber

A atomic mass of absorber g mol−1

K 4πNAr2
emec

2 0.307 075 MeV mol−1 cm2

I mean excitation energy eV (Nota bene!)

δ(βγ) density effect correction to ionization energy loss

~ωp plasma energy
√

ρ 〈Z/A〉 × 28.816 eV
√

4πNer3
e mec

2/α |
−→ ρ in g cm−3

Ne electron density (units of re)
−3

wj weight fraction of the jth element in a compound or mixture

nj ∝ number of jth kind of atoms in a compound or mixture

X0 radiation length g cm−2

Ec critical energy for electrons MeV

Eµc critical energy for muons GeV

Es scale energy
√

4π/α mec
2 21.2052 MeV

RM Molière radius g cm−2

32.2. Electronic energy loss by heavy particles [1–33]

32.2.1. Moments and cross sections :
The electronic interactions of fast charged particles with speed v = βc

occur in single collisions with energy losses E [1], leading to ionization,
atomic, or collective excitation. Most frequently the energy losses are
small (for 90% of all collisions the energy losses are less than 100 eV). In
thin absorbers few collisions will take place and the total energy loss will
show a large variance [1]; also see Sec. 32.2.9 below. For particles with
charge ze more massive than electrons (“heavy” particles), scattering from
free electrons is adequately described by the Rutherford differential cross
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section [2],

dσR(E; β)

dE
=

2πr2
emec

2z2

β2

(1 − β2E/Tmax)

E2
, (32.1)

where Tmax is the maximum energy transfer possible in a single collision.
But in matter electrons are not free. For electrons bound in atoms
Bethe [3] used “Born Theorie” to obtain the differential cross section

dσB(E; β)

dE
=

dσR(E, β)

dE
B(E) . (32.2)

At high energies σB is further modified by polarization of the medium,
and this “density effect,” discussed in Sec 32.2.5, must also be included.
Less important corrections are discussed below.

The mean number of collisions with energy loss between E and E + dE
occuring in a distance δx is Neδx (dσ/dE)dE, where dσ(E; β)/dE contains
all contributions. It is convenient to define the moments

Mj(β) = Ne δx

∫

Ej dσ(E; β)

dE
dE , (32.3)

so that M0 is the mean number of collisions in δx, M1 is the mean energy
loss in δx, M2 − M2

1 is the variance, etc. The number of collisions is
Poisson-distributed with mean M0. Ne is either measured in electrons/g
(Ne = NAZ/A) or electrons/cm3 (Ne = NA ρZ/A).

Fig. 32.1: Stopping power (= 〈−dE/dx〉) for positive muons in copper as a
function of βγ = p/Mc over nine orders of magnitude in momentum (12 orders
of magnitude in kinetic energy). Solid curves indicate the total stopping
power. Data below the break at βγ ≈ 0.1 are taken from ICRU 49 [4], and
data at higher energies are from Ref. 5. Vertical bands indicate boundaries
between different approximations discussed in the text. The short dotted
lines labeled “µ− ” illustrate the “Barkas effect,” the dependence of stopping
power on projectile charge at very low energies [6].

32.2.2. Maximum energy transfer in a single collision : For a
particle with mass M and momentum Mβγc, Tmax is given by

Tmax =
2mec

2 β2γ2

1 + 2γme/M + (me/M)2
. (32.4)
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In older references [2,8] the “low-energy” approximation Tmax =
2mec

2 β2γ2, valid for 2γme/M ≪ 1, is often implicit. For hadrons with
E ≃ 100 GeV, it is limited by structure effects.

32.2.3. Stopping power at intermediate energies : The mean rate
of energy loss by moderately relativistic charged heavy particles, M1/δx,
is well-described by the “Bethe” equation,

−

〈
dE

dx

〉

= Kz2Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tmax

I2
− β2

−

δ(βγ)

2

]

. (32.5)

It describes the mean loss rate in the region 0.1 <
∼ βγ <

∼ 1000 for
intermediate-Z materials with an accuracy of a few %. At the lower limit
the projectile velocity becomes comparable to atomic electron “velocities”
(Sec. 32.2.4), and at the upper limit radiative effects begin to be important
(Sec. 32.6). Both limits are Z dependent. Here Tmax is the maximum
kinetic energy which can be imparted to a free electron in a single collision,
and the other variables are defined in Table 32.1. A minor dependence
on M at the highest energies is introduced through Tmax, but for all
practical purposes 〈dE/dx〉 in a given material is a function of β alone.
With definitions and values in Table 32.1, the units are MeV g−1cm2.

Few concepts in high-energy physics are as misused as 〈dE/dx〉. The
main problem is that the mean is weighted by very rare events with large
single-collision energy deposits. Even with samples of hundreds of events a
dependable value for the mean energy loss cannot be obtained. Far better
and more easily measured is the most probable energy loss, discussed in
Sec 32.2.9. It is considerably below the mean given by the Bethe equation.

In a TPC (Sec. 33.6.5), the mean of 50%–70% of the samples with the
smallest signals is often used as an estimator.

Although it must be used with cautions and caveats, 〈dE/dx〉 as
described in Eq. (32.5) still forms the basis of much of our understanding
of energy loss by charged particles. Extensive tables are available[4,5,
pdg.lbl.gov/AtomicNuclearProperties/].

The function as computed for muons on copper is shown as the
“Bethe” region of Fig. 32.1. Mean energy loss behavior below this region
is discussed in Sec. 32.2.6, and the radiative effects at high energy are
discussed in Sec. 32.6. Only in the Bethe region is it a function of β alone;
the mass dependence is more complicated elsewhere. The stopping power
in several other materials is shown in Fig. 32.2. Except in hydrogen,
particles with the same velocity have similar rates of energy loss in different
materials, although there is a slow decrease in the rate of energy loss with
increasing Z. The qualitative behavior difference at high energies between
a gas (He in the figure) and the other materials shown in the figure
is due to the density-effect correction, δ(βγ), discussed in Sec. 32.2.5.
The stopping power functions are characterized by broad minima whose
position drops from βγ = 3.5 to 3.0 as Z goes from 7 to 100. The values of
minimum ionization go roughly as 0.235 − 0.28 ln(Z), in MeVg−1cm−2,
for Z > 6.

Eq. (32.5) may be integrated to find the total (or partial) “continuous
slowing-down approximation” (CSDA) range R for a particle which loses
energy only through ionization and atomic excitation. Since dE/dx in
the “Bethe region” depends only on β, R/M is a function of E/M or
pc/M . In practice, range is a useful concept only for low-energy hadrons
(R <

∼ λI , where λI is the nuclear interaction length), and for muons below
a few hundred GeV (above which radiative effects dominate). R/M as a
function of βγ = p/Mc is shown for a variety of materials in Fig. 32.4.

The mass scaling of dE/dx and range is valid for the electronic losses
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Figure 32.2: Mean energy loss rate in liquid (bubble chamber)
hydrogen, gaseous helium, carbon, aluminum, iron, tin, and lead.
Radiative effects, relevant for muons and pions, are not included.
These become significant for muons in iron for βγ >

∼ 1000, and at
lower momenta in higher-Z absorbers. See Fig. 32.21.

described by the Bethe equation, but not for radiative losses, relevant only
for muons and pions.

Estimates of the mean excitation energy I based on experimental
stopping-power measurements for protons, deuterons, and alpha particles
are given in Ref. 11; see also pdg.lbl.gov/AtomicNuclearProperties.

32.2.5. Density effect : As the particle energy increases, its electric
field flattens and extends, so that the distant-collision contribution to
Eq. (32.5) increases as ln βγ. However, real media become polarized,
limiting the field extension and effectively truncating this part of the
logarithmic rise [2–8,15–16]. At very high energies,

δ/2 → ln(~ωp/I) + lnβγ − 1/2 , (32.6)

where δ(βγ)/2 is the density effect correction introduced in Eq. (32.5)
and ~ωp is the plasma energy defined in Table 32.1. A comparison with

Eq. (32.5) shows that |dE/dx| then grows as ln βγ rather than lnβ2γ2,
and that the mean excitation energy I is replaced by the plasma energy
~ωp. Since the plasma frequency scales as the square root of the electron
density, the correction is much larger for a liquid or solid than for a gas,
as is illustrated by the examples in Fig. 32.2.

The remaining relativistic rise comes from the β2γ2 growth of Tmax,
which in turn is due to (rare) large energy transfers to a few electrons.
When these events are excluded, the energy deposit in an absorbing
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Figure 32.4: Range of heavy charged particles in liquid (bubble
chamber) hydrogen, helium gas, carbon, iron, and lead. For example:
For a K+ whose momentum is 700 MeV/c, βγ = 1.42. For lead we
read R/M ≈ 396, and so the range is 195 g cm−2 (17 cm).

layer approaches a constant value, the Fermi plateau (see Sec. 32.2.8
below). At extreme energies (e.g., > 332 GeV for muons in iron, and
at a considerably higher energy for protons in iron), radiative effects are
more important than ionization losses. These are especially relevant for
high-energy muons, as discussed in Sec. 32.6.

32.2.7. Energetic knock-on electrons (δ rays) : The distribution of
secondary electrons with kinetic energies T ≫ I is [2]

d2N

dTdx
=

1

2
Kz2Z

A

1

β2

F (T )

T 2
(32.8)

for I ≪ T ≤ Tmax, where Tmax is given by Eq. (32.4). Here β is the
velocity of the primary particle. The factor F is spin-dependent, but is
about unity for T ≪ Tmax. For spin-0 particles F (T ) = (1 − β2T/Tmax);
forms for spins 1/2 and 1 are also given by Rossi [2]. Additional formulae
are given in Ref. 22. Equation (32.8) is inaccurate for T close to I.

δ rays of even modest energy are rare. For β ≈ 1 particle, for example,
on average only one collision with Te > 1 keV will occur along a path
length of 90 cm of Ar gas [1].

32.2.8. Restricted energy loss rates for relativistic ionizing par-
ticles : Further insight can be obtained by examining the mean energy
deposit by an ionizing particle when energy transfers are restricted to
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T ≤ Tcut ≤ Tmax. The restricted energy loss rate is

−

dE

dx

∣
∣
∣
∣
T<Tcut

= Kz2Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tcut

I2
−

β2

2

(

1 +
Tcut

Tmax

)

−

δ

2

]

.

(32.10)
This form approaches the normal Bethe function (Eq. (32.5)) as
Tcut → Tmax. It can be verified that the difference between Eq. (32.5) and

Eq. (32.10) is equal to
∫ Tmax

Tcut
T (d2N/dTdx)dT , where d2N/dTdx is given

by Eq. (32.8).
Since Tcut replaces Tmax in the argument of the logarithmic term of

Eq. (32.5), the βγ term producing the relativistic rise in the close-collision
part of dE/dx is replaced by a constant, and |dE/dx|T<Tcut

approaches
the constant “Fermi plateau.” (The density effect correction δ eliminates
the explicit βγ dependence produced by the distant-collision contribution.)
This behavior is illustrated in Fig. 32.6, where restricted loss rates for
two examples of Tcut are shown in comparison with the full Bethe dE/dx
and the Landau-Vavilov most probable energy loss (to be discussed in
Sec. 32.2.9 below).

32.2.9. Fluctuations in energy loss : For detectors of moderate
thickness x (e.g. scintillators or LAr cells),* the energy loss probability
distribution f(∆; βγ, x) is adequately described by the highly-skewed
Landau (or Landau-Vavilov) distribution [25,26]. The most probable
energy loss is [27]

∆p = ξ

[

ln
2mc2β2γ2

I
+ ln

ξ

I
+ j − β2

− δ(βγ)

]

, (32.11)

where ξ = (K/2) 〈Z/A〉 (x/β2) MeV for a detector with a thickness x in

g cm−2, and j = 0.200 [26].† While dE/dx is independent of thickness,
∆p/x scales as a ln x + b. The density correction δ(βγ) was not included
in Landau’s or Vavilov’s work, but it was later included by Bichsel [26].
The high-energy behavior of δ(βγ) (Eq. (32.6)), is such that

∆p −→

βγ>
∼100

ξ

[

ln
2mc2ξ

(~ωp)2
+ j

]

. (32.12)

Thus the Landau-Vavilov most probable energy loss, like the restricted
energy loss, reaches a Fermi plateau. The Bethe dE/dx and Landau-
Vavilov-Bichsel ∆p/x in silicon are shown as a function of muon energy
in Fig. 32.6. The case x/ρ = 1600 µm was chosen since it has about
the same stopping power as does 3 mm of plastic scintillator. Folding
in experimental resolution displaces the peak of the distribution, usually
toward a higher value.

The mean of the energy-loss given by the Bethe equation, Eq. (32.5),
is ill-defined experimentally and is not useful for describing energy loss
by single particles. (It finds its application in dosimetry, where only bulk
deposit is of relevance.) It rises as ln βγ because Tmax increases as β2γ2.
The large single-collision energy transfers that increasingly extend the long
tail are rare, making the mean of an experimental distribution consisting
of a few hundred events subject to large fluctuations and sensitive to cuts
as well as to background. The most probable energy loss should be used.

* G <
∼ 0.05–0.1, where G is given by Rossi [Ref. 2, Eq. 2.7(10)]. It is

Vavilov’s κ [25].
† Rossi [2], Talman [27], and others give somewhat different values for

j. The most probable loss is not sensitive to its value.
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Figure 32.6: Bethe dE/dx, two examples of restricted energy
loss, and the Landau most probable energy per unit thickness in
silicon. The change of ∆p/x with thickness x illustrates its a lnx + b
dependence. Minimum ionization (dE/dx|min) is 1.664 MeV g−1 cm2.
Radiative losses are excluded. The incident particles are muons.

For very thick absorbers the distribution is less skewed but never
approaches a Gaussian. In the case of Si illustrated in Fig. 32.6, the most
probable energy loss per unit thickness for x ≈ 35 g cm−2 is very close to
the restricted energy loss with Tcut = 2 dE/dx|min.

The Landau distribution fails to describe energy loss in thin absorbers
such as gas TPC cells [1] and Si detectors [26], as shown clearly in
Fig. 1 of Ref. 1 for an argon-filled TPC cell. Also see Talman [27]. While
∆p/x may be calculated adequately with Eq. (32.11), the distributions
are significantly wider than the Landau width w = 4ξ [Ref. 26, Fig. 15].
Examples for thin silicon detectors are shown in Fig. 32.8.

32.2.10. Energy loss in mixtures and compounds : A mixture or
compound can be thought of as made up of thin layers of pure elements
in the right proportion (Bragg additivity). In this case,

dE

dx
=

∑

wj
dE

dx

∣
∣
∣
∣
j

, (32.13)

where dE/dx|j is the mean rate of energy loss (in MeV g cm−2)
in the jth element. Eq. (32.5) can be inserted into Eq. (32.13) to
find expressions for 〈Z/A〉, 〈I 〉, and 〈δ〉; for example, 〈Z/A〉 =
∑

wjZj/Aj =
∑

njZj/
∑

njAj . However, 〈I 〉 as defined this way is
an underestimate, because in a compound electrons are more tightly
bound than in the free elements, and 〈δ〉 as calculated this way has little
relevance, because it is the electron density that matters. If possible,
one uses the tables given in Refs. 16 and 29, or the recipes given in
17 (repeated in Ref. 5), which include effective excitation energies and
interpolation coefficients for calculating the density effect correction.

32.3. Multiple scattering through small angles

A charged particle traversing a medium is deflected by many small-angle
scatters. Most of this deflection is due to Coulomb scattering from nuclei,
and hence the effect is called multiple Coulomb scattering. (However, for
hadronic projectiles, the strong interactions also contribute to multiple
scattering.) The Coulomb scattering distribution is well represented by the
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theory of Molière [34]. It is roughly Gaussian for small deflection angles,
but at larger angles (greater than a few θ0, defined below) it behaves like
Rutherford scattering, with larger tails than does a Gaussian distribution.

If we define

θ0 = θ rms
plane =

1
√

2
θrms
space . (32.14)

then it is usually sufficient to use a Gaussian approximation for the central
98% of the projected angular distribution, with a width given by [39,40]

θ0 =
13.6 MeV

βcp
z

√

x/X0

[

1 + 0.038 ln(x/X0)
]

. (32.15)

Here p, βc, and z are the momentum, velocity, and charge number of
the incident particle, and x/X0 is the thickness of the scattering medium
in radiation lengths (defined below). This value of θ0 is from a fit to
Molière distribution for singly charged particles with β = 1 for all Z, and
is accurate to 11% or better for 10−3 < x/X0 < 100.

32.4. Photon and electron interactions in matter

32.4.2. Radiation length : High-energy electrons predominantly lose
energy in matter by bremsstrahlung, and high-energy photons by e+e−

pair production. The characteristic amount of matter traversed for these
related interactions is called the radiation length X0, usually measured
in g cm−2. It is both (a) the mean distance over which a high-energy

electron loses all but 1/e of its energy by bremsstrahlung, and (b) 7
9 of the

mean free path for pair production by a high-energy photon [42]. It is also
the appropriate scale length for describing high-energy electromagnetic
cascades. X0 has been calculated and tabulated by Y.S. Tsai [43]:

1

X0
= 4αr2

e
NA

A

{

Z2
[
Lrad − f(Z)

]
+ Z L′

rad

}

. (32.26)

For A = 1 g mol−1, 4αr2
eNA/A = (716.408 g cm−2)−1. Lrad and L′

rad
are given in Table 32.2. The function f(Z) is an infinite sum, but for
elements up to uranium can be represented to 4-place accuracy by

f(Z) = a2
[
(1+a2)−1 +0.20206−0.0369 a2+0.0083 a4

−0.002 a6 , (32.27)

where a = αZ [44].

Table 32.2: Tsai’s Lrad and L′

rad, for use in calculating the
radiation length in an element using Eq. (32.26).

Element Z Lrad L′

rad

H 1 5.31 6.144
He 2 4.79 5.621
Li 3 4.74 5.805
Be 4 4.71 5.924

Others > 4 ln(184.15 Z−1/3) ln(1194 Z−2/3)

32.4.3. Bremsstrahlung energy loss by e± : At low energies elec-
trons and positrons primarily lose energy by ionization, although
other processes (Møller scattering, Bhabha scattering, e+ annihilation)
contribute, as shown in Fig. 32.10. While ionization loss rates rise
logarithmically with energy, bremsstrahlung losses rise nearly linearly
(fractional loss is nearly independent of energy), and dominates above a
few tens of MeV in most materials.
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Ionization loss by electrons and positrons differs from loss by heavy
particles because of the kinematics, spin, and the identity of the incident
electron with the electrons which it ionizes.

At very high energies and except at the high-energy tip of the
bremsstrahlung spectrum, the cross section can be approximated in the
“complete screening case” as [43]

dσ/dk = (1/k)4αr2
e

{
(4
3 −

4
3y + y2)[Z2(Lrad − f(Z)) + Z L′

rad]

+ 1
9 (1 − y)(Z2 + Z)

}
,

(32.29)

where y = k/E is the fraction of the electron’s energy transfered to the
radiated photon. At small y (the “infrared limit”) the term on the second
line ranges from 1.7% (low Z) to 2.5% (high Z) of the total. If it is ignored
and the first line simplified with the definition of X0 given in Eq. (32.26),
we have

dσ

dk
=

A

X0NAk

(
4
3 −

4
3y + y2

)
. (32.30)

This formula is accurate except in near y = 1, where screening may
become incomplete, and near y = 0, where the infrared divergence is
removed by the interference of bremsstrahlung amplitudes from nearby
scattering centers (the LPM effect) [45,46] and dielectric suppression
[47,48]. These and other suppression effects in bulk media are discussed in
Sec. 32.4.6.

Except at these extremes, and still in the complete-screening
approximation, the number of photons with energies between kmin and
kmax emitted by an electron travelling a distance d ≪ X0 is

Nγ =
d

X0

[

4

3
ln

(
kmax

kmin

)

−

4(kmax − kmin)

3E
+

k2
max − k2

min

2E2

]

. (32.31)

32.4.4. Critical energy : An electron loses energy by bremsstrahlung
at a rate nearly proportional to its energy, while the ionization loss rate
varies only logarithmically with the electron energy. The critical energy
Ec is sometimes defined as the energy at which the two loss rates are
equal [50]. Among alternate definitions is that of Rossi [2], who defines
the critical energy as the energy at which the ionization loss per radiation
length is equal to the electron energy. Equivalently, it is the same as the
first definition with the approximation |dE/dx|brems ≈ E/X0. This form
has been found to describe transverse electromagnetic shower development
more accurately (see below).

The accuracy of approximate forms for Ec has been limited by the
failure to distinguish between gases and solid or liquids, where there is
a substantial difference in ionization at the relevant energy because of
the density effect. Separate fits to Ec(Z), using the Rossi definition, have
been made with functions of the form a/(Z + b)α, but α was found to be
essentially unity. For Z > 6 we obtain

Ec ≈

610 MeV

Z + 1.24
(solids and liquids) , ≈

710 MeV

Z + 0.92
(gases) .

Since Ec also depends on A, I, and other factors, such forms are at best
approximate.

32.4.5. Energy loss by photons : Contributions to the photon cross
section in a light element (carbon) and a heavy element (lead) are
shown in Fig. 32.15. At low energies it is seen that the photoelectric
effect dominates, although Compton scattering, Rayleigh scattering, and
photonuclear absorption also contribute. The photoelectric cross section
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Fig. 32.16: The photon mass attenuation length (or mean
free path) λ = 1/(µ/ρ) for various elemental absorbers as a
function of photon energy. The mass attenuation coefficient is
µ/ρ, where ρ is the density. The intensity I remaining after
traversal of thickness t (in mass/unit area) is given by I = I0
exp(−t/λ). The accuraccy is a few percent. For a chemical
compound or mixture, 1/λeff ≈

∑

elements wZ/λZ , where wZ is
the proportion by weight of the element with atomic number
Z. The processes responsible for attenuation are given in Fig.
32.11. Since coherent processes are included, not all these
processes result in energy deposition.

is characterized by discontinuities (absorption edges) as thresholds for
photoionization of various atomic levels are reached. Photon attenuation
lengths for a variety of elements are shown in Fig 32.16, and data for
30 eV< k <100 GeV for all elements is available from the web pages given
in the caption. Here k is the photon energy.

The increasing domination of pair production as the energy increases is
shown in Fig. 32.17 of the full Review. Using approximations similar to
those used to obtain Eq. (32.30), Tsai’s formula for the differential cross
section [43] reduces to

dσ

dx
=

A

X0NA

[
1 −

4
3x(1 − x)

]
(32.32)

in the complete-screening limit valid at high energies. Here x = E/k is the
fractional energy transfer to the pair-produced electron (or positron), and
k is the incident photon energy. The cross section is very closely related
to that for bremsstrahlung, since the Feynman diagrams are variants of
one another. The cross section is of necessity symmetric between x and
1 − x, as can be seen by the solid curve in See the review by Motz, Olsen,
& Koch for a more detailed treatment [53].

Eq. (32.32) may be integrated to find the high-energy limit for the total
e+e− pair-production cross section:

σ = 7
9 (A/X0NA) . (32.33)

Equation Eq. (32.33) is accurate to within a few percent down to energies
as low as 1 GeV, particularly for high-Z materials.
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32.4.6. Bremsstrahlung and pair production at very high ener-
gies : At ultrahigh energies, Eqns. 32.29–32.33 will fail because of
quantum mechanical interference between amplitudes from different scat-
tering centers. Since the longitudinal momentum transfer to a given center
is small (∝ k/E(E − k), in the case of bremsstrahlung), the interaction
is spread over a comparatively long distance called the formation length
(∝ E(E − k)/k) via the uncertainty principle. In alternate language, the
formation length is the distance over which the highly relativistic electron
and the photon “split apart.” The interference is usually destructive.
Calculations of the “Landau-Pomeranchuk-Migdal” (LPM) effect may be
made semi-classically based on the average multiple scattering, or more
rigorously using a quantum transport approach [45,46].

In amorphous media, bremsstrahlung is suppressed if the photon energy
k is less than E2/(E + ELPM ) [46], where*

ELPM =
(mec

2)2αX0

4π~cρ
= (7.7 TeV/cm) ×

X0

ρ
. (32.34)

Since physical distances are involved, X0/ρ, in cm, appears. The energy-
weighted bremsstrahlung spectrum for lead, k dσLPM/dk, is shown in
Fig. 27.11 of the full Review. With appropriate scaling by X0/ρ, other
materials behave similarly.

For photons, pair production is reduced for E(k − E) > k ELPM . The
pair-production cross sections for different photon energies are shown in
Fig. 32.18 of the full Review.

If k ≪ E, several additional mechanisms can also produce suppression.
When the formation length is long, even weak factors can perturb
the interaction. For example, the emitted photon can coherently
forward scatter off of the electrons in the media. Because of this,
for k < ωpE/me ∼ 10−4, bremsstrahlung is suppressed by a factor

(kme/ωpE)2 [48]. Magnetic fields can also suppress bremsstrahlung.
In crystalline media, the situation is more complicated, with coherent
enhancement or suppression possible [55].

32.5. Electromagnetic cascades

When a high-energy electron or photon is incident on a thick absorber, it
initiates an electromagnetic cascade as pair production and bremsstrahlung
generate more electrons and photons with lower energy. The longitudinal
development is governed by the high-energy part of the cascade, and
therefore scales as the radiation length in the material. Electron energies
eventually fall below the critical energy, and then dissipate their energy
by ionization and excitation rather than by the generation of more shower
particles. In describing shower behavior, it is therefore convenient to
introduce the scale variables t = x/X0 and y = E/Ec, so that distance
is measured in units of radiation length and energy in units of critical
energy.

The mean longitudinal profile of the energy deposition in an
electromagnetic cascade is reasonably well described by a gamma
distribution [60]:

dE

dt
= E0 b

(bt)a−1e−bt

Γ(a)
(32.36)

The maximum tmax occurs at (a − 1)/b. We have made fits to shower
profiles in elements ranging from carbon to uranium, at energies from 1

* This definition differs from that of Ref. 54 by a factor of two. ELPM
scales as the 4th power of the mass of the incident particle, so that ELPM =
(1.4 × 1010 TeV/cm) × X0/ρ for a muon.
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GeV to 100 GeV. The energy deposition profiles are well described by
Eq. (32.36) with

tmax = (a − 1)/b = 1.0 × (ln y + Cj) , j = e, γ , (32.37)

where Ce = −0.5 for electron-induced cascades and Cγ = +0.5 for
photon-induced cascades. To use Eq. (32.36), one finds (a − 1)/b from
Eq. (32.37), then finds a either by assuming b ≈ 0.5 or by finding a
more accurate value from Fig. 32.21. The results are very similar for the
electron number profiles, but there is some dependence on the atomic
number of the medium. A similar form for the electron number maximum
was obtained by Rossi in the context of his “Approximation B,” [2] but
with Ce = −1.0 and Cγ = −0.5; we regard this as superseded by the EGS4
result.

The “shower length” Xs = X0/b is less conveniently parameterized,
since b depends upon both Z and incident energy, as shown in Fig. 32.21.
As a corollary of this Z dependence, the number of electrons crossing a
plane near shower maximum is underestimated using Rossi’s approxima-
tion for carbon and seriously overestimated for uranium. Essentially the
same b values are obtained for incident electrons and photons. For many
purposes it is sufficient to take b ≈ 0.5.

The gamma function distribution is very flat near the origin, while
the EGS4 cascade (or a real cascade) increases more rapidly. As a result
Eq. (32.36) fails badly for about the first two radiation lengths, which are
excluded from fits. Because fluctuations are important, Eq. (32.36) should
be used only in applications where average behavior is adequate.

The transverse development of electromagnetic showers in different
materials scales fairly accurately with the Molière radius RM , given by
[62,63]

RM = X0 Es/Ec , (32.38)

where Es ≈ 21 MeV (Table 32.1), and the Rossi definition of Ec is used.
Measurements of the lateral distribution in electromagnetic cascades

are shown in Ref. 62 and 63. On the average, only 10% of the energy
lies outside the cylinder with radius RM . About 99% is contained
inside of 3.5RM , but at this radius and beyond composition effects
become important and the scaling with RM fails. The distributions are
characterized by a narrow core, and broaden as the shower develops. They
are often represented as the sum of two Gaussians, and Grindhammer [61]
describes them with the function

f(r) =
2r R2

(r2 + R2)2
, (32.40)

where R is a phenomenological function of x/X0 and lnE.

At high enough energies, the LPM effect (Sec. 32.4.6) reduces the cross
sections for bremsstrahlung and pair production, and hence can cause
significant elongation of electromagnetic cascades [56].

32.6. Muon energy loss at high energy

At sufficiently high energies, radiative processes become more important
than ionization for all charged particles. For muons and pions in materials
such as iron, this “critical energy” occurs at several hundred GeV. (There
is no simple scaling with particle mass, but for protons the “critical
energy” is much, much higher.) Radiative effects dominate the energy
loss of energetic muons found in cosmic rays or produced at the newest
accelerators. These processes are characterized by small cross sections,
hard spectra, large energy fluctuations, and the associated generation of
electromagnetic and (in the case of photonuclear interactions) hadronic
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showers [61–69]. At these energies the treatment of energy loss as a
uniform and continuous process is for many purposes inadequate.

It is convenient to write the average rate of muon energy loss as [73]

−dE/dx = a(E) + b(E)E . (32.41)

Here a(E) is the ionization energy loss given by Eq. (32.5), and b(E)
is the sum of e+e− pair production, bremsstrahlung, and photonuclear
contributions. To the approximation that these slowly-varying functions
are constant, the mean range x0 of a muon with initial energy E0 is given
by

x0 ≈ (1/b) ln(1 + E0/Eµc) , (32.42)

where Eµc = a/b.

The “muon critical energy” Eµc can be defined more exactly as the
energy at which radiative and ionization losses are equal, and can be
found by solving Eµc = a(Eµc)/b(Eµc). This definition corresponds to the
solid-line intersection in 32.13 of the full Review, and is different from the
Rossi definition we used for electrons. It serves the same function: below
Eµc ionization losses dominate, and above Eµc radiative effects dominate.
The dependence of Eµc on atomic number Z is shown in Fig. 32.24 in the
full Review.

The radiative cross sections are expressed as functions of the fractional
energy loss ν. The bremsstrahlung cross section goes roughly as 1/ν over
most of the range, while for the pair production case the distribution
goes as ν−3 to ν−2 [74]. “Hard” losses are therefore more probable in
bremsstrahlung, and in fact energy losses due to pair production may
very nearly be treated as continuous. The simulated [72] momentum
distribution of an incident 1 TeV/c muon beam after it crosses 3 m of
iron is shown in Fig. 32.25 of the full Review. The hard bremsstrahlung
photons and hadronic debris from photonuclear interactions induce
cascades which can obscure muon tracks in detector planes and reduce
tracking [76].

32.7. Cherenkov and transitional radiation[33,77,78]

A charged particle radiates if its velocity is greater than the local phase
velocity of light (Cherenkov radiation) or if it crosses suddenly from one
medium to another with different optical properties (transition radiation).
Neither process is important for energy loss, but both are used in
high-energy physics detectors.

32.7.1. Optical Cherenkov radiation : The cosine of the angle θc of
Cherenkov radiation, relative to the particle’s direction, for a particle with
velocity βc in a medium with index of refraction n, is 1/nβ, or

tan θc =
√

β2n2
− 1 ≈

√

2(1 − 1/nβ) (32.43)

for small θc, e.g., in gases. The threshold velocity βt is 1/n, and

γt = 1/(1 − β2
t )1/2. Therefore, βtγt = 1/(2δ + δ2)1/2, where δ = n − 1.

Practical Cherenkov radiator materials are dispersive. Let ω be the
photon’s frequency, and let k = 2π/λ be its wavenumber. The photons
propage at the group velocity vg = dω/dk = c/[n(ω) + ω(dn/dω)]. In a
non-dispersive medium, this simplifies to vg = c/n.

The number of photons produced per unit path length of a particle
with charge ze and per unit energy interval of the photons is

d2N

dEdx
=

αz2

~c
sin2 θc =

α2z2

re mec2

(

1 −

1

β2n2(E)

)

≈ 370 sin2 θc(E) eV−1cm−1 (z = 1) , (32.45)
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or, equivalently,

d2N

dxdλ
=

2παz2

λ2

(

1 −

1

β2n2(λ)

)

. (32.46)

The index of refraction n is a function of photon energy E = ~ω. For
practical use, Eq. (32.45) must be multiplied by the photodetector response
function and integrated over the region for which β n(ω) > 1.

When two particles are within <
∼ 1 wavelength, the electromagnetic

fields from the particles may add coherently, affecting the Cherenkov
radiation. The radiation from an e+e− pair at close separation is
suppressed compared to two independent leptons [84].

32.7.2. Coherent radio Cherenkov radiation :
Coherent Cherenkov radiation is produced by many charged particles

with a non-zero net charge moving through matter on an approximately
common “wavefront”—for example, the electrons and positrons in a
high-energy electromagnetic cascade. The signals can be visible above
backgrounds for shower energies as low as 1017 eV; see Sec. 34.3.3 for more
details. The phenomenon is called the Askaryan effect [85]. The photons
can Compton-scatter atomic electrons, and positrons can annihilate with
atomic electrons to contribute even more photons which can in turn
Compton scatter. These processes result in a roughly 20% excess of
electrons over positrons in a shower. The net negative charge leads to
coherent radio Cherenkov emission. Because the emission is coherent, the
electric field strength is proportional to the shower energy, and the signal
power increases as its square. The electric field strength also increases
linearly with frequency, up to a maximum frequency determined by the
lateral spread of the shower. This cutoff occurs at about 1 GHz in ice, and
scales inversely with the Moliere radius. At low frequencies, the radiation
is roughly isotropic, but, as the frequency rises toward the cutoff frequency,
the radiation becomes increasingly peaked around the Cherenkov angle.

32.7.3. Transition radiation : The energy I radiated when a particle
with charge ze crosses the boundary between vacuum and a medium with
plasma frequency ωp is αz2γ~ωp/3, where

~ωp =
√

4πNer3
e mec

2/α =

√

ρ (in g/cm3) 〈Z/A〉 × 28.81 eV . (32.48)

For styrene and similar materials, ~ωp ≈ 20 eV; for air it is 0.7 eV.
The number spectrum dNγ/d(~ω diverges logarithmically at low

energies and decreases rapidly for ~ω/γ~ωp > 1. About half the energy
is emitted in the range 0.1 ≤ ~ω/γ~ωp ≤ 1. Inevitable absorption in a

practical detector removes the divergence. For a particle with γ = 103,
the radiated photons are in the soft x-ray range 2 to 40 keV. The γ
dependence of the emitted energy thus comes from the hardening of the
spectrum rather than from an increased quantum yield.

The number of photons with energy ~ω > ~ω0 is given by the answer
to problem 13.15 in Ref. 33,

Nγ(~ω > ~ω0) =
αz2

π

[(

ln
γ~ωp

~ω0
− 1

)2

+
π2

12

]

, (32.49)

within corrections of order (~ω0/γ~ωp)
2. The number of photons above a

fixed energy ~ω0 ≪ γ~ωp thus grows as (ln γ)2, but the number above a
fixed fraction of γ~ωp (as in the example above) is constant. For example,

for ~ω > γ~ωp/10, Nγ = 2.519 αz2/π = 0.59%× z2.
The particle stays “in phase” with the x ray over a distance called the

formation length, d(ω). Most of the radiation is produced in a distance
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Figure 32.27: X-ray photon energy spectra for a radiator consisting
of 200 25µm thick foils of Mylar with 1.5 mm spacing in air (solid
lines) and for a single surface (dashed line). Curves are shown with
and without absorption. Adapted from Ref. 88.

d(ω) = (2c/ω)(1/γ2 + θ2 + ω2
p/ω2)−1. Here θ is the x-ray emission angle,

characteristically 1/γ. For θ = 1/γ the formation length has a maximum

at d(γωp/
√

2) = γc/
√

2 ωp. In practical situations it is tens of µm.
Since the useful x-ray yield from a single interface is low, in practical

detectors it is enhanced by using a stack of N foil radiators—foils
L thick, where L is typically several formation lengths—separated by
gas-filled gaps. The amplitudes at successive interfaces interfere to cause
oscillations about the single-interface spectrum. At increasing frequencies
above the position of the last interference maximum (L/d(w) = π/2), the
formation zones, which have opposite phase, overlap more and more and
the spectrum saturates, dI/dω approaching zero as L/d(ω) → 0. This is
illustrated in Fig. 32.27 for a realistic detector configuration.

For regular spacing of the layers fairly complicated analytic solutions for
the intensity have been obtained [88,89]. (See also Ref. 86 and references
therein.) Although one might expect the intensity of coherent radiation
from the stack of foils to be proportional to N2, the angular dependence
of the formation length conspires to make the intensity ∝ N .

Further discussion and all references may be found in the full Review of
Particle Physics. The equation and reference numbering corresponds to
that version.
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33. PARTICLE DETECTORS AT ACCELERATORS

Revised 2013 (see the various sections for authors).

This is an abridgment of the discussion given in the full Review of
Particle Physics (the “full Review”); the equation and reference numbering
corresponds to that version. The quoted numbers are usually based on
typical devices, and should be regarded only as rough approximations
for new designs. A more detailed discussion of detectors can be found in
Refs. 1 and 58.

33.1. Introduction

This review summarizes the detector technologies employed at
accelerator particle physics experiments. Several of these detectors are
also used in a non-accelerator context and examples of such applications
will be provided. The detector techniques which are specific to non-
accelerator particle physics experiments are the subject of Chap. 34. More
detailed discussions of detectors and their underlying physics can be found
in books by Ferbel [1], Kleinknecht [2], Knoll [3], Green [4], Leroy &
Rancoita [5], and Grupen [6].

In Table 33.1 are given typical resolutions and deadtimes of common
charged particle detectors. The quoted numbers are usually based on
typical devices, and should be regarded only as rough approximations
for new designs. The spatial resolution refers to the intrinsic detector
resolution, i.e. without multiple scattering. We note that analog detector
readout can provide better spatial resolution than digital readout by
measuring the deposited charge in neighboring channels. Quoted ranges
attempt to be representative of both possibilities.The time resolution is
defined by how accurately the time at which a particle crossed the detector
can be determined. The deadtime is the minimum separation in time
between two resolved hits on the same channel. Typical performance of
calorimetry and particle identification are provided in the relevant sections
below.

Table 33.1: Typical resolutions and deadtimes of common charged
particle detectors. Revised November 2011.

Intrinsinc Spatial Time Dead
Detector Type Resolution (rms) Resolution Time

Resistive plate chamber . 10 mm 1–2 ns —
Streamer chamber 300 µma 2 µs 100 ms
Liquid argon drift [7] ∼175–450 µm ∼ 200 ns ∼ 2 µs
Scintillation tracker ∼100 µm 100 ps/nb 10 ns
Bubble chamber 10–150 µm 1 ms 50 msc

Proportional chamber 50–100 µmd 2 ns 20-200 ns
Drift chamber 50–100 µm 2 nsa 20-100 ns
Micro-pattern gas detectors 30–40 µm < 10 ns 10-100 ns

Silicon strip pitch/(3 to 7)a few nsa . 50 nsa

Silicon pixel . 10 µm few nsa . 50 nsa

Emulsion 1 µm — —

a See full Review for qualifications and assumptions.
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33.2. Photon detectors
Updated August 2011 by D. Chakraborty (Northern Illinois U) and
T. Sumiyoshi (Tokyo Metro U).

Most detectors in high-energy, nuclear, and astrophysics rely on the
detection of photons in or near the visible range, 100 nm .λ . 1000nm,
or E ≈ a few eV. This range covers scintillation and Cherenkov radiation
as well as the light detected in many astronomical observations.

Generally, photodetection involves generating a detectable electrical
signal proportional to the (usually very small) number of incident photons.

33.2.1. Vacuum photodetectors : Vacuum photodetectors can be
broadly subdivided into three types: photomultiplier tubes, microchannel
plates, and hybrid photodetectors.

33.2.1.1. Photomultiplier tubes: A versatile class of photon detectors,
vacuum photomultiplier tubes (PMT) has been employed by a vast major-
ity of all particle physics experiments to date [9]. Both “transmission-”
and “reflection-type” PMT’s are widely used. In the former, the pho-
tocathode material is deposited on the inside of a transparent window
through which the photons enter, while in the latter, the photocathode
material rests on a separate surface that the incident photons strike. The
cathode material has a low work function, chosen for the wavelength band
of interest. When a photon hits the cathode and liberates an electron (the
photoelectric effect), the latter is accelerated and guided by electric fields
to impinge on a secondary-emission electrode, or dynode, which then emits
a few (∼ 5) secondary electrons. The multiplication process is repeated
typically 10 times in series to generate a sufficient number of electrons,
which are collected at the anode for delivery to the external circuit. The
total gain of a PMT depends on the applied high voltage V as G = AV kn,
where k ≈ 0.7–0.8 (depending on the dynode material), n is the number
of dynodes in the chain, and A a constant (which also depends on n).
Typically, G is in the range of 105–106.

33.2.2. Gaseous photon detectors : In gaseous photomultipliers
(GPM) a photoelectron in a suitable gas mixture initiates an avalanche
in a high-field region, producing a large number of secondary impact-
ionization electrons. In principle the charge multiplication and collection
processes are identical to those employed in gaseous tracking detectors
such as multiwire proportional chambers, micromesh gaseous detectors
(Micromegas), or gas electron multipliers (GEM). These are discussed in
Sec. 33.6.4.

33.2.3. Solid-state photon detectors : In a phase of rapid develop-
ment, solid-state photodetectors are competing with vacuum- or gas-based
devices for many existing applications and making way for a multitude of
new ones. Compared to traditional vacuum- and gaseous photodetectors,
solid-state devices are more compact, lightweight, rugged, tolerant to
magnetic fields, and often cheaper. They also allow fine pixelization, are
easy to integrate into large systems, and can operate at low electric
potentials, while matching or exceeding most performance criteria. They
are particularly well suited for detection of γ- and X-rays. Except for
applications where coverage of very large areas or dynamic range is
required, solid-state detectors are proving to be the better choice.

Silicon photodiodes (PD) are widely used in high-energy physics as
particle detectors and in a great number of applications (including solar
cells!) as light detectors. The structure is discussed in some detail in
Sec. 33.7.

Very large arrays containing O(107) of O(10 µm2)-sized photodioides
pixelizing a plane are widely used to photograph all sorts of things
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from everyday subjects at visible wavelengths to crystal structures
with X-rays and astronomical objects from infrared to UV. To limit
the number of readout channels, these are made into charge-coupled
devices (CCD), where pixel-to-pixel signal transfer takes place over
thousands of synchronous cycles with sequential output through shift
registers [14]. Thus, high spatial resolution is achieved at the expense of
speed and timing precision. Custom-made CCD’s have virtually replaced
photographic plates and other imagers for astronomy and in spacecraft.

In avalanche photodiodes (APD), an exponential cascade of impact
ionizations initiated by the initial photogenerated e-h pair under a large
reverse-bias voltage leads to an avalanche breakdown [15]. As a result,
detectable electrical response can be obtained from low-intensity optical
signals down to single photons.

33.3. Organic scintillators
Revised August 2011 by K.F. Johnson (FSU).

Organic scintillators are broadly classed into three types, crystalline,
liquid, and plastic, all of which utilize the ionization produced by
charged particles to generate optical photons, usually in the blue to green
wavelength regions [19]. Plastic scintillators are by far the most widely
used. Crystal organic scintillators are practically unused in high-energy
physics.

Densities range from 1.03 to 1.20 g cm−3. Typical photon yields are
about 1 photon per 100 eV of energy deposit [20]. A one-cm-thick
scintillator traversed by a minimum-ionizing particle will therefore yield
≈ 2 × 104 photons. The resulting photoelectron signal will depend on the
collection and transport efficiency of the optical package and the quantum
efficiency of the photodetector.

Decay times are in the ns range; rise times are much faster. Ease of
fabrication into desired shapes and low cost has made plastic scintillators
a common detector component. Recently, plastic scintillators in the
form of scintillating fibers have found widespread use in tracking and
calorimetry [23].

33.3.3. Scintillating and wavelength-shifting fibers :
The clad optical fiber is an incarnation of scintillator and wavelength

shifter (WLS) which is particularly useful [31]. Since the initial
demonstration of the scintillating fiber (SCIFI) calorimeter [32], SCIFI
techniques have become mainstream [33].

SCIFI calorimeters are fast, dense, radiation hard, and can have
leadglass-like resolution. SCIFI trackers can handle high rates and are
radiation tolerant, but the low photon yield at the end of a long fiber (see
below) forces the use of sensitive photodetectors. WLS scintillator readout
of a calorimeter allows a very high level of hermeticity since the solid angle
blocked by the fiber on its way to the photodetector is very small.

33.4. Inorganic scintillators:

Revised September 2009 by R.-Y. Zhu (California Institute of Technology)
and C.L. Woody (BNL).

Inorganic crystals form a class of scintillating materials with much
higher densities than organic plastic scintillators (typically ∼ 4–8 g/cm3)
with a variety of different properties for use as scintillation detectors. Due
to their high density and high effective atomic number, they can be used
in applications where high stopping power or a high conversion efficiency
for electrons or photons is required. These include total absorption
electromagnetic calorimeters (see Sec. 33.9.1), which consist of a totally
active absorber (as opposed to a sampling calorimeter), as well as serving
as gamma ray detectors over a wide range of energies. Many of these
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crystals also have very high light output, and can therefore provide
excellent energy resolution down to very low energies (∼ few hundred
keV).

33.5. Cherenkov detectors
Revised September 2009 by B.N. Ratcliff (SLAC).

Although devices using Cherenkov radiation are often thought of as
only particle identification (PID) detectors, in practice they are used
over a broader range of applications including; (1) fast particle counters;
(2) hadronic PID; and (3) tracking detectors performing complete
event reconstruction. Cherenkov counters contain two main elements;
(1) a radiator through which the charged particle passes, and (2) a
photodetector. As Cherenkov radiation is a weak source of photons, light
collection and detection must be as efficient as possible. The refractive
index n and the particle’s path length through the radiator L appear
in the Cherenkov relations allowing the tuning of these quantities for
particular applications.

Cherenkov detectors utilize one or more of the properties of Cherenkov
radiation discussed in the Passages of Particles through Matter section
(Sec. 32 of this Review): the prompt emission of a light pulse; the existence
of a velocity threshold for radiation; and the dependence of the Cherenkov
cone half-angle θc and the number of emitted photons on the velocity of
the particle and the refractive index of the medium.

33.6. Gaseous detectors

33.6.1. Energy loss and charge transport in gases : Revised March
2010 by F. Sauli (CERN) and M. Titov (CEA Saclay).

Gas-filled detectors localize the ionization produced by charged
particles, generally after charge multiplication. The statistics of ionization
processes having asymmetries in the ionization trails, affect the coordinate
determination deduced from the measurement of drift time, or of the center
of gravity of the collected charge. For thin gas layers, the width of the
energy loss distribution can be larger than its average, requiring multiple
sample or truncated mean analysis to achieve good particle identification.
The energy loss of charged particles and photons in matter is discussed
in Sec. 32. Table 33.5 provides values of relevant parameters in some
commonly used gases at NTP (normal temperature, 20◦ C, and pressure,
1 atm) for unit-charge minimum-ionizing particles (MIPs) [59–65].

When an ionizing particle passes through the gas, it creates electron-ion
pairs, but often the ejected electrons have sufficient energy to further ionize
the medium. As shown in Table 33.5, the total number of electron-ion
pairs (NT ) is usually a few times larger than the number of primaries
(NP ).

The probability for a released electron to have an energy E or larger
follows an approximate 1/E2 dependence (Rutherford law), taking into
account the electronic structure of the medium. The number of electron-
ion pairs per primary ionization, or cluster size, has an exponentially
decreasing probability; for argon, there is about 1% probability for primary
clusters to contain ten or more electron-ion pairs [61].

Once released in the gas, and under the influence of an applied electric
field, electrons and ions drift in opposite directions and diffuse towards
the electrodes. The drift velocity and diffusion of electrons depend very
strongly on the nature of the gas. Large drift velocities are achieved by
adding polyatomic gases (usually CH4, CO2, or CF4) having large inelastic
cross sections at moderate energies, which results in “cooling” electrons
into the energy range of the Ramsauer-Townsend minimum (at ∼ 0.5 eV)
of the elastic cross-section of argon. In a simple approximation, gas kinetic
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Table 33.5: Properties of noble and molecular gases at normal
temperature and pressure (NTP: 20◦ C, one atm). EX , EI : first
excitation, ionization energy; WI : average energy per ion pair;
dE/dx|min, NP , NT : differential energy loss, primary and total
number of electron-ion pairs per cm, for unit charge minimum
ionizing particles.

Gas Density, Ex EI WI dE/dx|min NP NT

mgcm−3 eV eV eV keV cm−1 cm−1 cm−1

He 0.179 19.8 24.6 41.3 0.32 3.5 8
Ne 0.839 16.7 21.6 37 1.45 13 40
Ar 1.66 11.6 15.7 26 2.53 25 97
Xe 5.495 8.4 12.1 22 6.87 41 312
CH4 0.667 8.8 12.6 30 1.61 28 54
C2H6 1.26 8.2 11.5 26 2.91 48 112
iC4H10 2.49 6.5 10.6 26 5.67 90 220
CO2 1.84 7.0 13.8 34 3.35 35 100
CF4 3.78 10.0 16.0 54 6.38 63 120

theory provides the drift velocity v as a function of the mean collision
time τ and the electric field E: v = eEτ/me (Townsend’s expression). In
the presence of an external magnetic field, the Lorentz force acting on
electrons between collisions deflects the drifting electrons and modifies the
drift properties.

If the electric field is increased sufficiently, electrons gain enough energy
between collisions to ionize molecules. Above a gas-dependent threshold,
the mean free path for ionization, λi, decreases exponentially with the field;
its inverse, α = 1/λi, is the first Townsend coefficient. In wire chambers,
most of the increase of avalanche particle density occurs very close to
the anode wires, and a simple electrostatic consideration shows that the
largest fraction of the detected signal is due to the motion of positive
ions receding from the wires. The electron component, although very fast,
contributes very little to the signal. This determines the characteristic
shape of the detected signals in the proportional mode: a fast rise followed
by a gradual increase.

33.6.2. Multi-Wire Proportional and Drift Chambers : Revised
March 2010 by Fabio Sauli (CERN) and Maxim Titov (CEA Saclay).

Multiwire proportional chambers (MWPCs) [67,68], introduced in the
late ’60’s, detect, localize and measure energy deposit by charged particles
over large areas. A mesh of parallel anode wires at a suitable potential,
inserted between two cathodes, acts almost as a set of independent
proportional counters. Electrons released in the gas volume drift towards
the anodes and produce avalanches in the increasing field.

Detection of charge on the wires over a predefined threshold provides
the transverse coordinate to the wire with an accuracy comparable to that
of the wire spacing. The coordinate along each wire can be obtained by
measuring the ratio of collected charge at the two ends of resistive wires.
Making use of the charge profile induced on segmented cathodes, the
so-called center-of gravity (COG) method, permits localization of tracks
to sub-mm accuracy.

Drift chambers, developed in the early ’70’s, can be used to estimate the
longitudinal position of a track by exploiting the arrival time of electrons
at the anodes if the time of interaction is known [71]. The distance
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between anode wires is usually several cm, allowing coverage of large areas
at reduced cost.

33.6.4. Micro-Pattern Gas Detectors : Revised March 2010 by
Fabio Sauli (CERN) and Maxim Titov (CEA Saclay).

By using pitch size of a few hundred µm, an order of magnitude
improvement in granularity over wire chambers, these detectors offer
intrinsic high rate capability (> 106 Hz/mm2), excellent spatial res-
olution (∼ 30 µm), multi-particle resolution (∼ 500 µm), and single
photo-electron time resolution in the ns range.

The Gas Electron Multiplier (GEM) detector consists of a thin-foil
copper-insulator-copper sandwich chemically perforated to obtain a high
density of holes in which avalanches occur [88]. The hole diameter is
typically between 25 µm and 150 µm, while the corresponding distance
between holes varies between 50 µm and 200 µm. The central insulator
is usually (in the original design) the polymer Kapton, with a thickness
of 50 µm. Application of a potential difference between the two sides of
the GEM generates the electric fields. Each hole acts as an independent
proportional counter. Electrons released by the primary ionization particle
in the upper conversion region (above the GEM foil) drift into the holes,
where charge multiplication occurs in the high electric field (50–70 kV/cm).
Most of avalanche electrons are transferred into the gap below the GEM.
Several GEM foils can be cascaded, allowing the multi-layer GEM
detectors to operate at overall gas gain above 104 in the presence of highly
ionizing particles, while strongly reducing the risk of discharges.

The micro-mesh gaseous structure (Micromegas) is a thin parallel-plate
avalanche counter. It consists of a drift region and a narrow multiplication
gap (25–150 µm) between a thin metal grid (micromesh) and the readout
electrode (strips or pads of conductor printed on an insulator board).
Electrons from the primary ionization drift through the holes of the mesh
into the narrow multiplication gap, where they are amplified. The small
amplification gap produces a narrow avalanche, giving rise to excellent
spatial resolution: 12 µm accuracy, limited by the micro-mesh pitch, has
been achieved for MIPs, as well as very good time resolution and energy
resolution (∼ 12% FWHM with 6 keV x rays) [91].

The performance and robustness of GEM and Micromegas have
encouraged their use in high-energy and nuclear physics, UV and visible
photon detection, astroparticle and neutrino physics, neutron detection
and medical physics.

33.6.5. Time-projection chambers : Revised October 2011 by D.
Karlen (U. of Victoria and TRIUMF, Canada).

The Time Projection Chamber (TPC) concept, invented by David
Nygren in the late 1970’s [76], is the basis for charged particle tracking
in a large number of particle and nuclear physics experiments. A uniform
electric field drifts tracks of electrons produced by charged particles
traversing a medium, either gas or liquid, towards a surface segmented into
2D readout pads. The signal amplitudes and arrival times are recorded to
provide full 3D measurements of the particle trajectories. The intrinsic 3D
segmentation gives the TPC a distinct advantage over other large volume
tracking detector designs which record information only in a 2D projection
with less overall segmentation, particularly for pattern recognition in
events with large numbers of particles.

Gaseous TPC’s are often designed to operate within a strong magnetic
field (typically parallel to the drift field) so that particle momenta can
be estimated from the track curvature. For this application, precise
spatial measurements in the plane transverse to the magnetic field are
most important. Since the amount of ionization along the length of the
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track depends on the velocity of the particle, ionization and momentum
measurements can be combined to identify the types of particles observed
in the TPC.

Gas amplification of 103–104 at the readout endplate is usually required
in order to provide signals with sufficient amplitude for conventional
electronics to sense the drifted ionization. Until recently, the gas
amplification system used in TPC’s have exclusively been planes of anode
wires operated in proportional mode placed close to the readout pads.
Performance has been recently improved by replacing these wire planes
with micro-pattern gas detectors, namely GEM [88] and Micromegas [90]
devices.

Diffusion degrades the position information of ionization that drifts a
long distance. For a gaseous TPC, the effect can be alleviated by the
choice of a gas with low intrinsic diffusion or by operating in a strong
magnetic field parallel to the drift field with a gas which exhibits a
significant reduction in transverse diffusion with magnetic field.

33.6.6. Transition radiation detectors (TRD’s) : Revised August
2013 by P. Nevski (BNL) and A. Romaniouk (Moscow Eng. & Phys.
Inst.).

Transition radiation (TR) x rays are produced when a highly relativistic
particle (γ >

∼ 103) crosses a refractive index interface, as discussed in
Sec. 32.7. The x rays, ranging from a few keV to a few dozen keV, are
emitted at a characteristic angle 1/γ from the particle trajectory. Since
the TR yield is about 1% per boundary crossing, radiation from multiple
surface crossings is used in practical detectors. In the simplest concept, a
detector module might consist of low-Z foils followed by a high-Z active
layer made of proportional counters filled with a Xe-rich gas mixture.
The atomic number considerations follow from the dominant photoelectric
absorption cross section per atom going roughly as Z n/E3

x, where n varies
between 4 and 5 over the region of interest, and the x-ray energy is Ex. To
minimize self-absorption, materials such as polypropylene, Mylar, carbon,
and (rarely) lithium are used as radiators. The TR signal in the active
regions is in most cases superimposed upon the particle’s ionization losses
which are proportional to Z.

The TR intensity for a single boundary crossing always increases with
γ, but for multiple boundary crossings interference leads to saturation
near a Lorentz factor γ sat = 0.6 ω1

√

ℓ1ℓ2/c [105], where ω1 is the radiator
plasma frequency, ℓ1 is its thickness, and ℓ2 the spacing. In most of
the detectors used in particle physics the radiator parameters are chosen
to provide γ sat ≈ 2000. Those detectors normally work as threshold
devices, ensuring the best electron/pion separation in the momentum
range 1 GeV/c <

∼ p <
∼ 150 GeV/c.

The discrimination between electrons and pions can be based on the
charge deposition measured in each detection module, on the number of
clusters—energy depositions observed above an optimal threshold (usually
it is 5–7 keV), or on more sophisticated methods analyzing the pulse shape
as a function of time. The total energy measurement technique is more
suitable for thick gas volumes, which absorb most of the TR radiation
and where the ionization loss fluctuations are small. The cluster-counting
method works better for detectors with thin gas layers, where the
fluctuations of the ionization losses are big.

Recent TRDs for particle astrophysics are designed to directly measure
the Lorentz factor of high-energy nuclei by using the quadratic dependence
of the TR yield on nuclear charge; see Cherry and Müller papers in
Ref. 107.
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33.7. Semiconductor detectors
Updated November 2013 by H. Spieler (LBNL).

Semiconductor detectors provide a unique combination of energy and
position resolution. In collider detectors they are most widely used as
position sensing devices and photodetectors (Sec. 33.2).

33.7.1. Materials Requirements : Semiconductor detectors are essen-
tially solid state ionization chambers. Absorbed energy forms electron-hole
pairs, i.e., negative and positive charge carriers, which under an applied
electric field move towards their respective collection electrodes, where
they induce a signal current. The energy required to form an electron-hole
pair is proportional to the bandgap. In tracking detectors the energy loss
in the detector should be minimal, whereas for energy spectroscopy the
stopping power should be maximized, so for gamma rays high-Z materials
are desirable.

Measurements on silicon photodiodes [121] show that for photon
energies below 4 eV one electron-hole (e-h) pair is formed per incident
photon. The mean energy Ei required to produce an e-h pair peaks at
4.4 eV for a photon energy around 6 eV. Above ∼1.5 keV it assumes
a constant value, 3.67 eV at room temperature. It is larger than the
bandgap energy because momentum conservation requires excitation of
lattice vibrations (phonons). For minimum-ionizing particles, the most
probable charge deposition in a 300 µm thick silicon detector is about
3.5 fC (22000 electrons). Other typical ionization energies are 2.96 eV in
Ge, 4.2 eV in GaAs, and 4.43 eV in CdTe.

Since both electronic and lattice excitations are involved, the variance
in the number of charge carriers N = E/Ei produced by an absorbed
energy E is reduced by the Fano factor F (about 0.1 in Si and Ge). Thus,

σN =
√

FN and the energy resolution σE/E =
√

FEi/E. However, the
measured signal fluctuations are usually dominated by electronic noise or
energy loss fluctuations in the detector.

A major effort is to find high-Z materials with a bandgap that is
sufficiently high to allow room-temperature operation while still providing
good energy resolution. Compund semiconductors, e.g., CdZnTe, can allow
this, but typically suffer from charge collection problems, characterized
by the product µτ of mobility and carrier lifetime. In Si and Ge
µτ > 1 cm2 V−1 for both electrons and holes, whereas in compound
semiconductors it is in the range 10−3–10−8. Since for holes µτ is typically
an order of magnitude smaller than for electrons, detector configurations
where the electron contribution to the charge signal dominates—e.g., strip
or pixel structures—can provide better performance.

33.7.2. Detector Configurations : A p-n junction operated at reverse
bias forms a sensitive region depleted of mobile charge and sets up an
electric field that sweeps charge liberated by radiation to the electrodes.
Detectors typically use an asymmetric structure, e.g., a highly doped
p electrode and a lightly doped n region, so that the depletion region
extends predominantly into the lightly doped volume.
In a planar device the thickness of the depleted region is

W =
√

2ǫ (V + Vbi)/Ne =
√

2ρµǫ(V + Vbi) , (33.18)

where V = external bias voltage
Vbi = “built-in” voltage (≈ 0.5 V for resistivities typically used in Si

detectors)
N = doping concentration
e = electronic charge
ǫ = dielectric constant = 11.9 ǫ0 ≈ 1 pF/cm in Si



274 33. Detectors at accelerators

ρ = resistivity (typically 1–10 kΩ cm in Si)

µ = charge carrier mobility

= 1350 cm2 V−1 s−1 for electrons in Si

= 450 cm2 V−1 s−1 for holes in SiIn Si
W = 0.5 [µm/

√

Ω-cm · V] ×
√

ρ(V + Vbi) for n-type Si, and

W = 0.3 [µm/
√

Ω-cm · V] ×
√

ρ(V + Vbi) for p-type Si.

Large volume (∼ 102–103 cm3) Ge detectors are commonly configured as
coaxial detectors, e.g., a cylindrical n-type crystal with 5–10 cm diameter
and 10 cm length with an inner 5–10mm diameter n+ electrode and an
outer p+ layer forming the diode junction. Ge can be grown with very
low impurity levels, 109–1010 cm−3 (HPGe), so these large volumes can be
depleted with several kV.

33.7.3. Signal Formation : The signal pulse shape depends on the
instantaneous carrier velocity v(x) = µE(x) and the electrode geometry,
which determines the distribution of induced charge (e.g., see Ref. 120,
pp. 71–83). Charge collection time decreases with increasing bias voltage,
and can be reduced further by operating the detector with “overbias,”
i.e., a bias voltage exceeding the value required to fully deplete the device.
The collection time is limited by velocity saturation at high fields (in Si
approaching 107 cm/s at E > 104 V/cm); at an average field of 104 V/cm
the collection time is about 15 ps/µm for electrons and 30 ps/µm for holes.
In typical fully-depleted detectors 300 µm thick, electrons are collected
within about 10 ns, and holes within about 25 ns.

Position resolution is limited by transverse diffusion during charge
collection (typically 5 µm for 300 µm thickness) and by knock-on electrons.
Resolutions of 2–4 µm (rms) have been obtained in beam tests. In
magnetic fields, the Lorentz drift deflects the electron and hole trajectories
and the detector must be tilted to reduce spatial spreading (see “Hall
effect” in semiconductor textbooks).

Electrodes can be in the form of cm-scale pads, strips, or µm-scale
pixels. Various readout structures have been developed for pixels, e.g.,
CCDs, DEPFETs, monolithic pixel devices that integrate sensor and
electronics (MAPS), and hybrid pixel devices that utilize separate sensors
and readout ICs connected by two-dimensional arrays of solder bumps.
For an overview and further discussion see Ref. 120.

33.7.4. Radiation Damage : Radiation damage occurs through two
basic mechanisms:

1. Bulk damage due to displacement of atoms from their lattice
sites. This leads to increased leakage current, carrier trapping, and
build-up of space charge that changes the required operating voltage.
Displacement damage depends on the nonionizing energy loss and
the energy imparted to the recoil atoms, which can initiate a chain of
subsequent displacements, i.e., damage clusters. Hence, it is critical
to consider both particle type and energy.

2. Surface damage due to charge build-up in surface layers, which leads
to increased surface leakage currents. In strip detectors the inter-strip
isolation is affected. The effects of charge build-up are strongly
dependent on the device structure and on fabrication details. Since
the damage is proportional to the absorbed energy (when ionization
dominates), the dose can be specified in rad (or Gray) independent
of particle type.
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Strip and pixel detectors have remained functional at fluences beyond
1015 cm−2 for minimum ionizing protons. At this damage level, charge
loss due to recombination and trapping becomes significant and the
high signal-to-noise ratio obtainable with low-capacitance pixel structures
extends detector lifetime. The higher mobility of electrons makes them
less sensitive to carrier lifetime than holes, so detector configurations that
emphasize the electron contribution to the charge signal are advantageous,
e.g., n+ strips or pixels on a p-substrate. The occupancy of the defect
charge states is strongly temperature dependent; competing processes
can increase or decrease the required operating voltage. It is critical
to choose the operating temperature judiciously (−10 to 0◦C in typical
collider detectors) and limit warm-up periods during maintenance. For
a more detailed summary see Ref. 121 and and the web-sites of the
ROSE and RD50 collaborations at http://RD48.web.cern.ch/rd48 and
http://RD50.web.cern.ch/rd50. Materials engineering, e.g., introducing
oxygen interstitials, can improve certain aspects and is under investigation.
At high fluences diamond is an alternative, but operates as an insulator
rather than a reverse-biased diode.

33.9. Calorimeters
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Figure 33.21: Nuclear interaction length λI/ρ (circles) and
radiation length X0/ρ (+’s) in cm for the chemical elements with
Z > 20 and λI < 50 cm.

A calorimeter is designed to measure the energy deposition and its
direction for a contained electromagnetic (EM) or hadronic shower. The
characteristic interaction distance for an electromagnetic interaction is
the radiation length X0, which ranges from 13.8 g cm−2 in iron to 6.0 g
cm−2 in uranium.* Similarly, the characteristic nuclear interaction length
λI varies from 132.1 g cm−2 (Fe) to 209 g cm−2 (U).† In either case,
a calorimeter must be many interaction lengths deep, where “many” is

* X0 = 120 g cm−2 Z−2/3 to better than 5% for Z > 23.
† λI = 37.8 g cm−2 A0.312 to within 0.8% for Z > 15.

See pdg.lbl.gov/AtomicNuclearProperties for actual values.
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determined by physical size, cost, and other factors. EM calorimeters tend
to be 15–30 X0 deep, while hadronic calorimeters are usually compromised
at 5–8 λI . In real experiments there is likely to be an EM calorimeter
in front of the hadronic section, which in turn has less sampling density
in the back, so the hadronic cascade occurs in a succession of different
structures.

In all cases there is a premium on small λI/ρ and X0/ρ (both with
units of length). These quantities are shown for Z > 20 for the chemical
elements in Fig. 33.21.

These considerations are for sampling calorimeters consisting of metallic
absorber sandwiched or (threaded) with an active material which generates
signal. The active medium may be a scintillator, an ionizing noble liquid,
a gas chamber, a semiconductor, or a Cherenkov radiator.

There are also homogeneous calorimeters, in which the entire volume
is sensitive, i.e., contributes signal. Homogeneous calorimeters (so far
usually electromagnetic) may be built with inorganic heavy (high density,
high 〈Z〉) scintillating crystals, or non-scintillating Cherenkov radiators
such as lead glass and lead fluoride. Scintillation light and/or ionization
in noble liquids can be detected. Nuclear interaction lengths in inorganic
crystals range from 17.8 cm (LuAlO3) to 42.2 cm (NaI).

33.9.1. Electromagnetic calorimeters :
Revised October 2009 by R.-Y. Zhu (California Inst. of Technology).

The development of electromagnetic showers is discussed in the section
on “Passage of Particles Through Matter” (Sec. 32 of this Review).

The energy resolution σE/E of a calorimeter can be parametrized as

a/
√

E ⊕ b ⊕ c/E, where ⊕ represents addition in quadrature and E is in
GeV. The stochastic term a represents statistics-related fluctuations such
as intrinsic shower fluctuations, photoelectron statistics, dead material at
the front of the calorimeter, and sampling fluctuations. For a fixed number
of radiation lengths, the stochastic term a for a sampling calorimeter is
expected to be proportional to

√
t/f , where t is plate thickness and f

is sampling fraction [127,128]. While a is at a few percent level for a
homogeneous calorimeter, it is typically 10% for sampling calorimeters.
The main contributions to the systematic, or constant, term b are
detector non-uniformity and calibration uncertainty. In the case of the
hadronic cascades discussed below, non-compensation also contributes to
the constant term. One additional contribution to the constant term for
calorimeters built for modern high-energy physics experiments, operated
in a high-beam intensity environment, is radiation damage of the active
medium. This can be minimized by developing radiation-hard active
media [48] and by frequent in situ calibration and monitoring [47,128].

33.9.2. Hadronic calorimeters : [1–5,133]
Revised September 2013 by D. E. Groom (LBNL).

Most large hadron calorimeters are parts of large 4π detectors at
colliding beam facilities. At present these are sampling calorimeters:
plates of absorber (Fe, Pb, Cu, or occasionally U or W) alternating with
plastic scintillators (plates, tiles, bars), liquid argon (LAr), or gaseous
detectors. The ionization is measured directly, as in LAr calorimeters, or
via scintillation light observed by photodetectors (usually PMT’s or silicon
photodiodes). Wavelength-shifting fibers are often used to solve difficult
problems of geometry and light collection uniformity. Silicon sensors are
being studied for ILC detectors; in this case e-h pairs are collected.

In an inelastic hadronic collision a significant fraction fem of the
energy is removed from further hadronic interaction by the production
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of secondary π0’s and η’s, whose decay photons generate high-energy
electromagnetic (EM) cascades. Charged secondaries (π±, p, . . . ) deposit
energy via ionization and excitation, but also interact with nuclei,
producing spallation protons and neutrons, evaporation neutrons, and
recoiling nuclei in highly excited states. The charged collision products
produce detectable ionization, as do the showering γ-rays from the prompt
de-excitation of highly excited nuclei. The recoiling nuclei generate little
or no detectable signal. The neutrons lose kinetic energy in elastic
collisions over hundreds of ns, gradually thermalize and are captured,
with the production of more γ-rays—usually outside the acceptance gate
of the electronics. Between endothermic spallation losses, nuclear recoils,
and late neutron capture, a significant fraction of the hadronic energy
(20%–40%, depending on the absorber and energy of the incident particle)
is invisible.

For 〈h/e〉 6= 1 (noncompensation), where h and e are the hadronic
and electromagnetic calorimeter responses, respectively, fluctuations in
fem significantly contribute to or even dominate the resolution. Since
the fem distribution has a high-energy tail, the calorimeter response is
non-Gaussian with a high-energy tail if 〈h/e〉 < 1. Noncompensation thus
seriously degrades resolution and produces a nonlinear response.

It is clearly desirable to compensate the response, i.e., to design the
calorimeter such that 〈h/e〉 = 1. This is possible only with a sampling
calorimeter, where several variables can be chosen or tuned:
1. Decrease the EM sensitivity. EM cross sections increase with Z,

and most of the energy in an EM shower is deposited by low-
energy electrons. A disproportionate fraction of the EM energy is
thus deposited in the higher-Z absorber. The degree of EM signal
suppression can be somewhat controlled by tuning the sensor/absorber
thickness ratio.

2. Increase the hadronic sensitivity. The abundant neutrons have a
large n-p scattering cross section, with the production of low-energy
scattered protons in hydrogenous sampling materials such as butane-
filled proportional counters or plastic scintillator. (When scattering off
a nucleus with mass number A, a neutron can at most lose 4A/(1+A)2

of its kinetic energy.)
3. Fabjan and Willis proposed that the additional signal generated in the

aftermath of fission in 238U absorber plates should compensate nuclear
fluctuations [146].
Motivated very much by the work of Brau, Gabriel, Brückmann, and

Wigmans [148], several groups built calorimeters which were very nearly
compensating. The degree of compensation was sensitive to the acceptance
gate width, and so could be somewhat tuned.

After the first interaction of the incident hadron, the average
longitudinal distribution rises to a smooth peak. The peak position
increases slowly with energy. The distribution becomes reasonably
exponential after several interaction lengths. A gamma distribution fairly
well describes the longitudinal development of an EM shower, as discussed
in Sec. 32.5.

The transverse energy deposit is characterized by a central core
dominated by EM cascades, together with a wide “skirt” produced by
wide-angle hadronic interactions [154].

Further discussion and all references may be found in the full Review
of Particle Physics.The numbering of references and equations used here
corresponds to that version.
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34. PARTICLE DETECTORS FOR

NON-ACCELERATOR PHYSICS

Revised 2013 (see the various sections for authors).

34.1. Introduction

Non-accelerator experiments have become increasingly important in
particle physics. These include classical cosmic ray experiments, neutrino
oscillation measurements, and searches for double-beta decay, dark
matter candidates, and magnetic monopoles. The experimental methods
are sometimes those familiar at accelerators (plastic scintillators, drift
chambers, TRD’s, etc.) but there is also instrumentation either not
found at accelerators or applied in a radically different way. Examples
are atmospheric scintillation detectors (Fly’s Eye), massive Cherenkov
detectors (Super-Kamiokande, IceCube), ultracold solid state detectors
(CDMS). And, except for the cosmic ray detectors, there is a demand for
radiologically ultra-pure materials.

In this section, some more important detectors special to terrestrial
non-accelerator experiments are discussed. Techniques used in both
accelerator and non-accelerator experiments are described in Sec. 33,
Particle Detectors at Accelerators, some of which have been modified to
accommodate the non-accelerator nuances. Space-based detectors also use
some unique methods, but these are beyond the present scope of RPP.

34.2. High-energy cosmic-ray hadron and gamma-ray

detectors
34.2.1. Atmospheric fluorescence detectors :

Revised August 2013 by L.R. Wiencke (Colorado School of Mines).

Cosmic-ray fluorescence detectors (FD) use the atmosphere as a
giant calorimeter to measure isotropic scintillation light that traces the
development profiles of extensive air showers (EAS). The EASs observed
are produced by the interactions of high-energy (E > 1017eV) subatomic
particles in the stratosphere and upper troposphere. The amount of
scintillation light generated is proportional to energy deposited in the
atmosphere and nearly independent of the primary species.

The scintillation light is emitted between 290 and 430 nm, when
relativistic charged particles, primarily electrons and positrons, excite
nitrogen molecules in air, resulting in transitions of the 1P and 2P systems.

An FD element (telescope) consists of a non-tracking spherical mirror
(3.5–13 m2 and less than astronomical quality), a close-packed “camera”
of PMTs near the focal plane, and flash ADC readout system with a pulse
and track-finding trigger scheme [10]. Simple reflector optics (12◦ × 16◦

degree field of view (FOV) on 256 PMTs) and Schmidt optics (30◦ × 30◦

on 440 PMTs), including a correcting element, have been used.

The EAS generates a track consistent with a light source moving at
v = c across the FOV. The number of photons (Nγ) as a function of
atmospheric depth (X) can be expressed as [8]

dNγ

dX
=

dEtot
dep

dX

∫

Y (λ, P, T, u) · τatm(λ, X) · εFD(λ)dλ , (34.1)

where τatm(λ, X) is atmospheric transmission, including wavelength (λ)
dependence, and εFD(λ) is FD efficiency. εFD(λ) includes geometric factors
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and collection efficiency of the optics, quantum efficiency of the PMTs, and
other throughput factors. The typical systematic uncertainties, Y (10%),
τatm (10%) and εFD (photometric calibration 10%), currently dominate
the total reconstructed EAS energy uncertainty. ∆E/E of 20–25% is
possible, provided the geometric fit of the EAS axis is constrained by
multi-eye stereo projection, or by timing from a colocated sparse array of
surface detectors.

34.2.2. Atmospheric Cherenkov telescopes for high-energy γ-

ray astronomy :

Updated August 2013 by J. Holder (Dept. of Phys. and Astronomy &
Bartol Research Inst., Univ. of Delaware).

Atmospheric Cherenkov detectors achieve effective collection areas of
∼ 105 m2 by employing the Earth’s atmosphere as an intrinsic part of the
detection technique. A hadronic cosmic ray or high energy γ-ray incident
on the Earth’s atmosphere triggers a particle cascade, or air shower.
Relativistic charged particles in the cascade produce Cherenkov radiation,
which is emitted along the shower direction, resulting in a light pool on
the ground with a radius of ∼ 130 m. Maximum emission occurs when
the number of particles in the cascade is largest. The Cherenkov light at
ground level peaks at a wavelength, λ ≈ 300–350 nm. The photon density
is typically ∼ 100 photons/m2 at 1 TeV, arriving in a brief flash of a few
nanoseconds duration.

Modern atmospheric Cherenkov telescopes consist of large (> 100m2)
segmented mirrors on steerable altitude-azimuth mounts. A camera, made
from an array of up to 1000 photomultiplier tubes (PMTs) covering a
field-of-view of up to 5.0◦ in diameter, is placed at the mirror focus and
used to record a Cherenkov image of each air shower. Images are recorded
at a rate of a few hundred Hz, the vast majority of which are due to
showers with hadronic cosmic-ray primaries. The shape and orientation of
the Cherenkov images are used to discriminate γ-ray photon events from
this cosmic-ray background, and to reconstruct the photon energy and
arrival direction.

The total Cherenkov yield from the air shower is proportional to the
energy of the primary particle. The energy resolution of this technique,
also energy-dependent, is typically 15–20% at energies above a few hundred
GeV. Energy spectra of γ-ray sources can be measured over a wide range;
potentially from ∼ 50 GeV to ∼ 100 TeV, depending upon the instrument
characteristics, source strength, and exposure time.

34.3. Large neutrino detectors

34.3.1. Deep liquid detectors for rare processes :

Revised September 2013 by K. Scholberg & C.W. Walter (Duke
University).

Deep, large detectors for rare processes tend to be multi-purpose
with physics reach that includes not only solar, reactor, supernova and
atmospheric neutrinos, but also searches for baryon number violation,
searches for exotic particles such as magnetic monopoles, and neutrino
and cosmic ray astrophysics in different energy regimes. The detectors
may also serve as targets for long-baseline neutrino beams for neutrino
oscillation physics studies. In general, detector design considerations can
be divided into high-and low-energy regimes, for which background and
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event reconstruction issues differ. The high-energy regime, from about
100 MeV to a few hundred GeV, is relevant for proton decay searches,
atmospheric neutrinos and high-energy astrophysical neutrinos. The
low-energy regime (a few tens of MeV or less) is relevant for supernova,
solar, reactor and geological neutrinos.

Large water Cherenkov and scintillator detectors (see Table 34.1)
usually consist of a volume of transparent liquid viewed by photomultiplier
tubes (PMTs). Because photosensors lining an inner surface represent a
driving cost that scales as surface area, very large volumes can be used
for comparatively reasonable cost. A common configuration is to have at
least one concentric outer layer of liquid material separated from the inner
part of the detector to serve as shielding against ambient background. If
optically separated and instrumented with PMTs, an outer layer may also
serve as an active veto against entering cosmic rays and other background

Because in most cases one is searching for rare events, large detectors
are usually sited underground to reduce cosmic-ray related background
(see Chapter 28). The minimum depth required varies according to the
physics goals [27].

34.3.1.1. Liquid scintillator detectors:

Past and current large underground detectors based on hydrocarbon
scintillators include LVD, MACRO, Baksan, Borexino, KamLAND and
SNO+. Experiments at nuclear reactors include Chooz, Double Chooz,
Daya Bay, and RENO. Organic liquid scintillators for large detectors
are chosen for high light yield and attenuation length, good stability,
compatibility with other detector materials, high flash point, low toxicity,
appropriate density for mechanical stability, and low cost.

Scintillation detectors have an advantage over water Cherenkov
detectors in the lack of Cherenkov threshold and the high light yield.
However, scintillation light emission is nearly isotropic, and therefore
directional capabilities are relatively weak.

34.3.1.2. Water Cherenkov detectors:

Very large-imaging water detectors reconstruct ten-meter-scale
Cherenkov rings produced by charged particles (see Sec. 33.5.0).
The first such large detectors were IMB and Kamiokande. The only
currently existing instance of this class is Super-Kamiokande (Super-K).

Cherenkov detectors are excellent electromagnetic calorimeters, and the
number of Cherenkov photons produced by an e/γ is nearly proportional
to its kinetic energy. The number of collected photoelectrons depends
on the scattering and attenuation in the water along with the photo-
cathode coverage, quantum efficiency and the optical parameters of any
external light collection systems or protective material surrounding them.
Event-by-event corrections are made for geometry and attenuation.

High-energy (∼100 MeV or more) neutrinos from the atmosphere or
beams interact with nucleons; for the nucleons bound inside the 16O
nucleus, the nuclear effects both at the interaction, and as the particles
leave the nucleus must be considered when reconstructing the interaction.
Various event topologies can be distinguished by their timing and fit
patterns, and by presence or absence of light in a veto.

Low-energy neutrino interactions of solar neutrinos in water are
predominantly elastic scattering off atomic electrons; single electron events
are then reconstructed. At solar neutrino energies, the visible energy
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resolution (∼ 30%/
√

ξ Evis(MeV)) is about 20% worse than photoelectron
counting statistics would imply. At these energies, radioactive backgrounds
become a dominant issue.

The Sudbury Neutrino Observatory (SNO) detector [32] is the only
instance of a large heavy water detector and deserves mention here. In
addition to an outer 1.7 kton of light water, SNO contained 1 kton of D2O,
giving it unique sensitivity to neutrino neutral current (νx+d → νx+p+n),
and charged current (νe + d → p + p + e−) deuteron breakup reactions.

34.3.3. Coherent radio Cherenkov radiation detectors :

Revised February 2013 by S.R. Klein (LBNL/UC Berkeley).

Radio detectors sensitive to coherent Cherenkov radiation provide an
attractive way to search for ultra-high energy cosmic neutrinos, the only
long-range probe of the ultra-high energy cosmos.

Electromagnetic and hadronic showers produce radio pulses via the
Askaryan effect [30], as discussed in Sec. 30. The shower contains more
electrons than positrons, leading to coherent emission. The electric field
strength is proportional to the neutrino energy; the radiated power goes
as its square. Detectors with antennas placed in the active volume have
thresholds around 1017 eV. The electric field strength increases linearly
with frequency, up to a cut-off wavelength set by the transverse size of
the shower. The cut-off is about 1 GHz in ice, and 2.5 GHz in rock/lunar
regolith. The signal is linearly polarized pointing toward the shower axis.
This polarization is a key diagnostic for radiodetection, and can be used
to help determine the neutrino direction.

34.3.3.1. The Moon as a target:

Because of it’s large size and non-conducting regolith, and the
availability of large radio-telescopes, the moon is an attractive target
[45]; Conventional radio-telescopes are reasonably well matched to lunar
neutrino searches, with natural beam widths not too dissimilar from the
size of the Moon. The big limitation of lunar experiments is that the
240,000 km target-antenna separation leads to neutrino energy thresholds
far above 1020 eV.

Experiments so far include Parkes, Glue, NuMoon, Lunaska, and Resun.
No signals have been detected. These efforts have considerable scope for
expansion. In the near future, several large radio detector arrays should
reach significantly lower limits. The LOFAR array is beginning to take
data with 36 detector clusters spread over Northwest Europe [46]. In the
longer term, the Square Kilometer Array (SKA) with 1 km2 effective area
will push thresholds down to near 1020 eV.

34.3.3.2. The ANITA balloon experiment:

The ANITA balloon experiment made two flights around Antarctica,
floating at an altitude around 35 km [47]. Its 40 (32 in the first flight)
dual-polarization horn antennas scanned the surrounding ice, out to the
horizon (650 km away). Because of the small angle of incidence, ANITA
was able to make use of polarization information; ν signals should be
vertically polarized, while most background from cosmic-ray air showers
is expected to be horizontally polarized. By using the several-meter
separation between antennas, ANITA achieved a pointing accuracy of
0.2–0.40 in elevation, and 0.5–1.10 in azimuth.

The attenuation length of radio waves depends on the frequency
and ice temperature, with attenuation higher in warmer ice. A recent



282 34. Detectors for non-accelerator physics

measurement, by the ARA collaboration at the South Pole found an
average attenuation length of 670+180

−66 m [48]. On the Ross Ice Shelf,
ARIANNA finds attenuation lengths of 300–500 m, depending on
frequency [49].

ANITA verified the accuracy of their calibrations by observing radio
sources that they buried in the ice. ANITA has also recently observed
radio waves from cosmic-ray air showers; these showers are differentiated
from neutrino showers on the basis of the radio polarization and zenith
angle distribution [50].

34.3.3.3. Active Volume Detectors:

The use of radio antennas located in the active volume was pioneered
by the RICE experiment, which buried radio antennas in holes drilled for
AMANDA [51] at the South Pole. RICE was comprised of 18 half-wave
dipole antennas, sensitive from 200 MHz to 1 GHz, buried between 100
and 300 m deep. The array triggered when four or more stations fired
discriminators within 1.2 µs, giving it a threshold of about 1017 eV.

Two groups are prototyping detectors, with the goal of a detector with
an active volume in the 100 km3 range. Both techniques are modular, so
the detector volume scales roughly linearly with the available funding.
The Askaryan Radio Array (ARA) is located at the South Pole, while the
Antarctic Ross Iceshelf ANtenna Neutrino Array (ARIANNA) is on the
Ross Ice Shelf. Both experiments use local triggers based on a coincidence
between multiple antennas in a single station/cluster.

ARIANNA will be located in Moore’s Bay, on the Ross Ice Shelf, where
≈ 575m of ice sits atop the Ross Sea [49]. The site was chosen because the
ice-seawater interface is smooth there, so the interface acts as a mirror for
radio waves. The major advantage of this approach is that ARIANNA is
sensitive to downward going neutrinos, and should be able to see more of
the Cherenkov cone for horizontal neutrinos. One disadvantage of the site
is that the ice is warmer, so the radio attenuation length will be shorter.

34.4. Large time-projection chambers for rare event

detection

Written August 2009 by M. Heffner (LLNL).

TPCs in non-accelerator particle physics experiments are principally
focused on rare event detection (e.g., neutrino and dark matter
experiments) and the physics of these experiments can place dramatically
different constraints on the TPC design (only extensions of the traditional
TPCs are discussed here). The drift gas or liquid is usually the target or
matter under observation and due to very low signal rates a TPC with
the largest possible active mass is desired. The large mass complicates
particle tracking of short and sometimes very low-energy particles. Other
special design issues include efficient light collection, background rejection,
internal triggering, and optimal energy resolution.

The liquid-phase TPC can have a high density at low pressure that
results in very good self-shielding and compact installation with lightweight
containment. The down sides are the need for cryogenics, slower charge
drift, tracks shorter than typical electron diffusion distances, lower-energy
resolution (e.g., xenon) and limited charge readout options. Slower charge
drift requires long electron lifetimes, placing strict limits on the oxygen
and other impurities with high electron affinity.
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A high-pressure gas phase TPC has no cryogenics and density is easily
optimized for the signal, but a large heavy-pressure vessel is required.
Although self shielding is reduced, it can in some cases approach that of
the liquid phase; in xenon at 50 atm the density is about half that of water
or about 1/6 of liquid xenon. A significant feature of high pressure xenon
gas is the energy resolution.

Rare-event TPCs can be designed to detect scintillation light as well as
charge to exploit the anti-correlation to improve energy resolution and/or
signal to noise [41]. Electroluminescence can be used to proportionally
amplify the drifted ionization, and it does not suffer the fluctuations of
an avalanche or the small signals of direct collection. It works by setting
up at the positive end of the drift volume parallel meshes or wire arrays
with an electric field larger than the drift field, but less than the field
needed for avalanche. In xenon, this is 3–6 kV cm−1 bar−1 for good energy
resolution.

Differentiation of nuclear and electron recoils at low-energy deposition is
important as a means of background rejection. The nuclear recoil deposits
a higher density of ionization than an electron recoil and this results in
a higher geminate recombination resulting in a higher output of primary
scintillation and lower charge. The ratio of scintillation to charge can be
used to distinguish the two. In the case of an electroluminescence readout,
this is done simply with the ratio of primary light to secondary light.

34.5. Sub-Kelvin detectors
Written September 2009 by S. Golwala (Caltech).

Detectors operating below 1 K, also known as “low-temperature”
or “cryogenic” detectors, use <

∼meV quanta (phonons, superconducting
quasiparticles) to provide better energy resolution than is typically
available from conventional technologies. Such resolution can provide
unique advantages to applications reliant on energy resolution, such
as beta-decay experiments seeking to measure the νe mass or searches
for neutrinoless double-beta decay. In addition, the sub-Kelvin mode
is combined with conventional (eV quanta) ionization or scintillation
measurements to provide discrimination of nuclear recoils from electron
recoils, critical for searches for WIMP dark matter and for coherent
neutrino-nucleus scattering.
34.5.1. Thermal Phonons :

The most basic kind of low-temperature detector employs a dielectric
absorber coupled to a thermal bath via a weak link. A thermistor monitors
the temperature of the absorber. The energy E deposited by a particle
interaction causes a calorimetric temperature change by increasing the
population of thermal phonons. The fundamental sensitivity is

σ2
E = ξ2kT [T C(T ) + βE] , (34.5)

where C is the heat capacity of the detector, T is the temperature of
operation, k is Boltzmann’s constant, and ξ is a dimensionless factor of
order unity that is precisely calculable from the nature of the thermal link
and the non-thermodynamic noises (e.g., Johnson and/or readout noise).
The energy resolution typically acquires an additional energy dependence
due to deviations from an ideal calorimetric model that cause position
and/or energy dependence in the signal shape. The rise time of response
is limited by the internal thermal conductivity of the absorber.
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34.5.2. Athermal Phonons and Superconducting Quasiparticles :

The advantage of thermal phonons is also a disadvantage: energy
resolution degrades as

√

M where M is the detector mass. This motivates
the use of athermal phonons. There are three steps in the development of
the phonon signal. The recoiling particle deposits energy along its track,
with the majority going directly into phonons. The recoil and bandgap
energy scales (keV and higher, and eV, respectively) are much larger
than phonon energies (meV), so the full energy spectrum of phonons is
populated, with phase space favoring the most energetic phonons.

Another mode is detection of superconducting quasiparticles in
superconducting crystals. Energy absorption breaks superconducting
Cooper pairs and yields quasiparticles, electron-like excitations that can
diffuse through the material and that recombine after the quasiparticle
lifetime.

34.5.3. Ionization and Scintillation :

While ionization and scintillation detectors usually operate at much
higher temperatures, ionization and scintillation can be measured at
low temperature and can be combined with a “sub-Kelvin” technique
to discriminate nuclear recoils from background interactions producing
electron recoils, which is critical for WIMP searches and coherent
neutrino-nucleus scattering. With ionization, such techniques are based on
Lindhard theory [50], which predicts substantially reduced ionization yield
for nuclear recoils relative to electron recoils. For scintillation, application
of Birks’ law Sec. 28.3.0) yields a similar prediction.

34.6. Low-radioactivity background techniques

Revised July 2013 by A. Piepke (University of Alabama).

The physics reach of low-energy rare event searches e.g. for dark matter,
neutrino oscillations, or double beta decay is often limited by background
caused by radioactivity. Depending on the chosen detector design, the
separation of the physics signal from this unwanted interference can be
achieved on an event-by-event basis by active event tagging, utilizing
some unique event feature, or by reducing the radiation background
by appropriate shielding and material selection. In both cases, the
background rate is proportional to the flux of background-creating
radiation. Its reduction is thus essential for realizing the full physics
potential of the experiment. In this context, “low energy” may be defined
as the regime of natural, anthropogenic, or cosmogenic radioactivity, all at
energies up to about 10 MeV. Following the classification of [64], sources
of background may be categorized into the following classes:

1. environmental radioactivity,

2. radioimpurities in detector or shielding components,

3. radon and its progeny,

4. cosmic rays,

5. neutrons from natural fission, (α, n) reactions and from cosmic-ray
muon spallation and capture.

Further discussion and all references may be found in the full Review

of Particle Physics.The numbering of references and equations used here
corresponds to that version.
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35. RADIOACTIVITY AND RADIATION PROTECTION

Revised August 2013 by S. Roesler and M. Silari (CERN).

35.1. Definitions

The International Commission on Radiation Units and Measurements
(ICRU) recommends the use of SI units. Therefore we list SI units first,
followed by cgs (or other common) units in parentheses, where they differ.

• Activity (unit: Becquerel):

1 Bq = 1 disintegration per second (= 27 pCi).

• Absorbed dose (unit: gray): The absorbed dose is the energy
imparted by ionizing radiation in a volume element of a specified material
divided by the mass of this volume element.

1 Gy = 1 J/kg (= 104 erg/g = 100 rad)

= 6.24 × 1012 MeV/kg deposited energy.

• Kerma (unit: gray): Kerma is the sum of the initial kinetic energies of
all charged particles liberated by indirectly ionizing particles in a volume
element of the specified material divided by the mass of this volume
element.

• Exposure (unit: C/kg of air [= 3880 Roentgen†]): The exposure is
a measure of photon fluence at a certain point in space integrated over
time, in terms of ion charge of either sign produced by secondary electrons
in a small volume of air about the point. Implicit in the definition is
the assumption that the small test volume is embedded in a sufficiently
large uniformly irradiated volume that the number of secondary electrons
entering the volume equals the number leaving (so-called charged particle
equilibrium).

Table 35.1: Radiation weighting factors, wR.

Radiation type wR

Photons 1
Electrons and muons 1
Neutrons, En < 1 MeV 2.5 + 18.2 × exp[−(lnEn)2/6]

1 MeV ≤ En ≤ 50 MeV 5.0 + 17.0 × exp[−(ln(2En))2/6]
En > 50 MeV 2.5 + 3.25 × exp[−(ln(0.04En))2/6]

Protons and charged pions 2
Alpha particles, fission
fragments, heavy ions 20

• Equivalent dose (unit: Sievert [= 100 rem (roentgen equivalent in
man)]): The equivalent dose HT in an organ or tissue T is equal to the
sum of the absorbed doses DT,R in the organ or tissue caused by different
radiation types R weighted with so-called radiation weighting factors wR:

HT =
∑

R

wR × DT,R . (35.1)

† This unit is somewhat historical, but appears on some measuring in-
struments. One R is the amount of radiation required to liberate positive
and negative charges of one electrostatic unit of charge in 1 cm3 of air at
standard temperature and pressure (STP)
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It expresses long-term risks (primarily cancer and leukemia) from low-level
chronic exposure. The values for wR recommended recently by ICRP [2]
are given in Table 35.1.

• Effective dose (unit: Sievert): The sum of the equivalent doses,
weighted by the tissue weighting factors wT (

∑

T wT = 1) of several organs
and tissues T of the body that are considered to be most sensitive [2], is
called “effective dose” E:

E =
∑

T

wT × HT . (35.2)

35.2. Radiation levels [4]

• Natural annual background, all sources: Most world areas, whole-
body equivalent dose rate ≈ (1.0–13) mSv (0.1–1.3 rem). Can range up
to 50 mSv (5 rem) in certain areas. U.S. average ≈ 3.6 mSv, including
≈ 2 mSv (≈ 200 mrem) from inhaled natural radioactivity, mostly radon
and radon daughters. (Average is for a typical house and varies by more
than an order of magnitude. It can be more than two orders of magnitude
higher in poorly ventilated mines. 0.1–0.2 mSv in open areas.)

• Cosmic ray background (sea level, mostly muons):
∼ 1 min−1 cm−2 sr−1. For more accurate estimates and details, see the
Cosmic Rays section (Sec. 28 of this Review).

• Fluence (per cm2) to deposit one Gy, assuming uniform irradiation:

≈ (charged particles) 6.24×109/(dE/dx), where dE/dx (MeV
g−1 cm2), the energy loss per unit length, may be obtained from Figs.
32.2 and 32.4 in Sec. 32 of the Review, and pdg.lbl.gov/AtomicNuclear

Properties.

≈ 3.5 × 109 cm−2 minimum-ionizing singly-charged particles in carbon.

≈ (photons) 6.24×109/[Ef/ℓ], for photons of energy E (MeV),
attenuation length ℓ (g cm−2), and fraction f . 1 expressing the fraction
of the photon’s energy deposited in a small volume of thickness ≪ ℓ but
large enough to contain the secondary electrons.

≈ 2 × 1011 photons cm−2 for 1 MeV photons on carbon (f ≈ 1/2).

35.3. Health effects of ionizing radiation

• Recommended limits of effective dose to radiation workers

(whole-body dose):∗

EU/Switzerland: 20 mSv yr−1

U.S.: 50 mSv yr−1 (5 rem yr−1)†

• Lethal dose: The whole-body dose from penetrating ionizing radiation
resulting in 50% mortality in 30 days (assuming no medical treatment)
is 2.5–4.5 Gy (250–450 rad), as measured internally on body longitudinal
center line. Surface dose varies due to variable body attenuation and may
be a strong function of energy.

• Cancer induction by low LET radiation: The cancer induction
probability is about 5% per Sv on average for the entire population [2].

Footnotes:

∗ The ICRP recommendation [2] is 20 mSv yr−1 averaged over 5 years,
with the dose in any one year ≤ 50 mSv.

† Many laboratories in the U.S. and elsewhere set lower limits.

See full Review for references and further details.
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36. COMMONLY USED RADIOACTIVE SOURCES

Table 36.1. Revised November 1993 by E. Browne (LBNL).

Particle Photon

Type of Energy Emission Energy Emission
Nuclide Half-life decay (MeV) prob. (MeV) prob.
22
11

Na 2.603 y β+, EC 0.545 90% 0.511 Annih.
1.275 100%

54
25

Mn 0.855 y EC 0.835 100%
Cr K x rays 26%

55
26

Fe 2.73 y EC Mn K x rays:
0.00590 24.4%
0.00649 2.86%

57
27

Co 0.744 y EC 0.014 9%
0.122 86%
0.136 11%
Fe K x rays 58%

60
27

Co 5.271 y β− 0.316 100% 1.173 100%
1.333 100%

68
32

Ge 0.742 y EC Ga K x rays 44%
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

→
68
31

Ga β+, EC 1.899 90% 0.511 Annih.
1.077 3%

90
38

Sr 28.5 y β− 0.546 100%
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

→
90
39

Y β− 2.283 100%

106
44

Ru 1.020 y β− 0.039 100%
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

→
106
45

Rh β− 3.541 79% 0.512 21%
0.622 10%

109
48

Cd 1.267 y EC 0.063 e− 41% 0.088 3.6%
0.084 e− 45% Ag K x rays 100%
0.087 e− 9%

113
50

Sn 0.315 y EC 0.364 e− 29% 0.392 65%
0.388 e− 6% In K x rays 97%

137
55

Cs 30.2 y β− 0.514 94% 0.662 85%
1.176 6%
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133
56

Ba 10.54 y EC 0.045 e− 50% 0.081 34%
0.075 e− 6% 0.356 62%

Cs K x rays 121%
207
83

Bi 31.8 y EC 0.481 e− 2% 0.569 98%
0.975 e− 7% 1.063 75%
1.047 e− 2% 1.770 7%

Pb K x rays 78%
228
90

Th 1.912 y 6α: 5.341 to 8.785 0.239 44%
3β−: 0.334 to 2.246 0.583 31%

2.614 36%
(→224

88
Ra →

220
86

Rn →
216
84

Po →
212
82

Pb →
212
83

Bi →
212
84

Po)

241
95

Am 432.7 y α 5.443 13% 0.060 36%
5.486 85% Np L x rays 38%

241
95

Am/Be 432.2 y 6 × 10−5 neutrons (4–8 MeV) and
4 × 10−5γ’s (4.43 MeV) per Am decay

244
96

Cm 18.11 y α 5.763 24% Pu L x rays ∼ 9%
5.805 76%

252
98

Cf 2.645 y α (97%) 6.076 15%
6.118 82%

Fission (3.1%)
≈ 20 γ’s/fission; 80% < 1 MeV
≈ 4 neutrons/fission; 〈En〉 = 2.14 MeV

“Emission probability” is the probability per decay of a given emission;
because of cascades these may total more than 100%. Only principal
emissions are listed. EC means electron capture, and e− means
monoenergetic internal conversion (Auger) electron. The intensity of 0.511
MeV e+e− annihilation photons depends upon the number of stopped
positrons. Endpoint β± energies are listed. In some cases when energies
are closely spaced, the γ-ray values are approximate weighted averages.
Radiation from short-lived daughter isotopes is included where relevant.

Half-lives, energies, and intensities are from E. Browne and R.B. Firestone,
Table of Radioactive Isotopes (John Wiley & Sons, New York, 1986), recent
Nuclear Data Sheets, and X-ray and Gamma-ray Standards for Detector
Calibration, IAEA-TECDOC-619 (1991).

Neutron data are from Neutron Sources for Basic Physics and Applications
(Pergamon Press, 1983).
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37. PROBABILITY

Revised September 2013 by G. Cowan (RHUL).

The following is a much-shortened version of Sec. 37 of the full Review.
Equation, section, and figure numbers follow the Review.

37.2. Random variables

• Probability density function (p.d.f.): x is a random variable.

Continuous: f(x; θ)dx = probability x is between x to x + dx, given
parameter(s) θ;

Discrete: f(x; θ) = probability of x given θ.

• Cumulative distribution function:

F (a) =

∫ a

−∞

f(x) dx . (37.6)

Here and below, if x is discrete-valued, the integral is replaced by a sum.
The endpoint a is indcluded in the integral or sum.

• Expectation values: Given a function u:

E [u(x)] =

∫
∞

−∞

u(x) f(x) dx . (37.7)

• Moments:

nth moment of a random variable: αn = E[xn] , (37.8a)

nth central moment: mn = E[(x − α1)
n] . (37.8b)

Mean: µ ≡ α1 . (37.9a)

Variance: σ2
≡ V [x] ≡ m2 = α2 − µ2 . (37.9b)

Coefficient of skewness: γ1 ≡ m3/σ3.

Kurtosis: γ2 = m4/σ4
− 3 .

Median: F (xmed) = 1/2.

• Marginal p.d.f.: Let x,y be two random variables with joint p.d.f.
f(x, y).

f1(x) =

∫
∞

−∞

f(x, y) dy ; f2(y) =

∫
∞

−∞

f(x, y) dx . (37.10)

• Conditional p.d.f.:

f4(x|y) = f(x, y)/f2(y) ; f3(y|x) = f(x, y)/f1(x) .

• Bayes’ theorem:

f4(x|y) =
f3(y|x)f1(x)

f2(y)
=

f3(y|x)f1(x)
∫

f3(y|x′)f1(x′) dx′
. (37.11)

• Correlation coefficient and covariance:

µx =

∫
∞

−∞

∫
∞

−∞

xf(x, y) dx dy , (37.12)

ρxy = E
[
(x − µx)(y − µy)

]
/σx σy ≡ cov[x, y]/σx σy ,
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σx =

∫
∞

−∞

∫
∞

−∞

(x − µx)2 f(x, y) dx dy . Note ρ2
xy ≤ 1.

• Independence: x,y are independent if and only if f(x, y) = f1(x) · f2(y);
then ρxy = 0, E[u(x) v(y)] = E[u(x)] E[v(y)] and V [x+y] = V [x]+V [y].

• Change of variables: From x = (x1, . . . , xn) to y = (y1, . . . , yn):
g(y) = f (x(y)) · |J | where |J | is the absolute value of the determinant of
the Jacobian Jij = ∂xi/∂yj. For discrete variables, use |J | = 1.

37.3. Characteristic functions

Given a pdf f(x) for a continuous random variable x, the characteristic
function φ(u) is given by (31.6). Its derivatives are related to the algebraic
moments of x by (31.7).

φ(u) = E
[

eiux
]

=

∫
∞

−∞

eiuxf(x) dx . (37.17)

i−n dnφ

dun

∣
∣
∣
∣
u=0

=

∫
∞

−∞

xnf(x) dx = αn . (37.18)

If the p.d.f.s f1(x) and f2(y) for independent random variables x and
y have characteristic functions φ1(u) and φ2(u), then the characteristic
function of the weighted sum ax+ by is φ1(au)φ2(bu). The additional rules
for several important distributions (e.g., that the sum of two Gaussian
distributed variables also follows a Gaussian distribution) easily follow
from this observation.

37.4. Some probability distributions

See Table 37.1.

37.4.2. Poisson distribution :

The Poisson distribution f(n; ν) gives the probability of finding exactly
n events in a given interval of x (e.g., space or time) when the events
occur independently of one another and of x at an average rate of ν per
the given interval. The variance σ2 equals ν. It is the limiting case p → 0,
N → ∞, Np = ν of the binomial distribution. The Poisson distribution
approaches the Gaussian distribution for large ν.

37.4.3. Normal or Gaussian distribution :

Its cumulative distribution, for mean 0 and variance 1, is often tabulated
as the error function

F (x; 0, 1) = 1
2

[

1 + erf(x/
√

2)
]

. (37.24)

For mean µ and variance σ2, replace x by (x − µ)/σ.

P (x in range µ ± σ) = 0.6827,

P (x in range µ ± 0.6745σ) = 0.5,

E[|x − µ|] =
√

2/πσ = 0.7979σ,

half-width at half maximum =
√

2 ln 2 · σ = 1.177σ.
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Table 37.1. Some common probability density functions, with corresponding characteristic functions and
means and variances. In the Table, Γ(k) is the gamma function, equal to (k − 1)! when k is an integer.

Probability density function Characteristic
Distribution f (variable; parameters) function φ(u) Mean Variance σ2

Uniform f(x; a, b) =

{
1/(b − a) a ≤ x ≤ b

0 otherwise

eibu
− eiau

(b − a)iu

a + b

2

(b − a)2

12

Binomial f(r; N, p) =
N !

r!(N − r)!
prqN−r (q + peiu)N Np Npq

r = 0, 1, 2, . . . , N ; 0 ≤ p ≤ 1 ; q = 1 − p

Poisson f(n; ν) =
νne−ν

n!
; n = 0, 1, 2, . . . ; ν > 0 exp[ν(eiu

− 1)] ν ν

Normal
(Gaussian)

f(x; µ, σ2) =
1

σ
√

2π
exp(−(x − µ)2/2σ2) exp(iµu −

1
2σ2u2) µ σ2

−∞ < x < ∞ ; −∞ < µ < ∞ ; σ > 0

Multivariate
Gaussian

f(x; µ, V ) =
1

(2π)n/2
√
|V |

exp
[
iµ · u −

1
2uT V u

]
µ Vjk

× exp
[
−

1
2 (x − µ)T V −1(x − µ)

]

−∞ < xj < ∞; − ∞ < µj < ∞; |V | > 0

χ2 f(z; n) =
zn/2−1e−z/2

2n/2Γ(n/2)
; z ≥ 0 (1 − 2iu)−n/2 n 2n

Student’s t f(t; n) =
1

√

nπ

Γ[(n + 1)/2]

Γ(n/2)

(

1 +
t2

n

)−(n+1)/2

—
0

for n > 1

n/(n − 2)

for n > 2

−∞ < t < ∞ ; n not required to be integer

Gamma f(x; λ, k) =
xk−1λke−λx

Γ(k)
; 0 ≤ x < ∞ ; (1 − iu/λ)−k k/λ k/λ2

k not required to be integer
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For n Gaussian random variables xi, the joint p.d.f. is the multivariate
Gaussian:

f(x; µ, V ) =
1

(2π)n/2
√
|V |

exp
[

−
1

2
(x − µ)T V −1(x − µ)

]

, |V | > 0 .

(37.25)
V is the n × n covariance matrix; Vij ≡ E[(xi − µi)(xj − µj)] ≡ ρij σi σj ,
and Vii = V [xi]; |V | is the determinant of V . For n = 2, f(x; µ, V ) is

f(x1, x2; µ1, µ2, σ1, σ2, ρ) =
1

2πσ1σ2

√

1 − ρ2
× exp

{
−1

2(1 − ρ2)

[
(x1 − µ1)

2

σ2
1

−

2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

σ2
2

]}

. (37.26)

The marginal distribution of any xi is a Gaussian with mean µi and
variance Vii. V is n × n, symmetric, and positive definite. Therefore for
any vector X, the quadratic form XT V −1X = C, where C is any positive
number, traces an n-dimensional ellipsoid as X varies. If Xi = xi − µi,
then C is a random variable obeying the χ2 distribution with n degrees
of freedom, discussed in the following section. The probability that X
corresponding to a set of Gaussian random variables xi lies outside
the ellipsoid characterized by a given value of C (= χ2) is given by
1 − Fχ2(C; n), where Fχ2 is the cumulative χ2 distribution. This may
be read from Fig. 38.1. For example, the “s-standard-deviation ellipsoid”
occurs at C = s2. For the two-variable case (n = 2), the point X lies
outside the one-standard-deviation ellipsoid with 61% probability. The
use of these ellipsoids as indicators of probable error is described in
Sec. 38.4.2.2; the validity of those indicators assumes that µ and V are
correct.

37.4.5. χ2
distribution :

If x1, . . . , xn are independent Gaussian random variables, the sum
z =

∑n
i=1(xi − µi)

2/σ2
i follows the χ2 p.d.f. with n degrees of freedom,

which we denote by χ2(n). More generally, for n correlated Gaussian
variables as components of a vector X with covariance matrix V ,
z = XT V −1X follows χ2(n) as in the previous section. For a set of zi,
each of which follows χ2(ni),

∑
zi follows χ2(

∑
ni). For large n, the χ2

p.d.f. approaches a Gaussian with mean µ = n and variance σ2 = 2n.

The χ2 p.d.f. is often used in evaluating the level of compatibility between
observed data and a hypothesis for the p.d.f. that the data might follow.
This is discussed further in Sec. 38.3.2 on tests of goodness-of-fit.

37.4.7. Gamma distribution :

For a process that generates events as a function of x (e.g., space or time)
according to a Poisson distribution, the distance in x from an arbitrary
starting point (which may be some particular event) to the kth event
follows a gamma distribution, f(x; λ, k). The Poisson parameter µ is λ
per unit x. The special case k = 1 (i.e., f(x; λ, 1) = λe−λx) is called the
exponential distribution. A sum of k′ exponential random variables xi is
distributed as f(

∑
xi; λ, k′).

The parameter k is not required to be an integer. For λ = 1/2 and
k = n/2, the gamma distribution reduces to the χ2(n) distribution.

See the full Review for further discussion and all references.
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38. STATISTICS

Revised September 2013 by G. Cowan (RHUL).

There are two main approaches to statistical inference, which we
may call frequentist and Bayesian. In frequentist statistics, probability is
interpreted as the frequency of the outcome of a repeatable experiment.
The most important tools in this framework are parameter estimation,
covered in Section 38.2, statistical tests, discussed in Section 38.3, and
confidence intervals, which are constructed so as to cover the true value of
a parameter with a specified probability, as described in Section 38.4.2.
Note that in frequentist statistics one does not define a probability for a
hypothesis or for the value of a parameter.

In Bayesian statistics, the interpretation of probability is more general
and includes degree of belief (called subjective probability). One can then
speak of a probability density function (p.d.f.) for a parameter, which
expresses one’s state of knowledge about where its true value lies. Using
Bayes’ theorem (Eq. (37.4)), the prior degree of belief is updated by the
data from the experiment. Bayesian methods for interval estimation are
discussed in Sections 38.4.1 and 38.4.2.4.

Following common usage in physics, the word “error” is often used in
this chapter to mean “uncertainty.” More specifically it can indicate the
size of an interval as in “the standard error” or “error propagation,” where
the term refers to the standard deviation of an estimator.

38.2. Parameter estimation

Here we review point estimation of parameters. An estimator θ̂ (written
with a hat) is a function of the data used to estimate the value of the
parameter θ.

38.2.1. Estimators for mean, variance, and median :

Suppose we have a set of n independent measurements, x1, . . . , xn, each
assumed to follow a p.d.f. with unknown mean µ and unknown variance
σ2. The measurements do not necessarily have to follow a Gaussian
distribution. Then

µ̂ =
1

n

n∑

i=1

xi (38.5)

̂σ2 =
1

n − 1

n∑

i=1

(xi − µ̂)2 (38.6)

are unbiased estimators of µ and σ2. The variance of µ̂ is σ2/n and the

variance of ̂σ2 is

V
[
̂σ2

]

=
1

n

(

m4 −

n − 3

n − 1
σ4

)

, (38.7)

where m4 is the 4th central moment of x (see Eq. (37.8b)). For Gaussian
distributed xi, this becomes 2σ4/(n − 1) for any n ≥ 2, and for large n

the standard deviation of σ̂ (the “error of the error”) is σ/
√

2n. For any
n and Gaussian xi, µ̂ is an efficient estimator for µ, and the estimators

µ̂ and ̂σ2 are uncorrelated. Otherwise the arithmetic mean (38.5) is not
necessarily the most efficient estimator.

If the xi have different, known variances σ2
i , then the weighted average

µ̂ =
1

w

n∑

i=1

wixi , (38.8)
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where wi = 1/σ2
i and w =

∑

i wi, is an unbiased estimator for µ with a
smaller variance than an unweighted average. The standard deviation of
µ̂ is 1/

√

w.

38.2.2. The method of maximum likelihood :

Suppose we have a set of measured quantities x and the likelihood
L(θ) = P (x|θ) for a set of parameters θ = (θ1, . . . , θN ). The maximum
likelihood (ML) estimators for θ are defined as the values that give the
maximum of L. Because of the properties of the logarithm, it is usually
easier to work with lnL, and since both are maximized for the same
parameter values θ, the ML estimators can be found by solving the
likelihood equations,

∂ lnL

∂θi
= 0 , i = 1, . . . , N . (38.9)

In evaluating the likelihood function, it is important that any
normalization factors in the p.d.f. that involve θ be included.

The inverse V −1 of the covariance matrix Vij = cov[θ̂i, θ̂j ] for a set of
ML estimators can be estimated by using

(V̂ −1)ij = −

∂2 lnL

∂θi∂θj

∣
∣
∣
∣
θ̂

; (38.12)

for finite samples, however, Eq. (38.12) can result in an underestimate
of the variances. In the large sample limit (or in a linear model with
Gaussian errors), L has a Gaussian form and lnL is (hyper)parabolic. In
this case, it can be seen that a numerically equivalent way of determining
s-standard-deviation errors is from the hypersurface defined by the θ′ such
that

lnL(θ′) = lnLmax − s2/2 , (38.13)

where ln Lmax is the value of lnL at the solution point (compare with
Eq. (38.68)). The minimum and maximum values of θi on the hypersurface
then give an approximate s-standard deviation confidence interval for θi

(see Section 38.4.2.2).

38.2.3. The method of least squares :

The method of least squares (LS) coincides with the method of maximum
likelihood in the following special case. Consider a set of N independent
measurements yi at known points xi. The measurement yi is assumed
to be Gaussian distributed with mean µ(xi; θ) and known variance σ2

i .
The goal is to construct estimators for the unknown parameters θ. The
likelihood function contains the sum of squares

χ2(θ) = −2 lnL(θ) + constant =

N∑

i=1

(yi − µ(xi; θ))2

σ2
i

. (38.19)

The parameter values that maximize L are the same as those which
minimize χ2.

The minimum of Equation (38.19) defines the least-squares estimators

θ̂ for the more general case where the yi are not Gaussian distributed
as long as they are independent. If they are not independent but rather
have a covariance matrix Vij = cov[yi, yj ], then the LS estimators are
determined by the minimum of

χ2(θ) = (y − µ(θ))T V −1(y − µ(θ)) , (38.20)

where y = (y1, . . . , yN ) is the (column) vector of measurements, µ(θ)
is the corresponding vector of predicted values, and the superscript T
denotes the transpose.
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Often one further restricts the problem to the case where µ(xi; θ) is a
linear function of the parameters, i.e.,

µ(xi; θ) =
m∑

j=1

θjhj(xi) . (38.21)

Here the hj(x) are m linearly independent functions, e.g., 1, x, x2, . . . , xm−1

or Legendre polynomials. We require m < N and at least m of the xi

must be distinct.
Minimizing χ2 in this case with m parameters reduces to solving a

system of m linear equations. Defining Hij = hj(xi) and minimizing χ2

by setting its derivatives with respect to the θi equal to zero gives the LS
estimators,

θ̂ = (HT V −1H)−1HT V −1y ≡ Dy . (38.22)

The covariance matrix for the estimators Uij = cov[θ̂i, θ̂j ] is given by

U = DV DT = (HT V −1H)−1 . (38.23)

Expanding χ2(θ) about θ̂, one finds that the contour in parameter space
defined by

χ2(θ) = χ2(θ̂) + 1 = χ2
min + 1 (38.29)

has tangent planes located at approximately plus-or-minus-one standard

deviation σ
θ̂

from the LS estimates θ̂.

As the minimum value of the χ2 represents the level of agreement
between the measurements and the fitted function, it can be used for
assessing the goodness-of-fit; this is discussed further in Section 38.3.2.

38.2.5. Propagation of errors :
Consider a set of n quantities θ = (θ1, . . . , θn) and a set of m functions

η(θ) = (η1(θ), . . . , ηm(θ)). Suppose we have estimated θ̂ = (θ̂1, . . . , θ̂n),
using, say, maximum-likelihood or least-squares, and we also know or

have estimated the covariance matrix Vij = cov[θ̂i, θ̂j ]. The goal of error
propagation is to determine the covariance matrix for the functions,

Uij = cov[η̂i, η̂j ], where η̂ = η(θ̂ ). In particular, the diagonal elements
Uii = V [η̂i] give the variances. The new covariance matrix can be found

by expanding the functions η(θ) about the estimates θ̂ to first order in a
Taylor series. Using this one finds

Uij ≈

∑

k,l

∂ηi

∂θk

∂ηj

∂θl

∣
∣
∣
∣
θ̂

Vkl . (38.37)

This can be written in matrix notation as U ≈ AV AT where the matrix of
derivatives A is

Aij =
∂ηi

∂θj

∣
∣
∣
∣
θ̂

, (38.38)

and AT is its transpose. The approximation is exact if η(θ) is linear.

38.3. Statistical tests

38.3.1. Hypothesis tests :
A frequentist test of a hypothesis (often called the null hypothesis, H0)

is a rule that states for which data values x the hypothesis is rejected. A
region of x-space called the critical region, w, is specified such that such
that there is no more than a given probability under H0, α, called the size
or significance level of the test, to find x ∈ w. If the data are discrete, it
may not be possible to find a critical region with exact probability content
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α, and thus we require P (x ∈ w|H0) ≤ α. If the data are observed in the
critical region, H0 is rejected.

The critical region is not unique. Choosing one should take into account
the probabilities for the data predicted by some alternative hypothesis
(or set of alternatives) H1. Rejecting H0 if it is true is called a type-I
error, and occurs by construction with probability no greater than α. Not
rejecting H0 if an alternative H1 is true is called a type-II error, and for
a given test this will have a certain probability β = P (x /∈ w|H1). The
quantity 1 − β is called the power of the test of H0 with respect to the
alternative H1. A strategy for defining the critical region can therefore be
to maximize the power with respect to some alternative (or alternatives)
given a fixed size α.

To maximize the power of a test of H0 with respect to the alternative
H1, the Neyman–Pearson lemma states that the critical region w should
be chosen such that for all data values x inside w, the ratio

λ(x) =
f(x|H1)

f(x|H0)
, (38.39)

is greater than a given constant, the value of which is determined by the
size of the test α. Here H0 and H1 must be simple hypotheses, i.e., they
should not contain undetermined parameters.

The lemma is equivalent to the statement that (38.39) represents the
optimal test statistic where the critical region is defined by a single cut
on λ. This test will lead to the maximum power (i.e., the maximum
probability to reject H0 if H1 is true) for a given probability α to reject
H0 if H0 is in fact true. It can be difficult in practice, however, to
determine λ(x), since this requires knowledge of the joint p.d.f.s f(x|H0)
and f(x|H1).

38.3.2. Tests of significance (goodness-of-fit) :

Often one wants to quantify the level of agreement between the data
and a hypothesis without explicit reference to alternative hypotheses. This
can be done by defining a statistic t, which is a function of the data whose
value reflects in some way the level of agreement between the data and the
hypothesis.

The hypothesis in question, H0, will determine the p.d.f. f(t|H0) for
the statistic. The significance of a discrepancy between the data and
what one expects under the assumption of H0 is quantified by giving the
p-value, defined as the probability to find t in the region of equal or lesser
compatibility with H0 than the level of compatibility observed with the
actual data. For example, if t is defined such that large values correspond
to poor agreement with the hypothesis, then the p-value would be

p =

∫
∞

tobs

f(t|H0) dt , (38.40)

where tobs is the value of the statistic obtained in the actual experiment.

The p-value should not be confused with the size (significance level)
of a test, or the confidence level of a confidence interval (Section 38.4),
both of which are pre-specified constants. We may formulate a hypothesis
test, however, by defining the critical region to correspond to the data
outcomes that give the lowest p-values, so that finding p ≤ α implies
that the data outcome was in the critical region. When constructing a
p-value, one generally chooses the region of data space deemed to have
lower compatibility with the model being tested as one having higher
compatibility with a given alternative, such that the corresponding test
will have a high power with respect to this alternative.
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The p-value is a function of the data, and is therefore itself a random
variable. If the hypothesis used to compute the p-value is true, then
for continuous data p will be uniformly distributed between zero and
one. Note that the p-value is not the probability for the hypothesis;
in frequentist statistics, this is not defined. Rather, the p-value is the
probability, under the assumption of a hypothesis H0, of obtaining data at
least as incompatible with H0 as the data actually observed.

38.3.2.3. Goodness-of-fit with the method of Least Squares:

When estimating parameters using the method of least squares, one
obtains the minimum value of the quantity χ2 (38.19). This statistic can
be used to test the goodness-of-fit, i.e., the test provides a measure of
the significance of a discrepancy between the data and the hypothesized
functional form used in the fit. It may also happen that no parameters
are estimated from the data, but that one simply wants to compare a
histogram, e.g., a vector of Poisson distributed numbers n = (n1, . . . , nN ),
with a hypothesis for their expectation values µi = E[ni]. As the
distribution is Poisson with variances σ2

i = µi, the χ2 (38.19) becomes

Pearson’s χ2 statistic,

χ2 =

N∑

i=1

(ni − µi)
2

µi
. (38.48)

If the hypothesis µ = (µ1, . . . , µN ) is correct, and if the expected values
µi in (38.48) are sufficiently large (or equivalently, if the measurements ni

can be treated as following a Gaussian distribution), then the χ2 statistic
will follow the χ2 p.d.f. with the number of degrees of freedom equal to
the number of measurements N minus the number of fitted parameters.

Assuming the goodness-of-fit statistic follows a χ2 p.d.f., the p-value for
the hypothesis is then

p =

∫
∞

χ2
f(z; nd) dz , (38.49)

where f(z; nd) is the χ2 p.d.f. and nd is the appropriate number of degrees
of freedom. Values are shown in Fig. 38.1 or obtained from the ROOT
function TMath::Prob.

Since the mean of the χ2 distribution is equal to nd, one expects in a
“reasonable” experiment to obtain χ2

≈ nd. Hence the quantity χ2/nd is
sometimes reported. Since the p.d.f. of χ2/nd depends on nd, however,
one must report nd as well if one wishes to determine the p-value. The
p-values obtained for different values of χ2/nd are shown in Fig. 38.2.

38.3.3. Bayes factors :

In Bayesian statistics, all of one’s knowledge about a model is contained
in its posterior probability, which one obtains using Bayes’ theorem (38.30).
Thus one could reject a hypothesis H if its posterior probability P (H |x)
is sufficiently small. The difficulty here is that P (H |x) is proportional to
the prior probability P (H), and there will not be a consensus about the
prior probabilities for the existence of new phenomena. Nevertheless one
can construct a quantity called the Bayes factor (described below), which
can be used to quantify the degree to which the data prefer one hypothesis
over another, and is independent of their prior probabilities.

Consider two models (hypotheses), Hi and Hj , described by vectors
of parameters θi and θj , respectively. Some of the components will
be common to both models and others may be distinct. The full prior
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Figure 38.1: One minus the χ2 cumulative distribution, 1−F (χ2; n),
for n degrees of freedom. This gives the p-value for the χ2 goodness-
of-fit test as well as one minus the coverage probability for confidence
regions (see Sec. 38.4.2.2).
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of freedom. The curves show as a function of n the χ2/n that
corresponds to a given p-value.
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probability for each model can be written in the form

π(Hi, θi) = P (Hi)π(θi|Hi) . (38.50)

Here P (Hi) is the overall prior probability for Hi, and π(θi|Hi) is
the normalized p.d.f. of its parameters. For each model, the posterior
probability is found using Bayes’ theorem,

P (Hi|x) =

∫
P (x|θi, Hi)P (Hi)π(θi|Hi) dθi

P (x)
, (38.51)

where the integration is carried out over the internal parameters θi of the
model. The ratio of posterior probabilities for the models is therefore

P (Hi|x)

P (Hj |x)
=

∫
P (x|θi, Hi)π(θi|Hi) dθi

∫
P (x|θj , Hj)π(θj |Hj) dθj

P (Hi)

P (Hj)
. (38.52)

The Bayes factor is defined as

Bij =

∫
P (x|θi, Hi)π(θi|Hi) dθi

∫
P (x|θj , Hj)π(θj |Hj) dθj

. (38.53)

This gives what the ratio of posterior probabilities for models i and j
would be if the overall prior probabilities for the two models were equal.
If the models have no nuisance parameters, i.e., no internal parameters
described by priors, then the Bayes factor is simply the likelihood ratio.
The Bayes factor therefore shows by how much the probability ratio of
model i to model j changes in the light of the data, and thus can be
viewed as a numerical measure of evidence supplied by the data in favour
of one hypothesis over the other.

Although the Bayes factor is by construction independent of the overall
prior probabilities P (Hi) and P (Hj), it does require priors for all internal
parameters of a model, i.e., one needs the functions π(θi|Hi) and π(θj |Hj).
In a Bayesian analysis where one is only interested in the posterior p.d.f.
of a parameter, it may be acceptable to take an unnormalizable function
for the prior (an improper prior) as long as the product of likelihood and
prior can be normalized. But improper priors are only defined up to an
arbitrary multiplicative constant, and so the Bayes factor would depend on
this constant. Furthermore, although the range of a constant normalized
prior is unimportant for parameter determination (provided it is wider
than the likelihood), this is not so for the Bayes factor when such a prior
is used for only one of the hypotheses. So to compute a Bayes factor, all
internal parameters must be described by normalized priors that represent
meaningful probabilities over the entire range where they are defined.

38.4. Intervals and limits

When the goal of an experiment is to determine a parameter θ,
the result is usually expressed by quoting, in addition to the point
estimate, some sort of interval which reflects the statistical precision of the
measurement. In the simplest case, this can be given by the parameter’s

estimated value θ̂ plus or minus an estimate of the standard deviation of

θ̂, σ̂
θ̂
. If, however, the p.d.f. of the estimator is not Gaussian or if there

are physical boundaries on the possible values of the parameter, then
one usually quotes instead an interval according to one of the procedures
described below.

38.4.1. Bayesian intervals :

As described in Sec. 38.2.4, a Bayesian posterior probability may be
used to determine regions that will have a given probability of containing
the true value of a parameter. In the single parameter case, for example, an
interval (called a Bayesian or credible interval) [θlo, θup] can be determined
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which contains a given fraction 1 − α of the posterior probability, i.e.,

1 − α =

∫ θup

θlo

p(θ|x) dθ . (38.55)

Sometimes an upper or lower limit is desired, i.e., θlo or θup can be set to
a physical boundary or to plus or minus infinity. In other cases, one might
be interested in the set of θ values for which p(θ|x) is higher than for
any θ not belonging to the set, which may constitute a single interval or
a set of disjoint regions; these are called highest posterior density (HPD)
intervals. Note that HPD intervals are not invariant under a nonlinear
transformation of the parameter.

If a parameter is constrained to be non-negative, then the prior p.d.f.
can simply be set to zero for negative values. An important example is
the case of a Poisson variable n, which counts signal events with unknown
mean s, as well as background with mean b, assumed known. For the
signal mean s, one often uses the prior

π(s) =

{
0 s < 0
1 s ≥ 0

. (38.56)

For example, to obtain an upper limit on s, one may proceed as follows.
The likelihood for s is given by the Poisson distribution for n with mean
s + b,

P (n|s) =
(s + b)n

n!
e−(s+b) , (38.57)

along with the prior (38.56) in (38.30) gives the posterior density for s.
An upper limit sup at confidence level (or here, rather, credibility level)
1 − α can be obtained by requiring

1 − α =

∫ sup

−∞

p(s|n)ds =

∫ sup

−∞
P (n|s)π(s) ds

∫
∞

−∞
P (n|s)π(s) ds

, (38.58)

where the lower limit of integration is effectively zero because of the cut-off
in π(s). By relating the integrals in Eq. (38.58) to incomplete gamma
functions, the solution for the upper limit is found to be

sup = 1
2F−1

χ2 [p, 2(n + 1)] − b , (38.59)

where F−1

χ2 is the quantile of the χ2 distribution (inverse of the cumulative

distribution). Here the quantity p is

p = 1 − α
(

Fχ2 [2b, 2(n + 1)]
)

, (38.60)

where Fχ2 is the cumulative χ2 distribution. For both Fχ2 and F−1

χ2

above, the argument 2(n + 1) gives the number of degrees of freedom. For
the special case of b = 0, the limit reduces to

sup = 1
2F−1

χ2 (1 − α; 2(n + 1)) . (38.61)

It happens that for the case of b = 0, the upper limit from Eq. (38.61)
coincides numerically with the frequentist upper limit discussed in
Section 38.4.2.3. Values for 1 − α = 0.9 and 0.95 are given by the values
µup in Table 38.3.

38.4.2. Frequentist confidence intervals :

38.4.2.1. The Neyman construction for confidence intervals:

Consider a p.d.f. f(x; θ) where x represents the outcome of the
experiment and θ is the unknown parameter for which we want to
construct a confidence interval. The variable x could (and often does)
represent an estimator for θ. Using f(x; θ), we can find for a pre-specified
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probability 1 − α, and for every value of θ, a set of values x1(θ, α) and
x2(θ, α) such that

P (x1 < x < x2; θ) = 1 − α =

∫ x2

x1

f(x; θ) dx . (38.62)

This is illustrated in Fig. 38.3: a horizontal line segment [x1(θ, α),
x2(θ, α)] is drawn for representative values of θ. The union of such
intervals for all values of θ, designated in the figure as D(α), is known
as the confidence belt. Typically the curves x1(θ, α) and x2(θ, α) are
monotonic functions of θ, which we assume for this discussion.

Possible experimental values x

p
a

ra
m

e
te

r 
θ x

2
(θ), θ

2
(x) 

x
1
(θ), θ

1
(x) ����������������

x
1
(θ

0
) x

2
(θ

0
) 

D(α)

θ
0

Figure 38.3: Construction of the confidence belt (see text).

Upon performing an experiment to measure x and obtaining a value
x0, one draws a vertical line through x0. The confidence interval for θ
is the set of all values of θ for which the corresponding line segment
[x1(θ, α), x2(θ, α)] is intercepted by this vertical line. Such confidence
intervals are said to have a confidence level (CL) equal to 1 − α.

Now suppose that the true value of θ is θ0, indicated in the figure.
We see from the figure that θ0 lies between θ1(x) and θ2(x) if and only
if x lies between x1(θ0) and x2(θ0). The two events thus have the same
probability, and since this is true for any value θ0, we can drop the
subscript 0 and obtain

1 − α = P (x1(θ) < x < x2(θ)) = P (θ2(x) < θ < θ1(x)) . (38.63)

In this probability statement, θ1(x) and θ2(x), i.e., the endpoints of the
interval, are the random variables and θ is an unknown constant. If the
experiment were to be repeated a large number of times, the interval
[θ1, θ2] would vary, covering the fixed value θ in a fraction 1 − α of the
experiments.

The condition of coverage in Eq. (38.62) does not determine x1 and x2

uniquely, and additional criteria are needed. One possibility is to choose
central intervals such that the probabilities excluded below x1 and above
x2 are each α/2. In other cases, one may want to report only an upper or
lower limit, in which case the probability excluded below x1 or above x2

can be set to zero.
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When the observed random variable x is continuous, the coverage
probability obtained with the Neyman construction is 1 − α, regardless of
the true value of the parameter. If x is discrete, however, it is not possible
to find segments [x1(θ, α), x2(θ, α)] that satisfy Eq. (38.62) exactly for all
values of θ. By convention, one constructs the confidence belt requiring
the probability P (x1 < x < x2) to be greater than or equal to 1 − α.
This gives confidence intervals that include the true parameter with a
probability greater than or equal to 1 − α.

38.4.2.2. Gaussian distributed measurements:

An important example of constructing a confidence interval is when
the data consists of a single random variable x that follows a Gaussian
distribution; this is often the case when x represents an estimator for a
parameter and one has a sufficiently large data sample. If there is more
than one parameter being estimated, the multivariate Gaussian is used.
For the univariate case with known σ, the probability that the measured
value x will fall within ±δ of the true value µ is

1 − α =
1

√

2πσ

∫ µ+δ

µ−δ
e−(x−µ)2/2σ2

dx = erf

(
δ

√

2 σ

)

= 2Φ
(σ

δ

)

− 1 ,

(38.65)
where erf is the Gaussian error function, which is rewritten in the final
equality using Φ, the Gaussian cumulative distribution. Fig. 38.4 shows a
δ = 1.64σ confidence interval unshaded. The choice δ = σ gives an interval
called the standard error which has 1 − α = 68.27% if σ is known. Values
of α for other frequently used choices of δ are given in Table 38.1.

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

Figure 38.4: Illustration of a symmetric 90% confidence interval
(unshaded) for a measurement of a single quantity with Gaussian
errors. Integrated probabilities, defined by α = 0.1, are as shown.

We can set a one-sided (upper or lower) limit by excluding above x + δ
(or below x − δ). The values of α for such limits are half the values in
Table 38.1.

The relation (38.65) can be re-expressed using the cumulative
distribution function for the χ2 distribution as

α = 1 − F (χ2; n) , (38.66)
for χ2 = (δ/σ)2 and n = 1 degree of freedom. This can be seen as
the n = 1 curve in Fig. 38.1 or obtained by using the ROOT function
TMath::Prob.
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Table 38.1: Area of the tails α outside ±δ from the mean of a
Gaussian distribution.

α δ α δ

0.3173 1σ 0.2 1.28σ

4.55 ×10−2 2σ 0.1 1.64σ

2.7 ×10−3 3σ 0.05 1.96σ

6.3×10−5 4σ 0.01 2.58σ

5.7×10−7 5σ 0.001 3.29σ

2.0×10−9 6σ 10−4 3.89σ

For multivariate measurements of, say, n parameter estimates

θ̂ = (θ̂1, . . . , θ̂n), one requires the full covariance matrix Vij = cov[θ̂i, θ̂j ],
which can be estimated as described in Sections 38.2.2 and 38.2.3. Under
fairly general conditions with the methods of maximum-likelihood or
least-squares in the large sample limit, the estimators will be distributed
according to a multivariate Gaussian centered about the true (unknown)
values θ, and furthermore, the likelihood function itself takes on a
Gaussian shape.

The standard error ellipse for the pair (θ̂i, θ̂j) is shown in Fig. 38.5,

corresponding to a contour χ2 = χ2
min + 1 or lnL = lnLmax − 1/2. The

ellipse is centered about the estimated values θ̂, and the tangents to the
ellipse give the standard deviations of the estimators, σi and σj . The
angle of the major axis of the ellipse is given by

tan 2φ =
2ρijσiσj

σ2
j − σ2

i

, (38.67)

where ρij = cov[θ̂i, θ̂j ]/σiσj is the correlation coefficient.
The correlation coefficient can be visualized as the fraction of the

distance σi from the ellipse’s horizontal center-line at which the ellipse
becomes tangent to vertical, i.e., at the distance ρijσi below the center-line
as shown. As ρij goes to +1 or −1, the ellipse thins to a diagonal line.

θ i

φ

θ i

jσ

θj

iσ

jσ

iσ

^

θ j
^

ij   iρ  σ

innerσ




Figure 38.5: Standard error ellipse for the estimators θ̂i and θ̂j . In
this case the correlation is negative.

As in the single-variable case, because of the symmetry of the Gaussian

function between θ and θ̂, one finds that contours of constant lnL or



304 38. Statistics

Table 38.2: Values of ∆χ2 or 2∆ lnL corresponding to a coverage
probability 1 − α in the large data sample limit, for joint estimation
of m parameters.

(1 − α) (%) m = 1 m = 2 m = 3

68.27 1.00 2.30 3.53

90. 2.71 4.61 6.25

95. 3.84 5.99 7.82

95.45 4.00 6.18 8.03

99. 6.63 9.21 11.34

99.73 9.00 11.83 14.16

χ2 cover the true values with a certain, fixed probability. That is, the
confidence region is determined by

lnL(θ) ≥ lnLmax − ∆ ln L , (38.68)

or where a χ2 has been defined for use with the method of least-squares,
χ2(θ) ≤ χ2

min + ∆χ2 . (38.69)

Values of ∆χ2 or 2∆ lnL are given in Table 38.2 for several values of the
coverage probability and number of fitted parameters.

For finite non-Gaussian data samples, these are not exact confidence
regions according to our previous definition.

38.4.2.3. Poisson or binomial data:

Another important class of measurements consists of counting a certain
number of events, n. In this section, we will assume these are all events of
the desired type, i.e., there is no background. If n represents the number
of events produced in a reaction with cross section σ, say, in a fixed
integrated luminosity L, then it follows a Poisson distribution with mean
µ = σL. If, on the other hand, one has selected a larger sample of N
events and found n of them to have a particular property, then n follows
a binomial distribution where the parameter p gives the probability for
the event to possess the property in question. This is appropriate, e.g.,
for estimates of branching ratios or selection efficiencies based on a given
total number of events.

For the case of Poisson distributed n, the upper and lower limits on the
mean value µ can be found from the Neyman procedure to be

µlo = 1
2
F−1

χ2 (αlo; 2n) , (38.71a)

µup = 1
2
F−1

χ2 (1 − αup; 2(n + 1)) , (38.71b)

where the upper and lower limits are at confidence levels of 1 − αlo and

1−αup, respectively, and F−1

χ2 is the quantile of the χ2 distribution (inverse

of the cumulative distribution). The quantiles F−1

χ2 can be obtained from

standard tables or from the ROOT routine TMath::ChisquareQuantile.
For central confidence intervals at confidence level 1 − α, set αlo = αup =
α/2.

It happens that the upper limit from Eq. (38.71b) coincides numerically
with the Bayesian upper limit for a Poisson parameter, using a uniform
prior p.d.f. for µ. Values for confidence levels of 90% and 95% are shown
in Table 38.3. For the case of binomially distributed n successes out of N
trials with probability of success p, the upper and lower limits on p are
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Table 38.3: Lower and upper (one-sided) limits for the mean µ
of a Poisson variable given n observed events in the absence of
background, for confidence levels of 90% and 95%.

1 − α =90% 1 − α =95%

n µlo µup µlo µup

0 – 2.30 – 3.00

1 0.105 3.89 0.051 4.74

2 0.532 5.32 0.355 6.30

3 1.10 6.68 0.818 7.75

4 1.74 7.99 1.37 9.15

5 2.43 9.27 1.97 10.51

6 3.15 10.53 2.61 11.84

7 3.89 11.77 3.29 13.15

8 4.66 12.99 3.98 14.43

9 5.43 14.21 4.70 15.71

10 6.22 15.41 5.43 16.96

found to be

plo =
nF−1

F [αlo; 2n, 2(N − n + 1)]

N − n + 1 + nF−1
F [αlo; 2n, 2(N − n + 1)]

, (38.72a)

pup =
(n + 1)F−1

F [1 − αup; 2(n + 1), 2(N − n)]

(N − n) + (n + 1)F−1
F [1 − αup; 2(n + 1), 2(N − n)]

. (38.72b)

Here F−1
F is the quantile of the F distribution (also called the Fisher–

Snedecor distribution; see Ref. 4).

A number of issues arise in the construction and interpretation of
confidence intervals when the parameter can only take on values in a
restricted range. Important examples are where the mean of a Gaussian
variable is constrained on physical grounds to be non-negative and where
the experiment finds a Poisson-distributed number of events, n, which
includes both signal and background. Application of some standard recipes
can lead to intervals that are partially or entirely in the unphysical region.
Furthermore, if the decision whether to report a one- or two-sided interval
is based on the data, then the resulting intervals will not in general cover
the parameter with the stated probability 1 − α.

Several problems with such intervals are overcome by using the unified
approach of Feldman and Cousins [33]. Properties of these intervals are
described further in the Review. Table 38.4 gives the unified confidence
intervals [µ1, µ2] for the mean of a Poisson variable given n observed
events in the absence of background, for confidence levels of 90% and 95%.
The values of 1 − α given here refer to the coverage of the true parameter
by the whole interval [µ1, µ2]. In Table 38.3 for the one-sided upper and
lower limits, however, 1−α referred to the probability to have individually
µup ≥ µ or µlo ≤ µ.

Another possibility is to construct a Bayesian interval as described in
Section 38.4.1. The presence of the boundary can be incorporated simply
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Table 38.4: Unified confidence intervals [µ1, µ2] for a the mean
of a Poisson variable given n observed events in the absence of
background, for confidence levels of 90% and 95%.

1 − α =90% 1 − α =95%

n µ1 µ2 µ1 µ2

0 0.00 2.44 0.00 3.09

1 0.11 4.36 0.05 5.14

2 0.53 5.91 0.36 6.72

3 1.10 7.42 0.82 8.25

4 1.47 8.60 1.37 9.76

5 1.84 9.99 1.84 11.26

6 2.21 11.47 2.21 12.75

7 3.56 12.53 2.58 13.81

8 3.96 13.99 2.94 15.29

9 4.36 15.30 4.36 16.77

10 5.50 16.50 4.75 17.82

by setting the prior density to zero in the unphysical region. Advantages
and pitfalls of this approach are discussed further in the Review.

Another alternative is presented by the intervals found from the
likelihood function or χ2 using the prescription of Equations (38.68) or
(38.69). As in the case of the Bayesian intervals, the coverage probability
is not, in general, independent of the true parameter. Furthermore, these
intervals can for some parameter values undercover.

In any case it is important to report sufficient information so that the
result can be combined with other measurements. Often this means giving
an unbiased estimator and its standard deviation, even if the estimated
value is in the unphysical region. It is also useful to report the likelihood
function or an appropriate summary of it. Although this by itself is not
sufficient to construct a frequentist confidence interval, it can be used to
find the Bayesian posterior probability density for any desired prior p.d.f.

Further discussion and all references may be found in the full Review of
Particle Physics; the equation and reference numbering corresponds to
that version.
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46. KINEMATICS

Revised January 2000 by J.D. Jackson (LBNL) and June 2008 by D.R.
Tovey (Sheffield).

Throughout this section units are used in which ~ = c = 1. The following
conversions are useful: ~c = 197.3 MeV fm, (~c)2 = 0.3894 (GeV)2 mb.

46.1. Lorentz transformations

The energy E and 3-momentum p of a particle of mass m form a
4-vector p = (E,p) whose square p2

≡ E2
− |p|2 = m2. The velocity of

the particle is β = p/E. The energy and momentum (E∗,p∗) viewed from
a frame moving with velocity βf are given by

(
E∗

p∗
‖

)

=

(
γf −γfβf

−γfβf γf

) (
E
p
‖

)

, p∗
T

= p
T

, (46.1)

where γf = (1−β2
f )−1/2 and p

T
(p

‖
) are the components of p perpendicular

(parallel) to βf . Other 4-vectors, such as the space-time coordinates of
events, of course transform in the same way. The scalar product of two
4-momenta p1 · p2 = E1E2 − p1 · p2 is invariant (frame independent).

46.2. Center-of-mass energy and momentum

In the collision of two particles of masses m1 and m2 the total
center-of-mass energy can be expressed in the Lorentz-invariant form

Ecm =
[

(E1 + E2)
2
− (p1 + p2)

2
]1/2

,

=
[

m2
1 + m2

2 + 2E1E2(1 − β1β2 cos θ)
]1/2

, (46.2)

where θ is the angle between the particles. In the frame where one particle
(of mass m2) is at rest (lab frame),

Ecm = (m2
1 + m2

2 + 2E1 lab m2)
1/2 . (46.3)

The velocity of the center-of-mass in the lab frame is

βcm = plab/(E1 lab + m2) , (46.4)

where plab ≡ p1 lab and

γcm = (E1 lab + m2)/Ecm . (46.5)

The c.m. momenta of particles 1 and 2 are of magnitude

pcm = plab
m2

Ecm
. (46.6)

For example, if a 0.80 GeV/c kaon beam is incident on a proton target,
the center of mass energy is 1.699 GeV and the center of mass momentum
of either particle is 0.442 GeV/c. It is also useful to note that

Ecm dEcm = m2 dE1 lab = m2 β1 lab dplab . (46.7)

46.3. Lorentz-invariant amplitudes

The matrix elements for a scattering or decay process are written in
terms of an invariant amplitude −iM . As an example, the S-matrix for
2 → 2 scattering is related to M by

〈p′1p
′

2 |S| p1p2〉 = I − i(2π)4 δ4(p1 + p2 − p′1 − p′2)

×

M (p1, p2; p′1, p′2)

(2E1)1/2 (2E2)1/2 (2E′

1)
1/2 (2E′

2)
1/2

. (46.8)
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The state normalization is such that

〈p′|p〉 = (2π)3δ3(p− p′) . (46.9)

46.4. Particle decays

The partial decay rate of a particle of mass M into n bodies in its rest
frame is given in terms of the Lorentz-invariant matrix element M by

dΓ =
(2π)4

2M
|M |

2 dΦn (P ; p1, . . . , pn), (46.10)

where dΦn is an element of n-body phase space given by

dΦn(P ; p1, . . . , pn) = δ4 (P −

n∑

i=1

pi)

n∏

i=1

d3pi

(2π)32Ei
. (46.11)

This phase space can be generated recursively, viz.

dΦn(P ; p1, . . . , pn) = dΦj(q; p1, . . . , pj)

× dΦn−j+1 (P ; q, pj+1, . . . , pn)(2π)3dq2 , (46.12)

where q2 = (
∑j

i=1 Ei)
2
−

∣
∣
∣
∑j

i=1 pi

∣
∣
∣

2
. This form is particularly useful in

the case where a particle decays into another particle that subsequently
decays.

46.4.1. Survival probability : If a particle of mass M has mean
proper lifetime τ (= 1/Γ) and has momentum (E,p), then the probability
that it lives for a time t0 or greater before decaying is given by

P (t0) = e−t0 Γ/γ = e−Mt0 Γ/E , (46.13)

and the probability that it travels a distance x0 or greater is

P (x0) = e−Mx0 Γ/|p| . (46.14)

46.4.2. Two-body decays :

p1, m1

p2, m2

P, M

Figure 46.1: Definitions of variables for two-body decays.

In the rest frame of a particle of mass M , decaying into 2 particles
labeled 1 and 2,

E1 =
M2

− m2
2 + m2

1

2M
, (46.15)

|p1| = |p2|

=

[(
M2

− (m1 + m2)
2
) (

M2
− (m1 − m2)

2
)]1/2

2M
, (46.16)

and

dΓ =
1

32π2
|M |

2 |p1|

M2
dΩ , (46.17)



46. Kinematics 311

where dΩ = dφ1d(cos θ1) is the solid angle of particle 1. The invariant mass
M can be determined from the energies and momenta using Eq. (46.2)
with M = Ecm.

46.4.3. Three-body decays :

p1, m1

p3, m3

P, M p2, m2

Figure 46.2: Definitions of variables for three-body decays.

Defining pij = pi + pj and m2
ij = p2

ij , then m2
12 + m2

23 + m2
13 =

M2 + m2
1 + m2

2 + m2
3 and m2

12 = (P − p3)
2 = M2 + m2

3 − 2ME3, where
E3 is the energy of particle 3 in the rest frame of M . In that frame,
the momenta of the three decay particles lie in a plane. The relative
orientation of these three momenta is fixed if their energies are known.
The momenta can therefore be specified in space by giving three Euler
angles (α, β, γ) that specify the orientation of the final system relative to
the initial particle [1]. Then

dΓ =
1

(2π)5
1

16M
|M |

2 dE1 dE2 dα d(cos β) dγ . (46.18)

Alternatively

dΓ =
1

(2π)5
1

16M2
|M |

2
|p∗1| |p3| dm12 dΩ∗

1 dΩ3 , (46.19)

where (|p∗1|, Ω∗

1) is the momentum of particle 1 in the rest frame of 1
and 2, and Ω3 is the angle of particle 3 in the rest frame of the decaying
particle. |p∗1| and |p3| are given by

|p∗1| =

[(
m2

12 − (m1 + m2)
2
) (

m2
12 − (m1 − m2)

2
)]

2m12

1/2

, (46.20a)

and

|p3| =

[(
M2

− (m12 + m3)
2
) (

M2
− (m12 − m3)

2
)]1/2

2M
. (46.20b)

[Compare with Eq. (46.16).]

If the decaying particle is a scalar or we average over its spin states,
then integration over the angles in Eq. (46.18) gives

dΓ =
1

(2π)3
1

8M
|M |

2 dE1 dE2

=
1

(2π)3
1

32M3
|M |

2 dm2
12 dm2

23 . (46.21)

This is the standard form for the Dalitz plot.
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46.4.3.1. Dalitz plot: For a given value of m2
12, the range of m2

23 is
determined by its values when p2 is parallel or antiparallel to p3:

(m2
23)max =

(E∗

2 + E∗

3 )2 −

(√

E∗2
2 − m2

2 −

√

E∗2
3 − m2

3

)2

, (46.22a)

(m2
23)min =

(E∗

2 + E∗

3 )2 −

(√

E∗2
2 − m2

2 +
√

E∗2
3 − m2

3

)2

. (46.22b)

Here E∗

2 = (m2
12 − m2

1 + m2
2)/2m12 and E∗

3 = (M2
−m2

12 −m2
3)/2m12 are

the energies of particles 2 and 3 in the m12 rest frame. The scatter plot
in m2

12 and m2
23 is called a Dalitz plot. If |M |

2 is constant, the allowed
region of the plot will be uniformly populated with events [see Eq. (46.21)].
A nonuniformity in the plot gives immediate information on |M |

2. For
example, in the case of D → Kππ, bands appear when m(Kπ) = mK∗(892),

reflecting the appearance of the decay chain D → K∗(892)π → Kππ.

(m23)max

0 1 2 3 4 5
 0

 2

 4

 6

 8

10

m12  (GeV2)

m
2

3
  

(G
e
V

2
)

(m1+m2)2

(M−m3)2

(M−m1)2

(m2+m3)2

(m23)min
2

2

2

2

Figure 46.3: Dalitz plot for a three-body final state. In this
example, the state is π+K0p at 3 GeV. Four-momentum conservation
restricts events to the shaded region.

46.4.4. Kinematic limits :

46.4.4.1. Three-body decays: In a three-body decay (Fig. 46.2) the
maximum of |p3|, [given by Eq. (46.20)], is achieved when m12 = m1 +m2,
i.e., particles 1 and 2 have the same vector velocity in the rest frame of the
decaying particle. If, in addition, m3 > m1, m2, then |p

3
|max > |p

1
|max,

|p
2
|max. The distribution of m12 values possesses an end-point or

maximum value at m12 = M − m3. This can be used to constrain the
mass difference of a parent particle and one invisible decay product.
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46.4.5. Multibody decays : The above results may be generalized to
final states containing any number of particles by combining some of the
particles into “effective particles” and treating the final states as 2 or 3
“effective particle” states. Thus, if pijk... = pi + pj + pk + . . ., then

mijk... =
√

p2
ijk... , (46.25)

and mijk... may be used in place of e.g., m12 in the relations in Sec. 46.4.3
or Sec. 46.4.4 above.

46.5. Cross sections

p3, m3

p
n+2, m

n+2

.


.


.

p1, m1

p2, m2

Figure 46.5: Definitions of variables for production of an n-body
final state.

The differential cross section is given by

dσ =
(2π)4|M |

2

4
√

(p1 · p2)2 − m2
1m

2
2

× dΦn(p1 + p2; p3, . . . , pn+2) . (46.26)

[See Eq. (46.11).] In the rest frame of m2(lab),
√

(p1 · p2)2 − m2
1m

2
2 = m2p1 lab ; (46.27a)

while in the center-of-mass frame
√

(p1 · p2)2 − m2
1m

2
2 = p1cm

√

s . (46.27b)

46.5.1. Two-body reactions :

p1, m1

p2, m2

p3, m3

p4, m4

Figure 46.6: Definitions of variables for a two-body final state.

Two particles of momenta p1 and p2 and masses m1 and m2 scatter
to particles of momenta p3 and p4 and masses m3 and m4; the
Lorentz-invariant Mandelstam variables are defined by

s = (p1 + p2)
2 = (p3 + p4)

2

= m2
1 + 2E1E2 − 2p1 · p2 + m2

2 , (46.28)

t = (p1 − p3)
2 = (p2 − p4)

2

= m2
1 − 2E1E3 + 2p1 · p3 + m2

3 , (46.29)
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u = (p1 − p4)
2 = (p2 − p3)

2

= m2
1 − 2E1E4 + 2p1 · p4 + m2

4 , (46.30)

and they satisfy

s + t + u = m2
1 + m2

2 + m2
3 + m2

4 . (46.31)

The two-body cross section may be written as

dσ

dt
=

1

64πs

1

|p1cm|
2
|M |

2 . (46.32)

In the center-of-mass frame

t = (E1cm − E3cm)2 − (p1cm − p3cm)2 − 4p1cm p3cm sin2(θcm/2)

= t0 − 4p1cm p3cm sin2(θcm/2) , (46.33)

where θcm is the angle between particle 1 and 3. The limiting values
t0 (θcm = 0) and t1 (θcm = π) for 2 → 2 scattering are

t0(t1) =

[
m2

1 − m2
3 − m2

2 + m2
4

2
√

s

]2

− (p1 cm ∓ p3 cm)2 . (46.34)

In the literature the notation tmin (tmax) for t0 (t1) is sometimes used,
which should be discouraged since t0 > t1. The center-of-mass energies
and momenta of the incoming particles are

E1cm =
s + m2

1 − m2
2

2
√

s
, E2cm =

s + m2
2 − m2

1

2
√

s
, (46.35)

For E3cm and E4cm, change m1 to m3 and m2 to m4. Then

pi cm =
√

E2
i cm − m2

i and p1cm =
p1 lab m2

√

s
. (46.36)

Here the subscript lab refers to the frame where particle 2 is at rest. [For
other relations see Eqs. (46.2)–(46.4).]

46.5.2. Inclusive reactions : Choose some direction (usually the beam
direction) for the z-axis; then the energy and momentum of a particle can
be written as

E = m
T

cosh y , px , py , pz = m
T

sinh y , (46.37)

where m
T

, conventionally called the ‘transverse mass’, is given by

m2
T

= m2 + p2
x + p2

y . (46.38)

and the rapidity y is defined by

y =
1

2
ln

(
E + pz

E − pz

)

= ln

(
E + pz

m
T

)

= tanh−1
(pz

E

)

. (46.39)

Note that the definition of the transverse mass in Eq. (46.38) differs
from that used by experimentalists at hadron colliders (see Sec. 46.6.1
below). Under a boost in the z-direction to a frame with velocity β,
y → y − tanh−1 β. Hence the shape of the rapidity distribution dN/dy is
invariant, as are differences in rapidity. The invariant cross section may
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also be rewritten

E
d3σ

d3p
=

d3σ

dφ dy p
T

dp
T

=⇒
d2σ

π dy d(p2
T

)
. (46.40)

The second form is obtained using the identity dy/dpz = 1/E, and the
third form represents the average over φ.

Feynman’s x variable is given by

x =
pz

pz max
≈

E + pz

(E + pz)max
(pT ≪ |pz|) . (46.41)

In the c.m. frame,

x ≈

2pz cm
√

s
=

2m
T

sinh ycm
√

s
(46.42)

and
= (ycm)max = ln(

√

s/m) . (46.43)

The invariant mass M of the two-particle system described in Sec. 46.4.2
can be written in terms of these variables as

M2 = m2
1 + m2

2 + 2[ET (1)ET (2) cosh∆y − pT (1) · pT (2)] , (46.44)

where

ET (i) =
√

|pT (i)|2 + m2
i , (46.45)

and pT (i) denotes the transverse momentum vector of particle i.

For p ≫ m, the rapidity [Eq. (46.39)] may be expanded to obtain

y =
1

2
ln

cos2(θ/2) + m2/4p2 + . . .

sin2(θ/2) + m2/4p2 + . . .

≈ − ln tan(θ/2) ≡ η (46.46)

where cos θ = pz/p. The pseudorapidity η defined by the second line is
approximately equal to the rapidity y for p ≫ m and θ ≫ 1/γ, and in any
case can be measured when the mass and momentum of the particle are
unknown. From the definition one can obtain the identities

sinh η = cot θ , cosh η = 1/ sin θ , tanh η = cos θ . (46.47)

46.5.3. Partial waves : The amplitude in the center of mass for elastic
scattering of spinless particles may be expanded in Legendre polynomials

f(k, θ) =
1

k

∑

ℓ

(2ℓ + 1)aℓPℓ(cos θ) , (46.48)

where k is the c.m. momentum, θ is the c.m. scattering angle, aℓ =
(ηℓe

2iδℓ − 1)/2i, 0 ≤ ηℓ ≤ 1, and δℓ is the phase shift of the ℓth partial
wave. For purely elastic scattering, ηℓ = 1. The differential cross section
is

dσ

dΩ
= |f(k, θ)|2 . (46.49)

The optical theorem states that

σtot =
4π

k
Im f(k, 0) , (46.50)

and the cross section in the ℓth partial wave is therefore bounded:

σℓ =
4π

k2
(2ℓ + 1)|aℓ|

2
≤

4π(2ℓ + 1)

k2
. (46.51)
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46.5.3.1. Resonances: The Breit-Wigner (nonrelativistic) form for an
elastic amplitude aℓ with a resonance at c.m. energy ER, elastic width
Γel, and total width Γtot is

aℓ =
Γel/2

ER − E − iΓtot/2
, (46.54)

where E is the c.m. energy.
The spin-averaged Breit-Wigner cross section for a spin-J resonance

produced in the collision of particles of spin S1 and S2 is

σBW (E) =
(2J + 1)

(2S1 + 1)(2S2 + 1)

π

k2

BinBoutΓ
2
tot

(E − ER)2 + Γ2
tot/4

, (46.55)

where k is the c.m. momentum, E is the c.m. energy, and B in and B out

are the branching fractions of the resonance into the entrance and exit
channels. The 2S + 1 factors are the multiplicities of the incident spin
states, and are replaced by 2 for photons. This expression is valid only for
an isolated state. If the width is not small, Γtot cannot be treated as a
constant independent of E. There are many other forms for σBW , all of
which are equivalent to the one given here in the narrow-width case. Some
of these forms may be more appropriate if the resonance is broad.

The relativistic Breit-Wigner form corresponding to Eq. (46.54) is:

aℓ =
−mΓel

s − m2 + imΓtot
. (46.56)

A better form incorporates the known kinematic dependences, replacing
mΓtot by

√

s Γtot(s), where Γtot(s) is the width the resonance particle
would have if its mass were

√

s, and correspondingly mΓel by
√

s Γel(s)
where Γel(s) is the partial width in the incident channel for a mass

√

s:

aℓ =
−

√

s Γel(s)

s − m2 + i
√

s Γtot(s)
. (46.57)

For the Z boson, all the decays are to particles whose masses are small
enough to be ignored, so on dimensional grounds Γtot(s) =

√

s Γ0/mZ ,
where Γ0 defines the width of the Z, and Γel(s)/Γtot(s) is constant. A full
treatment of the line shape requires consideration of dynamics, not just
kinematics. For the Z this is done by calculating the radiative corrections
in the Standard Model.

46.6. Transverse variables

At hadron colliders, a significant and unknown proportion of the energy
of the incoming hadrons in each event escapes down the beam-pipe.
Consequently if invisible particles are created in the final state, their net
momentum can only be constrained in the plane transverse to the beam
direction. Defining the z-axis as the beam direction, this net momentum
is equal to the missing transverse energy vector

Emiss
T = −

∑

i

pT (i) , (46.58)

where the sum runs over the transverse momenta of all visible final state
particles.
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46.6.1. Single production with semi-invisible final state :

Consider a single heavy particle of mass M produced in association
with visible particles which decays as in Fig. 46.1 to two particles, of
which one (labeled particle 1) is invisible. The mass of the parent particle
can be constrained with the quantity MT defined by

M2
T ≡ [ET (1) + ET (2)]2 − [pT (1) + pT (2)]2

= m2
1 + m2

2 + 2[ET (1)ET (2) − pT (1) · pT (2)] , (46.59)

where
pT (1) = Emiss

T . (46.60)

This quantity is called the ‘transverse mass’ by hadron collider
experimentalists but it should be noted that it is quite different from
that used in the description of inclusive reactions [Eq. (46.38)]. The
distribution of event MT values possesses an end-point at Mmax

T = M . If
m1 = m2 = 0 then

M2
T = 2|pT (1)||pT (2)|(1 − cosφ12) , (46.61)

where φij is defined as the angle between particles i and j in the transverse
plane.

46.6.2. Pair production with semi-invisible final states :

p
11

, mp
44

, mp

, mp

3 1

22

, m

M M

Figure 46.9: Definitions of variables for pair production of semi-
invisible final states. Particles 1 and 3 are invisible while particles 2
and 4 are visible.

Consider two identical heavy particles of mass M produced such that
their combined center-of-mass is at rest in the transverse plane (Fig. 46.9).
Each particle decays to a final state consisting of an invisible particle of
fixed mass m1 together with an additional visible particle. M and m1 can
be constrained with the variables MT2 and MCT which are defined in
Refs. [4] and [5].

Further discussion and all references may be found in the full Review of
Particle Physics. The numbering of references and equations used here
corresponds to that version.
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48. CROSS-SECTION FORMULAE

FOR SPECIFIC PROCESSES

Revised October 2009 by H. Baer (University of Oklahoma) and R.N.
Cahn (LBNL).

PART I: STANDARD MODEL PROCESSES

Setting aside leptoproduction (for which, see Sec. 16 of this Review),
the cross sections of primary interest are those with light incident particles,
e+e−, γγ, qq, gq , gg, etc., where g and q represent gluons and light
quarks. The produced particles include both light particles and heavy
ones - t, W , Z, and the Higgs boson H . We provide the production cross
sections calculated within the Standard Model for several such processes.

48.1. Resonance Formation

Resonant cross sections are generally described by the Breit-Wigner
formula (Sec. 19 of this Review).

σ(E) =
2J + 1

(2S1 + 1)(2S2 + 1)

4π

k2

[
Γ2/4

(E − E0)2 + Γ2/4

]

BinBout, (48.1)

where E is the c.m. energy, J is the spin of the resonance, and the
number of polarization states of the two incident particles are 2S1 + 1
and 2S2 + 1. The c.m. momentum in the initial state is k, E0 is the
c.m. energy at the resonance, and Γ is the full width at half maximum
height of the resonance. The branching fraction for the resonance into
the initial-state channel is Bin and into the final-state channel is Bout.
For a narrow resonance, the factor in square brackets may be replaced by
πΓδ(E − E0)/2.

48.2. Production of light particles

The production of point-like, spin-1/2 fermions in e+e− annihilation
through a virtual photon, e+e− → γ∗ → ff , at c.m. energy squared s is

dσ

dΩ
= Nc

α2

4s
β[1 + cos2 θ + (1 − β2) sin2 θ]Q2

f , (48.2)

where β is v/c for the produced fermions in the c.m., θ is the c.m.
scattering angle, and Qf is the charge of the fermion. The factor Nc is 1
for charged leptons and 3 for quarks. In the ultrarelativistic limit, β → 1,

σ = NcQ
2

f

4πα2

3s
= NcQ

2

f

86.8 nb

s (GeV2)
. (48.3)

The cross section for the annihilation of a qq pair into a distinct pair
q′q′ through a gluon is completely analogous up to color factors, with the
replacement α → αs. Treating all quarks as massless, averaging over the
colors of the initial quarks and defining t = −s sin2(θ/2), u = −s cos2(θ/2),
one finds

dσ

dΩ
(qq → q′q′) =

α2
s

9s

t2 + u2

s2
. (48.4)

Crossing symmetry gives

dσ

dΩ
(qq′ → qq′) =

α2
s

9s

s2 + u2

t2
. (48.5)

If the quarks q and q′ are identical, we have

dσ

dΩ
(qq → qq) =

α2
s

9s

[
t2 + u2

s2
+

s2 + u2

t2
−

2u2

3st

]

, (48.6)
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and by crossing

dσ

dΩ
(qq → qq) =

α2
s

9s

[
t2 + s2

u2
+

s2 + u2

t2
−

2s2

3ut

]

. (48.7)

Annihilation of e+e− into γγ has the cross section

dσ

dΩ
(e+e− → γγ) =

α2

2s

u2 + t2

tu
. (48.8)

The related QCD process also has a triple-gluon coupling. The cross
section is

dσ

dΩ
(qq → gg) =

8α2
s

27s
(t2 + u2)(

1

tu
−

9

4s2
) . (48.9)

The crossed reactions are

dσ

dΩ
(qg → qg) =

α2
s

9s
(s2 + u2)(−

1

su
+

9

4t2
) , (48.10)

dσ

dΩ
(gg → qq) =

α2
s

24s
(t2 + u2)(

1

tu
−

9

4s2
) , (48.11)

dσ

dΩ
(gg → gg) =

9α2
s

8s
(3 −

ut

s2
−

su

t2
−

st

u2
) . (48.12)

Lepton-quark scattering is analogous (neglecting Z exchange)

dσ

dΩ
(eq → eq) =

α2

2s
e2
q
s2 + u2

t2
, (48.13)

eq is the quark charge. For ν-scattering with the four-Fermi interaction

dσ

dΩ
(νd → ℓ−u) =

G2
F s

4π2
, (48.14)

where the Cabibbo angle suppression is ignored. Similarly

dσ

dΩ
(νu → ℓ−d) =

G2
F s

4π2

(1 + cos θ)2

4
. (48.15)

For deep inelastic scattering (presented in more detail in Section 19)
we consider quarks of type i carrying a fraction x = Q2/(2Mν) of the
nucleon’s energy, where ν = E − E′ is the energy lost by the lepton in the
nucleon rest frame. With y = ν/E we have the correspondences

1 + cos θ → 2(1 − y) , dΩcm → 4πfi(x)dx dy , (48.16)
where the latter incorporates the quark distribution, fi(x). We find

dσ

dx dy
(eN → eX) =

4πα2xs

Q4

1

2

[

1 + (1 − y)2
]

×

[4

9
(u(x) + u(x) + . . .)+

1

9
(d(x) + d(x) + . . .)

]

(48.17)

where now s = 2ME is the cm energy squared for the electron-nucleon
collision and we have suppressed contributions from higher mass quarks.

Similarly,

dσ

dx dy
(νN → ℓ−X) =

G2
F xs

π
[(d(x) + . . .) + (1 − y)2(u(x) + . . .)] , (48.18)

dσ

dx dy
(νN → ℓ+X) =

G2

F xs

π
[(d(x) + . . .) + (1 − y)2(u(x) + . . .)] . (48.19)

Quasi-elastic neutrino scattering (νµn → µ−p, νµp → µ+n) is directly
related to the crossed reaction, neutron decay.
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48.3. Hadroproduction of heavy quarks

For hadroproduction of heavy quarks Q = c, b, t, it is important to
include mass effects in the formulae. For qq̄ → QQ̄, one has

dσ

dΩ
(qq̄ → QQ̄) =

α2
s

9s3

√

1 −

4m2
Q

s

[

(m2

Q − t)2 + (m2

Q − u)2 + 2m2

Qs
]

,

(48.20)
while for gg → QQ̄ one has

dσ

dΩ
(gg → QQ̄) =

α2
s

32s

√

1 −

4m2

Q

s

[
6

s2
(m2

Q − t)(m2

Q − u)

−

m2
Q(s − 4m2

Q)

3(m2

Q − t)(m2

Q − u)
+

4

3

(m2
Q − t)(m2

Q − u) − 2m2
Q(m2

Q + t)

(m2

Q − t)2

+
4

3

(m2

Q − t)(m2

Q − u) − 2m2

Q(m2

Q + u)

(m2
Q − u)2

−3
(m2

Q − t)(m2

Q − u) + m2

Q(u − t)

s(m2

Q − t)
−3

(m2

Q − t)(m2

Q − u) + m2

Q(t − u)

s(m2

Q − u)

]

.

(48.21)

48.4. Production of Weak Gauge Bosons

48.4.1. W and Z resonant production :

Resonant production of a single W or Z is governed by the partial widths

Γ(W → ℓiνi) =

√

2GF m3

W

12π
(48.22)

Γ(W → qiqj) = 3

√

2GF |Vij |
2m3

W

12π
(48.23)

Γ(Z → ff) = Nc

√

2GF m3

Z

6π

×

[

(T3 − Qf sin2 θW )2 + (Qf sin2 θW )2
]

. (48.24)

The weak mixing angle is θW . The CKM matrix elements are Vij . Nc is 3
for qq and 1 for leptonic final states. These widths along with associated
branching fractions may be applied to the resonance production formula
of Sec. 48.1 to gain the total W or Z production cross section.

48.4.2. Production of pairs of weak gauge bosons :

The cross section for ff → W+W− is given in term of the couplings of the
left-handed and right-handed fermion f , ℓ = 2(T3 − QxW ), r = −2QxW ,
where T3 is the third component of weak isospin for the left-handed f , Q
is its electric charge (in units of the proton charge), and xW = sin2 θW :

dσ

dt
=

2πα2

Ncs2

{



(

Q +
ℓ + r

4xW

s

s − m2

Z

)2

+

(

ℓ − r

4xW

s

s − m2

Z

)2


A(s, t, u)

+
1

2xW

(

Q +
ℓ

2xW

s

s − m2

Z

)

(Θ(−Q)I(s, t, u)− Θ(Q)I(s, u, t))

+
1

8x2

W

(Θ(−Q)E(s, t, u) + Θ(Q)E(s, u, t))

}

, (48.26)
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where Θ(x) is 1 for x > 0 and 0 for x < 0, and where

A(s, t, u) =

(

tu

m4
W

− 1

)(

1

4
−

m2

W

s
+ 3

m4

W

s2

)

+
s

m2
W

− 4,

I(s, t, u) =

(

tu

m4

W

− 1

)(

1

4
−

m2

W

2s
−

m4

W

st

)

+
s

m2

W

− 2 + 2
m2

W

t
,

E(s, t, u) =

(

tu

m4

W

− 1

)(

1

4
+

m4
W

t2

)

+
s

m2

W

, (48.27)

and s, t, u are the usual Mandelstam variables with s = (pf + p
f
)2, t =

(pf − pW−)2, u = (pf − pW+)2. The factor Nc is 3 for quarks and 1 for
leptons.

The analogous cross-section for qiqj → W±Z0 is

dσ

dt
=

πα2
|Vij |

2

6s2x2
W

{(

1

s − m2
W

)2 [(
9 − 8xW

4

) (

ut − m2
W m2

Z

)

+ (8xW − 6) s
(

m2

W + m2

Z

)]

+

[

ut − m2

W m2

Z − s(m2

W + m2

Z)

s − m2
W

][
ℓj

t
−

ℓi

u

]

+
ut − m2

W m2

Z

4(1 − xW )

[
ℓ2j
t2

+
ℓ2i
u2

]

+
s(m2

W + m2

Z)

2(1 − xW )

ℓiℓj

tu

}

, (48.28)

where ℓi and ℓj are the couplings of the left-handed qi and qj as defined
above. The CKM matrix element between qi and qj is Vij .

The cross section for qiqi → Z0Z0 is

dσ

dt
=

πα2

96

ℓ4i + r4
i

x2
W (1 − x2

W )2s2

[

t

u
+

u

t
+

4m2

Zs

tu
− m4

Z

(
1

t2
+

1

u2

)]

.

(48.29)

48.5. Production of Higgs Bosons

48.5.1. Resonant Production :

The Higgs boson of the Standard Model can be produced resonantly
in the collisions of quarks, leptons, W or Z bosons, gluons, or photons.
The production cross section is thus controlled by the partial width of the
Higgs boson into the entrance channel and its total width. The partial
widths are given by the relations

Γ(H → ff) =
GF m2

fmHNc

4π
√

2

(

1 − 4m2

f/m2

H

)3/2

, (48.30)

Γ(H → W+W−) =
GF m3

HβW

32π
√

2

(

4 − 4aW + 3a2
W

)

, (48.31)

Γ(H → ZZ) =
GF m3

HβZ

64π
√

2

(

4 − 4aZ + 3a2
Z

)

. (48.32)

where Nc is 3 for quarks and 1 for leptons and where aW = 1 − β2
W =

4m2

W /m2

H and aZ = 1 − β2

Z = 4m2

Z/m2

H . The decay to two gluons
proceeds through quark loops, with the t quark dominating. Explicitly,
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Γ(H → gg) =
α2

sGF m3

H

36π3
√

2

∣
∣
∣
∣
∣

∑

q

I(m2
q/m2

H)

∣
∣
∣
∣
∣

2

, (48.33)

where I(z) is complex for z < 1/4. For z < 2 × 10−3, |I(z)| is small so the
light quarks contribute negligibly. For mH < 2mt, z > 1/4 and

I(z) = 3

[

2z + 2z(1 − 4z)

(

sin−1 1

2
√

z

)2
]

, (48.34)

which has the limit I(z) → 1 as z → ∞.

48.5.2. Higgs Boson Production in W
∗ and Z

∗ decay :

The Standard Model Higgs boson can be produced in the decay of
a virtual W or Z (“Higgstrahlung”): In particular, if k is the c.m.
momentum of the Higgs boson,

σ(qiqj → WH) =
πα2

|Vij |
2

36 sin4 θW

2k
√

s

k2 + 3m2

W

(s − m2

W )2
(48.35)

σ(ff → ZH) =
2πα2(ℓ2f + r2

f )

48Nc sin4 θW cos4 θW

2k
√

s

k2 + 3m2
Z

(s − m2

Z)2
. (48.36)

where ℓ and r are defined as above.

48.5.3. W and Z Fusion :
Just as high-energy electrons can be regarded as sources of virtual photon
beams, at very high energies they are sources of virtual W and Z beams.
For Higgs boson production, it is the longitudinal components of the W s
and Zs that are important. The distribution of longitudinal W s carrying
a fraction y of the electron’s energy is

f(y) =
g2

16π2

1 − y

y
, (48.37)

where g = e/ sin θW . In the limit s ≫ mH ≫ mW , the rate Γ(H →

WLWL) = (g2/64π)(m3
H/m2

W ) and in the equivalent W approximation

σ(e+e− → νeνeH) =
1

16m2

W

(
α

sin2 θW

)3

×

[(

1 +
m2

H

s

)

log
s

m2

H

− 2 + 2
m2

H

s

]

. (48.38)

There are significant corrections to this relation when mH is not large
compared to mW . For mH = 150 GeV, the estimate is too high by 51%
for

√

s = 1000 GeV, 32% too high at
√

s = 2000 GeV, and 22% too high
at

√

s = 4000 GeV. Fusion of ZZ to make a Higgs boson can be treated
similarly. Identical formulae apply for Higgs production in the collisions
of quarks whose charges permit the emission of a W+ and a W−, except
that QCD corrections and CKM matrix elements are required. Even in
the absence of QCD corrections, the fine-structure constant ought to be
evaluated at the scale of the collision, say mW . All quarks contribute to
the ZZ fusion process.

Further discussion and all references may be found in the full Review; the
equation and reference numbering corresponds to that version.



50. Plots of cross sections and related quantities 323

2 5 101 2 5 102 2 5 103 2 5 104 2 5

2

5

10-3

2

5

10-2

2

5

10-1

2

5

100

2

5

101

2

5

102

2

5

s GeV

pHpL p

K-HK+L p Π -HΠ +L p
S - p

Γ p

Γ Γ

Σ ab mb

ß

ß

ß

101 102 103 104

-0.3
-0.2
-0.1

0.0
0.1
0.2
0.3

Ρp p

Ρp p

s GeV

101 102 103 104

-0.3
-0.2
-0.1

0.0
0.1
0.2
0.3

ΡΠ
- p

ΡΠ
+ p

s GeV

101 102 103 104

-0.3
-0.2
-0.1

0.0
0.1
0.2
0.3

ΡK- p

ΡK+ p

s GeV

Figure 50.8: Summary of hadronic, γp, and γγ total cross sections σab

in mb, and ratio of the real to imaginary parts of the forward hadronic
amplitudes. Corresponding computer-readable data files may be found
at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS
group, IHEP, Protvino, September 2013.)
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6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1. Abridged from pdg.lbl.gov/AtomicNuclearProperties by D. E. Groom (2007). Quantities in parentheses are for gases at 20◦ C
and 1 atm, and square brackets indicate quantities evaluated at 20◦ C and 1 atm. Boiling points are at 1 atm. Refractive indices n are evaluated
at the sodium D line blend (589.2 nm); values ≫ 1 in brackets are for (n − 1) × 106 (gases).

Material Z A 〈Z/A〉 Nucl.coll.

length λT

{g cm−2
}

Nucl.inter.

length λI

{g cm−2
}

Rad.len.

X0

{g cm−2
}

dE/dx|min

{ MeV

g−1cm2
}

Density

{g cm−3
}

({gℓ−1
})

Melting

point

(K)

Boiling

point

(K)

Refract.

index

(@ Na D)

H2 1 1.00794(7) 0.99212 42.8 52.0 63.04 (4.103) 0.071(0.084) 13.81 20.28 1.11[132.]
D2 1 2.01410177803(8) 0.49650 51.3 71.8 125.97 (2.053) 0.169(0.168) 18.7 23.65 1.11[138.]
He 2 4.002602(2) 0.49967 51.8 71.0 94.32 (1.937) 0.125(0.166) 4.220 1.02[35.0]
Li 3 6.941(2) 0.43221 52.2 71.3 82.78 1.639 0.534 453.6 1615.
Be 4 9.012182(3) 0.44384 55.3 77.8 65.19 1.595 1.848 1560. 2744.
C diamond 6 12.0107(8) 0.49955 59.2 85.8 42.70 1.725 3.520 2.42
C graphite 6 12.0107(8) 0.49955 59.2 85.8 42.70 1.742 2.210
N2 7 14.0067(2) 0.49976 61.1 89.7 37.99 (1.825) 0.807(1.165) 63.15 77.29 1.20[298.]
O2 8 15.9994(3) 0.50002 61.3 90.2 34.24 (1.801) 1.141(1.332) 54.36 90.20 1.22[271.]
F2 9 18.9984032(5) 0.47372 65.0 97.4 32.93 (1.676) 1.507(1.580) 53.53 85.03 [195.]
Ne 10 20.1797(6) 0.49555 65.7 99.0 28.93 (1.724) 1.204(0.839) 24.56 27.07 1.09[67.1]
Al 13 26.9815386(8) 0.48181 69.7 107.2 24.01 1.615 2.699 933.5 2792.
Si 14 28.0855(3) 0.49848 70.2 108.4 21.82 1.664 2.329 1687. 3538. 3.95
Cl2 17 35.453(2) 0.47951 73.8 115.7 19.28 (1.630) 1.574(2.980) 171.6 239.1 [773.]
Ar 18 39.948(1) 0.45059 75.7 119.7 19.55 (1.519) 1.396(1.662) 83.81 87.26 1.23[281.]
Ti 22 47.867(1) 0.45961 78.8 126.2 16.16 1.477 4.540 1941. 3560.
Fe 26 55.845(2) 0.46557 81.7 132.1 13.84 1.451 7.874 1811. 3134.
Cu 29 63.546(3) 0.45636 84.2 137.3 12.86 1.403 8.960 1358. 2835.
Ge 32 72.64(1) 0.44053 86.9 143.0 12.25 1.370 5.323 1211. 3106.
Sn 50 118.710(7) 0.42119 98.2 166.7 8.82 1.263 7.310 505.1 2875.
Xe 54 131.293(6) 0.41129 100.8 172.1 8.48 (1.255) 2.953(5.483) 161.4 165.1 1.39[701.]
W 74 183.84(1) 0.40252 110.4 191.9 6.76 1.145 19.300 3695. 5828.
Pt 78 195.084(9) 0.39983 112.2 195.7 6.54 1.128 21.450 2042. 4098.
Au 79 196.966569(4) 0.40108 112.5 196.3 6.46 1.134 19.320 1337. 3129.
Pb 82 207.2(1) 0.39575 114.1 199.6 6.37 1.122 11.350 600.6 2022.
U 92 [238.02891(3)] 0.38651 118.6 209.0 6.00 1.081 18.950 1408. 4404.
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3
2
5

Air (dry, 1 atm) 0.49919 61.3 90.1 36.62 (1.815) (1.205) 78.80
Shielding concrete 0.50274 65.1 97.5 26.57 1.711 2.300
Borosilicate glass (Pyrex) 0.49707 64.6 96.5 28.17 1.696 2.230
Lead glass 0.42101 95.9 158.0 7.87 1.255 6.220
Standard rock 0.50000 66.8 101.3 26.54 1.688 2.650

Methane (CH4) 0.62334 54.0 73.8 46.47 (2.417) (0.667) 90.68 111.7 [444.]
Ethane (C2H6) 0.59861 55.0 75.9 45.66 (2.304) (1.263) 90.36 184.5
Butane (C4H10) 0.59497 55.5 77.1 45.23 (2.278) (2.489) 134.9 272.6
Octane (C8H18) 0.57778 55.8 77.8 45.00 2.123 0.703 214.4 398.8
Paraffin (CH3(CH2)n≈23CH3) 0.57275 56.0 78.3 44.85 2.088 0.930
Nylon (type 6, 6/6) 0.54790 57.5 81.6 41.92 1.973 1.18
Polycarbonate (Lexan) 0.52697 58.3 83.6 41.50 1.886 1.20
Polyethylene ([CH2CH2]n) 0.57034 56.1 78.5 44.77 2.079 0.89
Polyethylene terephthalate (Mylar) 0.52037 58.9 84.9 39.95 1.848 1.40
Polymethylmethacrylate (acrylic) 0.53937 58.1 82.8 40.55 1.929 1.19 1.49
Polypropylene 0.55998 56.1 78.5 44.77 2.041 0.90
Polystyrene ([C6H5CHCH2]n) 0.53768 57.5 81.7 43.79 1.936 1.06 1.59
Polytetrafluoroethylene (Teflon) 0.47992 63.5 94.4 34.84 1.671 2.20
Polyvinyltoluene 0.54141 57.3 81.3 43.90 1.956 1.03 1.58

Aluminum oxide (sapphire) 0.49038 65.5 98.4 27.94 1.647 3.970 2327. 3273. 1.77
Barium flouride (BaF2) 0.42207 90.8 149.0 9.91 1.303 4.893 1641. 2533. 1.47
Carbon dioxide gas (CO2) 0.49989 60.7 88.9 36.20 1.819 (1.842) [449.]
Solid carbon dioxide (dry ice) 0.49989 60.7 88.9 36.20 1.787 1.563 Sublimes at 194.7 K
Cesium iodide (CsI) 0.41569 100.6 171.5 8.39 1.243 4.510 894.2 1553. 1.79
Lithium fluoride (LiF) 0.46262 61.0 88.7 39.26 1.614 2.635 1121. 1946. 1.39
Lithium hydride (LiH) 0.50321 50.8 68.1 79.62 1.897 0.820 965.
Lead tungstate (PbWO4) 0.41315 100.6 168.3 7.39 1.229 8.300 1403. 2.20
Silicon dioxide (SiO2, fused quartz) 0.49930 65.2 97.8 27.05 1.699 2.200 1986. 3223. 1.46
Sodium chloride (NaCl) 0.55509 71.2 110.1 21.91 1.847 2.170 1075. 1738. 1.54
Sodium iodide (NaI) 0.42697 93.1 154.6 9.49 1.305 3.667 933.2 1577. 1.77
Water (H2O) 0.55509 58.5 83.3 36.08 1.992 1.000(0.756) 273.1 373.1 1.33

Silica aerogel 0.50093 65.0 97.3 27.25 1.740 0.200 (0.03 H2O, 0.97 SiO2)



Table 4.1. Revised 2011 by D.E. Groom (LBNL), and E. Bergren. Atomic weights of stable elements are adapted from the Commission on Isotopic Abundances and
Atomic Weights, “Atomic Weights of the Elements 2007,” http://www.chem.qmul.ac.uk/iupac/AtWt/. The atomic number (top left) is the number of protons in the
nucleus. The atomic mass (bottom) of a stable elements is weighted by isotopic abundances in the Earth’s surface. If the element has no stable isotope, the atomic mass
(in parentheses) of the most stable isotope currently known is given. In this case the mass is from http://www.nndc.bnl.gov/amdc/masstables/Ame2003/mass.mas03

and the longest-lived isotope is from www.nndc.bnl.gov/ensdf/za form.jsp. The exceptions are Th, Pa, and U, which do have characteristic terrestrial compositions.
Atomic masses are relative to the mass of 12C, defined to be exactly 12 unified atomic mass units (u) (approx. g/mole). Relative isotopic abundances often vary
considerably, both in natural and commercial samples; this is reflected in the number of significant figures given for the atomic mass. IUPAC does not accept the claims
for elements 113, 115, 117, and 118 as conclusive at this time.
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5 B
Boron
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17 Cl
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22 Ti
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24 Cr
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25 Mn
Manganese
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26 Fe
Iron

55.845

27 Co
Cobalt
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28 Ni
Nickel

58.6934

29 Cu
Copper

63.546

30 Zn
Zinc

65.38

31 Ga
Gallium

69.723

32 Ge
German.

72.64

33 As
Arsenic

74.92160

34 Se
Selenium

78.96

35 Br
Bromine

79.904

36 Kr
Krypton

83.798
37 Rb
Rubidium

85.4678

38 Sr
Strontium

87.62

39 Y
Yttrium

88.90585

40 Zr
Zirconium

91.224

41 Nb
Niobium

92.90638

42 Mo
Molybd.

95.96

43 Tc
Technet.

(97.90722)

44 Ru
Ruthen.

101.07

45 Rh
Rhodium

102.90550

46 Pd
Palladium

106.42

47 Ag
Silver

107.8682

48 Cd
Cadmium

112.411

49 In
Indium

114.818

50 Sn
Tin

118.710

51 Sb
Antimony

121.760

52 Te
Tellurium

127.60

53 I
Iodine

126.90447

54 Xe
Xenon

131.293
55 Cs
Cesium

132.9054519

56 Ba
Barium

137.327

57–71
Lantha-

nides

72 Hf
Hafnium

178.49

73 Ta
Tantalum

180.94788

74 W
Tungsten

183.84

75 Re
Rhenium

186.207

76 Os
Osmium

190.23

77 Ir
Iridium

192.217

78 Pt
Platinum

195.084

79 Au
Gold

196.966569

80 Hg
Mercury

200.59

81 Tl
Thallium

204.3833

82 Pb
Lead

207.2

83 Bi
Bismuth

208.98040

84 Po
Polonium

(208.98243)

85 At
Astatine

(209.98715)

86 Rn
Radon

(222.01758)

87 Fr
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(223.01974)

88 Ra
Radium

(226.02541)

89–103
Actinides

104 Rf
Rutherford.

(267.122)

105 Db
Dubnium

(268.125)

106 Sg
Seaborg.

(271.133)

107 Bh
Bohrium

(270.134)

108 Hs
Hassium

(269.134)

109 Mt
Meitner.

(276.151)

110 Ds
Darmstadt.

(281.162)

111 Rg
Roentgen.

(280.164)

112 Cn
Copernicium

(277)

114 Fl
Flerovium

(289)

116 Lv
Livermorium

(288)

Lanthanide
series

57 La
Lanthan.
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58 Ce
Cerium

140.116

59 Pr
Praseodym.

140.90765

60 Nd
Neodym.

144.242

61 Pm
Prometh.

(144.91275)

62 Sm
Samarium

150.36

63 Eu
Europium
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64 Gd
Gadolin.

157.25

65 Tb
Terbium
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66 Dy
Dyspros.
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67 Ho
Holmium

164.93032

68 Er
Erbium

167.259

69 Tm
Thulium

168.93421

70 Yb
Ytterbium

173.054

71 Lu
Lutetium

174.9668

Actinide
series

89 Ac
Actinium

(227.02775)

90 Th
Thorium

232.03806

91 Pa
Protactin.

231.03588

92 U
Uranium

238.02891

93 Np
Neptunium

(237.04817)

94 Pu
Plutonium

(244.06420)

95 Am
Americ.

(243.06138)

96 Cm
Curium

(247.07035)

97 Bk
Berkelium

(247.07031)

98 Cf
Californ.

(251.07959)

99 Es
Einstein.

(252.0830)

100 Fm
Fermium

(257.09510)

101 Md
Mendelev.

(258.09843)

102 No
Nobelium

(259.1010)

103 Lr
Lawrenc.

(262.110)


