Neutrino Mixing

With the exception of a few possible anomalies such as LSND, current neutrino data can be described within the framework of a 3×3 mixing matrix between the flavor eigenstates ν_e , ν_{μ} , and ν_{τ} and the mass eigenstates ν_1 , ν_2 , and ν_3 . (See Eq. (14.6) of the review "Neutrino Mass, Mixing, and Oscillations" by K. Nakamura and S.T. Petcov.) The Listings are divided into the following sections:

- (A) Neutrino fluxes and event ratios: shows measurements which correspond to various oscillation tests for Accelerator, Reactor, Atmospheric, and Solar neutrino experiments. Typically ratios involve a measurement in a realm sensitive to oscillations compared to one for which no oscillation effect is expected.
- (B) Three neutrino mixing parameters: shows measurements of $\sin^2(2\theta_{12})$, $\sin^2(2\theta_{23})$, Δm_{21}^2 , Δm_{32}^2 , and $\sin^2(2\theta_{13})$ which are all interpretations of data based on the three neutrino mixing scheme described in the review "Neutrino Mass, Mixing, and Oscillations." by K. Nakamura and S.T. Petcov. Many parameters have been calculated in the two-neutrino approximation.
- (C) Other neutrino mixing results: shows measurements and limits for the probability of oscillation for experiments which might be relevant to the LSND oscillation claim. Included are experiments which are sensitive to $\nu_{\mu} \rightarrow \nu_{e}$, $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, sterile neutrinos, and CPT tests.

(A) Neutrino fluxes and event ratios

Events (observed/expected) from accelerator u_{μ} experiments.

Some neutrino oscillation experiments compare the flux in two or more detectors. This is usually quoted as the ratio of the event rate in the far detector to the expected rate based on an extrapolation from the near detector in the absence of oscillations.

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follo	fits, lim	its, etc. • • •		
1.01 ± 0.10	¹ ABE	14 B	T2K	ν_e rate in T2K near detect.
0.71 ± 0.08	² AHN	06A	K2K	K2K to Super-K
0.64 ± 0.05	³ MICHAEL	06	MINS	All charged current events
$0.71^{+0.08}_{-0.09}$	⁴ ALIU	05	K2K	KEK to Super-K
$0.70^{+0.10}_{-0.11}$	⁵ AHN	03	K2K	KEK to Super-K

 $^{^1}$ The rate of ν_e from μ decay was measured to be 0.68 \pm 0.30 compared to the predicted flux. From K decay 1.10 \pm 0.14 compared to the predicted flux.

Events (observed/expected) from reactor $\overline{\nu}_e$ experiments.

The quoted values are the ratios of the measured reactor $\overline{\nu}_e$ event rate at the quoted distances, and the rate expected without oscillations. The expected rate is based on the experimental data for the most significant reactor fuels (235 U, 239 Pu, 241 Pu) and on calculations for 238 U.

A recent re-evaluation of the spectral conversion of electron to $\overline{\nu}_e$ in MUELLER 11 results in an upward shift of the reactor $\overline{\nu}_e$ spectrum by 3% and, thus, might require revisions to the ratios listed in this table.

VALUE	DOCUMENT ID		TECN	COMMENT
$0.944 \pm 0.007 \pm 0.003$	¹ AN	13	DAYA	DayaBay, Llng Ao/Ao II reactors
• • • We do not use	the following data for	avera	ages, fits,	limits, etc. • • •
$0.944 \pm 0.016 \pm 0.040$	² ABE	12	DCHZ	Chooz reactors
$0.920 \pm 0.009 \pm 0.014$	³ AHN	12	RENO	Yonggwang reactors
$0.940 \pm 0.011 \pm 0.004$	⁴ AN	12	DAYA	DayaBay, LIng Ao/Ao II reactors
$1.08 \pm 0.21 \pm 0.16$	⁵ DENIZ	10	TEXO	Kuo-Sheng reactor, 28 m
$0.658 \pm 0.044 \pm 0.047$	⁶ ARAKI	05	KLND	Japanese react. \sim 180 km
$0.611 \pm 0.085 \pm 0.041$	⁷ EGUCHI	03	KLND	Japanese react. \sim 180 km
$1.01\ \pm0.024\pm0.053$	⁸ BOEHM	01		Palo Verde react. 0.75–0.89 km
$1.01\ \pm0.028\pm0.027$	⁹ APOLLONIO	99	CHOZ	Chooz reactors 1 km
$0.987 \pm 0.006 \pm 0.037$	¹⁰ GREENWOOD	96		Savannah River, 18.2 m
$0.988 \pm 0.004 \pm 0.05$	ACHKAR	95	CNTR	Bugey reactor, 15 m
$0.994 \pm 0.010 \pm 0.05$	ACHKAR	95	CNTR	Bugey reactor, 40 m
$0.915\!\pm\!0.132\!\pm\!0.05$	ACHKAR	95	CNTR	Bugey reactor, 95 m
$0.987\!\pm\!0.014\!\pm\!0.027$	¹¹ DECLAIS	94	CNTR	Bugey reactor, 15 m
$0.985 \pm 0.018 \pm 0.034$	KUVSHINN	91	CNTR	Rovno reactor
$1.05 \pm 0.02 \pm 0.05$	VUILLEUMIER	82		Gösgen reactor
$0.955 \!\pm\! 0.035 \!\pm\! 0.110$	¹² KWON	81		$\overline{\nu}_e p \rightarrow e^+ n$
$0.89\ \pm0.15$	¹² BOEHM	80		$\overline{\nu}_e p \rightarrow e^+ n$

 $^{^2}$ Based on the observation of 112 events when $158.1^{+9.2}_{-8.6}$ were expected without oscillations. Including not only the number of events but also the shape of the energy distribution, the evidence for oscillation is at the level of about 4.3 σ . Supersedes ALIU 05.

 $^{^3}$ This ratio is based on the observation of 215 events compared to an expectation of $_4$ 336 \pm 14 without oscillations. See also ADAMSON 08.

⁴ This ratio is based on the observation of 107 events at the far detector 250 km away from KEK, and an expectation of 151^{+12}_{-10} .

⁵ This ratio is based on the observation of 56 events with an expectation of $80.1^{+6.2}_{-5.4}$

- 1 AN 13 use six identical detectors, with three placed near the reactor cores (flux-weighted baselines of 470 and 576 m) and the remaining three at the far hall (at the flux averaged distance of 1648 m from all six reactor cores) to determine the mixing angle θ_{13} using the $\overline{\nu}_e$ observed interaction rate ratios. This rate-only analysis excludes the no-oscillation hypothesis at 7.7 standard deviations. The value of $\Delta m_{31}^2 = 2.32 \times 10^{-3} \text{ eV}^2$ was assumed in the analysis. This is an improved result (2.5 times increase in statistics) compared to AN 12.
- 2 ABE 12 determine the $\overline{\nu}_e$ interaction rate in a single detector, located 1050 m from the cores of two reactors. The rate normalization is fixed by the results of the Bugey4 reactor experiment, thus avoiding any dependence on possible very short baseline oscillations.
- ³AHN 12 use two identical detectors, placed at flux weighted distances of 408.56 m and 1433.99m from six reactor cores, to determine the $\overline{\nu}_{\rho}$ interaction rate ratio.
- ⁴ AN 12 use six identical detectors with three placed near the reactor cores (flux-weighted baselines of 470 m and 576 m) and the remaining three at the far hall (at the flux averaged distance of 1648 m from all six reactor cores) to determine the $\overline{\nu}_e$ interaction rate ratios. Superseded by AN 13.
- 5 DENIZ 10 observe reactor $\overline{\nu}_e\,e$ scattering with recoil kinetic energies 3–8 MeV using CsI(TI) detectors. The observed rate is consistent with the Standard Model prediction, leading to a constraint on $\sin^2\!\theta_W=0.251\pm0.031({\rm stat})\pm0.024({\rm sys}).$
- ⁶ Updated result of KamLAND, including the data used in EGUCHI 03. Note that the survival probabilities for different periods are not directly comparable because the effective baseline varies with power output of the reactor sources involved, and there were large variations in the reactor power production in Japan in 2003.
- 7 EGUCHI 03 observe reactor neutrino disappearance at $\sim 180\,\mathrm{km}$ baseline to various Japanese nuclear power reactors.
- ⁸ BOEHM 01 search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo Verde reactors.
- ⁹APOLLONIO 99, APOLLONIO 98 search for neutrino oscillations at 1.1 km fixed distance from Chooz reactors. They use $\overline{\nu}_e p \rightarrow e^+ n$ in Gd-loaded scintillator target. APOLLONIO 99 supersedes APOLLONIO 98. See also APOLLONIO 03 for detailed description.
- 10 GREENWOOD 96 search for neutrino oscillations at 18 m and 24 m from the reactor at Savannah River.
- ¹¹ DECLAIS 94 result based on integral measurement of neutrons only. Result is ratio of measured cross section to that expected in standard V-A theory. Replaced by ACHKAR 95.
- 12 KWON 81 represents an analysis of a larger set of data from the same experiment as BOEHM 80.

Atmospheric neutrinos -

Neutrinos and antineutrinos produced in the atmosphere induce μ -like and e-like events in underground detectors. The ratio of the numbers of the two kinds of events is defined as μ/e . It has the advantage that systematic effects, such as flux uncertainty, tend to cancel, for both experimental and theoretical values of the ratio. The "ratio of the ratios" of experimental to theoretical μ/e , $R(\mu/e)$, or that of experimental to theoretical $\mu/{\rm total}$, $R(\mu/{\rm total})$ with total $=\mu+e$, is reported below. If the actual value is not unity, the value obtained in a given experiment may depend on the experimental conditions. In addition, the measured "up-down asymmetry" for μ (Nup(μ)/Ndown(μ)) or e (Nup(e)/Ndown(e)) is reported. The expected "up-down asymmetry" is nearly unity if there is no neutrino oscillation.

$R(\mu/e) = (Measured Ratio \mu/e) / (Expected Ratio \mu/e)$

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	data for averages	, fits,	limits, e	tc. • • •
$0.658\!\pm\!0.016\!\pm\!0.035$	¹ ASHIE	05	SKAM	sub-GeV
$0.702^{+0.032}_{-0.030}{\pm}0.101$	² ASHIE	05	SKAM	multi-GeV
$0.69 \pm 0.10 \pm 0.06$	³ SANCHEZ ⁴ FUKUDA	03 96в		Calorimeter raw data Water Cherenkov
$1.00 \pm 0.15 \pm 0.08$	⁵ DAUM	95	FREJ	Calorimeter
$\begin{array}{ccc} 0.60 & ^{+0.06}_{-0.05} & \pm 0.05 \end{array}$	⁶ FUKUDA	94	KAMI	sub-GeV
$\begin{array}{ccc} 0.57 & ^{+}0.08 \\ -0.07 & \pm 0.07 \end{array}$	⁷ FUKUDA	94	KAMI	multi-Gev
	⁸ BECKER-SZ	92 B	IMB	Water Cherenkov

- 1 ASHIE 05 results are based on an exposure of 92 kton yr during the complete Super-Kamiokande I running period. The analyzed data sample consists of fully-contained single-ring e-like events with 0.1 GeV/c < p_e and μ -like events 0.2 GeV/c < p_{μ} , both having a visible energy < 1.33 GeV. These criteria match the definition used by FUKUDA 94.
- ² ASHIE 05 results are based on an exposure of 92 kton yr during the complete Super-Kamiokande I running period. The analyzed data sample consists of fully-contained single-ring events with visible energy > 1.33 GeV and partially-contained events. All partially-contained events are classified as μ -like.
- ³SANCHEZ 03 result is based on an exposure of 5.9 kton yr, and updates ALLISON 99 result. The analyzed data sample consists of fully-contained e-flavor and μ -flavor events having lepton momentum > 0.3 GeV/c.
- ⁴ FUKUDA 96B studied neutron background in the atmospheric neutrino sample observed in the Kamiokande detector. No evidence for the background contamination was found.
- ⁵ DAUM 95 results are based on an exposure of 2.0 kton yr which includes the data used by BERGER 90B. This ratio is for the contained and semicontained events. DAUM 95 also report $R(\mu/e) = 0.99 \pm 0.13 \pm 0.08$ for the total neutrino induced data sample which includes upward going stopping muons and horizontal muons in addition to the contained and semicontained events.
- 6 FUKUDA 94 result is based on an exposure of 7.7 kton yr and updates the HIRATA 92 result. The analyzed data sample consists of fully-contained e-like events with 0.1 < $p_e < 1.33~{\rm GeV}/c$ and fully-contained μ -like events with 0.2 < $p_{\mu} <$ 1.5 GeV/c.
- 7 FUKUDA 94 analyzed the data sample consisting of fully contained events with visible energy >1.33 GeV and partially contained $\mu\text{-like}$ events.
- ⁸ BECKER-SZENDY 92B reports the fraction of nonshowering events (mostly muons from atmospheric neutrinos) as $0.36 \pm 0.02 \pm 0.02$, as compared with expected fraction $0.51 \pm 0.01 \pm 0.05$. After cutting the energy range to the Kamiokande limits, BEIER 92 finds $R(\mu/e)$ very close to the Kamiokande value.

$R(\nu_{\mu}) = (Measured Flux of \nu_{\mu}) / (Expected Flux of \nu_{\mu})$

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following data for	avera	ges, fits,	limits, etc. • • •
0.84 ± 0.12	¹ ADAMSON	06	MINS	MINOS atmospheric
$0.72 \pm 0.026 \pm 0.13$	² AMBROSIO	01	MCRO	upward through-going
$0.57 \pm 0.05 \ \pm 0.15$	³ AMBROSIO	00	MCRO	upgoing partially contained
$0.71 \pm 0.05 \pm 0.19$	⁴ AMBROSIO	00	MCRO	downgoing partially contained
$0.74 \pm 0.036 \pm 0.046$	⁵ AMBROSIO	98	MCRO	+ upgoing stopping Streamer tubes

	⁶ CASPER	91	IMB	Water Cherenkov
	⁷ AGLIETTA	89	NUSX	
$0.95 \!\pm\! 0.22$	⁸ BOLIEV	81		Baksan
0.62 ± 0.17	CROUCH	78		Case Western/UCI

 $^{^1}$ ADAMSON 06 uses a measurement of 107 total neutrinos compared to an expected rate of 127 \pm 13 without oscillations.

$R(\mu/total) = (Measured Ratio <math>\mu/total) / (Expected Ratio <math>\mu/total)$

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

• • • We do not use the following data for averages, fits, limits, etc. • •

$$1.1^{+0.07}_{-0.12}\pm0.11$$
 CLARK 97 IMB multi-GeV

 $^{^2}$ AMBROSIO 01 result is based on the upward through-going muon tracks with $E_{\mu}>1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration, is 6.17 years. The first error is the statistical error, the second is the systematic error, dominated by the theoretical error in the predicted flux.

³ AMBROSIO 00 result is based on the upgoing partially contained event sample. It came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV. The first error is statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate (20% in the flux and 15% in the cross section, added in quadrature). Within statistics, the observed deficit is uniform over the zenith angle.

⁴ AMBROSIO 00 result is based on the combined samples of downgoing partially contained events and upgoing stopping events. These two subsamples could not be distinguished due to the lack of timing information. The result came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV. The first error is statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate (20% in the flux and 15% in the cross section, added in quadrature). Within statistics, the observed deficit is uniform over the zenith angle.

 $^{^5}$ AMBROSIO 98 result is for all nadir angles and updates AHLEN 95 result. The lower cutoff on the muon energy is 1 GeV. In addition to the statistical and systematic errors, there is a Monte Carlo flux error (theoretical error) of ± 0.13 . With a neutrino oscillation hypothesis, the fit either to the flux or zenith distribution independently yields $\sin^2\!2\theta{=}1.0$ and $\Delta(m^2)\sim a$ few times 10^{-3} eV². However, the fit to the observed zenith distribution gives a maximum probability for χ^2 of only 5% for the best oscillation hypothesis.

⁶ CASPER 91 correlates showering/nonshowering signature of single-ring events with parent atmospheric-neutrino flavor. They find nonshowering ($\approx \nu_{\mu}$ induced) fraction is 0.41 \pm 0.03 \pm 0.02, as compared with expected 0.51 \pm 0.05 (syst).

 $^{^7}$ AGLIETTA 89 finds no evidence for any anomaly in the neutrino flux. They define $\rho=$ (measured number of ν_e 's)/(measured number of ν_μ 's). They report $\rho(\text{measured}){=}\rho(\text{expected})=0.96{+0.32\atop-0.28}$.

⁸ From this data BOLIEV 81 obtain the limit $\Delta(m^2) \leq 6 \times 10^{-3} \text{ eV}^2$ for maximal mixing, $\nu_\mu \not\rightarrow \nu_\mu$ type oscillation.

 $^{^{1}}$ CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cherenkov detector with visible energy > 0.95 GeV.

$N_{ m up}(\mu)/N_{ m down}(\mu)$

VALUEDOCUMENT IDTECNCOMMENT• • • We do not use the following data for averages, fits, limits, etc. • • •0.71 ±0.06 1 ADAMSON12BMINScontained-vertex muons0.551 $^{+0.035}_{-0.033} \pm 0.004$ 2 ASHIE05SKAMmulti-GeV

$N_{\rm up}(e)/N_{\rm down}(e)$

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.961^{+0.086}_{-0.079} \pm 0.016$ ¹ ASHIE

05 SKAM multi-GeV

Created: 10/1/2016 20:06

R(up/down; μ) = (Measured up/down; μ) / (Expected up/down; μ)

VALUEDOCUMENT IDTECNCOMMENT• • • We do not use the following data for averages, fits, limits, etc. • • •0.62±0.05±0.02 1 ADAMSON12BMINScontained-vertex muons0.62+0.19±0.02 2 ADAMSON06MINSatmospheric ν with far detector

$N(\mu^+)/N(\mu^-)$

VALUEDOCUMENT IDTECNCOMMENT• • • We do not use the following data for averages, fits, limits, etc. • • • $0.46^{+0.05}_{-0.04}$ 1,2 ADAMSON12BMINScontained-vertex muons $0.63^{+0.09}_{-0.08}$ 1,3 ADAMSON12BMINSν-induced rock-muons

¹ ADAMSON 12B reports the atmospheric neutrino results obtained with MINOS far detector in 2,553 live days (an exposure of 37.9 kton·yr). This result is obtained with a sample of high resolution contained-vertex muons. The quoted error is statistical only.

² ASHIE 05 results are based on an exposure of 92 kton yr during the complete Super-Kamiokande I running period. The analyzed data sample consists of fully-contained single-ring μ -like events with visible energy > 1.33 GeV and partially-contained events. All partially-contained events are classified as μ -like. Upward-going events are those with $-1 < \cos(\text{zenith angle}) < -0.2$ and downward-going events are those with 0.2< $\cos(\text{zenith angle}) < 1$. The μ -like up-down ratio for the multi-GeV data deviates from 1 (the expectation for no atmospheric ν_{μ} oscillations) by more than 12 standard deviations.

¹ ASHIE 05 results are based on an exposure of 92 kton yr during the complete Super-Kamiokande I running period. The analyzed data sample consists of fully-contained single-ring e-like events with visible energy > 1.33 GeV. Upward-going events are those with $-1 < \cos(\text{zenith angle}) < -0.2$ and downward-going events are those with 0.2 $< \cos(\text{zenith angle}) < 1$. The e-like up-down ratio for the multi-GeV data is consistent with 1 (the expectation for no atmospheric ν_{ρ} oscillations).

¹ ADAMSON 12B reports the atmospheric neutrino results obtained with MINOS far detector in 2,553 live days (an exposure of 37.9 kton·yr). This result is obtained with a sample of high resolution contained-vertex muons. The expected ratio is calculated with no neutrino oscillation.

² ADAMSON 06 result is obtained with the MINOS far detector with an exposure of 4.54 kton yr. The expected ratio is calculated with no neutrino oscillation.

¹ ADAMSON 12B reports the atmospheric neutrino results obtained with MINOS far detector in 2,553 live days (an exposure of 37.9 kton·yr). The muon charge ratio $N(\mu^+)/N(\mu^-)$ represents the $\overline{\nu}_\mu/\nu_\mu$ ratio.

$R(\mu^+/\mu^-) = (Measured N(\mu^+)/N(\mu^-)) / (Expected N(\mu^+)/N(\mu^-))$

VALUE	DOCUMENT ID		TECN	COMMENT				
• • • We do not use the following data for averages, fits, limits, etc. • •								
$0.93\!\pm\!0.09\!\pm\!0.09$	1,2 ADAMSON	12 B	MINS	contained-vertex muons				
$1.29^{+0.19}_{-0.17}\!\pm\!0.16$	1,3 ADAMSON	12 B	MINS	u-induced rock-muons				
$1.03\!\pm\!0.08\!\pm\!0.08$	^{1,4} ADAMSON	12B	MINS	contained				
$1.39 ^{+ 0.35 + 0.08}_{- 0.46 - 0.14}$	⁵ ADAMSON	07	MINS	Upward and horizontal μ with far detector				
$0.96^{+0.38}_{-0.27}\pm0.15$	⁶ ADAMSON	06	MINS	atmospheric ν with far detector				

 $^{^{}m 1}$ ADAMSON $^{
m 12B}$ reports the atmospheric neutrino results obtained with MINOS far detector in 2,553 live days (an exposure of 37.9 kton yr). The muon charge ratio $N(\mu^+)/N(\mu^-)$ represents the $\overline{
u}_\mu/
u_\mu$ ratio. As far as the same oscillation parameters are used for us and $\overline{
u}$ s, the expected $\overline{
u}_\mu/
u_\mu$ ratio is almost entirely independent of any input oscillations.

– Solar neutrinos -

Solar neutrinos are produced by thermonuclear fusion reactions in the Sun. Radiochemical experiments measure particular combinations of fluxes from various neutrino-producing reactions, whereas water-Cherenkov experiments mainly measure a flux of neutrinos from decay of ⁸B. Solar neutrino fluxes are composed of all active neutrino species, ν_{e} , ν_{μ} , and ν_{τ} . In addition, some other mechanisms may cause antineutrino components in solar neutrino fluxes. Each measurement method is sensitive to a particular component or a combination of components of solar neutrino fluxes. For details, see Section 13.4 of Reviews, Tables, and Plots.

ν_e Capture Rates from Radiochemical Experiments 1 SNU (Solar Neutrino Unit) = 10^{-36} captures per atom per second.

VALUE (SNU)	DOCUMENT I	D	TECN	COMMENT		
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						
$73.4 \begin{array}{c} +6.1 \\ -6.0 \end{array} \begin{array}{c} +3.7 \\ -4.1 \end{array}$	¹ KAETHER	10		GALX reanalysis		
67.6 \pm 4.0 \pm 3.2	² KAETHER	10		GNO+GALX reanalysis combined		
HTTP://PDG.LBL.G	SOV	Page 7		Created: 10/1/2016 20:06		

 $^{^2}$ This result is obtained with a charge-separated sample of high resolution contained-vertex muons. The quoted error is statistical only.

 $^{^3}$ This result is obtained with a charge-separated sample of high resolution neutrino-induced rock-muons. The quoted error is statistical only.

 $^{^2}$ This result is obtained with a charge-separated sample of high resolution contained-vertex

³ This result is obtained with a charge-separated sample of high resolution neutrino-induced

⁴ The charge-separated samples of high resolution contained-vertex muons and neutrinoinduced rock-muons are combined to obtain this result which is consistent with unity.

 $^{^{5}}$ ADAMSON 07 result is obtained with the MINOS far detector in 854.24 live days, based on neutrino-induced upward-going and horizontal muons. This result is consistent with CPT conservation.

 $^{^6}$ ADAMSON 06 result is obtained with the MINOS far detector with an exposure of 4.54 kton yr, based on contained events. The expected ratio is calculated by assuming the same oscillation parameters for neutrinos and antineutrinos.

```
65.4 \begin{array}{c} +3.1 & +2.6 \\ -3.0 & -2.8 \end{array}
                                                                                  SAGE ^{71}Ga \rightarrow ^{71}Ge
                                            <sup>3</sup> ABDURASHI... 09
62.9 ^{+5.5}_{-5.3} \pm 2.5
                                                                                               71_{Ga} \rightarrow 71_{Ge}
                                           <sup>4</sup> ALTMANN
                                                                                  GNO
69.3 \pm4.1 \pm3.6
                                            <sup>5</sup> ALTMANN
                                                                                  GNO GNO + GALX combined
                                                                         05
77.5 \pm 6.2 \begin{array}{c} +4.3 \\ -4.7 \end{array}
                                                                                  \mathsf{GALX} \quad ^{71}\mathsf{Ga} \rightarrow \ ^{71}\mathsf{Ge}
                                           <sup>6</sup> HAMPEL
                                                                         99
                                           <sup>7</sup> CLEVELAND
                                                                                  HOME ^{37}CI \rightarrow ^{37}Ar
                                                                         98
  2.56 \pm 0.16 \pm 0.16
```

 2 Combined result of GALLEX I+II+III+IV reanalysis and GNO I+II+III (ALTMANN 05).

ALTMANN 05 reports the complete result from the GNO solar neutrino experiment (GNO I+II+III), which is the successor project of GALLEX. Experimental technique of GNO is essentially the same as that of GALLEX. The run data cover the period 20 May 1998 through 9 April 2003.

 5 Combined result of GALLEX I+II+III+IV (HAMPEL 99) and GNO I+II+III.

 6 HAMPEL 99 report the combined result for GALLEX I+II+III+IV (65 runs in total), which update the HAMPEL 96 result. The GALLEX IV result (12 runs) is 118.4 \pm 17.8 \pm 6.6 SNU. (HAMPEL 99 discuss the consistency of partial results with the mean.) The GALLEX experimental program has been completed with these runs. The total run data cover the period 14 May 1991 through 23 January 1997. A total of 300 71 Ge events were observed. Note that a \sim 15% systematic uncertainty in the overall normalization may be added to the HAMPEL 99 result, because calibration experiments for gallium solar neutrino measurements using intense 51 Cr (twice by GALLEX and once by SAGE) and 37 Ar (by SAGE) result in an average ratio of 0.87 \pm 0.05 of the observed to calculated rates.

⁷CLEVELAND 98 is a detailed report of the ³⁷Cl experiment at the Homestake Mine. The average solar neutrino-induced ³⁷Ar production rate from 108 runs between 1970 and 1994 updates the DAVIS 89 result.

ϕ_{ES} (8B)

 $^8{\rm B}$ solar-neutrino flux measured via $\nu\,e$ elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to $\nu_\mu,\,\nu_\tau$ due to the cross-section difference, $\sigma(\nu_{\,\mu,\tau}\,e)\sim 0.16\sigma(\nu_e\,e).$ If the $^8{\rm B}$ solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.16 times of $\nu_e.$

$VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$	DOCUMENT ID		TECN	COMMENT			
• • • We do not use the following data for averages, fits, limits, etc. • •							
$2.32\!\pm\!0.04\!\pm\!0.05$	¹ ABE	11	SKAM	SK-III average flux			
$2.41\pm0.05 {+0.16\atop -0.15}$	² ABE	11	SKAM	SK-II average flux			
$2.38\!\pm\!0.02\!\pm\!0.08$	³ ABE	11	SKAM	SK-I average flux			
$2.77 \pm 0.26 \pm 0.32$	⁴ ABE	11 B	KLND	average flux			
$2.4 \pm 0.4 \pm 0.1$	⁵ BELLINI	10A	BORX	average flux			
HTTP://PDG.LBL.G	OV F	Page 8	}	Created: 10/1/2016 20:06			

¹ KAETHER 10 reports the reanalysis results of a complete GALLEX data (GALLEX I+II+III+IV, reported in HAMPEL 99) based on the event selection with a new pulse shape analysis, which provides a better background reduction than the rise time analysis adopted in HAMPEL 99.

 $^{^3}$ ABDURASHITOV 09 reports a combined analysis of 168 extractions of the SAGE solar neutrino experiment during the period January 1990 through December 2007, and updates the ABDURASHITOV 02 result. The data are consistent with the assumption that the solar neutrino production rate is constant in time. Note that a $\sim 15\%$ systematic uncertainty in the overall normalization may be added to the ABDURASHITOV 09 result, because calibration experiments for gallium solar neutrino measurements using intense ^{51}Cr (twice by GALLEX and once by SAGE) and ^{37}Ar (by SAGE) result in an average ratio of 0.87 \pm 0.05 of the observed to calculated rates.

$1.77^{+0.24+0.09}_{-0.21-0.10}$	⁶ AHARMIM	80	SNO	Phase III
$2.38 \pm 0.05 ^{+0.16}_{-0.15}$	⁷ CRAVENS	80	SKAM	average flux
$2.35\!\pm\!0.02\!\pm\!0.08$	⁸ HOSAKA	06	SKAM	average flux
$2.35 \pm 0.22 \pm 0.15$	⁹ AHARMIM	05A	SNO	Salty D ₂ O; ⁸ B shape not con- strained
$2.34 \pm 0.23 {+0.15 \atop -0.14}$	⁹ AHARMIM	05A	SNO	Salty D_2O ; 8B shape constrained
$2.39^{\color{red}+0.24}_{-0.23} \pm 0.12$	¹⁰ AHMAD	02	SNO	average flux
$2.39 \pm 0.34 {+0.16 \atop -0.14}$	¹¹ AHMAD	01	SNO	average flux
$2.80\!\pm\!0.19\!\pm\!0.33$	¹² FUKUDA	96	KAMI	average flux
2.70 ± 0.27	¹² FUKUDA	96	KAMI	day flux
$2.87^{+0.27}_{-0.26}$	¹² FUKUDA	96	KAMI	night flux

¹ ABE 11 reports the Super-Kamiokande-III results for 548 live days from August 4, 2006 to August 18, 2008. The analysis threshold is 5.0 MeV, but the event sample in the 5.0–6.5 MeV total electron range has a total live time of 298 days.

 $^{^2}$ ABE 11 recalculated the Super-Kamiokande-II results using 8 B spectrum of WINTER 06A.

 $^{^3}$ ABE 11 recalculated the Super-Kamiokande-I results using 8 B spectrum of WINTER 06A.

⁴ ABE 11B use a 123 kton·day exposure of the KamLAND liquid scintillation detector to measure the 8 B solar neutrino flux. They utilize $\nu-e$ elastic scattering above a reconstructed-energy threshold of 5.5 MeV, corresponding to 5 MeV electron recoil energy. 299 electron recoil candidate events are reported, of which 157 \pm 23.6 are assigned to background.

⁵BELLINI 10A reports the Borexino result with 3 MeV energy threshold for scattered electrons. The data correspond to 345.3 live days with a target mass of 100 t, between July 15, 2007 and August 23, 2009.

⁶ AHARMIM 08 reports the results from SNO Phase III measurement using an array of ³He proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17 live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the ⁸B shape.

⁷ CRAVENS 08 reports the Super-Kamiokande-II results for 791 live days from December 2002 to October 2005. The photocathode coverage of the detector is 19% (reduced from 40% of that of Super-Kamiokande-I due to an accident in 2001). The analysis threshold for the average flux is 7 MeV.

⁸ HOSAKA 06 reports the final results for 1496 live days with Super-Kamiokande-I between May 31, 1996 and July 15, 2001, and replace FUKUDA 02 results. The analysis threshold is 5 MeV except for the first 280 live days (6.5 MeV).

⁹ AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The *CC*, *ES*, and *NC* events were statistically separated. In one method, the ⁸B energy spectrum was not constrained. In the other method, the constraint of an undistorted ⁸B energy spectrum was added for comparison with AHMAD 02 results.

with AHMAD 02 results. 10 AHMAD 02 reports the 8 B solar-neutrino flux measured via $\nu\,e$ elastic scattering above the kinetic energy threshold of 5 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001, and updates AHMAD 01 results.

 $^{^{11}}$ AHMAD 01 reports the 8 B solar-neutrino flux measured via $\nu\,e$ elastic scattering above the kinetic energy threshold of 6.75 MeV. The data correspond to 241 live days with SNO between November 2, 1999 and January 15, 2001.

 12 FUKUDA 96 results are for a total of 2079 live days with Kamiokande II and III from January 1987 through February 1995, covering the entire solar cycle 22, with threshold $\rm E_e>9.3~MeV$ (first 449 days), >7.5~MeV (middle 794 days), and >7.0~MeV (last 836 days). These results update the HIRATA 90 result for the average $^8\rm B$ solar-neutrino flux and HIRATA 91 result for the day-night variation in the $^8\rm B$ solar-neutrino flux. The total data sample was also analyzed for short-term variations: within experimental errors, no strong correlation of the solar-neutrino flux with the sunspot numbers was found.

ϕ_{CC} (8B)

⁸B solar-neutrino flux measured with charged-current reaction which is sensitive exclusively to $\nu_{\rm p}$.

$VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$	DOCUMENT ID			COMMENT
• • • We do not use the following	g data for average	s, fits,	limits,	etc. • • •
$1.67 {}^{+ 0.05 + 0.07}_{- 0.04 - 0.08}$	¹ AHARMIM	08	SNO	Phase III
$1.68\!\pm\!0.06\!+\!0.08\\-0.09$	² AHARMIM	05A	SNO	Salty D ₂ O; ⁸ B shape
$1.72 \pm 0.05 \pm 0.11$	² AHARMIM	05A	SNO	not const. Salty D ₂ O; ⁸ B shape constrained
$1.76^{+0.06}_{-0.05}{\pm}0.09$	³ AHMAD	02	SNO	average flux
$1.75 \pm 0.07 ^{+0.12}_{-0.11} \pm 0.05$	⁴ AHMAD	01	SNO	average flux

- 1 AHARMIM 08 reports the results from SNO Phase III measurement using an array of 3 He proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17 live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the 8 B shape.
- 2 AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The *CC*, *ES*, and *NC* events were statistically separated. In one method, the $^8{\rm B}$ energy spectrum was not constrained. In the other method, the constraint of an undistorted $^8{\rm B}$ energy spectrum was added for comparison with AHMAD 02 results.
- 3 AHMAD 02 reports the SNO result of the 8 B solar-neutrino flux measured with charged-current reaction on deuterium, $\nu_e \, d \to pp \, e^-$, above the kinetic energy threshold of 5 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001, and updates AHMAD 01 results. The complete description of the SNO Phase I data set is given in AHARMIM 07.
- ⁴ AHMAD 01 reports the first SNO result of the ⁸B solar-neutrino flux measured with the charged-current reaction on deuterium, $\nu_e d \rightarrow ppe^-$, above the kinetic energy threshold of 6.75 MeV. The data correspond to 241 live days with SNO between November 2, 1999 and January 15, 2001.

ϕ_{NC} (8B)

⁸B solar neutrino flux measured with neutral-current reaction, which is equally sensitive to ν_e , ν_u , and ν_{τ} .

 $VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$ DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $5.25~\pm0.16~^{+0.11}_{-0.13}$ 1 AHARMIM 13 SNO All three phases combined

HTTP://PDG.LBL.GOV Page 10 Created: 10/1/2016 20:06

$5.140 {+0.160 +0.132\atop -0.158 -0.117}$	² AHARMIM	10 SNO	Phase I+II, low threshold
$5.54 \begin{array}{l} +0.33 \\ -0.31 \end{array} \begin{array}{l} +0.36 \\ -0.34 \end{array}$	³ AHARMIM	08 SNO	Phase III, prop. counter $+$ PMT
$4.94 \ \pm 0.21 \ ^{+0.38}_{-0.34}$	⁴ AHARMIM	05A SNO	Salty D ₂ O; ⁸ B shape not const.
$4.81 \ \pm 0.19 \ ^{+0.28}_{-0.27}$	⁴ AHARMIM	05A SNO	Salty D ₂ O; ⁸ B shape constrained
$5.09 \begin{array}{c} +0.44 & +0.46 \\ -0.43 & -0.43 \end{array}$	⁵ AHMAD	02 SNO	average flux; ⁸ B shape const.
$6.42 \pm 1.57 {}^{+ 0.55}_{- 0.58}$	⁵ AHMAD	02 SNO	average flux; ⁸ B shape not const.

¹ AHARMIM 13 obtained this result from a combined analysis of the data from all three phases, SNO-I, II, and III. The measurement of the ⁸B flux mostly comes from the NC signal, however, CC contribution is included in the fit.

- ² AHARMIM 10 reports this result from a joint analysis of SNO Phase I+II data with the "effective electron kinetic energy" threshold of 3.5 MeV. This result is obtained with a "binned-histogram unconstrained fit" where binned probability distribution functions of the neutrino signal observables were used without any model constraints on the shape of the neutrino spectrum.
- ³AHARMIM 08 reports the results from SNO Phase III measurement using an array of ³He proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17 live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the ⁸B shape.
- ⁴ AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The *CC*, *ES*, and *NC* events were statistically separated. In one method, the ⁸B energy spectrum was not constrained. In the other method, the constraint of an undistorted ⁸B energy spectrum was added for comparison with AHMAD 02 results.
- With AHMAD 02 results. SHAMAD 02 reports the first SNO result of the 8B solar-neutrino flux measured with the neutral-current reaction on deuterium, $\nu_\ell d \to np\nu_\ell$, above the neutral-current reaction threshold of 2.2 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001. The complete description of the SNO Phase I data set is given in AHARMIM 07.

$\phi_{ u_{\mu}+ u_{ au}}$ (8B)

Nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in the ⁸B solar-neutrino flux.

$VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$	DOCUMENT ID		TECN	COMMENT			
• • • We do not use the following data for averages, fits, limits, etc. • •							
$3.26 \pm 0.25 {+0.40 \atop -0.35}$	¹ AHARMIM	05A	SNO	From ϕ_{NC} , ϕ_{CC} , and ϕ_{ES} ; 8B shape not const.			
$3.09 \pm 0.22 + 0.30 \\ -0.27$	¹ AHARMIM	05A	SNO	From ϕ_{NC} , ϕ_{CC} , and ϕ_{ES} ; 8B shape constrained			
$3.41 \pm 0.45 {+0.48 \atop -0.45}$	² AHMAD	02	SNO	From ϕ_{NC} , ϕ_{CC} , and ϕ_{ES}			
3.69 ± 1.13	³ AHMAD	01		Derived from SNO+SuperKam, water Cherenkov			

¹ AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding

to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the 8B energy spectrum was not constrained. In the other method, the constraint of an undistorted 8B energy spectrum was added for comparison with AHMAD 02 results.

 2 AHMAD 02 deduced the nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in the 8 B solar-neutrino flux, by combining the charged-current result, the $\nu\,e$ elastic-scattering result and the neutral-current result. The complete description of the SNO Phase I data set is given in AHARMIM 07.

 3 AHMAD 01 deduced the nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in the 8 B solar-neutrino flux, by combining the SNO charged-current result (AHMAD 01) and the Super-Kamiokande νe elastic-scattering result (FUKUDA 01).

Total Flux of Active ⁸B Solar Neutrinos

Total flux of active neutrinos (ν_e , ν_μ , and $\nu_ au$).

$VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$	DOCUMENT ID		TECN	COMMENT
\bullet \bullet We do not use the	following data fo	r aver	ages, fi	ts, limits, etc. • • •
$5.25\ \pm0.16\ ^{+0.11}_{-0.13}$	¹ AHARMIM	13	SNO	All three phases combined
$5.046 {+0.159} {+0.107} \atop {-0.152} {-0.123}$	² AHARMIM	10	SNO	From ϕ_{NC} in Phase I+II, low threshold
$5.54 \begin{array}{l} +0.33 \\ -0.31 \end{array} \begin{array}{l} +0.36 \\ -0.34 \end{array}$	³ AHARMIM	80	SNO	ϕ_{NC} in Phase III
$4.94 \ \pm 0.21 \ ^{+ 0.38}_{- 0.34}$	⁴ AHARMIM	05A	SNO	From ϕ_{NC} ; ⁸ B shape not const.
$4.81\ \pm0.19\ ^{+0.28}_{-0.27}$	⁴ AHARMIM	05A	SNO	From ϕ_{NC} ; ⁸ B shape constrained
$5.09 \begin{array}{c} +0.44 & +0.46 \\ -0.43 & -0.43 \end{array}$	⁵ AHMAD	02	SNO	Direct measurement from $\phi_{\it NC}$
5.44 ± 0.99	⁶ AHMAD	01		Derived from SNO+SuperKam, water Cherenkov

¹ AHARMIM 13 obtained this result from a combined analysis of the data from all three phases, SNO-I, II, and III. The measurement of the ⁸B flux mostly comes from the NC signal, however, CC contribution is included in the fit.

 $^{^2}$ AHARMIM 10 reports this result from a joint analysis of SNO Phase I+II data with the "effective electron kinetic energy" threshold of 3.5 MeV. This result is obtained with the assumption of unitarity, which relates the NC, CC, and ES rates. The data were fit with the free parameters directly describing the total $^8{\rm B}$ neutrino flux and the energy-dependent ν_e survival probability.

³ AHARMIM 08 reports the results from SNO Phase III measurement using an array of ³He proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17 live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the ⁸B shape.

⁴ AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the ⁸B energy spectrum was not constrained. In the other method, the constraint of an undistorted ⁸B energy spectrum was added for comparison with AHMAD 02 results.

- 5 AHMAD 02 determined the total flux of active 8 B solar neutrinos by directly measuring the neutral-current reaction, $\nu_\ell \, d \to \, n \, p \, \nu_\ell$, which is equally sensitive to $\nu_{\rm e}, \, \nu_{\mu}$, and ν_{τ} . The complete description of the SNO Phase I data set is given in AHARMIM 07.
- 6 AHMAD 01 deduced the total flux of active 8 B solar neutrinos by combining the SNO charged-current result (AHMAD 01) and the Super-Kamiokande νe elastic-scattering result (FUKUDA 01).

Day-Night Asymmetry (8B)

 $A = (\phi_{\mathsf{night}} - \phi_{\mathsf{day}}) / \phi_{\mathsf{average}}$

VALUE	DOCUMENT ID		TECN	COMMENT					
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$									
$0.032\!\pm\!0.011\!\pm\!0.005$	¹ RENSHAW	14	SKAM	Based on ϕ_{ES}					
$0.063 \pm 0.042 \pm 0.037$	² CRAVENS	80	SKAM	Based on ϕ_{ES}					
$0.021\!\pm\!0.020\!+\!0.012\\-0.013$	³ HOSAKA	06	SKAM	Based on ϕ_{ES}					
$0.017\!\pm\!0.016\!+\!0.012\atop-0.013$	⁴ HOSAKA	06	SKAM	Fitted in the LMA region					
$-0.056\!\pm\!0.074\!\pm\!0.053$	⁵ AHARMIM	05A	SNO	From salty SNO ϕ_{CC}					
$-0.037 \pm 0.063 \pm 0.032$	⁵ AHARMIM	05A	SNO	From salty SNO ϕ_{CC} ; const. of no ϕ_{NC} asymmetry					
$0.14\ \pm0.063{+0.015\atop -0.014}$	⁶ AHMAD	02 B	SNO	Derived from SNO $\phi_{\it CC}$					
$0.07\ \pm0.049{+0.013top -0.012}$	⁷ AHMAD	02 B	SNO	Const. of no $\phi_{\it NC}$ asymmetry					

- 1 RENSHAW 14 obtains this result by using the "amplitude fit" introduced in SMY 04. The data from the Super-Kamiokande(SK)-I, -II, -III, and 1306 live days of the SK-IV measurements are used. The analysis threshold is recoil-electron kinetic energy of 4.5 MeV for SK-III, and SK-IV except for 250 live days in SK-III (6.0 MeV). The analysis threshold for SK-I and SK-II is the same as in the previous reports. (Note that in the previous SK solar-neutrino results, the analysis threshold is quoted as recoil-electron total energy.) This day-night asymmetry result is consistent with neutrino oscillations for $4\times10^{-5}~{\rm eV}^2~<\Delta m_{21}^2~<7\times10^{-5}~{\rm eV}^2$ and large mixing values of θ_{12} at the 68% CL.
- ² CRAVENS 08 reports the Super-Kamiokande-II results for 791 live days from December 2002 to October 2005. The photocathode coverage of the detector is 19% (reduced from 40% of that of Super-Kamiokande-I due to an accident in 2001). The analysis threshold for the day and night fluxes is 7.5 MeV except for the first 159 live days (8.0 MeV).
- ³ HOSAKA 06 reports the final results for 1496 live days with Super-Kamiokande-I between May 31, 1996 and July 15, 2001, and replace FUKUDA 02 results. The analysis threshold is 5 MeV except for the first 280 live days (6.5 MeV).
- ⁴ This result with reduced statistical uncertainty is obtained by assuming two-neutrino oscillations within the LMA (large mixing angle) region and by fitting the time variation of the solar neutrino flux measured via $\nu_{\rm e}$ elastic scattering to the variations expected from neutrino oscillations. For details, see SMY 04. There is an additional small systematic error of ± 0.0004 coming from uncertainty of oscillation parameters.
- 5 AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, with 176.5 days of the live time recorded during the day and 214.9 days during the night. This result is obtained with the spectral distribution of the CC events not constrained to the 8 B shape.
- ⁶ AHMAD 02B results are based on the charged-current interactions recorded between November 2, 1999 and May 28, 2001, with the day and night live times of 128.5 and 177.9 days, respectively. The complete description of the SNO Phase I data set is given in AHARMIM 07.

⁷ AHMAD 02B results are derived from the charged-current interactions, neutral-current interactions, and νe elastic scattering, with the total flux of active neutrinos constrained to have no asymmetry. The data were recorded between November 2, 1999 and May 28, 2001, with the day and night live times of 128.5 and 177.9 days, respectively. The complete description of the SNO Phase I data set is given in AHARMIM 07.

ϕ_{ES} (⁷Be)

 ^7Be solar-neutrino flux measured via ν_e elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_μ , ν_τ due to the cross-section difference, $\sigma(\nu_{\mu,\tau}\,e)\sim$ 0.2 $\sigma(\nu_e\,e)$. If the ^7Be solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is \sim 0.2 times that of ν_e .

$VALUE (10^9 \text{ cm}^{-2} \text{ s}^{-1})$	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
3.26 ± 0.52	¹ GANDO	15	KLND	average flux
3.10 ± 0.15	² BELLINI	11A	BORX	average flux

 $^{^1}$ GANDO 15 uses 165.4 kton·day exposure of the KamLAND liquid scintillator detector to measure the 862 keV 7 Be solar neutrino flux via $\nu-e$ elastic scattering

ϕ_{ES} (pep)

 $p\,e\,p$ solar-neutrino flux measured via ν_e elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to $\nu_\mu,~\nu_\tau$ due to the cross section difference, $\sigma(\nu_{\mu,\tau}~e)\sim~0.2~\sigma(\nu_e\,e).$ If the $p\,e\,p$ solar-neutrino flux involves non-electron flavor active neutrinos, their contribution to the flux is $\sim~0.2$ times that of $\nu_e.$

$VALUE (10^8 \text{ cm}^{-2} \text{s}^{-1})$	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	g data for averages	s, fits,	limits, e	etc. • • •
1.0 ± 0.2	¹ BELLINI	12A	BORX	average flux

 $^{^1}$ BELLINI 12A reports 1.44 MeV $p\,e\,p$ solar-neutrino flux measured via ν_e elastic scattering. The data were collected between January 13, 2008 and May 9, 2010, corresponding to 20,4009 ton-day fiducial exposure. The listed flux value is calculated from the observed rate of $p\,e\,p$ solar neutrino interactions in Borexino (3.1 \pm 0.6 \pm 0.3 counts/(day-100 ton)) and the corresponding rate expected for no neutrino flavor oscillations (4.47 \pm 0.05 counts/(day-100 ton)), using the SSM prediction for the $p\,e\,p$ solar neutrino flux of (1.441 \pm 0.012) \times 10 8 cm $^{-2}$ s $^{-1}$.

ϕ_{ES} (CNO)

CNO solar-neutrino flux measured via ν_e elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ} , ν_{τ} due to the cross section difference, $\sigma(\nu_{\mu,\tau}~e)\sim~0.2~\sigma(\nu_e\,e)$. If the CNO solar-neutrino flux involves non-electron flavor active neutrinos, their contribution to the flux is $\sim~0.2$ times that of ν_e .

VALUE (
$$10^8$$
 cm $^{-2}$ s $^{-1}$)
 CL%
 DOCUMENT ID
 TECN
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc. • • •

 <7.7
 90
 1 BELLINI
 12A
 BORX
 MSW-LMA solution assumed

 $^{^2}$ BELLINI 11A reports the 7 Be solar neutrino flux measured via $\nu-e$ elastic scattering. The data correspond to 740.7 live days between May 16, 2007 and May 8, 2010, and also correspond to 153.6 ton year fiducial exposure. BELLINI 11A measured the 862 keV 7 Be solar neutrino flux, which is an 89.6% branch of the 7 Be solar neutrino flux, to be $(2.78\pm0.13)\times10^9~{\rm cm}^{-2}~{\rm s}^{-1}$. Supercedes ARPESELLA 08A.

 1 BELLINI 12A reports an upper limit of the CNO solar neutrino flux measured via u_e elastic scattering. The data were collected between January 13, 2008 and May 9, 2010, corresponding to 20,409 ton-day fiducial exposure.

$\phi_{ES}(pp)$

pp solar-neutrino flux measured via ve elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ} , ν_{τ} due to the cross section difference, $\sigma(\nu_{\mu,\tau}~e)\sim~0.3~\sigma(\nu_e\,e)$. If the pp solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.3 times of ν_e .

 $VALUE (10^{10} \text{ cm}^{-2} \text{ s}^{-1})$ DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •

¹ BELLINI 14A BORX average flux 4.4 ± 0.5

 1 BELLINI 14A reports pp solar-neutrino flux measured via νe elastic scattering. The data were collected between January 2012 and May 2013, corresponding to 408 days of data. The pp neutrino interaction rate in Borexino is measured to be 144 \pm 13 \pm 10 counts/(day·100 ton) by fitting the measured energy spectrum of events in the 165-590 keV recoil electron kinetic energy window with the expected signal + background spectrum. The listed flux value $\phi_{ES}(pp)$ is calculated from the observed rate and the number of (3.307 \pm 0.003) imes 10^{31} electrons for 100 tons of the Borexino scintillator, and the $u_e e$ integrated cross section over the pp neutrino spectrum, $\sigma(\nu_{\rm p}\,e)=11.38\times 10^{-46}\,{\rm cm}^2$.

$\phi_{CC}(pp)$

pp solar-neutrino flux measured with charged-current reaction which is sensitive exclusively to $\nu_{\rm e}$.

 $VALUE (10^{10} \text{ cm}^{-2} \text{ s}^{-1})$

• • We do not use the following data for averages, fits, limits, etc. •

¹ ABDURASHI... 09 FIT Fit existing solar- ν data

 $^{
m 1}$ ABDURASHITOV 09 reports the $p\,p$ solar-neutrino flux derived from the Ga solar neutrino capture rate by subtracting contributions from ⁸B, ⁷Be, pep and CNO solar neutrino fluxes determined by other solar neutrino experiments as well as neutrino oscillation parameters determined from available world neutrino oscillation data.

ϕ_{ES} (hep)

hep solar-neutrino flux measured via νe elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ} , ν_{τ} due to the crosssection difference, $\sigma(\nu_{\mu,\tau}\,e)\sim 0.16\sigma(\nu_e\,e)$. If the hep solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is \sim 0.16 times of ν_e .

 $VALUE (10^3 \text{ cm}^{-2} \text{s}^{-1})$ CL% DOCUMENT ID

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ HOSAKA

¹HOSAKA 06 result is obtained from the recoil electron energy window of 18–21 MeV, and updates FUKUDA 01 result.

$\phi_{\overline{\nu}_a}$ (8B)

Searches are made for electron antineutrino flux from the Sun. Flux limits listed here are derived relative to the BS05(OP) Standard Solar Model $^8{\rm B}$ solar neutrino flux (5.69 \times 10 $^6{\rm ~cm^{-2}\,s^{-1}}$), with an assumption that solar $\overline{\nu}_e{\rm s}$ follow an unoscillated $^8{\rm B}$ neutrino spectrum.

VALUE (%)	CL%	DOCUMENT ID		TECN COMMENT
• • • We do not use th	e following	data for averages	s, fits	, limits, etc. • • •
< 0.013	90	BELLINI	11	$BORX \;\; E_{\overline{\nu}_e} \; > 1.8 \; MeV$
<1.9	90	¹ BALATA	06	CNTR $1.8 < E_{\overline{\nu}_{a}} < 20.0 \text{ MeV}$
< 0.72	90	AHARMIM	04	SNO $4.0 < E_{\overline{\nu}_{e}} < 14.8 \text{ MeV}$
< 0.022	90	EGUCHI		KLND $8.3 < E_{\overline{\nu}_{\rho}} < 14.8 \text{ MeV}$
< 0.7	90	GANDO	03	SKAM 8.0< $E_{\overline{\nu}_e}^{e} < 20.0 \text{ MeV}$
<1.7	90	AGLIETTA	96	LSD $7 < E_{\overline{\nu}_a} < 17 \text{ MeV}$

 $^{^1}$ BALATA 06 obtained this result from the search for $\overline{\nu}_e$ interactions with Counting Test Facility (the prototype of the Borexino detector).

(B) Three-neutrino mixing parameters

INTRODUCTION TO THREE-NEUTRINO MIXING PARAMETERS LISTINGS

Updated November 2015 by M. Goodman (ANL).

Introduction and Notation: With the exception of possible short-baseline anomalies (such as LSND), current accelerator, reactor, solar and atmospheric neutrino data can be described within the framework of a 3×3 mixing matrix between the flavor eigenstates ν_e , ν_μ and ν_τ and mass eigenstates ν_1 , ν_2 and ν_3 . (See equation 14.6 of the review "Neutrino Mass, Mixing and Oscillations" by K. Nakamura and S.T. Petcov.) Whether or not this is the ultimately correct framework, it is currently widely used to parametrize neutrino mixing data and to plan new experiments.

The mass differences are called $\Delta m_{21}^2 \equiv m_2^2 - m_1^2$ and $\Delta m_{32}^2 \equiv m_3^2 - m_2^2$. In these listings, we assume

$$\Delta m_{32}^2 \sim \Delta m_{31}^2 \tag{1}$$

even though the experimental error is comparable to the difference $\Delta m_{31}^2 - \Delta m_{32}^2 = \Delta m_{21}^2$. The measurements made by ν_{μ} disappearance at accelerators and by ν_{e} disappearance at reactors are slightly different mixtures of Δm_{32}^2 and Δm_{31}^2 . The angles are labeled θ_{12} , θ_{23} and θ_{13} . The CP violating phase is called δ . The familiar two neutrino form for oscillations is

$$P(\nu_a \to \nu_b; a \neq b) = \sin^2(2\theta) \sin^2(\Delta m^2 L/4E). \tag{2}$$

Despite the fact that the mixing angles have been measured to be much larger than in the quark sector, the two neutrino form is often a very good approximation and is used in many situations.

The angles appear in the equations below in many forms. They most often appear as $\sin^2(2\theta)$. The listings currently now use $\sin^2(\theta)$ because this distinguishes whether θ_{23} is larger or smaller than 45° .

Accelerator neutrino experiments: Ignoring Δm_{21}^2 , CP violation, and matter effects, the equations for the probability of appearance in an accelerator oscillation experiment are:

$$P(\nu_{\mu} \to \nu_{\tau}) = \sin^2(2\theta_{23})\cos^4(\theta_{13})\sin^2(\Delta m_{32}^2 L/4E)$$
 (3)

$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2}(2\theta_{13})\sin^{2}(\theta_{23})\sin^{2}(\Delta m_{32}^{2}L/4E)$$
 (4)

$$P(\nu_e \to \nu_\mu) = \sin^2(2\theta_{13})\sin^2(\theta_{23})\sin^2(\Delta m_{32}^2 L/4E)$$
 (5)

$$P(\nu_e \to \nu_\tau) = \sin^2(2\theta_{13})\cos^2(\theta_{23})\sin^2(\Delta m_{32}^2 L/4E)$$
. (6)

Current and future long-baseline accelerator experiments are studying non-zero θ_{13} through $P(\nu_{\mu} \rightarrow \nu_{e})$. Including the

CP terms and low mass scale, the equation for neutrino oscillation in vacuum is:

$$P(\nu_{\mu} \to \nu_{e}) = P1 + P2 + P3 + P4$$

$$P1 = \sin^{2}(\theta_{23}) \sin^{2}(2\theta_{13}) \sin^{2}(\Delta m_{32}^{2} L/4E)$$

$$P2 = \cos^{2}(\theta_{23}) \sin^{2}(2\theta_{13}) \sin^{2}(\Delta m_{21}^{2} L/4E)$$

$$P3 = -/+ J \sin(\delta) \sin(\Delta m_{32}^{2} L/4E)$$

$$P4 = J \cos(\delta) \cos(\Delta m_{32}^{2} L/4E)$$
(7)

where

$$J = \cos(\theta_{13})\sin(2\theta_{12})\sin(2\theta_{13})\sin(2\theta_{23}) \times \sin(\Delta m_{32}^2 L/4E)\sin(\Delta m_{21}^2 L/4E)$$
(8)

and the sign in P3 is negative for neutrinos and positive for antineutrinos respectively. For most new long-baseline accelerator experiments, P2 can safely be neglected but the other three terms can all be large. Also, depending on the distance and the mass hierarchy, matter effects will need to be included.

Reactor neutrino experiments: Nuclear reactors are prolific sources of $\bar{\nu}_e$ with an energy near 4 MeV. The oscillation probability can be expressed

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta m_{21}^2 L/4E) - \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta m_{31}^2 L/4E) - \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta m_{32}^2 L/4E)$$
 (9)

not using the approximation in Eq. (1). For short distances (L<5 km) we can ignore the second term on the right and can reimpose approximation Eq. (1). This takes the familiar two neutrino form with θ_{13} and Δm_{32}^2 :

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2(2\theta_{13})\sin^2(\Delta m_{32}^2 L/4E).$$
 (10)

HTTP://PDG.LBL.GOV

Page 18

Solar and Atmospheric neutrino experiments: Solar neutrino experiments are sensitive to ν_e disappearance and have allowed the measurement of θ_{12} and Δm_{21}^2 . They are also sensitive to θ_{13} . We identify $\Delta m_{\odot}^2 = \Delta m_{21}^2$ and $\theta_{\odot} = \theta_{12}$.

Atmospheric neutrino experiments are primarily sensitive to ν_{μ} disappearance through $\nu_{\mu} \to \nu_{\tau}$ oscillations, and have allowed the measurement of θ_{23} and Δm_{32}^2 . We identify $\Delta m_A^2 = \Delta m_{32}^2$ and $\theta_A = \theta_{23}$. Despite the large ν_e component of the atmospheric neutrino flux, it is difficult to measure Δm_{21}^2 effects. This is because of a cancellation between $\nu_{\mu} \to \nu_{e}$ and $\nu_{e} \to \nu_{\mu}$ together with the fact that the ratio of ν_{μ} and ν_{e} atmospheric fluxes, which arise from sequential π and μ decay, is near 2.

Oscillation Parameter Listings: In Section (B) we encode the three mixing angles θ_{12} , θ_{23} , θ_{13} and two mass squared differences Δm_{21}^2 and Δm_{32}^2 . Our knowledge of θ_{12} and Δm_{21}^2 comes from the KamLAND reactor neutrino experiment together with solar neutrino experiments. Our knowledge of θ_{23} and Δm_{32}^2 comes from atmospheric, reactor and long-baseline accelerator neutrino experiments. For the earlier experiments, we identified the large mass splitting as Δm_{32}^2 . Now that $\sigma(\Delta m_{32}^2) \approx \Delta m_{21}^2$, some experiments report separate values for the two hierarchies. Results on θ_{13} come from reactor antineutrino disappearance experiments. There are also results from long-baseline accelerator experiments looking for ν_e appearance. The interpretation of both kinds of results depends on Δm_{32}^2 , and the accelerator results also depend on the mass hierarchy, θ_{23} and the CP violating phase δ .

Accelerator and atmospheric experiments are beginning to have some sensitivity to the CP violation phase δ through Eq. (7). Note that P3 depends on the sign of Δm_{32}^2 so the

sensitivity depends on the mass hierarchy. For non-maximal θ_{23} mixing, it also depends on the octant of θ_{23} , i.e. whether $\theta_{23} > \pi/4$ or $\theta_{23} < \pi/4$.

$\sin^2(heta_{12})$	DOCUMENT ID		TECN	COMMENT
0.304 + 0.014 - 0.013	¹ GANDO	13	FIT	KamLAND + global solar +
• • • We do not	use the following data for	avera	ges, fits	SBL $+$ accelerator: 3ν , limits, etc. \bullet \bullet
0.323 ± 0.016	² FORERO	14	FIT	3ν
$0.304^{+0.013}_{-0.012}$	³ GONZALEZ-G.	.14	FIT	Either mass ordering; global fit
$0.299^{+0.014}_{-0.014}$	^{4,5} AHARMIM	13	FIT	global solar: 2ν
$0.307 ^{+ 0.016}_{- 0.013}$	^{5,6} AHARMIM	13	FIT	global solar: $3 u$
$0.304 ^{+ 0.022}_{- 0.018}$	^{5,7} AHARMIM	13	FIT	KamLAND $+$ global solar: $3 u$
$0.304 ^{+ 0.014}_{- 0.013}$	⁸ GANDO	13	FIT	KamLAND $+$ global solar: $3 u$
$0.325 ^{+ 0.039}_{- 0.039}$	⁹ GANDO	13	FIT	KamLAND: 3ν
$0.30 \begin{array}{l} +0.02 \\ -0.01 \end{array}$	¹⁰ ABE	11	FIT	$KamLAND + global \; solar: \; 2\nu$
$0.30 \begin{array}{l} +0.02 \\ -0.01 \end{array}$	¹¹ ABE	11	FIT	global solar: 2ν
$0.31 \begin{array}{l} +0.03 \\ -0.02 \end{array}$	¹² ABE	11	FIT	KamLAND $+$ global solar: $3 u$
$0.31 \begin{array}{l} +0.03 \\ -0.03 \end{array}$	¹³ ABE	11	FIT	global solar: $3 u$
$0.314 ^{+ 0.015}_{- 0.012}$	¹⁴ BELLINI	11 A	FIT	$KamLAND + global \; solar \colon \; 2 \nu$
$0.319^{+0.017}_{-0.015}$	¹⁵ BELLINI	11 A	FIT	global solar: 2ν
$0.311^{+0.016}_{-0.016}$	¹⁶ GANDO	11	FIT	$KamLAND + solar \colon 3\nu$
$0.304^{+0.046}_{-0.042}$	¹⁷ GANDO	11	FIT	KamLAND: 3ν
$0.314^{+0.018}_{-0.014}$	^{18,19} AHARMIM	10	FIT	$KamLAND + global \; solar \colon \; 2 \nu$
$0.314^{+0.017}_{-0.020}$	^{18,20} AHARMIM	10	FIT	global solar: 2ν
$0.319^{+0.019}_{-0.016}$	^{18,21} AHARMIM	10	FIT	KamLAND $+$ global solar: $3 u$
$0.319^{+0.023}_{-0.024}$	^{18,22} AHARMIM	10	FIT	global solar: $3 u$
$0.36 \begin{array}{l} +0.05 \\ -0.04 \end{array}$	²³ ABE	08A	FIT	KamLAND
0.32 ± 0.03 0.32 ± 0.02	²⁴ ABE ²⁵ AHARMIM	08A 08	FIT FIT	KamLAND + global fit $KamLAND + global$ solar
0.31 + 0.04	²⁶ HOSAKA	06	FIT	KamLAND + global solar
0.31 - 0.04 $0.31 + 0.04$ -0.03	²⁷ HOSAKA	06	FIT	SKAM+SNO+KamLAND

$0.31 \begin{array}{l} +0.03 \\ -0.04 \end{array}$	²⁸ HOSAKA	06	FIT	SKAM+SNO
$0.31 \begin{array}{l} +0.02 \\ -0.03 \end{array}$	²⁹ AHARMIM	05A	FIT	$KamLAND + global \; solar$
0.25-0.39	³⁰ AHARMIM	05A	FIT	global solar
$0.29\ \pm0.03$	³¹ ARAKI	05	FIT	$KamLAND + global \; solar$
$0.29 \begin{array}{l} +0.03 \\ -0.02 \end{array}$	³² AHMED	04A	FIT	${\sf KamLAND} + {\sf global} \; {\sf solar}$
0.23-0.37	³³ AHMED	04A	FIT	global solar
$0.31 \begin{array}{l} +0.04 \\ -0.04 \end{array}$	³⁴ SMY	04	FIT	$KamLAND + global \; solar$
$0.29 \begin{array}{l} +0.04 \\ -0.04 \end{array}$	³⁵ SMY	04	FIT	global solar
$0.32 \begin{array}{l} +0.06 \\ -0.05 \end{array}$	³⁶ SMY	04	FIT	SKAM + SNO
0.19-0.33	³⁷ AHMAD	02 B	FIT	global solar
0.19-0.39	³⁸ FUKUDA	02	FIT	global solar

¹ GANDO 13 obtained this result by a three-neutrino oscillation analysis using KamLAND, global solar neutrino, short-baseline (SBL) reactor, and accelerator data, assuming CPT invariance. Supersedes GANDO 11.

² FORERO 14 performs a global fit to neutrino oscillations using solar, reactor, long-baseline accelerator, and atmospheric neutrino data.

 $^{^3}$ GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as $0.304 {+0.013 \atop -0.012}$ for normal and $0.305 {+0.012 \atop -0.013}$ for inverted mass ordering.

⁴ AHARMIM 13 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data.

 $^{^5}$ AHARMIM 13 global solar neutrino data include SNO's all-phases-combined analysis results on the total active 8 B neutrino flux and energy-dependent ν_e survival probability parameters, measurements of CI (CLEVELAND 98), Ga (ABDURASHITOV 09 which contains combined analysis with GNO (ALTMANN 05 and Ph.D. thesis of F. Kaether)), and 7 Be (BELLINI 11A) rates, and 8 B solar-neutrino recoil electron measurements of SK-I (HOSAKA 06) zenith, SK-II (CRAVENS 08) and SK-III (ABE 11) day/night spectra, and Borexino (BELLINI 10A) spectra.

 $^{^6}$ AHARMIM 13 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{32} fixed to 2.45 \times 10 $^{-3}$ eV², using global solar neutrino data.

 $^{^7 \, \}text{AHARMIM}$ 13 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{32} fixed to 2.45 \times 10 $^{-3}$ eV 2 , using global solar neutrino and KamLAND (GANDO 11) data. CPT invariance is assumed.

⁸ GANDO 13 obtained this result by a three-neutrino oscillation analysis using KamLAND and global solar neutrino data, assuming CPT invariance. Supersedes GANDO 11.

⁹ GANDO 13 obtained this result by a three-neutrino oscillation analysis using KamLAND data. Supersedes GANDO 11.

¹⁰ ABE 11 obtained this result by a two-neutrino oscillation analysis using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. CPT invariance is assumed.

¹¹ ABE 11 obtained this result by a two-neutrino oscillation analysis using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, and SAGE data.

 $^{^{12}}$ ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{32} fixed to $2.4\times 10^{-3}~\text{eV}^2$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. The normal neutrino mass ordering and CPT invariance are assumed.

- 13 ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{32} fixed to $2.4\times 10^{-3}~\text{eV}^2$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, and GALLEX/GNO data. The normal neutrino mass ordering is assumed.
- ¹⁴ BELLINI 11A obtained this result by a two-neutrino oscillation analysis using KamLAND, Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Journal **743** 24 (2011)) with the exception that the ⁸B flux was left free. CPT invariance is assumed.
- 15 BELLINI 11A obtained this result by a two-neutrino oscillation analysis using Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Journal **743** 24 (2011)) with the exception that the ⁸B flux was left free.
- 16 GANDO 11 obtain this result with three-neutrino fit using the KamLAND + solar data. Superseded by GANDO 13.
- ¹⁷ GANDO 11 obtain this result with three-neutrino fit using the KamLAND data only. Superseded by GANDO 13.
- ¹⁸ AHARMIM 10 global solar neutrino data include SNO's low-energy-threshold analysis survival probability day/night curves, SNO Phase III integral rates (AHARMIM 08), CI (CLEVELAND 98), SAGE (ABDURASHITOV 09), Gallex/GNO (HAMPEL 99, ALT-MANN 05), Borexino (ARPESELLA 08A), SK-I zenith (HOSAKA 06), and SK-II day/night spectra (CRAVENS 08).
- ¹⁹ AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data and KamLAND data (ABE 08A). *CPT* invariance is assumed.
- ²⁰AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data.
- 21 AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^2 fixed to $2.3 \times 10^{-3} \text{ eV}^2$, using global solar neutrino data and KamLAND data (ABE 08A). *CPT* invariance is assumed.
- ²² AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^2 fixed to 2.3×10^{-3} eV², using global solar neutrino data.
- ²³ ABE 08A obtained this result by a rate + shape + time combined geoneutrino and reactor two-neutrino fit for Δm_{21}^2 and $\tan^2\theta_{12}$, using KamLAND data only. Superseded by GANDO 11.
- 24 ABE 08A obtained this result by means of a two-neutrino fit using KamLAND, Homestake, SAGE, GALLEX, GNO, SK (zenith angle and E-spectrum), the SNO χ^2 -map, and solar flux data. *CPT* invariance is assumed. Superseded by GANDO 11.
- ²⁵ The result given by AHARMIM 08 is $\theta=(34.4 {+} 1.3 {+} 1.3)^{\circ}$. This result is obtained by a two-neutrino oscillation analysis using solar neutrino data including those of Borexino (ARPESELLA 08A) and Super-Kamiokande-I (HOSAKA 06), and KamLAND data (ABE 08A). *CPT* invariance is assumed.
- 26 HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using SK ν_e data, CC data from other solar neutrino experiments, and KamLAND data (ARAKI 05). CPT invariance is assumed.
- ²⁷ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the data from Super-Kamiokande, SNO (AHMAD 02 and AHMAD 02B), and KamLAND (ARAKI 05) experiments. *CPT* invariance is assumed.
- ²⁸ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data.
- 29 The result given by AHARMIM 05A is $\theta=(33.9\pm1.6)^\circ$. This result is obtained by a two-neutrino oscillation analysis using SNO pure deuteron and salt phase data, SK ν_e data, Cl and Ga CC data, and KamLAND data (ARAKI 05). *CPT* invariance is assumed. AHARMIM 05A also quotes $\theta=(33.9^{+2.4}_{-2.2})^\circ$ as the error enveloping the 68% CL two-dimensional region. This translates into $\sin^2\!2$ $\theta=0.86^{+0.05}_{-0.06}$.

- 30 AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in figure 35a of AHARMIM 05A. AHARMIM 05A also quotes $\tan^2\!\theta = 0.45 ^{+0.09}_{-0.08}$ as the error enveloping the 68% CL two-dimensional region. This translates into $\sin^2\!2$ $\theta = 0.86 ^{+0.05}_{-0.07}$.
- 31 ARAKI 05 obtained this result by a two-neutrino oscillation analysis using KamLAND and solar neutrino data. CPT invariance is assumed. The 1σ error shown here is translated from the number provided by the KamLAND collaboration, $\tan^2\theta=0.40^{+0.07}_{-0.05}$. The corresponding number quoted in ARAKI 05 is $\tan^2\theta=0.40^{+0.10}_{-0.07}$ (sin²2 $\theta=0.82\pm0.07$), which envelops the 68% CL two-dimensional region.
- 32 The result given by AHMED 04A is $\theta=(32.5^{+1.7}_{-1.6})^{\circ}$. This result is obtained by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (EGUCHI 03). *CPT* invariance is assumed. AHMED 04A also quotes $\theta=(32.5^{+2.4}_{-2.3})^{\circ}$ as the error enveloping the 68% CL two-dimensional region. This translates into $\sin^2 2 \theta = 0.82 \pm 0.06$.
- AHMED 04A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 5(a) of AHMED 04A. The best-fit point is $\Delta(m^2) = 6.5 \times 10^{-5} \text{ eV}^2$, $\tan^2\theta = 0.40 \text{ (sin}^2 2 \theta = 0.82)$.
- ³⁴ The result given by SMY 04 is $\tan^2\theta=0.44\pm0.08$. This result is obtained by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (IANNI 03). *CPT* invariance is assumed.
- 35 SMY 04 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The 1σ errors are read from Fig. 6(a) of SMY 04.
- 36 SMY 04 obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. The 1σ errors are read from Fig. 6(a) of SMY 04.
- 37 AHMAD 02B obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4(b) of AHMAD 02B. The best fit point is $\Delta(m^2)=5.0\times 10^{-5}~\text{eV}^2$ and $\tan\theta=0.34~(\sin^2\!2~\theta=0.76).$
- 38 FUKUDA 02 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4 of FUKUDA 02. The best fit point is $\Delta(m^2) = 6.9 \times 10^{-5} \text{ eV}^2$ and $\tan^2\theta = 0.38$ ($\sin^2\theta = 0.80$).

Δm_{21}^2

$VALUE (10^{-5} \text{ eV}^2)$	DOCUMENT ID		TECN	COMMENT
7.53±0.18	¹ GANDO	13	FIT	KamLAND + global solar + SBL + accelerator: 3ν

• • • We do not use the following data for averages, fits, limits, etc. • • •

$7.6 \begin{array}{l} +0.19 \\ -0.18 \end{array}$	² FORERO 14	FIT	3ν
$7.50 ^{igoplus 0.19}_{-0.17}$	³ GONZALEZ-G14	FIT	Either mass ordering; global fit
$5.13^{+1.29}_{-0.96}$	4,5 AHARMIM 13	FIT	global solar: 2ν
$5.13^{+1.49}_{-0.98}$	^{5,6} AHARMIM 13	FIT	global solar: 3ν
$7.46^{+0.20}_{-0.19}$	^{5,7} AHARMIM 13	FIT	KamLAND $+$ global solar: $3 u$
$7.53^{igoplus 0.19}_{-0.18}$	⁸ GANDO 13	FIT	$KamLAND + global \; solar \colon \; 3 \nu$

. 0.10				
$7.54 ^{m{+0.19}}_{-0.18}$	⁹ GANDO	13	FIT	KamLAND: 3ν
7.6 ± 0.2	¹⁰ ABE	11	FIT	$KamLAND + global \; solar \colon \; 2 \nu$
$6.2 \begin{array}{c} +1.1 \\ -1.9 \end{array}$	¹¹ ABE	11	FIT	global solar: $2 u$
7.7 ± 0.3	¹² ABE	11	FIT	KamLAND $+$ global solar: $3 u$
$6.0 \begin{array}{c} +2.2 \\ -2.5 \end{array}$	¹³ ABE	11	FIT	global solar: $3 u$
$7.50^{igoplus 0.16}_{-0.24}$	¹⁴ BELLINI	11A	FIT	$KamLAND + global \; solar: \; \; 2\nu$
$5.2 \begin{array}{c} +1.5 \\ -0.9 \end{array}$	¹⁵ BELLINI	11A	FIT	global solar: 2ν
$7.50 {+0.19 \atop -0.20}$	¹⁶ GANDO	11	FIT	$KamLAND + solar: \ 3\nu$
7.49 ± 0.20	¹⁷ GANDO	11	FIT	KamLAND: $3 u$
$7.59 {+0.20 \atop -0.21}$	18,19 AHARMIM	10	FIT	KamLAND $+$ global solar: $2 u$
$5.89^{+2.13}_{-2.16}$	^{18,20} AHARMIM	10	FIT	global solar: $2 u$
$7.59 \!\pm\! 0.21$	18,21 AHARMIM	10	FIT	$KamLAND + global \; solar \colon \; 3 \nu$
$6.31^{+2.49}_{-2.58}$	^{18,22} AHARMIM	10	FIT	global solar: 3ν
$7.58^{igoplus 0.14}_{-0.13}\!\pm\!0.15$	²³ ABE	08A	FIT	KamLAND
$7.59\!\pm\!0.21$	²⁴ ABE	08A	FIT	$KamLAND + global \; solar$
$7.59^{m{+0.19}}_{m{-0.21}}$	²⁵ AHARMIM	80	FIT	$KamLAND + global \ solar$
8.0 ± 0.3	²⁶ HOSAKA	06	FIT	$KamLAND + global \ solar$
8.0 ± 0.3	²⁷ HOSAKA	06	FIT	SKAM + SNO + KamLAND
$6.3 \begin{array}{c} +3.7 \\ -1.5 \end{array}$	²⁸ HOSAKA	06	FIT	SKAM+SNO
5–12	²⁹ HOSAKA	06	FIT	SKAM day/night in the LMA region
$8.0 \begin{array}{l} +0.4 \\ -0.3 \end{array}$	³⁰ AHARMIM	05A	FIT	$KamLAND + global \; solar \; LMA$
3.3–14.4	³¹ AHARMIM	05A	FIT	global solar
$7.9 \begin{array}{l} +0.4 \\ -0.3 \end{array}$	³² ARAKI	05	FIT	$KamLAND + global \; solar$
$7.1 \begin{array}{l} +1.0 \\ -0.3 \end{array}$	³³ AHMED	04A	FIT	$KamLAND + global \; solar$
3.2-13.7	³⁴ AHMED	04A	FIT	global solar
$7.1 \begin{array}{c} +0.6 \\ -0.5 \end{array}$	³⁵ SMY	04	FIT	$KamLAND + global \; solar$
$6.0 \begin{array}{c} +1.7 \\ -1.6 \end{array}$	³⁶ SMY	04	FIT	global solar
$6.0 \begin{array}{l} +2.5 \\ -1.6 \end{array}$	³⁷ SMY	04	FIT	SKAM + SNO
2.8-12.0	38 AHMAD	02 B	FIT	global solar
3.2–19.1	³⁹ FUKUDA	02	FIT	global solar

 $^{^1}$ GANDO 13 obtained this result by a three-neutrino oscillation analysis using KamLAND, global solar neutrino, short-baseline (SBL) reactor, and accelerator data, assuming CPT invariance. Supersedes GANDO 11. 2 FORERO 14 performs a global fit to Δm_{21}^2 using solar, reactor, long-baseline accelerator, and atmospheric neutrino data.

- 3 GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as $(7.50^{+0.19}_{-0.17})\times 10^{-5}~\text{eV}^2$ for normal and $(7.50^{+0.18}_{-0.17})\times 10^{-5}~\text{eV}^2$ for inverted mass ordering.
- ⁴ AHARMIM 13 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data.
- 5 AHARMIM 13 global solar neutrino data include SNO's all-phases-combined analysis results on the total active 8 B neutrino flux and energy-dependent ν_e survival probability parameters, measurements of CI (CLEVELAND 98), Ga (ABDURASHITOV 09 which contains combined analysis with GNO (ALTMANN 05 and Ph.D. thesis of F. Kaether)), and 7 Be (BELLINI 11A) rates, and 8 B solar-neutrino recoil electron measurements of SK-I (HOSAKA 06) zenith, SK-II (CRAVENS 08), and SK-III (ABE 11) day/night spectra, and Borexino (BELLINI 10A) spectra.
- ⁶ AHARMIM 13 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^2 fixed to $2.45 \times 10^{-3} \text{ eV}^2$, using global solar neutrino data.
- 7 AHARMIM 13 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{31} fixed to 2.45 \times 10 $^{-3}$ eV 2 , using global solar neutrino and KamLAND data (GANDO 11). CPT invariance is assumed.
- ⁸ GANDO 13 obtained this result by a three-neutrino oscillation analysis using KamLAND and global solar neutrino data, assuming CPT invariance. Supersedes GANDO 11.
- ⁹ GANDO 13 obtained this result by a three-neutrino oscillation analysis using KamLAND data. Supersedes GANDO 11.
- ABE 11 obtained this result by a two-neutrino oscillation analysis using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. CPT invariance is assumed.
- ¹¹ ABE 11 obtained this result by a two-neutrino oscillation analysis using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, and SAGE data.
- 12 ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{32} fixed to $2.4\times 10^{-3}~\text{eV}^2$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. The normal neutrino mass ordering and CPT invariance are assumed.
- 13 ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{32} fixed to $2.4\times 10^{-3}~\text{eV}^2$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, and GALLEX/GNO data. The normal neutrino mass ordering is assumed.
- ¹⁴ BELLINI 11A obtained this result by a two-neutrino oscillation analysis using KamLAND, Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Journal **743** 24 (2011)) with the exception that the ⁸B flux was left free. CPT invariance is assumed.
- ¹⁵ BELLINI 11A obtained this result by a two-neutrino oscillation analysis using Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Journal **743** 24 (2011)) with the exception that the ⁸B flux was left free.
- 16 GANDO 11 obtain this result with three-neutrino fit using the KamLAND + solar data. Superseded by GANDO 13.
- 17 GANDO 11 obtain this result with three-neutrino fit using the KamLAND data only. Supersedes ABE 08A.
- ¹⁸ AHARMIM 10 global solar neutrino data include SNO's low-energy-threshold analysis survival probability day/night curves, SNO Phase III integral rates (AHARMIM 08), CI (CLEVELAND 98), SAGE (ABDURASHITOV 09), Gallex/GNO (HAMPEL 99, ALT-MANN 05), Borexino (ARPESELLA 08A), SK-I zenith (HOSAKA 06), and SK-II day/night spectra (CRAVENS 08).

- ¹⁹ AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data and KamLAND data (ABE 08A). *CPT* invariance is assumed.
- ²⁰ AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data.
- 21 AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^2 fixed to 2.3×10^{-3} eV², using global solar neutrino data and KamLAND data (ABE 08A). *CPT* invariance is assumed.
- ²² AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^2 fixed to 2.3×10^{-3} eV², using global solar neutrino data.
- ²³ ABE 08A obtained this result by a rate + shape + time combined geoneutrino and reactor two-neutrino fit for Δm_{21}^2 and $\tan^2\theta_{12}$, using KamLAND data only. Superseded by GANDO 11.
- ²⁴ ABE 08A obtained this result by means of a two-neutrino fit using KamLAND, Homestake, SAGE, GALLEX, GNO, SK (zenith angle and E-spectrum), the SNO χ^2 -map, and solar flux data. *CPT* invariance is assumed. Superseded by GANDO 11.
- ²⁵ AHARMIM 08 obtained this result by a two-neutrino oscillation analysis using all solar neutrino data including those of Borexino (ARPESELLA 08A) and Super-Kamiokande-I (HOSAKA 06), and KamLAND data (ABE 08A). *CPT* invariance is assumed.
- ²⁶ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (ARAKI 05). *CPT* invariance is assumed.
- ²⁷ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the data from Super-Kamiokande, SNO (AHMAD 02 and AHMAD 02B), and KamLAND (ARAKI 05) experiments. *CPT* invariance is assumed.
- ²⁸ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data.
- 29 HOSAKA 06 obtained this result from the consistency between the observed and expected day-night flux asymmetry amplitude. The listed 68% CL range is derived from the 1σ boundary of the amplitude fit to the data. Oscillation parameters are constrained to be in the LMA region. The mixing angle is fixed at $\tan^2\theta=0.44$ because the fit depends only very weekly on it.
- 30 AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (ARAKI 05). *CPT* invariance is assumed. AHARMIM 05A also quotes $\Delta(m^2) = (8.0^{+0.6}_{-0.4}) \times 10^{-5} \text{ eV}^2$ as the error enveloping the 68% CL two-dimensional region.
- 31 AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in figure 35a of AHARMIM 05A. AHARMIM 05A also quotes $\Delta(m^2)=(6.5^{+4.4}_{-2.3})\times 10^{-5}~\text{eV}^2$ as the error enveloping the 68% CL two-dimensional region.
- 32 ARAKI 05 obtained this result by a two-neutrino oscillation analysis using KamLAND and solar neutrino data. CPT invariance is assumed. The 1σ error shown here is provided by the KamLAND collaboration. The error quoted in ARAKI 05, $\Delta(m^2) = (7.9 ^{+0.6}_{-0.5}) \times 10^{-5}$, envelops the 68% CL two-dimensional region.
- 33 AHMED 04A obtained this result by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (EGUCHI 03). *CPT* invariance is assumed. AHMED 04A also quotes $\Delta(m^2)=(7.1^{+1.2}_{-0.6})\times 10^{-5}~\text{eV}^2$ as the error enveloping the 68% CL two-dimensional region.
- ³⁴AHMED 04A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 5(a) of AHMED 04A. The best-fit point is $\Delta(m^2) = 6.5 \times 10^{-5} \text{ eV}^2$, $\tan^2\theta = 0.40 \text{ (sin}^2 2 \theta = 0.82)$.
- ³⁵ SMY 04 obtained this result by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (IANNI 03). *CPT* invariance is assumed.

$\sin^2(\theta_{23})$

The reported limits below correspond to the projection onto the $\sin^2(\theta_{23})$ axis of the 90% CL contours in the $\sin^2(\theta_{23}) - \Delta m_{32}^2$ plane presented by the authors. Unless otherwise specified, the limits are 90% CL and the reported uncertainties are 68% CL.

	•			•
VALUE	DOCUMENT ID			COMMENT
	OUR FIT Assuming in			
0.51 ± 0.05 O	OUR FIT Assuming n	ormal	mass hi	erarchy
$0.53 \begin{array}{l} +0.09 \\ -0.12 \end{array}$	$^{ m 1}$ AARTSEN	15A	ICCB	3ν osc; normal mass ordering
$0.51 \begin{array}{l} +0.09 \\ -0.11 \end{array}$	$^{ m 1}$ AARTSEN	15A	ICCB	3ν osc; inverted mass ordering
$0.514 ^{\displaystyle +0.055}_{\displaystyle -0.056}$	² ABE	14	T2K	3ν osc.; normal mass ordering
0.511 ± 0.055	² ABE	14	T2K	3 u osc.; inverted mass ordering
$0.41 \begin{array}{l} +0.23 \\ -0.06 \end{array}$	³ ADAMSON	14	MINS	3 u osc., normal mass ordering
$0.41 \begin{array}{l} +0.26 \\ -0.07 \end{array}$	³ ADAMSON	14	MINS	3 u osc.; inverted mass ordering
• • • We do no	ot use the following da	ata for	average	es, fits, limits, etc. • • •
$0.567^{+0.032}_{-0.128}$	⁴ FORERO	14	FIT	Normal mass ordering
$0.573^{+0.025}_{-0.043}$	⁴ FORERO	14	FIT	Inverted mass ordering
$0.452 ^{igoplus 0.052}_{-0.028}$	⁵ GONZALEZ-G	14	FIT	Normal mass ordering; global fit
$0.579 ^{igoplus 0.025}_{-0.037}$	⁵ GONZALEZ-G	14	FIT	Inverted mass ordering; global fit
0.24 to 0.76 0.514 ± 0.082	⁶ AARTSEN ⁷ ABE	13B 13G	ICCB T2K	DeepCore, 2ν oscillation 3ν osc.; normal mass ordering
$0.388^{+0.051}_{-0.053}$	⁸ ADAMSON	13 B	MINS	Beam + Atmospheric; identical ν & $\overline{\nu}$
0.3 to 0.7	⁹ ABE	12A	T2K	off-axis beam
0.28 to 0.72	¹⁰ ADAMSON	12	MINS	$\overline{ u}$ beam
0.25 to 0.75	11,12 ADAMSON	12 B	MINS	MINOS atmospheric
0.27 to 0.73	11,13 ADAMSON	12 B	MINS	MINOS pure atmospheric $ u$
0.21 to 0.79	11,13 ADAMSON	12 B	MINS	MINOS pure atmospheric $\overline{ u}$
0.15 to 0.85	¹⁴ ADRIAN-MAR	12	ANTR	atmospheric ν with deep see telescope
0.39 to 0.61	¹⁵ ABE	11 C	SKAM	Super-Kamiokande
0.34 to 0.66	ADAMSON	11	MINS	2ν osc.; maximal mixing
$0.31 \ ^{+0.10}_{-0.07}$	¹⁶ ADAMSON	11 B	MINS	$\overline{ u}$ beam
HTTP://PD	G.LBL.GOV	Pa	ge 27	Created: 10/1/2016 20:06

 $^{^{36}\,\}mathrm{SMY}$ 04 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The 1σ errors are read from Fig. 6(a) of SMY 04.

 $^{^{}m 37}\,{\rm SMY}$ 04 obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. The 1σ errors are read from Fig. 6(a) of SMY 04.

 $^{^{38}}$ AHMAD 02B obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4(b) of AHMAD 02B. The best fit point is $\Delta(m^2) = 5.0 \times 10^{-5} \text{ eV}^2 \text{ and } \tan\theta = 0.34 \text{ (sin}^2 2 \theta = 0.76).$

³⁹ FUKUDA 02 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95%CL two-dimensional region shown in Fig. 4 of FUKUDA 02. The best fit point is $\Delta(m^2)$ $=6.9 \times 10^{-5} \text{ eV}^2 \text{ and } \tan^2 \theta = 0.38 \text{ (sin}^2 2 \theta = 0.80).$

```
<sup>17</sup> WENDELL
0.41 to 0.59
                                               SKAM 3\nu osc. with solar terms; \theta_{13}=0
                     <sup>18</sup> WENDELL
0.39 to 0.61
                                               SKAM 3\nu osc.; normal mass ordering
                     <sup>19</sup> WENDELL
0.37 to 0.63
                                         10
                                               SKAM 3\nu osc.; inverted mass ordering
0.31 to 0.69
                        ADAMSON
                                         A80
                                              MINS
                                                        MINOS
                     <sup>20</sup> ADAMSON
                                         06
                                               MINS
                                                        atmospheric \nu with far detector
0.05 to 0.95
                     <sup>21</sup> AHN
0.18 to 0.82
                                         06A
                                               K2K
                                                        KEK to Super-K
                     <sup>22</sup> MICHAEL
0.23 to 0.77
                                         06
                                               MINS
                                                        MINOS
                     <sup>23</sup> ALIU
0.18 to 0.82
                                         05
                                               K2K
                                                        KEK to Super-K
                     <sup>24</sup> ALLISON
                                         05
                                               SOU<sub>2</sub>
0.18 to 0.82
                     <sup>25</sup> ASHIE
                                         05
0.36 to 0.64
                                               SKAM Super-Kamiokande
                     <sup>26</sup> AMBROSIO
0.28 to 0.72
                                         04
                                               MCRO MACRO
                     <sup>27</sup> ASHIE
0.34 to 0.66
                                         04
                                               SKAM L/E distribution
                     <sup>28</sup> AHN
0.08 to 0.92
                                         03
                                               K2K
                                                        KEK to Super-K
                     <sup>29</sup> AMBROSIO
                                         03
0.13 to 0.87
                                               MCRO MACRO
                     <sup>30</sup> AMBROSIO
0.26 to 0.74
                                         03
                                               MCRO MACRO
                     <sup>31</sup> SANCHEZ
                                         03
0.15 to 0.85
                                               SOU2 Soudan-2 Atmospheric
                     <sup>32</sup> AMBROSIO
0.28 to 0.72
                                         01
                                               MCRO upward \mu
                     33 AMBROSIO
0.29 to 0.71
                                         01
                                               MCRO upward \mu
                     <sup>34</sup> FUKUDA
                                         99C SKAM upward \mu
0.13 to 0.87
                     <sup>35</sup> FUKUDA
                                         99D SKAM upward \mu
0.23 to 0.77
                     <sup>36</sup> FUKUDA
0.08 to 0.92
                                              SKAM
                                                       stop \mu / through
                     <sup>37</sup> FUKUDA
0.29 to 0.71
                                              SKAM
                                                        Super-Kamiokande
                     <sup>38</sup> HATAKEYAMA98
0.08 to 0.92
                                               KAMI
                                                       Kamiokande
                     <sup>39</sup> HATAKEYAMA98
0.24 to 0.76
                                               KAMI
                                                        Kamiokande
                     <sup>40</sup> FUKUDA
0.20 to 0.80
                                               KAMI
                                                       Kamiokande
```

¹ AARTSEN 15A obtains this result by a three-neutrino oscillation analysis using 10–100 GeV muon neutrino sample from a total of 953 days of measurement with the low-energy subdetector DeepCore of the IceCube neutrino telescope.

 $^{^2}$ ABE 14 results are based on ν_μ disappearance using three-neutrino oscillation fit. The confidence intervals are derived from one dimensional profiled likelihoods.

 $^{^3}$ ADAMSON 14 uses a complete set of accelerator and atmospheric data. The analysis combines the ν_μ disappearance and ν_e appearance data using three-neutrino oscillation fit. The fit results are obtained for normal and inverted mass ordering assumptions. The best fit is for lower θ_{23} quadrant and inverted mass ordering.

⁴ FORERO 14 performs a global fit to neutrino oscillations using solar, reactor, long-baseline accelerator, and atmospheric neutrino data.

⁵ GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as 68% CL intervals of 0.433–0.496 or 0.530–0.594 for normal and 0.514–0.612 for inverted mass ordering.

⁶ AARTSEN 13B obtained this result by a two-neutrino oscillation analysis using 20–100 GeV muon neutrino sample from a total of 318.9 days of live-time measurement with the low-energy subdetector DeepCore of the IceCube neutrino telescope.

 $^{^7}$ The best fit value is $\sin^2(heta_{23}) = 0.514 \pm 0.082$. Superseded by ABE 14.

⁸ ADAMSON 13B obtained this result from ν_{μ} and $\overline{\nu}_{\mu}$ disappearance using ν_{μ} (10.71 × 10²⁰ POT) and $\overline{\nu}_{\mu}$ (3.36 × 10²⁰ POT) beams, and atmospheric (37.88kton-years) data from MINOS The fit assumed two-flavor neutrino hypothesis and identical ν_{μ} and $\overline{\nu}_{\mu}$ oscillation parameters. Superseded by ADAMSON 14.

 $^{^9}$ ABE 12A obtained this result by a two-neutrino oscillation analysis. The best-fit point is $\sin^2(2\theta_{23})=0.98$.

- 10 ADAMSON 12 is a two-neutrino oscillation analysis using antineutrinos. The best fit value is $\sin^2(2\theta_{23})=0.95^{+0.10}_{-0.11}\pm0.01.$
- ¹¹ ADAMSON 12B obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 37.9 kton·yr atmospheric neutrino data with the MINOS far detector.
- ¹² The best fit point is $\Delta m^2 = 0.0019 \text{ eV}^2$ and $\sin^2 2\theta = 0.99$. The 90% single-parameter confidence interval at the best fit point is $\sin^2 2\theta > 0.86$.
- ¹³ The data are separated into pure samples of νs and $\overline{\nu} s$, and separate oscillation parameters for νs and $\overline{\nu} s$ are fit to the data. The best fit point is $(\Delta m^2, \sin^2 2\theta) = (0.0022 \text{ eV}^2, 0.99)$ and $(\Delta \overline{m}^2, \sin^2 2\overline{\theta}) = (0.0016 \text{ eV}^2, 1.00)$. The quoted result is taken from the 90% C.L. contour in the $(\Delta m^2, \sin^2 2\theta)$ plane obtained by minimizing the four parameter log-likelihood function with respect to the other oscillation parameters.
- ¹⁴ ADRIAN-MARTINEZ 12 measured the oscillation parameters of atmospheric neutrinos with the ANTARES deep sea neutrino telescope using the data taken from 2007 to 2010 (863 days of total live time).
- ¹⁵ ABE 11C obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande-I+II+III atmospheric neutrino data. ABE 11C also reported results under a two-neutrino disappearance model with separate mixing parameters between ν and $\overline{\nu}$, and obtained $\sin^2 2\theta > 0.93$ for ν and $\sin^2 2\theta > 0.83$ for $\overline{\nu}$ at 90% C.L.
- ADAMSON 11B obtained this result by a two-neutrino oscillation analysis of antineutrinos in an antineutrino enhanced beam with 1.71×10^{20} protons on target. This results is consistent with the neutrino measurements of ADAMSON 11 at 2% C.L.
- 17 WENDELL 10 obtained this result (sin $^2\theta_{23}=0.407-0.583$) by a three-neutrino oscillation analysis using the Super-Kamiokande-I+II+III atmospheric neutrino data, assuming $\theta_{13}=0$ but including the solar oscillation parameters Δm_{21}^2 and $\sin^2\theta_{12}$ in the fit.
- 18 WENDELL 10 obtained this result (sin $^2\theta_{23}=0.43$ –0.61) by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m_{21}^2=0$) using the Super-Kamiokande-I+II+III atmospheric neutrino data, and updates the HOSAKA 06A result.
- 19 WENDELL 10 obtained this result (sin $^2\theta_{23}=0.44$ –0.63) by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m_{21}^2=0$) using the Super-Kamiokande-I+II+III atmospheric neutrino data, and updates the HOSAKA 06A result.
- ²⁰ ADAMSON 06 obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 4.54 kton yr atmospheric neutrino data with the MINOS far detector.
- ²¹ Supercedes ALIU 05.
- ²² MICHAEL 06 best fit is for maximal mixing. See also ADAMSON 08.
- ²³ The best fit is for maximal mixing.
- ²⁴ ALLISON 05 result is based upon atmospheric neutrino interactions including upward-stopping muons, with an exposure of 5.9 kton yr. From a two-flavor oscillation analysis the best-fit point is $\Delta m^2 = 0.0017 \text{ eV}^2$ and $\sin^2(2\theta) = 0.97$.
- ²⁵ ASHIE 05 obtained this result by a two-neutrino oscillation analysis using 92 kton yr atmospheric neutrino data from the complete Super-Kamiokande I running period.
- 26 AMBROSIO 04 obtained this result, without using the absolute normalization of the neutrino flux, by combining the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV, N_{low} and N_{high} , and the numbers of InDown + UpStop and InUp events. Here, N_{low} and N_{high} are the number of events with reconstructed neutrino energies < 30 GeV and > 130 GeV, respectively. InDown and InUp represent events with downward and upward-going tracks starting inside the detector due to neutrino interactions, while UpStop represents entering upward-going tracks which stop in the detector. The best fit is for maximal mixing.
- 27 ASHIE 04 obtained this result from the L(flight length)/E(estimated neutrino energy) distribution of ν_{μ} disappearance probability, using the Super-Kamiokande-I 1489 live-day atmospheric neutrino data.

- ²⁸ There are several islands of allowed region from this K2K analysis, extending to high values of Δm^2 . We only include the one that overlaps atmospheric neutrino analyses. The best fit is for maximal mixing.
- AMBROSIO 03 obtained this result on the basis of the ratio R = N_{low}/N_{high} , where N_{low} and N_{high} are the number of upward through-going muon events with reconstructed neutrino energy < 30 GeV and > 130 GeV, respectively. The data came from the full detector run started in 1994. The method of FELDMAN 98 is used to obtain the limits.
- 30 AMBROSIO 03 obtained this result by using the ratio R and the angular distribution of the upward through-going muons. R is given in the previous note and the angular distribution is reported in AMBROSIO 01. The method of FELDMAN 98 is used to obtain the limits. The best fit is to maximal mixing.
- ³¹ SANCHEZ 03 is based on an exposure of 5.9 kton yr. The result is obtained using a likelihood analysis of the neutrino L/E distribution for a selection μ flavor sample while the *e*-flavor sample provides flux normalization. The method of FELDMAN 98 is used to obtain the allowed region. The best fit is $\sin^2(2\theta) = 0.97$.
- 32 AMBROSIO 01 result is based on the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits. The best fit is for maximal mixing.
- ³³ AMBROSIO 01 result is based on the angular distribution and normalization of upward through-going muon tracks with $E_{\mu} > 1$ GeV. See the previous footnote.
- 34 FUKUDA 99C obtained this result from a total of 537 live days of upward through-going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux is $(1.74 \pm 0.07 \pm 0.02) \times 10^{-13} \ \rm cm^{-2} s^{-1} sr^{-1}$. The best fit is $\sin^2(2\theta) = 0.95$.
- 35 FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is (0.39 \pm 0.04 \pm 0.02) \times 10 $^{-13}$ cm $^{-2}$ s $^{-1}$ sr $^{-1}$. This is compared to the expected flux of (0.73 \pm 0.16 (theoretical error)) \times 10 $^{-13}$ cm $^{-2}$ s $^{-1}$ sr $^{-1}$. The best fit is to maximal mixing.
- ³⁶ FUKUDA 99D obtained this result from the zenith dependence of the upward-stopping/through-going flux ratio. The best fit is to maximal mixing.
- ³⁷ FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheric neutrino data. The best fit is for maximal mixing.
- ³⁸ HATAKEYAMA 98 obtained this result from a total of 2456 live days of upward-going muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muons is $(1.94\pm0.10^{+0.07}_{-0.06})\times 10^{-13}$ cm $^{-2}$ s $^{-1}$ sr $^{-1}$. This is compared to the expected flux of (2.46 ± 0.54) (theoretical error)) $\times 10^{-13}$ cm $^{-2}$ s $^{-1}$ sr $^{-1}$. The best fit is for maximal mixing.
- ³⁹ HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande contained events (FUKUDA 94) and upward going muon events. The best fit is $\sin^2(2\theta) = 0.95$.
- 40 FUKUDA 94 obtained the result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande. The best fit is for maximal mixing.

Δm^2_{32}

The sign of Δm_{32}^2 is not known at this time. Only the absolute value is quoted below. Unless otherwise specified, the ranges below correspond to the projection onto the Δm_{32}^2 axis of the 90% CL contours in the $\sin^2(2\theta_{23}) - \Delta m_{32}^2$ plane presented by the authors. If uncertainties are reported with the value, they correspond to one standard deviation uncertainty.

<i>VALUE</i> (10^{-3} eV^2)	_	DOCUMENT ID		TECN	COMMENT
2.51 ±0.06 OUR F	IT A	ssuming inverted	d mas	s hierard	chy
2.44 ±0.06 OUR F	IT A	ssuming normal	mass	hierarch	ny
$2.72 \begin{array}{l} +0.19 \\ -0.20 \end{array}$	1	AARTSEN	15A	ICCB	3ν osc; normal mass ordering
$2.73 \begin{array}{l} +0.18 \\ -0.21 \end{array}$		AARTSEN	15 A	ICCB	3ν osc; inverted mass ordering
2.37 ± 0.11		AN	15	DAYA	3ν osc.; normal mass ordering
$2.47\ \pm0.11$	2	AN	15	DAYA	3ν osc.; inverted mass ordering
2.51 ± 0.10	3	ABE	14	T2K	3ν osc.; normal mass ordering
2.56 ± 0.10		ABE	14	T2K	3ν osc.; inverted mass ordering
2.37 ± 0.09	4	ADAMSON	14	MINS	3ν osc., accel., atmospheric; normal mass ordering
$2.41 \begin{array}{c} +0.12 \\ -0.09 \end{array}$	4	ADAMSON	14	MINS	3ν osc., accel., atmsopheric; inverted mass ordering
• • • We do not use the	ne follo	wing data for a	verage	es, fits, I	imits, etc. • • •
$2.54 \begin{array}{l} +0.19 \\ -0.20 \end{array}$	5	AN	14	DAYA	3 u osc.; normal mass ordering
$2.64 \begin{array}{l} +0.19 \\ -0.20 \end{array}$	5	AN	14	DAYA	3ν osc.; inverted mass ordering
$2.48 \begin{array}{l} +0.05 \\ -0.07 \end{array}$	6	FORERO	14	FIT	3ν ; normal mass ordering
$2.38 \begin{array}{l} +0.05 \\ -0.06 \end{array}$		FORERO	14	FIT	3ν ; inverted mass ordering
2.457 ± 0.047	7,8	GONZALEZ-G.	.14	FIT	Normal mass ordering; global fit
$2.449 {+ 0.048 \atop - 0.047}$	7	GONZALEZ-G.	.14	FIT	Inverted mass ordering; global fit
$\begin{array}{cc} 2.3 & +0.6 \\ -0.5 \end{array}$	9	AARTSEN	13 B	ICCB	DeepCore, 2ν oscillation
$2.44 \begin{array}{l} +0.17 \\ -0.15 \end{array}$	10	ABE	13 G	T2K	3ν osc.; normal mass ordering
$2.41 \begin{array}{l} +0.09 \\ -0.10 \end{array}$		ADAMSON	13 B	MINS	2ν osc.; beam + atmospheric; identical ν & $\overline{\nu}$
2.2–3.1		ABE	12A	T2K	off-axis beam
$2.62 \ ^{+0.31}_{-0.28} \ \pm 0.09$		ADAMSON	12	MINS	$\overline{ u}$ beam
1.35-2.55	14,15	ADAMSON	12 B	MINS	MINOS atmospheric
1.4-5.6	14,16	ADAMSON	12 B	MINS	MINOS pure atmospheric $ u$
0.9-2.5	14,16	ADAMSON	12 B	MINS	MINOS pure atmospheric $\overline{ u}$
1.8–5.0	17	ADRIAN-MAR		ANTR	
1.3-4.0	18	ABE	110	SKAM	
$2.32 \begin{array}{l} +0.12 \\ -0.08 \end{array}$		ADAMSON	11	MINS	2ν oscillation; maximal mixing
$3.36 \begin{array}{l} +0.46 \\ -0.40 \end{array}$		ADAMSON	11 B	MINS	$\overline{ u}$ beam
<3.37		ADAMSON	11 C	MINS	MINOS
1.9–2.6		WENDELL	10	SKAM	3ν osc.; normal mass ordering
HTTP://PDG.LBL.	GOV	Page	31		Created: 10/1/2016 20:06

1.7-2.7	²¹ WENDELL	10	SKAM	3ν osc.; inverted mass ordering
2.43 ± 0.13	ADAMSON	A80	MINS	MINOS
0.07-50	²² ADAMSON	06	MINS	atmospheric $ u$ with far detec-
1.9-4.0	^{23,24} AHN	064	Kak	tor
			K2K	KEK to Super-K
2.2–3.8	²⁵ MICHAEL	06	MINS	MINOS
1.9-3.6	²³ ALIU	05	K2K	KEK to Super-K
0.3-12	²⁶ ALLISON	05	SOU2	
1.5-3.4	²⁷ ASHIE	05	SKAM	atmospheric neutrino
0.6-8.0	²⁸ AMBROSIO	04	MCRO	MACRO
1.9 to 3.0	²⁹ ASHIE	04	SKAM	L/E distribution
1.5-3.9	³⁰ AHN	03	K2K	KEK to Super-K
0.25-9.0	³¹ AMBROSIO	03	MCRO	MACRO
0.6-7.0	³² AMBROSIO	03	MCRO	MACRO
0.15-15	³³ SANCHEZ	03	SOU2	Soudan-2 Atmospheric
0.6–15	³⁴ AMBROSIO	01	MCRO	upward μ
1.0-6.0	³⁵ AMBROSIO	01	MCRO	upward μ
1.0-50	³⁶ FUKUDA	99 C	SKAM	upward μ
1.5-15.0	³⁷ FUKUDA	99 D	SKAM	upward μ
0.7–18	³⁸ FUKUDA	99 D	SKAM	stop μ / through
0.5-6.0	³⁹ FUKUDA	98C	SKAM	Super-Kamiokande
0.55-50	⁴⁰ HATAKEYAMA	198	KAMI	Kamiokande
4–23	⁴¹ HATAKEYAMA	198	KAMI	Kamiokande
5–25	⁴² FUKUDA	94	KAMI	Kamiokande

¹ AARTSEN 15A obtains this result by a three-neutrino oscillation analysis using 10–100 GeV muon neutrino sample from a total of 953 days of measurements with the low-energy subdetector DeepCore of the IceCube neutrino telescope.

 $^{^2}$ AN 15 uses all eight identical detectors, with four placed near the reactor cores and the remaining four at the far hall to determine prompt energy spectra. The results correspond to the exposure of 6.9×10^5 GW $_{th}$ -ton-days. They derive $\Delta m_{ee}^2=(2.42\pm0.11)\times 10^{-3}$ eV 2 . Assuming the normal (inverted) ordering, the fitted $\Delta m_{32}^2=(2.37\pm0.11)\times 10^{-3}$ ((2.47 \pm 0.11) \times 10 $^{-3}$) eV 2 . Supersedes AN 14.

 $^{^3}$ ABE 14 results are based on ν_{μ} disappearance using three-neutrino oscillation fit. The confidence intervals are derived from one dimensional profiled likelihoods. In ABE 14 the inverted mass ordering result is reported as $\Delta m^2_{13} = (2.48 \pm 0.10) \times 10^{-3} \text{ eV}^2$ which we converted to Δm^2_{32} by adding PDG 14 value of $\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$.

⁴ ADAMSON 14 uses a complete set of accelerator and atmospheric data. The analysis combines The analysis combines the ν_{μ} disappearance and ν_{e} appearance data using three-neutrino oscillation fit. The fit results are obtained for normal and inverted mass ordering assumptions.

 $^{^5}$ AN 14 uses six identical detectors, with three placed near the reactor cores (flux-weighted baselines of 512 and 561 m) and the remaining three at the far hall (at the flux averaged distance of 1579 m from all six reactor cores) to determine prompt energy spectra and derive $\Delta m_{ee}^2 = (2.59^{+0.19}_{-0.20}) \times 10^{-3} \text{ eV}^2$. Assuming the normal (inverted) ordering, the fitted $\Delta m_{32}^2 = (2.54^{+0.19}_{-0.20}) \times 10^{-3} \; ((2.64^{+0.19}_{-0.20}) \times 10^{-3}) \; \text{eV}^2$. Superseded by AN 15.

 $^{^6}$ FORERO 14 performs a global fit to Δm^2_{31} using solar, reactor, long-baseline accelerator, and atmospheric neutrino data.

- $^7\,\mathsf{GONZALEZ} ext{-}\mathsf{GARCIA}$ 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as (2.460 \pm $(0.046) \times 10^{-3} \text{ eV}^2$ for normal and $(2.445 {+0.047 \atop -0.045}) \times 10^{-3} \text{ eV}^2$ for inverted mass ordering.
- 8 The value for normal mass ordering is actually a measurement of Δm^2_{31} which differs from Δm_{32}^2 by a much smaller value of Δm_{12}^2 .
- 9 AARTSEN 13B obtained this result by a two-neutrino oscillation analysis using 20–100 GeV muon neutrino sample from a total of 318.9 days of live-time measurement with the low-energy subdetector DeepCore of the IceCube neutrino telescope.
- 10 Based on the observation of 58 u_{μ} events with 205 \pm 17(syst) expected in the absence of neutrino oscillations. Superseded by ABE 14.
- 11 ADAMSON 13B obtained this result from u_{μ} and $\overline{
 u}_{\mu}$ disappearance using u_{μ} (10.71 imes 10^{20} POT) and $\overline{\nu}_{tt}$ (3.36 × 10^{20} POT) beams, and atmospheric (37.88 kton-years) data from MINOS. The fit assumed two-flavor neutrino hypothesis and identical u_{μ} and $\overline{
 u}_{\mu}$ oscillation parameters.
- $^{12}\,\mathrm{ABE}$ 12A obtained this result by a two-neutrino oscillation analysis. The best-fit point is $\Delta m_{32}^2 = 2.65 \times 10^{-3} \text{ eV}^2.$
- $^{13}\,\mathrm{ADAMSON}$ 12 is a two-neutrino oscillation analysis using antineutrinos.
- 14 ADAMSON 12 B obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 37.9 kton yr atmospheric neutrino data with the MINOS far detector.
- 15 The 90% single-parameter confidence interval at the best fit point is Δ m $^2=$ 0.0019 \pm 0.0004 eV².
- 16 The data are separated into pure samples of us and $\overline{
 u}$ s, and separate oscillation parameters for ν s and $\overline{\nu}$ s are fit to the data. The best fit point is $(\Delta m^2, \sin^2 2\theta) = (0.0022 \text{ eV}^2, \sin^2 2\theta)$ 0.99) and $(\Delta \overline{m}^2, \sin^2 2\overline{\theta}) = (0.0016 \text{ eV}^2, 1.00)$. The quoted result is taken from the 90% C.L. contour in the $(\Delta m^2, \sin^2 2\theta)$ plane obtained by minimizing the four parameter log-likelihood function with respect to the other oscillation parameters.
- $^{
 m 17}$ ADRIAN-MARTINEZ 12 measured the oscillation parameters of atmospheric neutrinos with the ANTARES deep sea neutrino telescope using the data taken from 2007 to 2010 (863 days of total live time).
- $^{18}\!$ ABE $^{11}\!$ C obtained this result by a two-neutrino oscillation analysis with separate mixing parameters between neutrinos and antineutrinos, using the Super-Kamiokande-I+II+III atmospheric neutrino data. The corresponding 90% CL neutrino oscillation parameter range obtained from this analysis is $\Delta m^2 = 1.7 - 3.0 \times 10^{-3} \text{ eV}^2$.
- 19 ADAMSON 11B obtained this result by a two-neutrino oscillation analysis of antineutrinos in an antineutrino enhanced beam with 1.71×10^{20} protons on target. This results is consistent with the neutrino measurements of ADAMSON 11 at 2% C.L.
- 20 ADAMSON 11C obtains this result based on a study of antineutrinos in a neutrino beam and assumes maximal mixing in the two-flavor approximation.
- 21 WENDELL 10 obtained this result by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m^2_{21}=0$) using the Super-Kamiokande-I+II+III atmospheric neutrino data, and updates the HOSAKA 06A result.
- $^{22}\!\operatorname{ADAMSON}$ 06 obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 4.54 kton yr atmospheric neutrino data with the MINOS far detector. ²³ The best fit in the physical region is for $\Delta m^2 = 2.8 \times 10^{-3} \text{ eV}^2$.

- 25 MICHAEL 06 best fit is 2.74×10^{-3} eV². See also ADAMSON 08.
- ²⁶ ALLISON 05 result is based on an atmospheric neutrino observation with an exposure of 5.9 kton yr. From a two-flavor oscillation analysis the best-fit point is $\Delta m^2=0.0017$ eV^2 and $sin^2 2 \theta = 0.97$.
- ASHIE 05 obtained this result by a two-neutrino oscillation analysis using 92 kton yr atmospheric neutrino data from the complete Super-Kamiokande I running period. The best fit is for $\Delta m^2 = 2.1 \times 10^{-3} \text{ eV}^2$.

- 28 AMBROSIO 04 obtained this result, without using the absolute normalization of the neutrino flux, by combining the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV, N_{low} and N_{high} , and the numbers of InDown + UpStop and InUp events. Here, N_{low} and N_{high} are the number of events with reconstructed neutrino energies < 30 GeV and > 130 GeV, respectively. InDown and InUp represent events with downward and upward-going tracks starting inside the detector due to neutrino interactions, while UpStop represents entering upward-going tracks which stop in the detector. The best fit is for $\Delta m^2 = 2.3 \times 10^{-3}~\rm eV^2$.
- ²⁹ ASHIE 04 obtained this result from the L(flight length)/E(estimated neutrino energy) distribution of ν_{μ} disappearance probability, using the Super-Kamiokande-I 1489 live-day atmospheric neutrino data. The best fit is for $\Delta m^2 = 2.4 \times 10^{-3} \text{ eV}^2$.
- ³⁰ There are several islands of allowed region from this K2K analysis, extending to high values of Δm^2 . We only include the one that overlaps atmospheric neutrino analyses. The best fit is for $\Delta m^2 = 2.8 \times 10^{-3} \text{ eV}^2$.
- 31 AMBROSIO 03 obtained this result on the basis of the ratio R = N_{low}/N_{high} , where N_{low} and N_{high} are the number of upward through-going muon events with reconstructed neutrino energy < 30 GeV and > 130 GeV, respectively. The data came from the full detector run started in 1994. The method of FELDMAN 98 is used to obtain the limits. The best fit is for $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$.
- 32 AMBROSIO 03 obtained this result by using the ratio R and the angular distribution of the upward through-going muons. R is given in the previous note and the angular distribution is reported in AMBROSIO 01. The method of FELDMAN 98 is used to obtain the limits. The best fit is for $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$.
- 33 SANCHEZ 03 is based on an exposure of 5.9 kton yr. The result is obtained using a likelihood analysis of the neutrino L/E distribution for a selection μ flavor sample while the e-flavor sample provides flux normalization. The method of FELDMAN 98 is used to obtain the allowed region. The best fit is for $\Delta m^2 = 5.2 \times 10^{-3} \text{ eV}^2$.
- 34 AMBROSIO 01 result is based on the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits.
- 35 AMBROSIO 01 result is based on the angular distribution and normalization of upward through-going muon tracks with $E_{\mu}~>1$ GeV. See the previous footnote.
- 36 FUKUDA 99C obtained this result from a total of 537 live days of upward through-going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux is (1.74 \pm 0.07 \pm 0.02) \times 10 $^{-13}$ cm $^{-2}$ s $^{-1}$ sr $^{-1}$. The best fit is for $\Delta m^2 = 5.9 \times 10^{-3} \ \text{eV}^2$.
- FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is $(0.39 \pm 0.04 \pm 0.02) \times 10^{-13} \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$. This is compared to the expected flux of $(0.73 \pm 0.16) \times 10^{-13} \times 10$
- ³⁸ FUKUDA 99D obtained this result from the zenith dependence of the upward-stopping/through-going flux ratio. The best fit is for $\Delta m^2 = 3.1 \times 10^{-3} \text{ eV}^2$.
- 39 FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheric neutrino data. The best fit is for $\Delta m^2 = 2.2 \times 10^{-3} \text{ eV}^2$.
- 40 HATAKEYAMA 98 obtained this result from a total of 2456 live days of upward-going muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muons is $(1.94 \pm 0.10 {+0.07 \atop -0.06}) \times$

 10^{-13} cm $^{-2}$ s $^{-1}$ sr $^{-1}$. This is compared to the expected flux of (2.46 \pm 0.54 (theoretical error)) \times 10^{-13} cm $^{-2}$ s $^{-1}$ sr $^{-1}$. The best fit is for $\Delta m^2 = 2.2 \times 10^{-3}$ eV 2 .

⁴¹ HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande contained events (FUKUDA 94) and upward going muon events. The best fit is for $\Delta m^2 = 13 \times 10^{-3} \text{ eV}^2$.

 $^{13}\times 10^{-3}~\text{eV}^2.$ 42 FUKUDA 94 obtained the result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande. The best fit is for $\Delta m^2 = 16\times 10^{-3}~\text{eV}^2.$

$\sin^2(\theta_{13})$

HTTP://PDG.LBL.GOV

At present time direct measurements of $\sin^2(\theta_{13})$ are derived from the reactor $\overline{\nu}_e$ disappearance at distances corresponding to the Δm_{32}^2 value, i.e. L $\sim \,$ 1km. Alternatively, limits can also be obtained from the analysis of the solar neutrino data and accelerator-based $\nu_\mu \to \, \nu_e$ experiments.

$VALUE$ (units 10^{-2})	CL%	DOCUMENT ID)	TECN	COMMENT			
2.19± 0.12 OUI	2.19± 0.12 OUR AVERAGE							
$2.15\!\pm\ 0.13$		1 AN	15	DAYA	DayaBay, Ling Ao/Ao II reactors			
$2.3 \ \begin{array}{c} + \ 0.9 \\ - \ 0.8 \end{array}$		² ABE	14H	DCHZ	Chooz reactors			
$2.12\pm~0.47$		³ AN	14 B	DAYA	DayaBay, Ling Ao/Ao II reactors			
$2.5 \pm 0.9 \pm 0.9$)	⁴ ABE	13 C	DCHZ	Chooz reactors			
$2.9 \pm 0.3 \pm 0.5$	5	⁵ AHN	12	RENO	Yonggwang reactors			
• • • We do not use	e the f	following data for	avera	ges, fits,	, limits, etc. • • •			
$2.6 \ \ \begin{array}{c} + \ 1.2 \\ - \ 1.1 \end{array}$		⁶ ABE	14A	DCHZ	Chooz reactors			
$3.0 \ \ \begin{array}{c} + \ 1.3 \\ - \ 1.0 \end{array}$		⁷ ABE	14 C	T2K	Inverted mass ordering			
$3.6 \begin{array}{c} + & 1.0 \\ - & 0.9 \end{array}$		⁷ ABE	14 C	T2K	Normal mass ordering			
$2.3~\pm~0.2$		⁸ AN	14	DAYA	DayaBay, Ling Ao/Ao II reactors			
$2.34\pm~0.20$		⁹ FORERO	14	FIT	Normal mass ordering			
2.40 ± 0.19		⁹ FORERO	14	FIT	Inverted mass ordering			
$2.18\pm~0.10$		¹⁰ GONZALEZ-	G14	FIT	Normal mass ordering; global fit			
$2.19 {+\atop -}\; {0.11\atop 0.10}$		¹⁰ GONZALEZ-	G14	FIT	Inverted mass ordering; global fit			
$2.3 \ \ \begin{array}{c} + \ 1.3 \\ - \ 1.0 \end{array}$		¹¹ ABE	13E	T2K	Normal mass ordering			
$2.8 \ \ \begin{array}{c} + \ 1.6 \\ - \ 1.2 \end{array}$		¹¹ ABE	13E	T2K	Inverted mass ordering			
$1.6\begin{array}{l}+&1.3\\-&0.9\end{array}$		¹² ADAMSON	13A	MINS	Normal mass ordering			
$3.0 \ \ ^{+} \ \ \overset{1.8}{1.6}$		¹² ADAMSON	13A	MINS	Inverted mass ordering			
<13	90	AGAFONOV	A13	OPER	OPERA: $3 u$			
< 3.6	95	¹³ AHARMIM	13	FIT	global solar: $3 u$			
$2.3 \pm 0.3 \pm 0.1$		¹⁴ AN	13	DAYA	DayaBay, LIng Ao/Ao II reactors			
$2.2 \pm 1.1 \pm 0.8$	3	¹⁵ ABE	12	DCHZ	Chooz reactors			
$2.8 \pm 0.8 \pm 0.7$		¹⁶ ABE	12 B	DCHZ	Chooz reactors			
$2.4 \pm 0.4 \pm 0.1$	L	17 AN	12	DAYA	DayaBay, Ling Ao/Ao II reactors			
$2.5 \ + \ 1.8 \ - \ 1.6$	68	¹⁸ ABE	11	FIT	$KamLAND + global \; solar$			
< 6.1	95	¹⁹ ABE	11	FIT	Global solar			
1.3 to 5.6	68	²⁰ ABE	11A	T2K	Normal mass ordering			
1.5 to 5.6	68	²¹ ABE	11A	T2K	Inverted mass ordering			

Page 35

0.3 0.8 8 7.8 12.4	to 3.9 ± 3	68 68 68 68	232425	ADAMSON ADAMSON FOGLI GANDO GANDO	11D 11D 11 11 11	MINS MINS FIT FIT	Normal mass ordering Inverted mass ordering Global neutrino data KamLAND $+$ solar: 3ν KamLAND: 3ν
3	+ 9 - 7	90	27	ADAMSON	10A	MINS	Normal mass ordering
6	$^{+14}_{-6}$	90	28	ADAMSON	10A	MINS	Inverted mass ordering
8	+ 8 - 7	29	,30	AHARMIM	10	FIT	KamLAND $+$ global solar: 3ν
< 30		₉₅ 29	,31	AHARMIM	10	FIT	global solar: 3ν
< 15		90	32	WENDELL	10	SKAM	3ν osc.; normal m ordering
< 33		90	32	WENDELL	10	SKAM	3ν osc.; inverted m ordering
11	$^{+11}_{-8}$		33	ADAMSON	09	MINS	Normal mass ordering
18	$+15 \\ -11$		34	ADAMSON	09	MINS	Inverted mass ordering
6	± 4			FOGLI	80	FIT	Global neutrino data
8	± 7		36	FOGLI	80	FIT	Solar + KamLAND data
5	\pm 5			FOGLI	80	FIT	${\sf Atmospheric} + {\sf LBL} + {\sf CHOOZ}$
< 36		90	38	YAMAMOTO	06	K2K	Accelerator experiment
< 48		90		AHN	04	K2K	Accelerator experiment
< 36		90		BOEHM	01		Palo Verde react.
< 45		90		BOEHM	00		Palo Verde react.
< 15		90	42	APOLLONIO	99	CHOZ	Reactor Experiment

 $^{^{}m 1}$ AN 15 uses all eight identical detectors, with four placed near the reactor cores and the remaining four at the far hall to determine the mixing angle θ_{13} using the $\overline{
u}_e$ observed interaction rates with neutron capture on Gd and energy spectra. The result corresponds to the exposure of $6.9 \times 10^5~\mathrm{GW}_{th}$ -ton-days. Supersedes AN 14.

 $^{^2}$ ABE 14H uses 467.9 live days of one detector, 1050 m away from two reactor cores of the Chooz nuclear power station, to determine the mixing parameter $\sin^2(2 \theta_{13})$. The Bugey4 data (DECLAIS 94) is used to constrain the neutrino flux. The data set includes 7.24 reactor-off days. A rate and shape analysis is performed. Supercedes ABE 14A.

 $^{^3}$ AN 14B uses six identical anti-neutrino detectors with flux-weighted baselines of \sim 500 m and \sim 1.6 km to six power reactors. This rate analysis uses a 217-day data set and neutron capture on protons (not Gd) only. $\Delta m_{31}^2 = 2.32 \times 10^{-3} \text{ eV}^2$ is assumed.

 $^{^4}$ ABE 13C uses delayed neutron capture on hydrogen instead of on Gd used previously. The physical volume is thus three times larger. The fit is based on the rate and shape analysis as in ABE 12B. The Bugey4 data (DECLAIS 94) is used to constrain the neutrino flux.

⁵AHN 12 uses two identical detectors, placed at flux weighted distances of 408.56 m and 1433.99 m from six reactor cores, to determine the mixing angle θ_{13} . This rate-only analysis excludes the no-oscillation hypothesis at 4.9 standard deviations. The value of $\Delta m_{31}^2 = (2.32^{+0.12}_{-0.08}) \times 10^{-3} \text{ eV}^2$ was assumed in the analysis.

 $^{^6\,\}mathrm{ABE}$ 14A uses 467.9 live days of one detector, 1050 m away from two reactor cores of the Chooz nuclear power station, to determine the mixing parameter $\sin^2(2 \, \theta_{13})$. The Bugey4 data (DECLAIS 94) is used to constrain the neutrino flux. The data set includes 7.24 reactor-off days. A "rate-modulation" analysis is performed. Supercedes ABE 12B. ⁷ ABE 14C result is for ν_e appearance and assumes $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2(\theta_{23})$

^{= 0.5,} and δ = 0.

- ⁸ AN 14 uses six identical detectors, with three placed near the reactor cores (flux-weighted baselines of 512 and 561 m) and the remaining three at the far hall (at the flux averaged distance of 1579 m from all six reactor cores) to determine the mixing angle θ_{13} using the $\overline{\nu}_e$ observed interaction rates with neutron capture on Gd and energy spectra. Supersedes AN 13 and superseded by AN 15.
- ⁹ FORERO 14 performs a global fit to neutrino oscillations using solar, reactor, long-baseline accelerator, and atmospheric neutrino data.
- 10 GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as $(2.18^{+0.10}_{-0.11})\times 10^{-2}~\text{eV}^2$ for normal and $(2.19^{+0.12}_{-0.10})\times 10^{-2}~\text{eV}^2$ for inverted mass ordering.
- $^{11}\,\mathrm{ABE}$ 13E assumes maximal θ_{23} mixing and CP phase $\delta=0.$
- 12 ADAMSON 13A results obtained from ν_e appearance, assuming $\delta=$ 0, and $\sin^2(2~\theta_{23})=0.957.$
- 13 AHARMIM 13 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^2 fixed to $2.45\times 10^{-3}~\text{eV}^2$, using global solar neutrino data. AHARMIM 13 global solar neutrino data include SNO's all-phases-combined analysis results on the total active 8 B neutrino flux and energy-dependent ν_e survival probability parameters, measurements of CI (CLEVELAND 98), Ga (ABDURASHITOV 09 which contains combined analysis with GNO (ALTMANN 05 and Ph.D. thesis of F. Kaether)), and 7 Be (BELLINI 11A) rates, and 8 B solar-neutrino recoil electron measurements of SK-I (HOSAKA 06) zenith, SK-II (CRAVENS 08) and SK-III (ABE 11) day/night spectra, and Borexino (BELLINI 10A) spectra. AHARMIM 13 also reported a result combining global solar and KamLAND data, which is $\sin^2(2~\theta_{13}) = (9.1^{+2.9}_{-3.1})\times 10^{-2}$.
- 14 AN 13 uses six identical detectors, with three placed near the reactor cores (flux-weighted baselines of 498 and 555 m) and the remaining three at the far hall (at the flux averaged distance of 1628 m from all six reactor cores) to determine the $\overline{\nu}_e$ interaction rate ratios. Superseded by AN 14.
- 15 ABE 12 determines the $\overline{\nu}_e$ interaction rate in a single detector, located 1050 m from the cores of two reactors. A rate and shape analysis is performed. The rate normalization is fixed by the results of the Bugey4 reactor experiment, thus avoiding any dependence on possible very short baseline oscillations. The value of $\Delta m_{31}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ is used in the analysis. Superseded by ABE 12B.
- 16 ABE 12B determines the neutrino mixing angle θ_{13} using a single detector, located 1050 m from the cores of two reactors. This result is based on a spectral shape and rate analysis. The Bugey4 data (DECLAIS 94) is used to constrain the neutrino flux. Superseded by ABE 14A.
- 17 AN 12 uses six identical detectors with three placed near the reactor cores (flux-weighted baselines of 470 m and 576 m) and the remaining three at the far hall (at the flux averaged distance of 1648 m from all six reactor cores) to determine the mixing angle θ_{13} using the $\overline{\nu}_e$ observed interaction rate ratios. This rate-only analysis excludes the no-oscillation hypothesis at 5.2 standard deviations. The value of $\Delta m_{31}^2 = (2.32^{+0.12}_{-0.08}) \times 10^{-3} \ \text{eV}^2$ was assumed in the analysis. Superseded by AN 13.
- 18 ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{32} fixed to $2.4\times 10^{-3}~\text{eV}^2$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. This result implies an upper bound of $\sin^2\theta_{13} < 0.059$ (95% CL) or $\sin^22\theta_{13} < 0.22$ (95% CL). The normal neutrino mass ordering and CPT invariance are assumed.
- 19 ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{32} fixed to $2.4\times 10^{-3}~\text{eV}^2$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, and GALLEX/GNO data. The normal neutrino mass ordering is assumed.

- 20 The quoted limit is for $\Delta m^2_{32}=2.4\times 10^{-3}~\text{eV}^2,~\theta_{23}=\pi/2,~\delta=0,$ and the normal mass ordering. For other values of δ , the 68% region spans from 0.03 to 0.25, and the 90% region from 0.02 to 0.32.
- ²¹ The quoted limit is for $\Delta m_{32}^2=2.4\times 10^{-3}~\text{eV}^2$, $\theta_{23}=\pi/2$, $\delta=0$, and the inverted mass ordering. For other values of δ , the 68% region spans from 0.04 to 0.30, and the 90% region from 0.02 to 0.39.
- ²² The quoted limit is for $\Delta m^2_{32}=2.32\times 10^{-3}~{\rm eV^2},~\theta_{23}=\pi/2,~\delta=0$, and the normal mass ordering. For other values of δ , the 68% region spans from 0.02 to 0.12, and the 90% region from 0 to 0.16.
- 23 The quoted limit is for $\Delta m^2_{32}=2.32\times 10^{-3}~{\rm eV^2},~\theta_{23}=\pi/2,~\delta=0,$ and the inverted mass ordering. For other values of δ , the 68% region spans from 0.02 to 0.16, and the 90% region from 0 to 0.21.
- 24 FOGLI 11 obtained this result from an analysis using the atmospheric, accelerator long baseline, CHOOZ, solar, and KamLAND data. Recently, MUELLER 11 suggested an average increase of about 3.5% in normalization of the reactor $\overline{\nu}_e$ fluxess, and using these fluxes, the fitted result becomes 0.10 \pm 0.03.
- 25 GANDO 11 report $\sin^2\! heta_{13} = 0.020 \pm 0.016$. This result was obtained with three-neutrino fit using the KamLAND + solar data.
- 26 GANDO 11 report $\sin^2 \theta_{13} = 0.032 \pm 0.037$. This result was obtained with three-neutrino fit using the KamLAND data only.
- ²⁷ This result corresponds to the limit of <0.12 at 90% CL for $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$, $\theta_{23}=\pi/2$, and $\delta=0$. For other values of δ , the 90% CL region spans from 0 to 0.16.
- ²⁸ This result corresponds to the limit of <0.20 at 90% CL for $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$, $\theta_{23}=\pi/2$, and $\delta=0$. For other values of δ , the 90% CL region spans from 0 to 0.21.
- 29 AHARMIM 10 global solar neutrino data include SNO's low-energy-threshold analysis survival probability day/night curves, SNO Phase III integral rates (AHARMIM 08), CI (CLEVELAND 98), SAGE (ABDURASHITOV 09), Gallex/GNO (HAMPEL 99, ALT-MANN 05), Borexino (ARPESELLA 08A), SK-I zenith (HOSAKA 06), and SK-II day/night spectra (CRAVENS 08).
- 30 AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{31} fixed to $2.3\times 10^{-3}~\text{eV}^2$, using global solar neutrino data and KamLAND data (ABE 08A). CPT invariance is assumed. This result implies an upper bound of $\sin^2 \theta_{13}$ $0.057 \text{ (95\% CL) or } \sin^2 2\theta_{13} < 0.22 \text{ (95\% CL)}.$
- ³¹ AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^2 fixed to 2.3×10^{-3} eV², using global solar neutrino data.
- $^{
 m 32}$ WENDELL 10 obtained this result by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m_{21}^2 = 0$) using the Super-Kamiokande-I+II+III atmospheric neutrino data, and updates the HOSAKA 06A result. ³³ The quoted limit is for $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$, $\theta_{23} = \pi/2$, and $\delta = 0$. For other values of δ , the 68% CL region spans from 0.02 to 0.26. ³⁴ The quoted limit is for $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$, $\theta_{23} = \pi/2$, and $\delta = 0$. For other
- values of δ , the 68% CL region spans from 0.04 to 0.34.
- $^{
 m 35}$ FOGLI 08 obtained this result from a global analysis of all neutrino oscillation data, that is, solar + KamLAND + atmospheric + accelerator long baseline + CHOOZ.
- $^{36}\,\mathsf{FOGLI}$ 08 obtained this result from an analysis using the solar and KamLAND neutrino oscillation data.
- 37 FOGLI 08 obtained this result from an analysis using the atmospheric, accelerator long baseline, and CHOOZ neutrino oscillation data.
- 38 YAMAMOTO 06 searched for $\nu_{\mu} \rightarrow \nu_{e}$ appearance. Assumes 2 $\sin^{2}(2\theta_{\mu\,e})=\sin^{2}(2\theta_{13}).$ The quoted limit is for $\Delta m_{32}^{2}=1.9\times10^{-3}~\text{eV}^{2}.$ That value of Δm_{32}^{2} is the one- σ low value for AHN 06A. For the AHN 06A best fit value of $2.8 \times 10^{-3}~\text{eV}^2$ the $\sin^2(2\theta_{13})$ limit is < 0.26. Supersedes AHN 04.

- 39 AHN 04 searched for $\nu_{\mu} \rightarrow ~\nu_{e}$ appearance. Assuming 2 $\sin^{2}(2~\theta_{\mu_{e}}) = \sin^{2}(2~\theta_{13})$, a limit on $\sin^{2}(2~\theta_{\mu_{e}})$ is converted to a limit on $\sin^{2}(2~\theta_{13})$. The quoted limit is for $\Delta m_{32}^{2} = 1.9 \times 10^{-3}~\text{eV}^{2}$. That value of Δm_{32}^{2} is the one- σ low value for ALIU 05. For the ALIU 05 best fit value of $2.8 \times 10^{-3}~\text{eV}^{2}$, the $\sin^{2}(2~\theta_{13})$ limit is < 0.30.
- ⁴⁰ The quoted limit is for $\Delta m_{32}^2 = 1.9 \times 10^{-3} \text{ eV}^2$. That value of Δm_{32}^2 is the 1- σ low value for ALIU 05. For the ALIU 05 best fit value of $2.8 \times 10^{-3} \text{ eV}^2$, the $\sin^2 2\theta_{13}$ limit is < 0.19. In this range, the θ_{13} limit is larger for lower values of Δm_{32}^2 , and smaller for higher values of Δm_{32}^2 .
- ⁴¹ The quoted limit is for $\Delta m_{32}^2 = 1.9 \times 10^{-3} \text{ eV}^2$. That value of Δm_{32}^2 is the 1-σ low value for ALIU 05. For the ALIU 05 best fit value of $2.8 \times 10^{-3} \text{ eV}^2$, the $\sin^2 2 \theta_{13}$ limit is < 0.23.
- ⁴² The quoted limit is for $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$. That value of Δm_{32}^2 is the central value for ADAMSON 08. For the ADAMSON 08 1- σ low value of $2.30 \times 10^{-3} \text{ eV}^2$, the $\sin^2 2\theta_{13}$ limit is < 0.16. See also APOLLONIO 03 for a detailed description of the experiment.

CP violating phase ———

δ , CP violating phase

Measurements of δ come from atmospheric and accelarator experiments looking at ν_e appearance. We encode values between 0 and 2π , though it is equivalent to use $-\pi$ to π .

$VALUE (\pi \text{ rad})$	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	data for averages	, fits,	limits, e	etc. • • •
0 to 0.15, 0.83 to 2 1.09 to 1.92 0.05 to 1.2	90 90 90	ABE ABE ¹ ADAMSON	_	T2K T2K MINS	Normal mass hierarchy Inverted mass hierarchy Normal mass hierarchy
$1.34 ^{+0.64}_{-0.38}$		FORERO	14	FIT	Normal mass hierarchy
$1.48^{+0.34}_{-0.32}$		FORERO	14	FIT	Inverted mass hierarchy
$1.70^{igoplus 0.22}_{-0.39}$		² GONZALEZ-G	14	FIT	Normal mass hierarchy; global fit
$1.41^{igoplus 0.35}_{-0.34}$		² GONZALEZ-G	14	FIT	Inverted mass hierarchy; global fit
0 to 1.5 or 1.9 to 2	90	³ ADAMSON	13A	MINS	Normal mass hierarchy

 $^{^1}$ Based on three-flavor formalism and $\theta_{23}>\pi/4.$ Likelihood as a function of δ is also shown for the other three combinations of hierarchy and θ_{23} quadrant; all values of δ are allowed at 90% C.L.

² GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as 68% CL intervals of 1.24–1.94 for normal and 1.15–1.77 for inverted mass ordering.

 $^{^3}$ Based on ν_e appearance in MINOS and the calculated $\sin^2(2\theta_{23})=0.957,\,\theta_{23}>\pi/4,$ and normal mass hierarchy. Likelihood as a function of δ is also shown for the other three combinations of hierarchy and θ_{23} quadrant; all values of δ are allowed at 90% C.L.

(C) Other neutrino mixing results

The LSND collaboration reported in AGUILAR 01 a signal which is consistent with $\overline{
u}_{\mu}
ightarrow \overline{
u}_{e}$ oscillations. In a three neutrino framework, this would be a measurement of θ_{12} and Δm^2_{21} . This does not appear to be consistent with most of the other neutrino data. The MiniBooNE experiment, reported in AGUILAR-AREVALO 07, does a two-neutrino analysis which, assuming CP conservation, rules out AGUILAR 01. However, the MiniBooNE antineutrino data reported in AGUILAR-AREVALO 13A are consistent with the signal reported in AGUILAR 01. The following listings include results which might be relevant towards understanding these observations. They include searches for $\nu_{\mu}
ightarrow ~ \nu_{e}, ~ \overline{
u}_{\mu}
ightarrow ~ \overline{
u}_{e}, ~ {
m sterile}$ neutrino oscillations, and CPT violation.

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$ $(\nu_{\mu} \rightarrow \nu_{e})$

<i>VALUE</i> (eV	⁽²)	CL%	DOCUMENT ID		TECN	COMMENT
• • • W	e do not use the	following	data for averages	, fits,	limits, e	tc. • • •
0.015	to 0.050	90	¹ AGUILAR-AR	. 13A	МВОО	MiniBooNE
< 0.34		90	² MAHN	12	MBOO	MiniBooNE/SciBooNE
< 0.034		90	AGUILAR-AR	.07	MBOO	MiniBooNE
< 0.0008		90	AHN	04	K2K	Water Cherenkov
< 0.4		90	ASTIER	03	NOMD	CERN SPS
< 2.4		90	AVVAKUMOV	02	NTEV	NUTEV FNAL
			³ AGUILAR	01	LSND	$ u\mu ightarrow \ u_{ m e} \ { m osc.prob}.$
0.03	to 0.3	95	⁴ ATHANASSO	.98	LSND	$ u_{\mu} ightarrow u_{e}$
< 2.3		90	⁵ LOVERRE	96		CHARM/CDHS
< 0.9		90	VILAIN	94C	CHM2	CERN SPS
< 0.09		90	ANGELINI	86	HLBC	BEBC CERN PS

 $^{^{1}}$ Based on $u_{\mu}
ightarrow
u_{e}$ appearance of 162.0 ± 47.8 events; marginally compatible with two

neutrino oscillations. The best fit value is $\Delta m^2=3.14~\text{eV}^2.$ 2 MAHN 12 is a combined spectral fit of MiniBooNE and SciBooNE neutrino data with the range of Δm^2 up to 25 eV². The best limit is 0.04 at 7 eV².

 $^{^3}$ AGUILAR 01 is the final analysis of the LSND full data set. Search is made for the $u_{\mu} \rightarrow
u_{e}$ oscillations using u_{μ} from π^{+} decay in flight by observing beam-on electron events from ν_e C \rightarrow e^- X. Present analysis results in 8.1 \pm 12.2 \pm 1.7 excess events in the 60< E_e < 200 MeV energy range, corresponding to oscillation probability of $0.10 \pm 0.16 \pm 0.04\%$. This is consistent, though less significant, with the previous result of ATHANASSOPOULOS 98, which it supersedes. The present analysis uses selection criteria developed for the decay at rest region, and is less effective in removing the background above 60 MeV than ATHANASSOPOULOS 98.

⁴ ATHANASSOPOULOS 98 is a search for the $\nu_{\mu} \to \nu_{e}$ oscillations using ν_{μ} from π^{+} decay in flight. The 40 observed beam-on electron events are consistent with ν_{e} C \to e^-X ; the expected background is 21.9 ± 2.1 . Authors interpret this excess as evidence for an oscillation signal corresponding to oscillations with probability $(0.26 \pm 0.10 \pm 0.05)\%$. Although the significance is only 2.3σ , this measurement is an important and consistent cross check of ATHANASSOPOULOS 96 who reported evidence for $\overline{
u}_{\mu}
ightarrow \overline{
u}_{e}$ oscillations from μ^+ decay at rest. See also ATHANASSOPOULOS 98B.

 $^{^{5}}$ LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$ $(u_\mu ightarrow u_e)$

VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	data for averages,	fits,	limits, e	tc. • • •
< 7.2	90				$\Delta(m^2) > 0.1 \; \mathrm{eV}^2$
0.8 to 3	90	¹ AGUILAR-AR	13A	MBOO	MiniBooNE
< 11	90	² ANTONELLO	13	ICAR	$ u_{\mu} ightarrow u_{e}$
< 6.8	90	³ ANTONELLO	13A	ICAR	$ u_{\mu}^{\prime} \rightarrow \nu_{e}$
<100	90	⁴ MAHN	12		, MiniBooNE/SciBooNE
< 1.8	90	⁵ AGUILAR-AR	07	MBOO	MiniBooNE
<110	90	⁶ AHN	04	K2K	Water Cherenkov
< 1.4	90	ASTIER	03	NOMD	CERN SPS
< 1.6	90	AVVAKUMOV	02	NTEV	NUTEV FNAL
		⁷ AGUILAR	01	LSND	$ u_{\mu} ightarrow \ u_{e} \ { m osc.prob}.$
0.5 to 30	95	⁸ ATHANASSO	98		$ u_{\mu}^{'} \rightarrow \nu_{e}$
< 3.0	90	⁹ LOVERRE	96		CHARM/CDHS
< 9.4	90	VILAIN	9 4C	CHM2	CERN SPS
< 5.6	90	¹⁰ VILAIN	94 C	CHM2	CERN SPS

 1 Based on $u_{\mu}
ightarrow
u_{e}$ appearance of 162.0 ± 47.8 events; marginally compatible with two

neutrino oscillations. The best fit value is $\sin^2\!2\theta=0.002.$ 2 ANTONELLO 13 use the ICARUS T600 detector at LNGS and \sim 20 GeV beam of ν_μ from CERN 730 km away to search for an excess of $\nu_{\rm P}$ events. Two events are found with 3.7 \pm 0.6 expected from conventional sources. This result excludes some parts of the parameter space expected by LSND. Superseded by ANTONELLO 13A.

 $^3\,\text{Based}$ on four events with a background of 6.4 \pm 0.9 from conventional sources with an average energy of 20 GeV and 730 km from the source of ν_{μ} .

⁴ MAHN 12 is a combined fit of MiniBooNE and SciBooNE neutrino data. ⁵ The limit is $\sin^2 2\theta < 0.9 \times 10^{-3}$ at $\Delta m^2 = 2$ eV². That value of Δm^2 corresponds to the smallest mixing angle consistent with the reported signal from LSND in AGUILAR 01. ⁶ The limit becomes $\sin^2 2\theta < 0.15$ at $\Delta m^2 = 2.8 \times 10^{-3}$ eV², the bets-fit value of the

 ν_{μ} disappearance analysis in K2K.

 $^7\text{AGUILAR}$ 01 is the final analysis of the LSND full data set of the search for the ν_{μ} \rightarrow u_e oscillations. See footnote in preceding table for further details.

 8 ATHANASSOPOULOS 98 report (0.26 \pm 0.10 \pm 0.05)% for the oscillation probability; the value of $\sin^2 2\theta$ for large Δm^2 is deduced from this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions. If effect is due to oscillation, it is most likely to be intermediate $\sin^2 2\theta$ and Δm^2 . See also ATHANASSOPOULOS 98B.

LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.

 10 VILAIN 94C limit derived by combining the u_{μ} and $\overline{
u}_{\mu}$ data assuming *CP* conservation.

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$ $(\overline{ u}_{\mu} ightarrow \overline{ u}_{e})$

<i>VALUE</i> (eV ²)	CL%	DOCUMENT ID	TECN COMMENT
• • • We do not use the	ne followin	g data for averages, fits,	limits, etc. • • •
0.023 to 0.060	90	¹ AGUILAR-AR13A	
< 0.16	90	² CHENG 12	MBOO MiniBooNE/SciBooNE
0.03-0.09	90	³ AGUILAR-AR10	MBOO E $_{\nu} >$ 475 MeV
0.03-0.07	90	⁴ AGUILAR-AR10	MBOO $E_{\nu}^{\nu} > 200 \text{ MeV}$
< 0.06	90	AGUILAR-AR09B	
< 0.055	90	⁵ ARMBRUSTER02	KAR2 Liquid Sci. calor.

HTTP://PDG.LBL.GOV

Page 41

< 2.6	90	AVVAKUMOV (02	NTEV	NUTEV FNAL
0.03-0.05		⁶ AGUILAR (01	LSND	LAMPF
0.05-0.08	90	⁷ ATHANASSO9	96	LSND	LAMPF
0.048-0.090	80	⁸ ATHANASSO9	95		
< 0.07	90	⁹ HILL	95		
< 0.9	90	VILAIN 9	94C	CHM2	CERN SPS
<0.14	90	10 FREEDMAN	93	CNTR	LAMPE

 $^{^1}$ Based on $\overline{\nu}_{\mu} \to \overline{\nu}_e$ appearance of 78.4 \pm 28.5 events. The best fit values are $\Delta m^2 =$ _0.043 eV^2 and sin^22\$\theta = 0.88\$.

²CHENG 12 is a combined fit of MiniBooNE and SciBooNE antineutrino data.

- ⁴ This value is for a two neutrino oscillation analysis for excess antineutrino events with $E_{\nu} > 200$ MeV with subtraction of the expected 12 events low energy excess seen in the neutrino component of the beam. The best fit value is 0.007 for $\Delta(m^2) = 4.4$ eV².
- ⁵ ARMBRUSTER 02 is the final analysis of the KARMEN 2 data for 17.7 m distance from the ISIS stopped pion and muon neutrino source. It is a search for $\overline{\nu}_e$, detected by the inverse β -decay reaction on protons and 12 C. 15 candidate events are observed, and 15.8 \pm 0.5 background events are expected, hence no oscillation signal is detected. The results exclude large regions of the parameter area favored by the LSND experiment.
- ⁶ AGUILAR 01 is the final analysis of the LSND full data set. It is a search for $\overline{\nu}_e$ 30 m from LAMPF beam stop. Neutrinos originate mainly for π^+ decay at rest. $\overline{\nu}_e$ are detected through $\overline{\nu}_e p \to e^+ n$ (20< E_{e^+} < 60 MeV) in delayed coincidence with $np \to d\gamma$. Authors observe 87.9 ± 22.4 ± 6.0 total excess events. The observation is attributed to $\overline{\nu}_\mu \to \overline{\nu}_e$ oscillations with the oscillation probability of 0.264 ± 0.067 ± 0.045%, consistent with the previously published result. Taking into account all constraints, the most favored allowed region of oscillation parameters is a band of $\Delta(m^2)$ from 0.2–2.0 eV². Supersedes ATHANASSOPOULOS 95, ATHANASSOPOULOS 96, and ATHANASSOPOULOS 98.
- ATHANASSOPOULOS 98. 7 ATHANASSOPOULOS 96 is a search for $\overline{\nu}_e$ 30 m from LAMPF beam stop. Neutrinos originate mainly from π^+ decay at rest. $\overline{\nu}_e$ could come from either $\overline{\nu}_\mu \to \overline{\nu}_e$ or $\nu_e \to \overline{\nu}_e$; our entry assumes the first interpretation. They are detected through $\overline{\nu}_e \, p \to e^+ \, n$ (20 MeV $<\!E_{e^+}$ $<\!60$ MeV) in delayed coincidence with $np \to d\gamma$. Authors observe $51 \pm 20 \pm 8$ total excess events over an estimated background 12.5 \pm 2.9. ATHANASSOPOULOS 96B is a shorter version of this paper.
- 8 ATHANASSOPOULOS 95 error corresponds to the 1.6σ band in the plot. The expected background is 2.7 ± 0.4 events. Corresponds to an oscillation probability of $(0.34^{+0.20}_{-0.18}\pm0.07)\%$. For a different interpretation, see HILL 95. Replaced by ATHANASSOPOULOS 96.
- 9 HILL 95 is a report by one member of the LSND Collaboration, reporting a different conclusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino oscillation $\overline{\nu}_{\mu} \rightarrow \ \overline{\nu}_{e}$ and obtains only upper limits.
- 10 FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types ν_{μ} , $\overline{\nu}_{\mu}$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e p \rightarrow e^+ n$. FREEDMAN 93 replaces DURKIN 88.

 $^{^3}$ This value is for a two neutrino oscillation analysis for excess antineutrino events with E $_{\nu} >$ 475 MeV. The best fit is at 0.07. The allowed region is consistent with LSND reported by AGUILAR 01. Supercedes AGUILAR-AREVALO 09B.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$ $(\overline{ u}_{\mu} ightarrow \overline{ u}_e)$

<i>VALUE</i> (units 10 ⁻³)	CL%	DOCUMENT ID	TECN COM	<i>IMENT</i>
• • • We do not use the	e following	data for averages, fits,	limits, etc. •	• •
<640	90	¹ ANTONELLO 13A	ICAR $\overline{\nu}_e$ a	appearance
<150	90	² CHENG 12	MBOO Min	iBooNE/SciBooNE
0.4-9.0	99	³ AGUILAR-AR10	MBOO E_{ν}	> 475 MeV
0.4-9.0	99	⁴ AGUILAR-AR10	MBOO E_{ν}	> 200 MeV
< 3.3	90	⁵ AGUILAR-AR09B	MBOO Min	
< 1.7	90	⁶ ARMBRUSTER02	KAR2 Liqu	ıid Sci. calor.
< 1.1	90	AVVAKUMOV 02	NTEV NU	ΓEV FNAL
$5.3 \pm 1.3 \pm 9.0$		⁷ AGUILAR 01	LSND LAN	ИРF
$6.2\!\pm\!2.4\!\pm\!1.0$		⁸ ATHANASSO96	LSND LAN	ИРF
3–12	80	⁹ ATHANASSO95		
< 6	90	¹⁰ HILL 95		

 $^{^1}$ ANTONELLO 13A obtained the limit by assuming $\overline{\nu}_{\mu} \to \overline{\nu}_e$ oscillation from the $\sim 2\%$ of $\overline{\nu}_{\mu}$ evnets contamination in the CNGS beam.

 $\frac{2}{3}$ CHENG 12 is a combined fit of MiniBooNE and SciBooNE antineutrino data.

$\Delta(m^2)$ for $\sin^2(2\theta) = 1 \quad (\nu_{\mu}(\overline{\nu}_{\mu}) \rightarrow \nu_{e}(\overline{\nu}_{e}))$

<i>VALUE</i> (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
<0.075	90	BORODOV	92	CNTR	BNL E776
• • • We do not use th	e following	data for averages	, fits,	limits, e	etc. • • •
<1.6	90	$^{ m 1}$ ROMOSAN	97	CCFR	FNAL

¹ROMOSAN 97 uses wideband beam with a 0.5 km decay region.

³ This value is for a two neutrino oscillation analysis for excess antineutrino events with $E_{\nu} >$ 475 MeV. At 90% CL there is no solution at high $\Delta(m^2)$. The best fit is at maximal mixing. The allowed region is consistent with LSND reported by AGUILAR 01. Supercedes AGUILAR-AREVALO 09B.

⁴ This value is for a two neutrino oscillation analysis for excess antineutrino events with $E_{\nu} > 200$ MeV with subtraction of the expected 12 events low energy excess seen in the neutrino component of the beam. At 90% CL there is no solution at high $\Delta(m^2)$. The best fit value is 0.007 for $\Delta(m^2) = 4.4 \text{ eV}^2$.

 $^{^{5}}$ This result is inconclusive with respect to small amplitude mixing suggested by LSND.

⁶ ARMBRUSTER 02 is the final analysis of the KARMEN 2 data. See footnote in the preceding table for further details, and the paper for the exclusion plot.

⁷ AGUILAR 01 is the final analysis of the LSND full data set. The deduced oscillation probability is $0.264 \pm 0.067 \pm 0.045\%$; the value of $\sin^2 2\theta$ for large $\Delta(m^2)$ is twice this probability (although these values are excluded by other constraints). See footnote in preceding table for further details, and the paper for a plot showing allowed regions. Supersedes ATHANASSOPOULOS 95, ATHANASSOPOULOS 96, and ATHANASSOPOULOS 98.

⁸ATHANASSOPOULOS 96 reports $(0.31 \pm 0.12 \pm 0.05)\%$ for the oscillation probability; the value of $\sin^2 2\theta$ for large $\Delta(m^2)$ should be twice this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions.

 $^{^9}$ ATHANASSOPOULOS 95 error corresponds to the 1.6σ band in the plot. The expected background is 2.7 ± 0.4 events. Corresponds to an oscillation probability of $(0.34^{+0.20}_{-0.18}\pm0.07)\%$. For a different interpretation, see HILL 95. Replaced by ATHANASSOPOULOS 96.

 $^{^{10}}$ HILL 95 is a report by one member of the LSND Collaboration, reporting a different conclusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino oscillation $\overline{\nu}_{IL} \rightarrow \overline{\nu}_{e}$ and obtains only upper limits.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$ $(\nu_{\mu}(\overline{\nu}_{\mu}) ightarrow ~ \nu_{e}(\overline{\nu}_{e}))$

VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
<1.8	90	$^{ m 1}$ ROMOSAN	97	CCFR	FNAL
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •
<3.8	90	² MCFARLAND	95	CCFR	FNAL
<3	90	BORODOV	92	CNTR	BNL E776

¹ ROMOSAN 97 uses wideband beam with a 0.5 km decay region.

$\Delta(m^2)$ for $\sin^2(2\theta) = 1 \ (\overline{\nu}_e \not\rightarrow \overline{\nu}_e)$

DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 90 ¹ ACHKAR 95 CNTR Bugev reactor < 0.01

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$ ($\overline{\nu}_e \not\rightarrow \overline{\nu}_e$)

DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • ¹ ACHKAR 95 CNTR For $\Delta(m^2) = 0.6 \text{ eV}^2$ < 0.02

- Sterile neutrino limits from atmospheric neutrino studies

$\Delta(m^2)$ for $\sin^2(2\theta) = 1 \ (\nu_{\mu} \rightarrow \nu_{s})$ ν_{s} means ν_{τ} or any sterile (noninteracting) ν .

DOCUMENT ID $VALUE (10^{-5} \text{ eV}^2)$ CL% TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •

<3000 (or <550) ¹ OYAMA KAMI Water Cherenkov **BIONTA** < 4.2 or > 54.IMB Flux has ν_{μ} , $\overline{\nu}_{\mu}$, ν_{e} , and $\overline{\nu}_{e}$

Search for $u_{\mu} \rightarrow u_{s}$

DOCUMENT ID TECN COMMENT • We do not use the following data for averages, fits, limits, etc. • •

¹ AMBROSIO MCRO matter effects 00 SKAM neutral currents + matter effects

 $^{^2}$ MCFARLAND 95 state that "This result is the most stringent to date for 250< $\Delta(m^2)$ <450 eV 2 and also excludes at 90%CL much of the high $\Delta(m^2)$ region favored by the recent LSND observation." See ATHANASSOPOULOS 95 and ATHANASSOPOU-LOS 96.

 $^{^{1}}$ ACHKAR 95 bound is for L=15, 40, and 95 m.

 $^{^{1}}$ ACHKAR 95 bound is from data for L=15, 40, and 95 m distance from the Bugey reactor.

 $^{^1}$ OYAMA 89 gives a range of limits, depending on assumptions in their analysis. They argue that the region $\Delta(m^2)=(100-1000)\times 10^{-5}~{\rm eV}^2$ is not ruled out by any data for large mixing.

- 1 AMBROSIO 01 tested the pure 2-flavor $\nu_{\mu} \rightarrow \nu_s$ hypothesis using matter effects which change the shape of the zenith-angle distribution of upward through-going muons. With maximum mixing and $\Delta(m^2)$ around 0.0024 eV 2 , the $\nu_{\mu} \rightarrow \nu_s$ oscillation is disfavored with 99% confidence level with respect to the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis.
- 2 FUKUDA 00 tested the pure 2-flavor $\nu_{\mu} \rightarrow \nu_{s}$ hypothesis using three complementary atmospheric-neutrino data samples. With this hypothesis, zenith-angle distributions are expected to show characteristic behavior due to neutral currents and matter effects. In the $\Delta(m^2)$ and $\sin^2 2\theta$ region preferred by the Super-Kamiokande data, the $\nu_{\mu} \rightarrow \nu_{s}$ hypothesis is rejected at the 99% confidence level, while the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis consistently fits all of the data sample.

_____ *CPT* tests _____

$\left\langle \Delta m_{21}^2 - \Delta \overline{m}_{21}^2 \right\rangle$

VALUE (10^{-4} eV^2) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • •

<1.1 99.7 ¹ DEGOUVEA 05 FIT solar vs. reactor

$\langle \Delta m_{32}^2 - \Delta \overline{m}_{32}^2 \rangle$

VALUE (10⁻³ eV²) CL% DOCUMENT ID TECN COMMENT

• • We do not use the following data for averages, fits, limits, etc. • •

 $0.6^{+2.4}_{-0.8}$ 90 ¹ ADAMSON 12B MINS MINOS atmospheric

REFERENCES FOR Neutrino Mixing

AARTSEN	15A	PR D91 072004	M.G. Aartsen	(IceCube Collab.)
ABE	15D	PR D91 072010	K. Abe <i>et al</i> .	(T2K Collab.)
AN	15	PRL 115 111802	F.P. An et al.	(Daya Bay Collab.)
BERGSTROM	15	JHEP 1509 200	J. Bergstrom <i>et al.</i>	(BARC, STON, MADU+)
GANDO	15	PR C92 055808	A. Gando et al.	(KamLAND Collab.)
ABE	14	PRL 112 181801	K. Abe <i>et al.</i>	(T2K Collab.)
Also		PR D91 072010	K. Abe <i>et al.</i>	(T2K Collab.)
ABE	14A	PL B735 51	Y. Abe <i>et al.</i>	(Double Chooz Collab.)
ABE	14B	PR D89 092003	K. Abe <i>et al.</i>	` (T2K Collab.)
ABE	14C	PRL 112 061802	K. Abe <i>et al.</i>	(T2K Collab.)
ABE	14H	JHEP 1410 086	Y. Abe <i>et al.</i>	(Double Chooz Collab.)
Also		JHEP 1502 074 (errat.)	Y. Abe <i>et al.</i>	(Double Chooz Collab.)
ADAMSON	14	PRL 112 191801	P. Adamson et al.	(MINOS Collab.)
AN	14	PRL 112 061801	F.P. An et al.	(Daya Bay Collab.)
AN	14B	PR D90 071101	F.P. An <i>et al.</i>	(Daya Bay Collab.)
BELLINI	14A	NAT 512 383	G. Bellini <i>et al.</i>	(Borexino Collab.)
FORERO	14	PR D90 093006	D. V. Forero, M. Tortola,	J. W. F. Valle
GONZALEZ-G.	14	JHEP 1411 052	M.C. Gonzalez-Garcia, M.	Maltoni, T. Schwetz
PDG	14	CPC 38 070001	K. Olive <i>et al.</i>	(PDG Collab.)
RENSHAW	14	PRL 112 091805	A. Renshaw et al.	(Super-Kamiokande Collab.)
AARTSEN	13B	PRL 111 081801	M.G. Aartsen et al.	(IceCube Collab.)
ABE	13C	PL B723 66	Y. Abe <i>et al.</i>	(Double Chooz Collab.)
ABE	13E	PR D88 032002	K. Abe <i>et al.</i>	(T2K Collab.)
ABE	13G	PRL 111 211803	K. Abe <i>et al.</i>	(T2K Collab.)
ADAMSON	13A	PRL 110 171801	P. Adamson et al.	(MINOS Collab.)
ADAMSON	13B	PRL 110 251801	P. Adamson <i>et al.</i>	(MINOS Collab.)

HTTP://PDG.LBL.GOV

Page 45

 $^{^{1}}$ DEGOUVEA 05 obtained this bound at the 3σ CL from the KamLAND (ARAKI 05) and solar neutrino data.

¹ The quoted result is the single-parameter 90% C.L. interval determined from the 90% C.L. contour in the $(\Delta m^2, \Delta \overline{m}^2)$ plane, which is obtained by minimizing the four parameter log-likelihood function with respect to the other oscillation parameters.

AGAFONOVA 13	JHEP 1307 004	N. Agafonova <i>et al.</i>	(OPERA Collab.)
AGUILAR-AR 13A	PRL 110 161801	A.A. Aguilar-Arevalo et al.	(MiniBooNE Collab.)
AHARMIM 13	PR C88 025501	B. Aharmim et al.	(SNO Collab.)
AN 13	CPC 37 011001	F.P. An <i>et al.</i>	(Daya Bay Collab.)
Also	CPC 37 011001 (errat.)	F.P. An et al.	(Daya Bay Collab.)
	EPJ C73 2345		
		M. Antonello <i>et al.</i>	(ICARUS Collab.)
ANTONELLO 13A	EPJ C73 2599	M. Antonello <i>et al.</i>	(ICARUS Collab.)
GANDO 13	PR D88 033001	A. Gando <i>et al.</i>	(KamLAND Collab.)
ABE 12	PRL 108 131801	Y. Abe <i>et al.</i>	(Double Chooz Collab.)
ABE 12A	PR D85 031103	K. Abe <i>et al.</i>	(T2K Collab.)
ABE 12B	PR D86 052008	Y. Abe <i>et al.</i>	(Double Chooz Collab.)
ADAMSON 12	PRL 108 191801	P. Adamson et al.	(MINOS Collab.)
			`
ADAMSON 12B	PR D86 052007	P. Adamson <i>et al.</i>	(MINOS Collab.)
ADRIAN-MAR12	PL B714 224	S. Adrian-Martinez et al.	(ANTARES Collab.)
AHN 12	PRL 108 191802	J.K. Ahn <i>et al.</i>	` (RENO Collab.)
AN 12	PRL 108 171803	F.P. An <i>et al.</i>	(Daya Bay Collab.)
Also	CPC 37 011001 (errat.)	F.P. An <i>et al.</i>	(Daya Bay Collab.)
BELLINI 12A	PRL 108 051302	G. Bellini <i>et al</i> .	(Borexino Collab.)
	PR D86 052009		MiniBooNE/SciBooNE Collab.)
MAHN 12	PR D85 032007	K.B.M. Mahn <i>et al.</i> (1	MiniBooNE/SciBooNE Collab.)
ABE 11	PR D83 052010	K. Abe <i>et al.</i>	(Super-Kamiokande Collab.)
ABE 11A	PRL 107 041801	K. Abe <i>et al.</i>	(T2K Collab.)
ABE 11B	PR C84 035804	S. Abe <i>et al.</i>	(KamLAND Collab.)
ABE 11C	PRL 107 241801	K. Abe <i>et al.</i>	(Super-Kamiokande Collab.)
ADAMSON 11	PRL 106 181801	P. Adamson et al.	(MINOS Collab.)
ADAMSON 11B	PRL 107 021801	P. Adamson <i>et al.</i>	(MINOS Collab.)
ADAMSON 11C	PR D84 071103	P. Adamson et al.	(MINOS Collab.)
ADAMSON 11D	PRL 107 181802	P. Adamson et al.	(MINOS Collab.)
		G. Bellini <i>et al.</i>	
	PL B696 191		(Borexino Collab.)
BELLINI 11A	PRL 107 141302	G. Bellini <i>et al.</i>	(Borexino Collab.)
FOGLI 11	PR D84 053007	G.L. Fogli et al.	
GANDO 11	PR D83 052002	A. Gando <i>et al.</i>	(KamLAND Collab.)
			(NameAND Collab.)
MUELLER 11	PR C83 054615	Th.A Mueller <i>et al.</i>	
SERENELLI 11	APJ 743 24	A.M. Serenelli, W.C. Haxto	n, C. Pena-Garay
ADAMSON 10A	PR D82 051102	P. Adamson et al.	(MINOS Collab.)
AGUILAR-AR 10	PRL 105 181801	A.A. Aguillar-Arevalo et al.	(MiniBooNE Collab.)
AHARMIM 10	PR C81 055504	B. Aharmim <i>et al.</i>	(SNO Collab.)
BELLINI 10A	PR D82 033006	G. Bellini <i>et al.</i>	(Borexino Collab.)
DENIZ 10	PR D81 072001	M. Deniz <i>et al.</i>	.`
			(TEXONO Collab.)
KAETHER 10	PL B685 47	F. Kaether <i>et al.</i>	
WENDELL 10	PR D81 092004	R. Wendell et al.	(Super-Kamiokande Collab.)
ABDURASHI 09	PR C80 015807	J.N. Abdurashitov et al.	(SAGE Collab.)
ADAMSON 09	PRL 103 261802	P. Adamson <i>et al.</i>	(MINOS Collab.)
AGUILAR-AR 09B	PRL 103 111801	A.A. Aguilar-arevalo et al.	(MiniBooNE Collab.)
ABE 08A	PRL 100 221803	S. Abe <i>et al.</i>	(KamLAND Collab.)
		S. Abe <i>et al.</i>	
Also	PRL 101 119904E		(KamLAND Collab.)
ADAMSON 08	PR D77 072002	P. Adamson <i>et al.</i>	(MINOS Collab.)
ADAMSON 08A	PRL 101 131802	P. Adamson et al.	(MINOS Collab.)
AHARMIM 08	PRL 101 111301	B. Aharmim et al.	` (SNO Collab.)
			(SNO Collab.)
Also	PR C87 015502	B. Aharmim et al.	(SNO Collab.)
ARPESELLA 08A	PRL 101 091302	C. Arpesella <i>et al.</i>	(Borexino Collab.)
CRAVENS 08	PR D78 032002	J.P. Cravens et al.	(Super-Kamiokande Collab.)
FOGLI 08	PRL 101 141801	G.L. Fogli, et al	(
		~	(MINIOC C)
ADAMSON 07	PR D75 092003	P. Adamson <i>et al.</i>	(MINOS Collab.)
AGUILAR-AR 07	PRL 98 231801	A.A. Aguilar-Arevalo et al.	(MiniBooNE Collab.)
AHARMIM 07	PR C75 045502	B. Aharmim et al.	` (SNO Collab.)
ADAMSON 06	PR D73 072002	P. Adamson et al.	(MINOS Collab.)
AHN 06A	PR D74 072003	M.H. Ahn <i>et al.</i>	(K2K Collab.)
BALATA 06	EPJ C47 21	M. Balata <i>et al.</i>	(Borèxino Collab.)
	PR D73 112001	J. Hosaka <i>et al.</i>	(Super-Kamiokande Collab.)
HOSAKA 06A	PR D74 032002	J. Hosaka <i>et al.</i>	(Super-Kamiokande Collab.)
MICHAEL 06	PRL 97 191801	D. Michael et al.	(MINOS Collab.)
WINTER 06A	PR C73 025503	W.T. Winter <i>et al.</i>	(=======)
			(MON CHILL)
YAMAMOTO 06	PRL 96 181801	S. Yamamoto <i>et al.</i>	(K2K Collab.)
AHARMIM 05A	PR C72 055502	B. Aharmim <i>et al.</i>	(SNO Collab.)
ALIU 05	PRL 94 081802	E. Aliu et al.	(K2K Collab.)
		W.W.M. Allison et al.	
ALLISON 05	PR D72 052005		(SOUDAN-2 Collab.)
ALTMANN 05	PL B616 174	M. Altmann <i>et al.</i>	(GNO Collab.)
ARAKI 05	PRL 94 081801	T. Araki <i>et al.</i>	(KamLAND Collab.)
ASHIE 05	PR D71 112005	Y. Ashie <i>et al</i> .	(Super-Kamiokande Collab.)
DEGOUVEA 05	PR D71 093002	A. de Gouvea, C. Pena-Gar	,
PEGGGATY 00	IN DII 033002	71. de Gouvea, C. i elid-Gdi	шу

AHARMIM AHMED AHN AMBROSIO ASHIE EGUCHI SMY AHN AMBROSIO APOLLONIO ASTIER EGUCHI GANDO IANNI SANCHEZ ABDURASHI	04 04A 04 04 04 04 04 03 03 03 03 03 03 03 03	PR D70 093014 PRL 92 181301 PRL 93 051801 EPJ C36 323 PRL 93 101801 PRL 92 071301 PR D69 011104 PRL 90 041801 PL B566 35 EPJ C27 331 PL B570 19 PRL 90 021802 PRL 90 171302 JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12	B. Aharmim et al. S.N. Ahmed et al. M.H. Ahn et al. M. Ambrosio et al. Y. Ashie et al. K. Eguchi et al. M.B. Smy et al. M.H. Ahn et al. M. Ambrosio et al. M. Apollonio et al. P. Astier et al. Y. Gando et al. A. lanni M. Sanchez et al. J.N. Abdurashitov et al.	(SNO Collab.) (SNO Collab.) (K2K Collab.) (MACRO Collab.) (Super-Kamiokande Collab.) (KamLAND Collab.) (Super-Kamiokande Collab.) (K2K Collab.) (MACRO Collab.) (CHOOZ Collab.) (NOMAD Collab.) (KamLAND Collab.) (KamLAND Collab.) (Super-Kamiokande Collab.) (Super-Kamiokande Collab.) (Super-Kamiokande Collab.) (Super-Kamiokande Collab.) (SAGE Collab.)
AHMAD AHMAD ARMBRUSTER AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM	02 02B 02 02 02 02 01 01 01	PRL 89 011301 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001	Q.R. Ahmad et al. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Fukuda et al. A. Aguilar et al. Q.R. Ahmad et al. M. Ambrosio et al. F. Boehm et al.	(SNO Collab.) (SNO Collab.) (KARMEN 2 Collab.) (NuTeV Collab.) (Super-Kamiokande Collab.) (LSND Collab.) (SNO Collab.) (MACRO Collab.)
FUKUDA AMBROSIO BOEHM	01 00 00	PRL 86 5651 PL B478 5 PRL 84 3764	S. Fukuda <i>et al.</i> M. Ambrosio <i>et al.</i> F. Boehm <i>et al.</i>	(Super-Kamiokande Collab.) (MACRO Collab.)
FUKUDA ALLISON APOLLONIO Also	00 99 99	PRL 85 3999 PL B449 137 PL B466 415 PL B472 434 (errat.)	S. Fukuda et al. W.W.M. Allison et al. M. Apollonio et al. M. Apollonio et al.	(Super-Kamiokande Collab.) (Soudan 2 Collab.) (CHOOZ Collab.) (CHOOZ Collab.)
FUKUDA FUKUDA HAMPEL AMBROSIO APOLLONIO ATHANASSO ATHANASSO CLEVELAND	98B 98	PRL 82 2644 PL B467 185 PL B447 127 PL B434 451 PL B420 397 PRL 81 1774 PR C58 2489 APJ 496 505	Y. Fukuda et al. Y. Fukuda et al. W. Hampel et al. M. Ambrosio et al. M. Apollonio et al. C. Athanassopoulos et al. C. Athanassopoulos et al. B.T. Cleveland et al.	(Super-Kamiokande Collab.) (Super-Kamiokande Collab.) (GALLEX Collab.) (MACRO Collab.) (CHOOZ Collab.) (LSND Collab.) (LSND Collab.) (Homestake Collab.)
FELDMAN FUKUDA HATAKEYAMA CLARK ROMOSAN AGLIETTA	98 98C 98 97 97 96	PR D57 3873 PRL 81 1562 PRL 81 2016 PRL 79 345 PRL 78 2912 JETPL 63 791 Translated from ZETFP 6	G.J. Feldman, R.D. Cousins Y. Fukuda <i>et al.</i> S. Hatakeyama <i>et al.</i> R. Clark <i>et al.</i> A. Romosan <i>et al.</i> M. Aglietta <i>et al.</i>	(Super-Kamiokande Collab.) (Kamiokande Collab.) (IMB Collab.) (CCFR Collab.) (LSD Collab.)
ATHANASSO ATHANASSO FUKUDA FUKUDA GREENWOOD HAMPEL LOVERRE		PR C54 2685 PRL 77 3082 PRL 77 1683 PL B388 397 PR D53 6054 PL B388 384 PL B370 156	C. Athanassopoulos et al. C. Athanassopoulos et al. Y. Fukuda et al. Y. Fukuda et al. Z.D. Greenwood et al. W. Hampel et al. P.F. Loverre	(LSND Collab.) (LSND Collab.) (Kamiokande Collab.) (Kamiokande Collab.) (UCI, SVR, SCUC) (GALLEX Collab.)
ACHKAR AHLEN ATHANASSO DAUM HILL MCFARLAND	95 95 95 95 95 95	NP B434 503 PL B357 481 PRL 75 2650 ZPHY C66 417 PRL 75 2654 PRL 75 3993	B. Achkar et al. (SIN S.P. Ahlen et al. C. Athanassopoulos et al. K. Daum et al. J.E. Hill K.S. McFarland et al.	G, SACLD, CPPM, CDEF+) (MACRO Collab.) (LSND Collab.) (FREJUS Collab.) (PENN) (CCFR Collab.)
DECLAIS FUKUDA VILAIN FREEDMAN BECKER-SZ BEIER	94 94 94C 93 92B 92	PL B338 383 PL B335 237 ZPHY C64 539 PR D47 811 PR D46 3720 PL B283 446	Y. Declais et al. Y. Fukuda et al. P. Vilain et al. S.J. Freedman et al. R.A. Becker-Szendy et al. E.W. Beier et al.	(Kamiokande Collab.) (CHARM II Collab.) (LAMPF E645 Collab.) (IMB Collab.) (KAM2 Collab.)
Also BORODOV HIRATA CASPER	92 92 91	PTRSL A346 63 PRL 68 274 PL B280 146 PRL 66 2561	E.W. Beier, E.D. Frank L. Borodovsky <i>et al.</i> K.S. Hirata <i>et al.</i> D. Casper <i>et al.</i>	(PENN) (COLU, JHU, ILL) (Kamiokande II Collab.) (IMB Collab.)

HIRATA KUVSHINN	91 91	PRL 66 9 JETPL 54 253	K.S. Hirata <i>et al.</i> A.A. Kuvshinnikov <i>et al.</i>	(Kamiokande II Collab.) (KIAE)
BERGER	90B	PL B245 305	C. Berger et al.	(FREJUS Collab.)
HIRATA	90	PRL 65 1297	K.S. Hirata et al.	(Kamiokande II Collab.)
AGLIETTA	89	EPL 8 611	M. Aglietta <i>et al.</i>	(FREJUS Collab.)
DAVIS	89	ARNPS 39 467	R. Davis, A.K. Mann, L.	Wolfenstein (BNL, PENN+)
OYAMA	89	PR D39 1481	Y. Oyama <i>et al.</i>	(Kamiokande II Collab.)
BIONTA	88	PR D38 768	R.M. Bionta et al.	(IMB Collab.)
DURKIN	88	PRL 61 1811	L.S. Durkin <i>et al.</i>	(OSU, ANL, CIT+)
ABRAMOWICZ	86	PRL 57 298	H. Abramowicz et al.	(CDHS Collab.)
ALLABY	86	PL B177 446	J.V. Allaby et al.	(CHARM Collab.)
ANGELINI	86	PL B179 307	C. Angelini et al.	(PISA, ATHU, PADO+)
VUILLEUMIER	82	PL 114B 298	J.L. Vuilleumier et al.	(CIT, SIN, MUNI)
BOLIEV	81	SJNP 34 787	M.M. Boliev et al.	(INRM)
		Translated from YAF 34	1418.	,
KWON	81	PR D24 1097	H. Kwon <i>et al.</i>	(CIT, ISNG, MUNI)
BOEHM	80	PL 97B 310	F. Boehm <i>et al.</i>	(ILLG, CIT, ISNG, MUNI)
CROUCH	78	PR D18 2239	M.F. Crouch <i>et al.</i>	(CASE, UCI, WITW)