Quark and Lepton Compositeness, Searches for

The latest unpublished results are described in the "Quark and Lepton Compositeness" review. A REVIEW GOES HERE – Check our WWW List of Reviews

CONTENTS:

Scale Limits for Contact Interactions: $\Lambda(eeee)$ Scale Limits for Contact Interactions: $\Lambda(ee\mu\mu)$ Scale Limits for Contact Interactions: $\Lambda(ee\tau\tau)$ Scale Limits for Contact Interactions: $\Lambda(\ell \ell \ell \ell)$ Scale Limits for Contact Interactions: $\Lambda(eeqq)$ Scale Limits for Contact Interactions: $\Lambda(\mu \mu q q)$ Scale Limits for Contact Interactions: $\Lambda(\ell \nu \ell \nu)$ Scale Limits for Contact Interactions: $\Lambda(e \nu q q)$ Scale Limits for Contact Interactions: $\Lambda(q q q q)$ Scale Limits for Contact Interactions: $\Lambda(\nu \nu q q)$ Mass Limits for Excited $e(e^*)$ - Limits for Excited $e(e^*)$ from Pair Production - Limits for Excited $e(e^*)$ from Single Production - Limits for Excited e (e^{*}) from $e^+e^- \rightarrow \gamma\gamma$ - Indirect Limits for Excited $e(e^*)$ Mass Limits for Excited μ (μ^*) - Limits for Excited μ (μ^*) from Pair Production - Limits for Excited μ (μ^*) from Single Production - Indirect Limits for Excited μ (μ^*) Mass Limits for Excited τ (τ^*) - Limits for Excited τ (τ^*) from Pair Production - Limits for Excited τ (τ^*) from Single Production Mass Limits for Excited Neutrino (ν^*) - Limits for Excited ν (ν^*) from Pair Production - Limits for Excited ν (ν^*) from Single Production Mass Limits for Excited $q(q^*)$ - Limits for Excited $q(q^*)$ from Pair Production - Limits for Excited $q(q^*)$ from Single Production Mass Limits for Color Sextet Quarks (q_6) Mass Limits for Color Octet Charged Leptons (ℓ_8) Mass Limits for Color Octet Neutrinos (ν_8) Mass Limits for W_8 (Color Octet W Boson)

SCALE LIMITS for Contact Interactions: $\Lambda(eee)$

Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference. $\Lambda_{LL}^{+}(\text{TeV})$ $\Lambda_{LL}^{-}(\text{TeV})$ $\frac{CL\%}{95}$ $\frac{DOCUMENT ID}{1 \text{ BOURILKOV 01}}$ $\frac{TECN}{\text{RVUE}}$ $\frac{COMMENT}{E_{cm} = 192-208 \text{ GeV}}$

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

>4.5	>7.0	95	² SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 \; {\rm GeV}$			
>5.3	>6.8	95	ABDALLAH	06 C	DLPH	$E_{\rm cm}^{\rm cm} = 130-207 {\rm GeV}$			
>4.7	>6.1	95	³ ABBIENDI	0 4G	OPAL	$E_{\rm cm} = 130 - 207 {\rm GeV}$			
>4.3	>4.9	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$			
	¹ A combined analysis of the data from ALEPH, DELPHI, L3, and OPAL.								
² SCH	² SCHAEL 07A limits are from R_c , Q_{FB}^{depl} , and hadronic cross section measurements.								
³ ABB	IENDI 04g	limits a	re from $e^+e^- \rightarrow$	e ⁺ e ⁻	cross s	ection at $\sqrt{s} = 130-207$ GeV.			

SCALE LIMITS for Contact Interactions: $\Lambda(ee\mu\mu)$

Limits are for Λ^\pm_{LL} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>6.6	>9.5	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 {\rm GeV}$
> 8.5	>3.8	95	ACCIARRI			$E_{\rm cm}^{\rm cm} = 130 - 189 {\rm GeV}$
• • • We	e do not use	e the follo	wing data for ave	erages	, fits, lin	nits, etc. • • •
>7.3	>7.6	95	ABDALLAH	06 C	DLPH	$E_{\rm cm} = 130-207 { m GeV}$
>8.1	>7.3	95	² ABBIENDI	0 4G	OPAL	$E_{\rm cm}^{\rm Cm} = 130-207 {\rm GeV}$
						oss section measurements. on at $\sqrt{s}=1$ 30–207 GeV.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\tau\tau)$

Limits are for Λ^\pm_{LL} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>7.9	>5.8	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 {\rm GeV}$
>7.9	>4.6	95	ABDALLAH	06 C	DLPH	$E_{\rm cm} = 130 - 207 {\rm GeV}$
>4.9	>7.2	95	² ABBIENDI	04G	OPAL	$E_{\rm cm}^{\rm om} = 130-207 {\rm GeV}$
• • • We	do not use	e the fol	lowing data for ave	rages	, fits, lin	nits, etc. • • •
>5.4	>4.7	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 \; {\rm GeV}$
						oss section measurements. on at $\sqrt{s}=130 extsf{-}207~ extsf{GeV}.$

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\ell\ell\ell)$

Lepton universality assumed. Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>7.9	> 10.3	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 {\rm GeV}$
>9.1	>8.2	95	ABDALLAH	06 C	DLPH	$E_{\rm cm} = 130 - 207 {\rm GeV}$
• • • We	do not use	e the follo	owing data for ave	erages,	, fits, lin	nits, etc. • • •
>7.7	>9.5	95	² ABBIENDI	0 4G	OPAL	$E_{\rm cm} = 130-207 {\rm GeV}$
			³ BABICH	03	RVUE	
>9.0	>5.2	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 \; {\rm GeV}$
HTTP:/	/PDG.LE	L.GOV	Page	2	C	Created: $10/1/2016$ 20:06

 1 SCHAEL 07A limits are from $R_c,~Q_{FB}^{depl}$, and hadronic cross section measurements. 2 ABBIENDI 04G limits are from $e^+\,e^- \rightarrow ~\ell^+\,\ell^-$ cross section at $\sqrt{s}=130\text{--}207~\text{GeV}.$ 3 BABICH 03 obtain a bound $-0.175~\text{TeV}^{-2}~<1/\Lambda_{LL}^2<0.095~\text{TeV}^{-2}$ (95%CL) in a model independent analysis allowing all of $\Lambda_{LL},~\Lambda_{LR},~\Lambda_{RL},~\Lambda_{RR}$ to coexist.

SCALE LIMITS for Contact Interactions: $\Lambda(eeqq)$

Limits are for Λ^\pm_{LL} only. For other cases, see each reference.

		LL				
Λ^+_{LL} (TeV)	$\Lambda^{-}_{LL}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>16.4	>20.7	95	¹ AAD	14BE	ATLS	(eeqq)
> 8.4	>10.2	95	² ABDALLAH	09	DLPH	(eebb)
> 9.4	>5.6	95	³ SCHAEL	07A	ALEP	(eecc)
> 9.4	>4.9	95	² SCHAEL	07A	ALEP	(eebb)
>23.3	>12.5	95	⁴ CHEUNG	01 B	RVUE	(eeuu)
>11.1	>26.4	95	⁴ CHEUNG	01 B	RVUE	(eedd)
• • • We	do not use	e the foll	lowing data for ave	erages	, fits, lin	nits, etc. • • •
>13.5	>18.3	95	⁵ KHACHATRY	.15AE	CMS	(eeqq)
> 9.5	>12.1	95	⁶ AAD	13E	ATLS	(eeqq)
>10.1	>9.4	95	⁷ AAD	12AB	ATLS	(eeqq)
> 4.2	>4.0	95		11C	H1	(eeqq)
> 3.8	>3.8	95	⁹ ABDALLAH	11	DLPH	(eetc)
>12.9	>7.2			07A	ALEP	(eeqq)
> 3.7	>5.9	95	¹¹ ABULENCIA	06L	CDF	(eeqq)
positiv	ve prior in 1	ι/ <i>Λ</i> ² .	n pp collisions at $\sqrt{1}$ IAEL 07A limits ar		_	The quoted limit uses a uniform
						oss section measurements.
					aronic cr	oss section measurements.
⁴ CHEU	JNG 01B is	an upda	te of BARGER 98	E.		
⁹ KHAC 8 TeV	, HATRYAN	I 15AE li	mit is from e^+e^-	mass	distribu	tion in <i>pp</i> collisions at $E_{cm} =$
6 AAD	13E limis ar	re from	e ⁺ e ⁻ mass distril	oution		collisions at $E_{\rm cm} = 7$ TeV.
						collisions at $E_{\rm cm} = 7$ TeV.
						s of $e^{\pm}p \rightarrow e^{\pm}X$.
is assu		innit is tr	$om e'e \rightarrow tc$	cross	section.	$\Lambda_{LL}=\Lambda_{LR}=\Lambda_{RL}=\Lambda_{RR}$
		it assum	nes quark flavor un	iversa	lity of tl	he contact interactions.
11 ABUL	ENCIA 06L	limits a	are from $p\overline{p}$ collision	ons at	$\sqrt{s} = 1$	1.96 TeV.
_			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•	

SCALE LIMITS for Contact Interactions: $\Lambda(\mu\mu qq)$

Λ^+_{LL} (TeV)	Λ^{LL} (TeV)	CL%	DOCUMENT ID	TECN	COMMENT	
>12.5	>16.7	95	¹ AAD	14BE ATLS	$(\mu\mu q q)$	
• • • We	do not use	e the follo	wing data for avera	ges, fits, lin	nits, etc. • • •	
>12.0	>15.2	95	² KHACHATRY	15AE CMS	$(\mu \mu q q)$	
> 9.6	>12.9	95	³ AAD	13E ATLS	$(\mu \mu q q)$ (isosinglet)	
> 9.5	>13.1	95	⁴ CHATRCHYAN	13K CMS	$(\mu \mu q q)$ (isosinglet)	
> 8.0	>7.0	95	⁵ AAD	12AB ATLS	$(\mu \mu q q)$ (isosinglet)	

¹AAD 14BE limits are from pp collisions at $\sqrt{s} = 8$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

²KHACHATRYAN 15AE limit is from $\mu^+\mu^-$ mass distribution in *pp* collisions at $E_{\rm cm}=$ 8 TeV. ³ AAD 13E limis are from $\mu^+\mu^-$ mass distribution in *pp* collisions at $E_{\rm cm} =$ 7 TeV.

⁴ CHATRCHYAN 13K limis are from $\mu^+\mu^-$ mass distribution in *pp* collisions at $E_{\rm cm}=$ 7 TeV.

⁵AAD 12AB limis are from $\mu^+\mu^-$ mass distribution in *pp* collisions at $E_{\rm cm} = 7$ TeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\ell \nu \ell \nu)$

VALUE (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>3.10	90	¹ JODIDIO	86	SPEC	$\Lambda_{LR}^{\pm}(u_{\mu} u_{e}\mu e)$
$\bullet \bullet \bullet$ We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •
>3.8		² DIAZCRUZ	94	RVUE	$\Lambda_{LL}^+(au u_ au e u_e)$
>8.1		² DIAZCRUZ	94	RVUE	$\Lambda_{LL}^{-}(\tau \nu_{\tau} e \nu_{e})$
>4.1		³ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^+(\tau\nu_\tau\mu\nu_\mu)$
>6.5		³ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^{-}(\tau\nu_{\tau}\mu\nu_{\mu})$

¹ JODIDIO 86 limit is from $\mu^+ \rightarrow \overline{\nu}_{\mu} e^+ \nu_e$. Chirality invariant interactions $L = (g^2/\Lambda^2)$ $\left[\eta_{LL} \left(\overline{\nu}_{\mu L} \gamma^{\alpha} \mu_{L}\right) \left(\overline{e}_{L} \gamma_{\alpha} \nu_{e L}\right) + \eta_{LR} \left(\overline{\nu}_{\mu L} \gamma^{\alpha} \nu_{e L} \left(\overline{e}_{R} \gamma_{\alpha} \mu_{R}\right)\right] \text{ with } g^{2}/4\pi = 1 \text{ and } p_{LR}^{2}$ $(\eta_{LL},\eta_{LR}) = (0,\pm 1)$ are taken. No limits are given for Λ_{LL}^{\pm} with $(\eta_{LL},\eta_{LR}) = (\pm 1,0)$. For more general constraints with right-handed neutrinos and chirality nonconserving contact interactions, see their text.

 2 DIAZCRUZ 94 limits are from $\Gamma(au o ext{ } e
u
u)$ and assume flavor-dependent contact interactions with $\Lambda(\tau \nu_{\tau} e \nu_{e}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e}).$

³DIAZCRUZ 94 limits are from $\Gamma(au o mu
u
u)$ and assume flavor-dependent contact interactions with $\Lambda(\tau \nu_{\tau} \mu \nu_{\mu}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e})$.

SCALE LIMITS for Contact Interactions: $\Lambda(e \nu q q)$

VALUE (TeV)	CL%	DOCUMENT ID	-	TECN
>2.81	95	¹ AFFOLDER	01	CDF
1				

¹AFFOLDER 001 bound is for a scalar interaction $\overline{q}_R q_I \overline{\nu} e_I$.

SCALE LIMITS for Contact Interactions: $\Lambda(qqqq)$

$\lambda (A \cup U \in (T_{a}))$	CI 0/		TECN	COMMENT
VALUE (TeV)	CL%	DOCUMENT ID		COMMENT
>8.1	95	¹ AAD 15L ² KHACHATRY15J	ATLS	pp dijet angl. Λ^+_{LL}
>9.0	95	² KHACHATRY15J	CMS	pp dijet angl. Λ^+_{LL}
• • • We do not use the	ne followir	ng data for averages, fit	s, limits,	etc. • • •
		³ AAD 15B	ATLS	$pp \rightarrow t\overline{t}t\overline{t}$
>5	95	⁴ FABBRICHESI 14		
>7.6	95	⁵ AAD 13D	ATLS	p p ightarrow dijet angl.
>9.9	95	⁶ CHATRCHYAN 13AM	N CMS	$p p ightarrow dijet.; \Lambda^+_{LL}$
>7.5	95	⁷ CHATRCHYAN 12z	CMS	$pp \rightarrow \text{dijet angl.; } \Lambda_{LL}^+$

- ¹AAD 15L limit is from dijet angular distribution in pp collisions at $E_{\rm cm} = 8$ TeV. u, d,and s quarks are assumed to be composite. They also obtain Λ_{LL}^- > 12.0 TeV.
- ²KHACHATRYAN 15J limit is from dijet angular distribution in pp collisions at $E_{\rm cm} =$ 8 TeV. u, d, s, c, and b quarks are assumed to be composite. They also obtain Λ_{LL}^{-} >
- 11.7 TeV. ³AAD 15BY obtain limit on the t_R compositeness $2\pi \Lambda_{RR}^2 < 15.1 \text{ TeV}^{-2}$ at 95% CL from the $t\overline{t}t\overline{t}$ production in the pp collisions at $E_{\rm cm} = 8$ TeV.
- ⁴ FABBRICHESI 14 obtain bounds on chromoelectric and chromomagnetic form factors of the top-quark using $pp \rightarrow t\overline{t}$ and $p\overline{p} \rightarrow t\overline{t}$ cross sections. The quoted limit on the $q \overline{q} t \overline{t}$ contact interaction is derived from their bound on the chromoelectric form factor.
- ⁵ AAD 13D limit is from dijet angular distribution in pp collisions at $E_{\rm cm} =$ 7 TeV. The constant prior in $1/\Lambda^4$ is applied.
- ⁶CHATRCHYAN 13AN limit is from inclusive jet p_T spectrum in pp collisions at $E_{cm} =$
- 7 TeV. They also obtain Λ_{II}^- > 14.3 TeV.
- ⁷CHATRCHYAN 12Z limit is from dijet angular distribution in pp collisions at $E_{cm} = 7$ TeV. They also obtain Λ_{LL}^{-} > 10.5 TeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\nu \nu q q)$

Lim	nits are for a	Λ^{\pm}_{LL} only.	For other cases, see ea	ch refere	ence.
$\Lambda^+_{LL}({\rm TeV})$	Λ^{LL} (TeV)	CL%	DOCUMENT ID	TECN	COMMENT
>5.0	>5.4	95	¹ MCFARLAND 98	CCFR	νN scattering
¹ MCFA type.	ARLAND 98	3 assumed	a flavor universal intera	action. N	eutrinos were mostly of muon

MASS LIMITS for Excited $e(e^*)$

Most e^+e^- experiments assume one-photon or Z exchange. The limits from some e^+e^- experiments which depend on λ have assumed transition couplings which are chirality violating $(\eta_L = \eta_R)$. However they can be interpreted as limits for chirality-conserving interactions after multiplying the coupling value λ by $\sqrt{2}$; see Note.

Excited leptons have the same quantum numbers as other ortholeptons. See also the searches for ortholeptons in the "Searches for Heavy Leptons" section.

Limits for Excited $e(e^*)$ from Pair Production

These limits are obtained from $e^+e^- \rightarrow e^{*+}e^{*-}$ and thus rely only on the (electroweak) charge of e^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the e^* coupling is assumed to be of sequential type. Possible t channel contribution from transition magnetic coupling is neglected. All limits assume a dominant $e^* \rightarrow e\gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>103.2	95	¹ ABBIENDI	0 2G	OPAL	$e^+ e^- ightarrow ~e^* e^*$ Homodoublet type
• • • We de	o not use	the following data	for a	verages,	fits, limits, etc. • • •
>102.8	95	² ACHARD	03 B	L3	$e^+e^- ightarrow e^*e^*$ Homodoublet type
HTTP://F	PDG.LBI	GOV	Pag	e 5	Created: 10/1/2016 20:06

¹From e^+e^- collisions at $\sqrt{s} = 183-209$ GeV. f = f' is assumed.

² From e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. f = f' is assumed. ACHARD 03B also obtain limit for f = -f': $m_{e^*} > 96.6$ GeV.

Limits for Excited $e(e^*)$ from Single Production

These limits are from $e^+e^- \rightarrow e^*e$, $W \rightarrow e^*\nu$, or $ep \rightarrow e^*X$ and depend on transition magnetic coupling between e and e^* . All limits assume $e^* \rightarrow e\gamma$ decay except as noted. Limits from LEP, UA2, and H1 are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{e^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition	(Physical Review D45 S1	(1992)).
--	--------------------------------	----------

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT	
>3000	95	¹ AAD	15 AP	ATLS	$pp \rightarrow e^{(*)}e^{*}X$	
\bullet \bullet \bullet We do not use the	following	data for averages,	, fits,	limits, e	tc. • • •	
>2200		² AAD				
>1900		³ CHATRCHYAN				
>1870	95	⁴ AAD	12AZ	ATLS	$pp \rightarrow e^{(*)}e^*X$	
>1070	95	⁵ CHATRCHYAN	11X	CMS	$pp \rightarrow ee^*X$	
1						

¹ AAD 15AP search for e^* production in evens with three or more charged leptons in pp collisions at $\sqrt{s} = 8$ TeV. The quoted limit assumes $\Lambda = m_{e^*}$, f = f' = 1. The contact interaction is included in the e^* production and decay amplitudes.

² AAD 13BB search for single e^* production in pp collisions with $e^* \rightarrow e\gamma$ decay. f = f' = 1, and e^* production via contact interaction with $\Lambda = m_{e^*}$ are assumed.

³CHATRCHYAN 13AE search for single e^* production in pp collisions with $e^* \rightarrow e\gamma$ decay. f = f' = 1, and e^* production via contact interaction with $\Lambda = m_{e^*}$ are assumed.

⁴ AAD 12AZ search for e^* production via four-fermion contact interaction in pp collisions with $e^* \rightarrow e\gamma$ decay. The quoted limit assumes $\Lambda = m_{e^*}$. See their Fig. 8 for the exclusion plot in the mass-coupling plane.

⁵ CHATRCHYAN 11x search for single e^* production in pp collisions with the decay $e^* \rightarrow e\gamma$. $f = f' = \Lambda/m_{e^*}$ is assumed. See their Fig. 2 for the exclusion plot in the mass-coupling plane.

Limits for Excited $e(e^*)$ from $e^+e^- \rightarrow \gamma \gamma$

These limits are derived from indirect effects due to e^* exchange in the t channel and depend on transition magnetic coupling between e and e^* . All limits are for $\lambda_{\gamma}=1$. All limits except ABE 89J and ACHARD 02D are for nonchiral coupling with $\eta_L=\eta_R=1$. We choose the chiral coupling limit as the best limit and list it in the Summary Table.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VA	ALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>	>356	95	¹ ABDALLAH	04N	DLPH	\sqrt{s} = 161–208 GeV
•	$\bullet~\bullet~$ We do not use the	following	data for averages	, fits,	limits, e	tc. • • •
>	>310	95	ACHARD	02 D	L3	$\sqrt{s} = 192 - 209 \text{ GeV}$

¹ ABDALLAH 04N also obtain a limit on the excited electron mass with ee^* chiral coupling, $m_{a^*} > 295$ GeV at 95% CL.

Indirect Limits for Excited $e(e^*)$

These limits make use of loop effects involving e^* and are therefore subject to theoretical uncertainty.

VALUE (GeV)	DOCUMENT ID		TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the follow	wing data for aver	ages,	fits, limi	ts, etc. ● ● ●
	¹ DORENBOS	89	CHRM	$\overline{\nu}_{\mu} e \rightarrow \overline{\nu}_{\mu} e, \nu_{\mu} e \rightarrow \nu_{\mu} e$
	² GRIFOLS	86	THEO	$\nu_{\mu} e \rightarrow \nu_{\mu} e$
				g-2 of electron
		, 2		

¹DORENBOSCH 89 obtain the limit $\lambda_{\gamma}^2 \Lambda_{cut}^2 / m_{e^*}^2 < 2.6 (95\% \text{ CL})$, where Λ_{cut} is the cutoff scale, based on the one-loop calculation by GRIFOLS 86. If one assumes that $\Lambda_{cut} = 1 \text{ TeV}$ and $\lambda_{\gamma} = 1$, one obtains $m_{e^*} > 620 \text{ GeV}$. However, one generally expects $\lambda_{\gamma} \approx m_{e^*} / \Lambda_{cut}$ in composite models.

² GRIFOLS 86 uses $\nu_{\mu}e \rightarrow \nu_{\mu}e$ and $\overline{\nu}_{\mu}e \rightarrow \overline{\nu}_{\mu}e$ data from CHARM Collaboration to derive mass limits which depend on the scale of compositeness.

³RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

MASS LIMITS for Excited μ (μ^*)

Limits for Excited μ (μ^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \mu^{*+}\mu^{*-}$ and thus rely only on the (electroweak) charge of μ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the μ^* coupling is assumed to be of sequential type. All limits assume a dominant $\mu^* \rightarrow \mu\gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV) CL% DOCUMENT ID TECN COMMENT ¹ ABBIENDI 02G OPAL $e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type >103.2 95 • • We do not use the following data for averages, fits, limits, etc. • • • 03B L3 ² ACHARD $e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type >102.8 95 ¹ From e^+e^- collisions at $\sqrt{s} = 183-209$ GeV. f = f' is assumed. ² From e^+e^- collisions at $\sqrt[4]{s} = 189-209$ GeV. f = f' is assumed. ACHARD 03B also obtain limit for f = -f': $m_{\mu^*} > 96.6$ GeV.

Limits for Excited μ (μ^*) from Single Production

HTTP://PDG.LBL.GOV

These limits are from $e^+e^- \rightarrow \mu^*\mu$ and depend on transition magnetic coupling between μ and μ^* . All limits assume $\mu^* \rightarrow \mu\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\mu^*}$ plane. See the original papers.

For limits prior to 2	1987, see our 1992 e	edition (Physical	Review D45 S1 (1992)).
-----------------------	----------------------	-------------------	-------------------------------

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>3000		¹ AAD 15AP		
• • • We do not use the	tollowing	data for averages, fits,	limits, e	etc. • • •
>2200		² AAD 13BE		
>1900	95	³ CHATRCHYAN 13AE	CMS	$pp \rightarrow \mu \mu^* X$
>1750	95	⁴ AAD 12AZ		
>1090	95	⁵ CHATRCHYAN 11x	CMS	$p p ightarrow \mu \mu^* X$

Page 7

Created: 10/1/2016 20:06

¹ AAD 15AP search for μ^* production in evens with three or more charged leptons in pp collisions at $\sqrt{s} = 8$ TeV. The quoted limit assumes $\Lambda = m_{\mu^*}$, f = f' = 1. The contact

, interaction is included in the μ^* production and decay amplitudes.

- ² AAD 13BB search for single μ^* production in pp collisions with $\mu^* \to \mu\gamma$ decay. f = f' = 1, and μ^* production via contact interaction with $\Lambda = m_{\mu^*}$ are assumed.
- ³ CHATRCHYAN 13AE search for single μ^* production in pp collisions with $\mu^* \rightarrow \mu\gamma$ decay. f = f' = 1, and μ^* production via contact interaction with $\Lambda = m_{\mu^*}$ are assumed.
- ⁴ AAD 12AZ search for μ^* production via four-fermion contact interaction in pp collisions with $\mu^* \rightarrow \mu\gamma$ decay. The quoted limit assumes $\Lambda = m_{\mu^*}$. See their Fig. 8 for the _ exclusion plot in the mass-coupling plane.
- ⁵ CHATRCHYAN 11x search for single μ^* production in pp collisions with the decay $\mu^* \rightarrow \mu\gamma$. $f = f' = \Lambda/m_{\mu^*}$ is assumed. See their Fig. 2 for the exclusion plot in the mass-coupling plane.

Indirect Limits for Excited μ (μ^*)

These limits make use of loop effects involving μ^* and are therefore subject to theoretical uncertainty.

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the follow	ing data for averages, fit	s, limits, e	tc. • • •

¹ RENARD 82 THEO g-2 of muon ¹ RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See

figures 2 and 3 of the paper.

MASS LIMITS for Excited τ (τ^*)

Limits for Excited τ (τ^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \tau^{*+}\tau^{*-}$ and thus rely only on the (electroweak) charge of τ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the τ^* coupling is assumed to be of sequential type. All limits assume a dominant $\tau^* \rightarrow \tau \gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT				
					$e^+e^- ightarrow ~ au^* au^*$ Homodoublet type				
• • • We do	o not use	the following data	for av	verages,	, fits, limits, etc. • • •				
>102.8	95	² ACHARD	03 B	L3	$e^+e^- ightarrow au^* au^*$ Homodoublet type				
¹ From e^+	¹ From e^+e^- collisions at $\sqrt{s} = 183$ –209 GeV. $f = f'$ is assumed.								
					f = f' is assumed. ACHARD 03B also				
obtain lii	mit for f	$= -f': m_{ au^*} > 96$.6 Ge'	V.					

Limits for Excited τ (τ^*) from Single Production

HTTP://PDG.LBL.GOV

These limits are from $e^+e^- \rightarrow \tau^*\tau$ and depend on transition magnetic coupling between τ and τ^* . All limits assume $\tau^* \rightarrow \tau\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\tau^*}$ plane. See the original papers.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT	_
>2500	95	¹ AAD	15 AP	ATLS	$pp \rightarrow \tau^{(*)} \tau^* X$	
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
> 180	95	² ACHARD	03 B	L3	$e^+e^- \rightarrow \tau \tau^*$	
> 185	95	³ ABBIENDI	0 2G	OPAL	$e^+e^- \rightarrow \tau \tau^*$	

Page 8

Created: 10/1/2016 20:06

- ¹ AAD 15AP search for τ^* production in events with three or more charged leptons in pp collisions at $\sqrt{s} = 8$ TeV. The quoted limit assumes $\Lambda = m_{\tau^*}$, f = f' = 1. The contact interaction is included in the τ^* production and decay amplitudes.
- ² ACHARD 03B result is from e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. $f = f' = \Lambda/m_{\tau^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.
- ³ABBIENDI 02G result is from e^+e^- collisions at $\sqrt{s} = 183-209$ GeV. $f = f' = \Lambda/m_{\tau^*}$ is assumed for τ^* coupling. See their Fig. 4c for the exclusion limit in the mass-coupling

MASS LIMITS for Excited Neutrino (ν^*)

Limits for Excited ν (ν^*) from Pair Production

plane.

These limits are obtained from $e^+e^- \rightarrow \nu^*\nu^*$ and thus rely only on the (electroweak) charge of ν^* . Form factor effects are ignored unless noted. The ν^* coupling is assumed to be of sequential type unless otherwise noted. All limits assume a dominant $\nu^* \rightarrow \nu \gamma$ decay except the limits from $\Gamma(Z)$.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT	
>1600	95	¹ AAD	15AP	ATLS	$pp ightarrow u^* u^* X$	
• • • We do	not use	the following data	for a	verages,	fits, limits, etc. • • •	
		² ABBIENDI	04N	OPAL		
> 102.6	95	³ ACHARD	03 B	L3	$e^+e^- ightarrow \ u^* u^*$ Homodoublet type	
					with three or more charged leptons in assumes $\Lambda=m_{ u^*}$, $f=f'=1$. The	
contact interaction is included in the ν^* production and decay amplitudes. ² From e^+e^- collisions at $\sqrt{s} = 192-209$ GeV, ABBIENDI 04N obtain limit on $\sigma(e^+e^- \rightarrow \nu^*\nu^*) B^2(\nu^* \rightarrow \nu\gamma)$. See their Fig.2. The limit ranges from 20 to 45 fb for $m_{\nu^*} > 45$ GeV. ³ From e^+e^- collisions at $\sqrt{s} = 180,200$ CeV f = f' is assumed. ACHARD 02B also						

³ From e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. f = -f' is assumed. ACHARD 03B also obtain limit for f = f': $m_{\nu_e^*} > 101.7$ GeV, $m_{\nu_\mu^*} > 101.8$ GeV, and $m_{\nu_\tau^*} > 92.9$ GeV. See their Fig. 4 for the exclusion plot in the mass-coupling plane.

Limits for Excited ν (ν^*) from Single Production

These limits are from $e^+e^- \rightarrow \nu\nu^*$, $Z \rightarrow \nu\nu^*$, or $ep \rightarrow \nu^*X$ and depend on transition magnetic coupling between ν/e and ν^* . Assumptions about ν^* decay mode are given in footnotes.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>213	95	¹ AARON	08	H1	$e p \rightarrow \nu^* X$
• • • We do	not use t	the following data	for av	verages,	fits, limits, etc. • • •
>190					$e^+e^- ightarrow u u^*$
none 50–150	95	³ ADLOFF	02	H1	$e p \rightarrow \nu^* X$
>158	95	⁴ CHEKANOV	0 2D	ZEUS	$e p \rightarrow \nu^* X$
-					

¹ AARON 08 search for single ν^* production in ep collisions with the decays $\nu^* \rightarrow \nu \gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 3 and Fig. 4 for the exclusion plots in the mass-coupling plane.

²ACHARD 03B result is from e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. The quoted limit is for ν_e^* . $f = -f' = \Lambda/m_{\nu^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.

- ³ ADLOFF 02 search for single ν^* production in ep collisions with the decays $\nu^* \rightarrow \nu \gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 1 for the exclusion plots in the mass-coupling plane.
- ⁴ CHEKANOV 02D search for single ν^* production in ep collisions with the decays $\nu^* \rightarrow \nu\gamma$, νZ , eW. $f = -f' = \Lambda/m_{\nu^*}$ is assumed for the e^* coupling. CHEKANOV 02D also obtain limit for $f = f' = \Lambda/m_{\nu^*}$: $m_{\nu^*} > 135$ GeV. See their Fig. 5c and Fig. 5d for the exclusion plot in the mass-coupling plane.

MASS LIMITS for Excited $q(q^*)$

Limits for Excited $q(q^*)$ from Pair Production

These limits are mostly obtained from $e^+e^- \rightarrow q^*\overline{q}^*$ and thus rely only on the (electroweak) charge of the q^* . Form factor effects are ignored unless noted. Assumptions about the q^* decay are given in the comments and footnotes.

ascat the q	accaj al c g.			
VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>338	95	¹ AALTONEN 10	I CDF	$q^* \rightarrow t W^-$
• • • We do not us	se the followi	ng data for averages, fi	ts, limits,	etc. • • •
>655	95	² AAD 144	z ATLS	$T \rightarrow tZ$
		³ BARATE 980	ALEP	$Z \rightarrow q^* q^*$
> 45.6	95			$u \; { m or} \; d \; { m type}, \; Z o \; q^* q^*$
> 41.7	95	⁵ BARDADIN 92	RVUE	u-type, $\Gamma(Z)$
> 44.7	95	⁵ BARDADIN 92	RVUE	d-type, $\Gamma(Z)$
> 40.6	95	⁶ DECAMP 92	ALEP	u-type, $\Gamma(Z)$
> 44.2	95	⁶ DECAMP 92	ALEP	d-type, $\Gamma(Z)$
> 45	95	⁷ DECAMP 92	ALEP	$u \; { m or} \; d \; { m type}, \; Z o \; q^* q^*$
> 45	95	⁶ ABREU 91F	DLPH	u-type, $\Gamma(Z)$
> 45	95	⁶ ABREU 91F	DLPH	d-type, $\Gamma(Z)$

¹AALTONEN 10H obtain limits on the $q^* q^*$ production cross section in $p\overline{p}$ collisions. See their Fig. 3.

²AAD 14AZ quoted limit is for heavy SU(2) singlet quark T.

³BARATE 98U obtain limits on the form factor. See their Fig. 16 for limits in mass-form factor plane.

⁴ADRIANI 93M limit is valid for B($q^* \rightarrow qg$)> 0.25 (0.17) for up (down) type.

⁵ BARDADIN-OTWINOWSKA 92 limit based on $\Delta\Gamma(Z)$ <36 MeV.

 6 These limits are independent of decay modes.

⁷Limit is for B($q^* \rightarrow qg$)+B($q^* \rightarrow q\gamma$)=1.

Limits for Excited $q(q^*)$ from Single Production

These limits are from $e^+e^- \rightarrow q^*\overline{q}$, $p\overline{p} \rightarrow q^*X$, or $pp \rightarrow q^*X$ and depend on transition magnetic couplings between q and q^* . Assumptions about q^* decay mode are given in the footnotes and comments.

DOCUMENT ID TECN COMMENT VALUE (GeV) CL% ¹ AAD 15V ATLS $pp \rightarrow q^*X, q^* \rightarrow qg$ 95 >4060 • • • We do not use the following data for averages, fits, limits, etc. • • • ² KHACHATRY...16 CMS $pp \rightarrow b^* X, b^* \rightarrow t W$ 95 >1390 95 ³ KHACHATRY...15V CMS $pp \rightarrow q^*X, q^* \rightarrow qg$ >3500 14A ATLS $pp \rightarrow q^*X, q^* \rightarrow q\gamma$ ⁴ AAD 95 >3500 ⁵ KHACHATRY...14 >3200 95 CMS $pp
ightarrow q^*X, q^*
ightarrow qW$ ⁶ KHACHATRY...14 $pp \rightarrow q^* X, q^* \rightarrow qZ$ CMS >2900 95 Page 10 HTTP://PDG.LBL.GOV Created: 10/1/2016 20:06

none 700–3500	95	7 KHACHATRY14J CMS $p p ightarrow q^* X, \; q^* ightarrow q \gamma$
> 870	95	⁸ AAD 13AF ATLS $pp \rightarrow b^* X$, $b^* \rightarrow t W$
>1940	95	9 CHATRCHYAN 13ALCMS $pp ightarrow q^*X, \ q^* ightarrow qZ, qW$
>2380	95	10 CHATRCHYAN 13AJ CMS $p p ightarrow q^* X, \; q^* ightarrow q W$
>2150	95	11 CHATRCHYAN 13AJ CMS $pp ightarrow q^* X, \; q^* ightarrow q Z$
		¹² ABAZOV 11F D0 $p\overline{p} \rightarrow q^* X, q^* \rightarrow qZ, qW$

 $^1\,{\sf AAD}$ 15V assume ${\it A}=m_{q^*}$, $f_{\it S}=f=f'=1.$ The contact interactions are not included in q^* production and decay amplitudes.

²KHACHATRYAN 16I search for b^* decaying to tW in pp collisions at $\sqrt{s} = 8$ TeV. κ_I^b

 $= g_L = 1$, $\kappa_R^b = g_R = 0$ are assumed. See their Fig. 8 for limits on $\sigma \cdot B$. ³KHACHATRYAN 15V assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes.

⁴ AAD 14A assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$.

⁹ ⁻ ⁵ KHACHATRYAN 14 use the hadronic decay of W, assuming $\Lambda = m_{q^*}$, $f_s = f = f' = 1$.

⁶KHACHATRYAN 14 use the hadronic decay of Z, assuming $\Lambda = m_{q^*}^{-1}$, $f_s = f = f' = 1$.

⁷ KHACHATRYAN 14J assume $f_s = f = f' = \Lambda / m_{a^*}$.

⁸AAD 13AF search for b^* decaying to tW in pp collisions at $\sqrt{s} = 7$ TeV. $\kappa_L^b = g_L = 1$, $\kappa^b_R = {\bf g}_R = {\bf 0}$ are assumed. See their Fig.6 for limits on $\sigma \cdot {\bf B}.$

⁹ CHATRCHYAN 13AI assume q^* production via qg fusion and $\Lambda = m_{q^*}$, $f_s = f = f' = 1$.

For q^* production via qg fusion and via contact interactions, the limit becomes m_{q^*} 2220 GeV.

¹⁰ CHATRCHYAN 13AJ use the hadronic decay of W.

¹¹ CHATRCHYAN 13AJ use the hadronic decay of Z.

¹²ABAZOV 11F search for vectorlike quarks decaying to W+jet and Z+jet in $p\overline{p}$ collisions. See their Fig. 3 and Fig. 4 for the limits on $\sigma \cdot B$.

MASS LIMITS for Color Sextet Quarks (g6)

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>84	95	¹ ABE	89 D	CDF	$p\overline{p} \rightarrow q_6 \overline{q}_6$

 1 ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color sextet quark is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. A limit of 121 GeV is obtained for a color decuplet.

MASS LIMITS for Color Octet Charged Leptons (ℓ_8) $\lambda \equiv m_{\ell_{\star}}/\Lambda$

£8'						
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT	
>86	95	¹ ABE	89 D	CDF	Stable $\ell_8: \ p\overline{p} \rightarrow \ \ell_8\overline{\ell}_8$	
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						
		² АВТ	93	H1	$e_8: e_p \rightarrow e_8 X$	

¹ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color octet lepton is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime

not to decay within the detector. The limit improves to 99 GeV if it always fragments into a unit-charged hadron.

²ABT 93 search for e_8 production via *e*-gluon fusion in *e p* collisions with $e_8 \rightarrow eg$. See their Fig. 3 for exclusion plot in the m_{e_8} - Λ plane for $m_{e_8} = 35-220$ GeV.

MASS LIMITS for Color Octet Neutrinos (ν_8)

$\lambda \equiv m_{\ell_8}/\lambda$	۱					
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT	
>110	90	¹ BARGER	89	RVUE	$\nu_8: p\overline{p} \rightarrow \nu_8\overline{\nu}_8$	
• • • We do not use the following data for averages, fits, limits, etc. • •						
none 3.8–29.8	95	² KIM	90	AMY	$ u_8: e^+e^- ightarrow$ acoplanar jets	
none 9–21.9	95	³ BARTEL	87 B	JADE	ν_8 : $e^+e^- \rightarrow$ acoplanar jets	
¹ BARGER 89 used ABE 89B limit for events with large missing transverse momentum. Two-body decay $\nu_8 \rightarrow \nu g$ is assumed.						
2 KIM 90 is at $E_{cm} = 50-60.8$ GeV. The same assumptions as in BARTEL 87B are used.						
³ BARTEL 87B is at $E_{\rm cm} = 46.3$ –46.78 GeV. The limit assumes the ν_8 pair production						
cross section to be eight times larger than that of the corresponding heavy neutring pair						

cross section to be eight times larger than that of the corresponding heavy neutrino pair production. This assumption is not valid in general for the weak couplings, and the limit can be sensitive to its $SU(2)_L \times U(1)_Y$ quantum numbers.

MASS LIMITS for W_8 (Color Octet W Boson)

Ŭ	•		/				
VALUE (GeV)	DOCUMENT ID		TECN	COMME	ΝT		
$\bullet \bullet \bullet$ We do not use the f	ollowing data for ave	rages,	fits, limi	ts, etc. •	• •		
	¹ ALBAJAR	89	UA1	$p \overline{p} \rightarrow$	W ₈ X,	$W_8 \rightarrow$	Wg
1 ALBAJAR 89 give σ (N	$V_8 \rightarrow W + jet)/\sigma(W_8)$	/) < 0.	019 (90	% CL) fo	r <i>m</i> W8	> 220	GeV.

REFERENCES FOR Searches for Quark and Lepton Compositeness

HTTP://PDG.LBL.GOV

```
Page 12
```

Created: 10/1/2016 20:06

CHATRCHYAN AARON ABAZOV ABDALLAH CHATRCHYAN AALTONEN ABDALLAH AARON SCHAEL ABDALLAH ABULENCIA ABBIENDI ABDALLAH ACHARD BABICH ABBIENDI ACHARD	11C 11F 11	JHEP 1205 055 PL B705 52 PRL 106 081801 EPJ C71 1555 PL B704 143 PRL 104 091801 EPJ C60 1 PL B663 382 EPJ C49 411 EPJ C45 589 PRL 96 211801 EPJ C33 173 PL B602 167 EPJ C37 405 PL B568 23 EPJ C29 103 PL B544 57 PL B531 28	 S. Chatrchyan et al. F. D. Aaron et al. V.M. Abazov et al. J. Abdallah et al. S. Chatrchyan et al. T. Aaltonen et al. J. Abdallah et al. F.D. Aaron et al. S. Schael et al. J. Abdallah et al. Abdallah et al. G. Abbiendi et al. G. Abbiendi et al. J. Abdallah et al. G. Abbiendi et al. J. Abdallah et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. A.A. Babich et al. A.A. Abdallah et al. 	(CMS Collab.) (H1 Collab.) (D0 Collab.) (DELPHI Collab.) (CMS Collab.) (CDF Collab.) (DELPHI Collab.) (H1 Collab.) (DELPHI Collab.) (DELPHI Collab.) (OPAL Collab.) (DPAL Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (L3 Collab.)
ACHARD ADLOFF CHEKANOV AFFOLDER BOURILKOV CHEUNG	02D 02 02D 01I 01 01B	PL B531 28 PL B525 9 PL B549 32 PRL 87 231803 PR D64 071701 PL B517 167	 P. Achard et al. C. Adloff et al. S. Chekanov et al. T. Affolder et al. D. Bourilkov K. Cheung 	(L3 Collab.) (H1 Collab.) (ZEUS Collab.) (CDF Collab.)
ACCIARRI AFFOLDER BARATE BARGER	00P 00I 98U 98E 98	PL B489 81 PR D62 012004 EPJ C4 571 PR D57 391 EPJ C1 509	M. Acciarri <i>et al.</i> T. Affolder <i>et al.</i> R. Barate <i>et al.</i> V. Barger <i>et al.</i> K.S. McFarland <i>et al.</i>	(L3 Collab.) (CDF Collab.) (ALEPH Collab.) (CCFR/NuTeV Collab.)
MCFARLAND DIAZCRUZ ABT ADRIANI BARDADIN DECAMP PDG ABREU KIM ABE ABE ABE	94 93 93M 92 92 92 91F 90 89B 89D 89J	PR D49 R2149 NP B396 3 PRPL 236 1 ZPHY C55 163 PR D45 S1 NP B367 511 PL B240 243 PRL 62 1825 PRL 63 1447 ZPHY C45 175	J.L. Diaz Cruz, O.A. Sampayo I. Abt <i>et al.</i> O. Adriani <i>et al.</i> M. Bardadin-Otwinowska D. Decamp <i>et al.</i> K. Hikasa <i>et al.</i> P. Abreu <i>et al.</i> F. Abe <i>et al.</i> F. Abe <i>et al.</i> K. Abe <i>et al.</i>	(CINV) (H1 Collab.) (L3 Collab.) (CLER) (ALEPH Collab.) (KEK, LBL, BOST+) (DELPHI Collab.) (AMY Collab.) (CDF Collab.) (CDF Collab.) (VENUS Collab.)
ALBAJAR BARGER DORENBOS BARTEL GRIFOLS JODIDIO Also RENARD	89 89 87B 86 86 86	ZPHY C44 15 PL B220 464 ZPHY C41 567 ZPHY C36 15 PL 168B 264 PR D34 1967 PR D37 237 (erratum) PL 116B 264	 C. Albajar <i>et al.</i> V. Barger <i>et al.</i> J. Dorenbosch <i>et al.</i> W. Bartel <i>et al.</i> J.A. Grifols, S. Peris A. Jodidio <i>et al.</i> A. Jodidio <i>et al.</i> F.M. Renard 	(UA1 Collab.) (WISC, KEK) (CHARM Collab.) (JADE Collab.) (BARC) (LBL, NWES, TRIU) (LBL, NWES, TRIU) (CERN)

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$