

$$I(J^{P}) = 0(0^{-})$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B_s^0} = 5366.79 \pm 0.23$$
 MeV
 $m_{B_s^0} - m_B = 87.33 \pm 0.23$ MeV
Mean life $\tau = (1.510 \pm 0.005) \times 10^{-12}$ s
 $c\tau = 452.7 \ \mu m$
 $\Delta \Gamma_{B_s^0} = \Gamma_{B_{sl}^0} - \Gamma_{B_{sH}^0} = (0.082 \pm 0.007) \times 10^{12} \text{ s}^{-1}$

$B_s^0 - \overline{B}_s^0$ mixing parameters

 B_s^0

$$\begin{split} \Delta m_{B_s^0} &= m_{B_{sH}^0} - m_{B_{sL}^0} = (17.757 \pm 0.021) \times 10^{12} \ \hbar \ \mathrm{s}^{-1} \\ &= (1.1688 \pm 0.0014) \times 10^{-8} \ \mathrm{MeV} \\ x_s &= \Delta m_{B_s^0} / \Gamma_{B_s^0} = 26.81 \pm 0.10 \\ \chi_s &= 0.499308 \pm 0.000005 \end{split}$$

CP violation parameters in B_s^0

$$\begin{aligned} &\operatorname{Re}(\epsilon_{B_{s}^{0}}) / \left(1 + \left|\epsilon_{B_{s}^{0}}\right|^{2}\right) = \left(-1.9 \pm 1.0\right) \times 10^{-3} \\ & \mathcal{L}_{KK}(B_{s}^{0} \to K^{+}K^{-}) = 0.14 \pm 0.11 \\ & \mathcal{L}_{KK}(B_{s}^{0} \to K^{+}K^{-}) = 0.30 \pm 0.13 \\ & \gamma(B_{s}^{0} \to D_{s}^{\pm}K^{\mp}) = \left(115^{+28}_{-40}\right)^{\circ} \\ & \delta_{B}(B_{s}^{0} \to D_{s}^{\pm}K^{\mp}) = \left(3 \pm 20\right)^{\circ} \\ & r_{B}(B_{s}^{0} \to D_{s}^{\mp}K^{\pm}) = 0.53 \pm 0.17 \\ & CP \text{ Violation phase } \beta_{s} = \left(0.6 \pm 1.9\right) \times 10^{-2} \text{ rad} \\ & \left|\lambda\right| \left(B_{s}^{0} \to J/\psi(1S)\phi\right) = 0.964 \pm 0.020 \\ & \left|\lambda\right| = 1.02 \pm 0.07 \\ & \mathbf{A_{CP}}(B_{s}^{0} \to [K^{+}K^{-}]_{D}\overline{K}^{*}(892)^{0}) = -0.04 \pm 0.07 \\ & \mathcal{A_{CP}}(B_{s}^{0} \to [\pi^{+}K^{-}]_{D}K^{*}(892)^{0}) = -0.01 \pm 0.04 \\ & \mathcal{A_{CP}}(B_{s}^{0} \to [\pi^{+}\pi^{-}]_{D}K^{*}(892)^{0}) = 0.06 \pm 0.13 \end{aligned}$$

HTTP://PDG.LBL.GOV

These branching fractions all scale with $B(\overline{b} \rightarrow B_s^0)$.

The branching fraction $B(B_s^0 \to D_s^- \ell^+ \nu_\ell \text{ anything})$ is not a pure measurement since the measured product branching fraction $B(\overline{b} \to B_s^0) \times B(B_s^0 \to D_s^- \ell^+ \nu_\ell \text{ anything})$ was used to determine $B(\overline{b} \to B_s^0)$, as described in the note on " $B^0 - \overline{B}^0$ Mixing"

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B ⁰ _s DECAY MODES		Fraction (Γ _i /Γ)) (Scale factor/ Confidence level	<i>р</i> (MeV/c)
D_s^- anything		(93 ±25) %		_
$\ell \nu_{\ell} X$		(9.6 \pm 0.8	3)%		_
$e^+ \nu X^-$		(9.1 \pm 0.8	3)%		-
$\mu^+ \nu X^-$		(10.2 \pm 1.0)%		-
$D_{s}^{-}\ell^{+} u_{\ell}$ anything	[a]	(7.9 \pm 2.4	+)%		_
$D_{s1}(2536)^- \mu^+ \nu_{\mu}$,		($2.5~\pm~0.7$	') $ imes$ 10)—3	-
$D_{s1}^- \rightarrow D^{*-} K_S^0$					
$D_{s1}(2536)^- X \mu^+ \nu$,		(4.3 \pm 1.7	') × 10)-3	_
$D_{c1}^{-} \rightarrow \overline{D}^{0} K^{+}$					
$D_{s2}(2573)^{-} X \mu^{+} \nu$,		(2.6 \pm 1.2	2)×10)-3	_
$D_{s2}^{-} \rightarrow \overline{D}{}^{0}K^{+}$					
$D_s^- \pi^+$		($3.04\pm$ 0.2	23) × 10)-3	2320
$D_{s}^{-}\rho^{+}$		(7.0 \pm 1.5	5) × 10)-3	2249
$D_{s}^{-}\pi^{+}\pi^{+}\pi^{-}$		(6.3 \pm 1.1) × 10)-3	2301
$D_{s1}(2536)^{-}\pi^{+}$,		(2.5 ± 0.8	3) × 10	₎ —5	_
$D_{s1}^- \rightarrow D_s^- \pi^+ \pi^-$					
$D_{s}^{\mp}K^{\pm}$		($2.03\pm$ 0.2	$(28) \times 10^{10}$	0 ⁻⁴ S=1.3	2293
$D_{s}^{-}K^{+}\pi^{+}\pi^{-}$		(3.3 \pm 0.7	') × 10)—4	2249
$D_{s}^{+}D_{s}^{-}$		(4.4 \pm 0.5	5) × 10)—3	1824
$D_s^- D^+$		(2.8 \pm 0.5	5) × 10)—4	1875
D^+D^-		(2.2 \pm 0.6	5) × 10)—4	1925
$D^0 \overline{D}{}^0$		($1.9~\pm~0.5$	5) × 10)—4	1929
$D_s^{*-}\pi^+$		(2.0 \pm 0.5	5) × 10)-3	2265
$D_s^{*-}\rho^+$		(9.7 \pm 2.2	2) × 10)-3	2191
$D_{s}^{*+}D_{s}^{-} + D_{s}^{*-}D_{s}^{+}$		($1.29\pm~0.2$	22) %	S=1.1	1742
$D_{s}^{*+}D_{s}^{*-}$		($1.86\pm$ 0.3	80) %		1655
$D_{s}^{(*)+}D_{s}^{(*)-}$		(4.5 \pm 1.4	+)%		_
$\overline{D}^{0}K^{-}\pi^{+}$		(9.9 \pm 1.5	5)×10)—4	2312
$\overline{D}{}^0 \overline{K}^*(892)^0$		(4.4 \pm 0.6	5) × 10)—4	2264

HTTP://PDG.LBL.GOV

Created: 10/13/2015 17:00

$D^0 K^*(1410)$	(3.9 \pm 3.5) $ imes$ 10 $^{-4}$		2117
$\overline{D}^0 \overline{K}_0^*(1430)$	(3.0 \pm 0.7) $ imes$ 10 $^{-4}$		2113
$\overline{D}^0 \overline{K}_2^*(1430)$	(1.1 \pm 0.4) $ imes$ 10 $^{-4}$		2113
$\overline{D}{}^{0}\overline{K}^{\overline{*}}(1680)$	$< 7.8 \times 10^{-5}$	CL=90%	1997
$\overline{D}^0 \overline{K}_0^*(1950)$	$< 1.1 \times 10^{-4}$	CL=90%	1890
$\overline{D}{}^{0}\overline{K}_{3}^{*}(1780)$	$< 2.6 \times 10^{-5}$	CL=90%	1971
$\overline{D}^0 \overline{K}_4^*(2045)$	$< 3.1 \times 10^{-5}$	CL=90%	1837
$\overline{D}{}^0$ $K^+ \pi^+$ (non-	(2.1 \pm 0.8) $ imes$ 10 $^{-4}$		2312
resonant)			
$D^*_{s2}(2573)^-\pi^+$,	(2.6 \pm 0.4) $ imes$ 10 ⁻⁴		-
$D^*_{s2} o ~ \overline{D}{}^0 {\it K}^-$			
$D_{s1}^{*}(\bar{2700})^{-}\pi^{+}$,	(1.6 \pm 0.8) $ imes$ 10 $^{-5}$		_
$D^*_{\epsilon 1} \rightarrow \overline{D}{}^0 K^-$			
$D_{s1}^{*}(2860)^{-}\pi^{+}$,	$(5 \pm 4) imes 10^{-5}$		_
$D^*_{-1} \rightarrow \overline{D}{}^0 K^-$			
$D_{-2}^{*}(2860)^{-}\pi^{+}$	(2.2 \pm 0.6) $ imes$ 10 $^{-5}$		_
$D^*_2 \rightarrow \overline{D}^0 K^-$			
$\overline{D}^0 K^+ K^-$	$(4.2 + 1.9) \times 10^{-5}$		2242
$\overline{D}^0 \phi$	$(3.0 \pm 0.8) \times 10^{-5}$		2235
$D^{*\mp}\pi^{\pm}$	$< 6.1 \times 10^{-6}$	CL=90%	
$J/\psi(1S)\phi$	$(1.08\pm\ 0.09) imes10^{-3}$		1588
$J/\psi(1S)\pi^0$	$< 1.2 \times 10^{-3}$	CL=90%	1786
$J/\psi(1S)\eta$	(3.9 \pm 0.7) $ imes$ 10 $^{-4}$	S=1.4	1733
$J/\psi(1S)K_S^0$	($1.87\pm~0.17) imes10^{-5}$		1743
$J/\psi(1S) \check{K^{*}(892)^{0}}$	(4.4 \pm 0.9) $ imes$ 10 $^{-5}$		1637
$J/\psi(1S)\eta'$	(3.3 \pm 0.4) $ imes$ 10 ⁻⁴		1612
$J/\psi(1S)\pi^+\pi^-$	$(2.14\pm0.19) imes10^{-4}$		1775
$J/\psi(1S) f_0(500), f_0 ightarrow$	$< 1.7 \times 10^{-6}$	CL=90%	-
$J/\psi(1S)\rho, \ ho ightarrow N$	< 1.2 $\times 10^{-6}$	CL=90%	_
$J/\psi(1S) f_0(980), f_0 \to$	($1.35\pm$ 0.16) $\times10^{-4}$		_
$J/\psi(1S)f_0(980)_0$,	(5.1 \pm 0.9) $\times10^{-5}$		_
$f_0 \rightarrow \pi^+ \pi^-$	7		
$J/\psi(1S) t_2(1270)_0,$ $f_2 \rightarrow \pi^+ \pi^-$	$(2.6 \pm 0.7) \times 10^{-7}$		_
$J/\psi(1S) f_2(1270)_{\parallel},$	(3.8 \pm 1.3) $\times10^{-7}$		_
$f_2 \rightarrow \pi^+ \pi^-$ $I/\psi(1S) f_2(1270)$	$(46 + 28) \times 10^{-7}$		_
$f_2 \rightarrow \pi^+ \pi^-$	(+ 2.0) ^ 10		
$J/\psi(1S) f_0(1500),$	(7.4 $\stackrel{+}{_{-}}$ 1.6) $ imes$ 10 ⁻⁶		_
$\eta_0 \rightarrow \pi + \pi$			

HTTP://PDG.LBL.GOV

Page 3

Created: 10/13/2015 17:00

$J/\psi(1S)f'_2(1525)_0,$	(3.7 \pm 1.0) $\times10^{-7}$		-
$J/\psi(1S)f'_2(1525)_{\parallel},$	(4.4 $^{+10.0}_{-3.1}$) $ imes$ 10 $^{-8}$		_
$f'_2 \rightarrow \pi^+ \pi^-$	$(10 \pm 14) \times 10^{-7}$		_
$f'_{2} \to \pi^{+}\pi^{-}$	(1.9 ± 1.4) × 10		
$J/\psi(1S) f_0(1790),$ $f_0 \rightarrow \pi^+ \pi^-$	(1.7 $\stackrel{+}{_{-}} \stackrel{4.0}{_{0.4}}$) $\times10^{-6}$		_
$J/\psi(1S) \overline{K}^0 \pi^+ \pi^-$	$< 4.4 \times 10^{-5}$	CL=90%	1675
$J/\psi(1S)K^+K^-$	$(7.9 \pm 0.7) \times 10^{-4}$		1601
$J/\psi(1S)K^0K^-\pi^+ + c.c.$	$(9.3 \pm 1.3) \times 10^{-4}$		1538
$J/\psi(1S)\overline{K}^0K^+K^-$	$<$ 1.2 $\times 10^{-5}$	CL=90%	1333
$J/\psi(1S)f'_{2}(1525)$	(2.6 \pm 0.6) $ imes$ 10 $^{-4}$		1304
$J/\psi(1S) p \overline{p}$	$< 4.8 \times 10^{-6}$	CL=90%	982
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	(8.0 \pm 0.9) $ imes$ 10 $^{-5}$		1731
$J/\psi(1S) f_1(1285)$	$(7.1 \pm 1.4) \times 10^{-5}$		1460
$\psi(2S)\eta$	$(3.3 \pm 0.9) \times 10^{-4}$		1338
$\psi(2S)\eta'$	$(1.29\pm0.35)\times10^{-4}$		1158
$\psi(2S)\pi^{+}\pi^{-}$	$(7.3 \pm 1.3) \times 10^{-5}$		1397
$\psi(2S)\phi$	$(5.4 \pm 0.6) \times 10^{-4}$		1120
$\chi_{c1}\phi$	$(2.05\pm0.31)\times10^{-4}$		1274
$\pi^+\pi^-$	(7.6 \pm 1.9) $ imes$ 10 $^{-7}$	S=1.4	2680
$\pi^0 \pi^0$	$< 2.1 \times 10^{-4}$	CL=90%	2680
$\eta \pi^0$	< 1.0 $\times 10^{-3}$	CL=90%	2654
$\eta \eta$	< 1.5 $\times 10^{-3}$	CL=90%	2627
$\rho^0 \rho^0$	$< 3.20 \times 10^{-4}$	CL=90%	2569
$\phi \rho^0$	$< 6.17 \times 10^{-4}$	CL=90%	2526
$\phi \phi$	$(1.93\pm0.31) imes10^{-5}$		2482
$\pi^+ K^-$	(5.5 \pm 0.6) $ imes$ 10 $^{-6}$		2659
K^+K^-	$(2.50\pm0.17)\times10^{-5}$		2638
K ⁰ K ⁰	$< 6.6 \times 10^{-5}$	CL=90%	2637
$K^{0}\pi^{+}\pi^{-}$	(1.5 \pm 0.4) $ imes$ 10 ⁻⁵		2653
$K^0 K^{\pm} \pi^+$	$(7.7 \pm 1.0) \times 10^{-5}$		2622
$K^{*}(892)^{-}\pi^{+}$	$(3.3 \pm 1.2) \times 10^{-0}$		2607
$K^{*}(892)^{\pm}K^{+}$	$(1.25\pm0.26)\times10^{-5}$		2585
$K^{\circ}K^{+}K^{-}$	$< 3.5 \times 10^{-0}$	CL=90%	2568
$K^*(892)^0 \rho^0$	$< 7.67 \times 10^{-4}$	CL=90%	2550
$K^{*}(892)^{\circ}K^{*}(892)^{\circ}$	$(2.8 \pm 0.7) \times 10^{-5}$		2531
φ K * (892)°	$(1.13\pm0.30)\times10^{-6}$		2507
pp	$(2.8 \ + \ 2.2 \) imes 10^{-8}$		2514
$\Lambda_c^- \Lambda \pi^+$	(3.6 \pm 1.6) $ imes$ 10 $^{-4}$		_

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

$\Lambda_c^- \Lambda_c^+$		< 8.0	imes 10 ⁻⁵	CL=95%	_
$\gamma \gamma$	B1	< 3.1	imes 10 ⁻⁶	CL=90%	2683
$\phi\gamma$		($3.52\pm$ 0.	34) × 10 ⁻⁵		2587
Lepton Fa	mily nu	ımber (<i>LF</i>) violat	ting modes	or	
$\Delta B = 1$	1 weak	neutral current (B1) modes		
$\mu^+\mu^-$	B1	(3.1 ± 0.1)	7) $\times 10^{-9}$		2681
e ⁺ e ⁻	B1	< 2.8	imes 10 ⁻⁷	CL=90%	2683
$\mu^+ \mu^- \mu^+ \mu^-$	B1	< 1.2	imes 10 ⁻⁸	CL=90%	2673
SP, $S ightarrow \ \mu^+ \mu^-$,	B1	[b] < 1.2	imes 10 ⁻⁸	CL=90%	-
$P \rightarrow \mu^+ \mu^-$					
ϕ (1020) $\mu^{+}\mu^{-}$	B1	(7.7 \pm 1.	5) $ imes$ 10 $^{-7}$		2582
$\phi \nu \overline{\nu}$	B1	< 5.4	imes 10 ⁻³	CL=90%	2587
$e^{\pm}\mu^{\mp}$	LF	[c] < 1.1	imes 10 ⁻⁸	CL=90%	2682
<i>B</i> [*] _s		$I(J^P) =$	$0(1^{-})$		

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

predictions. Mass $m = 5415.4^{+1.8}_{-1.5} \text{ MeV}$ (S = 3.0) $m_{B_s^*} - m_{B_s} = 48.6^{+1.8}_{-1.6} \text{ MeV}$ (S = 2.8)

B [*] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B_s \gamma$	dominant	_
$B_{s1}(5830)^{0}$ Mass $m = 5828$ $m_{B_{s1}^{0}} - m_{B^{*+}} =$ Full width Γ = 0	$I(J^P) = 0(1^+)$ I, J, P need confirmation $8.78 \pm 0.35 \text{ MeV} (S = 1.2)$ $= 503.95 \pm 0.23 \text{ MeV} (S = 1.3)$ $0.5 \pm 0.4 \text{ MeV}$	on.
B _{s1} (5830) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
B*+ K-	dominant	97
B_{s2}^{*} (5840) ⁰ Mass $m = 5839$ $m_{B_{s2}^{*0}} - m_{B_{s1}^{0}}$ $m_{B_{s2}^{*0}} - m_{B^{+}} =$ Full width Γ =	$I(J^P) = 0(2^+)$ I, J, P need confirmation $0.83 \pm 0.19 \text{ MeV} (S = 1.2)$ $= 560.54 \pm 0.19 \text{ MeV} (S = 1.2)$ $1.47 \pm 0.33 \text{ MeV}$	on.
HTTP://PDG.LBL.GOV	Page 5 Created: 10/	13/2015 17:00

$B_{s2}^*(5840)^0$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
B ⁺ K ⁻	dominant	253
	NOTES	

- $\left[a\right]$ Not a pure measurement. See note at head of B_{s}^{0} Decay Modes.
- [b] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/c² and 214.3 MeV/c², respectively.
- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.

HTTP://PDG.LBL.GOV