graviton J = 2 ## graviton MASS In 1970 van Dam amd Veltman (VANDAM 70) showed that "... there is a discrete difference between the theory with zero-mass and a theory with finite mass, no matter how small as compared to all external momenta. ... We may conclude that the graviton has rigorously zero mass." However, see GOLDHABER 10 and references therein. It has been of interest to set experimental limits, whether or not a finite mass can exist. In most (but not all) cases limits have been set on the distance without evidence for a Yukawa cutoff. h_0 is the Hubble constant in units of 100 km s $^{-1}$ Mpc $^{-1}$. The following conversions are useful: 1 eV = 1.783 \times 10 $^{-33}$ g = 1.957 \times 10 $^{-6}$ $\it m_e$; $\it \chi_C = (1.973 \times 10^{-7} \rm \ m) \times (1 \rm \ eV/\it m_g)$. | | VALUE (eV) | DOCUMENT ID | | COMMENT | | | | |---|---|-----------------------|----|---------------------------------------|--|--|--| | | <6 × 10 ⁻³² | | | Weak gravitational lensing | | | | | ◆ We do not use the following data for averages, fits, limits, etc. | | | | | | | | | | $< 5 \times 10^{-23}$ | ² BRITO | 13 | Spinning black holes bounds | | | | | | $<4 \times 10^{-25}$ | ³ BASKARAN | 80 | Graviton phase velocity fluctuations | | | | | | $< 6 \times 10^{-32}$ | ⁴ GRUZINOV | 05 | Solar System observations | | | | | | $>6 \times 10^{-34}$ | ⁵ DVALI | 03 | Horizon scales | | | | | | $< 8 \times 10^{-20}$ | 6,7 FINN | 02 | Binary pulsar orbital period decrease | | | | | | | ^{7,8} DAMOUR | 91 | Binary pulsar PSR 1913+16 | | | | | | $< 2 \times 10^{-29} h_0^{-1}$
$< 7 \times 10^{-28}$ | GOLDHABER | 74 | Rich clusters | | | | | | $< 7 \times 10^{-28}$ | HARE | 73 | Galaxy | | | | | | $< 8 \times 10^4$ | HARE | 73 | 2γ decay | | | | | | | | | | | | | ¹ CHOUDHURY 04 concludes from a study of weak-lensing data that masses heavier than about the inverse of 100 Mpc seem to be ruled out if the gravitation field has the Yukawa form. Created: 10/6/2015 12:30 ² BRITO 13 explore massive graviton (spin-2) fluctuations around rotating black holes. ³BASKARAN 08 consider fluctuations in pulsar timing due to photon interactions ("surfing") with background gravitational waves. ⁴ GRUZINOV 05 uses the DGP model (DVALI 00) showing that non-perturbative effects restore continuity with Einstein's equations as the gravition mass approaches 0, then bases his limit on Solar System observations. ⁵ DVALI 03 suggest scale of horizon distance via DGP model (DVALI 00). For a horizon distance of 3×10^{26} m (about age of Universe/c; GOLDHABER 10) this graviton mass limit is implied. ⁶ FINN 02 analyze the orbital decay rates of PSR B1913+16 and PSR B1534+12 with a possible graviton mass as a parameter. The combined frequentist mass limit is at 90%CL. ⁷ As of 2014, limits on dP/dt are now about 0.1% (see T. Damour, "Experimental tests of gravitational theory," in this *Review*). ⁸ DAMOUR 91 is an analysis of the orbital period change in binary pulsar PSR 1913+16, and confirms the general relativity prediction to 0.8%. "The theoretical importance of the [rate of orbital period decay] measurement has long been recognized as a direct confirmation that the gravitational interaction propagates with velocity c (which is the immediate cause of the appearance of a damping force in the binary pulsar system) and thereby as a test of the existence of gravitational radiation and of its quadrupolar nature." TAYLOR 93 adds that orbital parameter studies now agree with general relativity to 0.5%, and set limits on the level of scalar contribution in the context of a family of tensor [spin 2]-biscalar theories. ## graviton REFERENCES | BRITO
GOLDHABER | 13
10 | PR D88 023514
RMP 82 939 | R. Brito, V. Cardoso, P. Pani (LISB, MISS, HSCA+)
A.F. Goldhaber, M.M. Nieto (STON, LANL) | |--------------------|----------|-----------------------------|--| | BASKARAN | 80 | PR D78 044018 | D. Baskaran <i>et al.</i> | | GRUZINOV | 05 | NAST 10 311 | A. Gruzinov (NYU) | | CHOUDHURY | 04 | ASP 21 559 | S.R. Choudhury et al. (DELPH, MELB) | | DVALI | 03 | PR D68 024012 | G.R. Dvali, A. Grizinov, M. Zaldarriaga (NYU) | | FINN | 02 | PR D65 044022 | L.S. Finn, P.J. Sutton | | DVALI | 00 | PL B485 208 | G.R. Dvali, G. Gabadadze, M. Porrati (NYU) | | TAYLOR | 93 | NAT 355 132 | J.N. Taylor et al. (PRIN, ARCBO, BURE+) J | | DAMOUR | 91 | APJ 366 501 | T. Damour, J.H. Taylor (BURE, MEUD, PRIN) | | GOLDHABER | 74 | PR D9 1119 | A.S. Goldhaber, M.M. Nieto (LANL, STON) | | HARE | 73 | CJP 51 431 | M.G. Hare (SASK) | | VANDAM | 70 | NP B22 397 | H. van Dam, M. Veltman (ÙTRÉ) | | | | | | Created: 10/6/2015 12:30