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33. PASSAGE OF PARTICLES THROUGH MATTER

Revised August 2015 by H. Bichsel (University of Washington), D.E. Groom (LBNL),
and S.R. Klein (LBNL).

This review covers the interactions of photons and electrically charged particles in
matter, concentrating on energies of interest for high-energy physics and astrophysics and
processes of interest for particle detectors (ionization, Cherenkov radiation, transition
radiation). Much of the focus is on particles heavier than electrons (Wi, p, etc.). Although
the charge number z of the projectile is included in the equations, only z = 1 is discussed
in detail. Muon radiative losses are discussed, as are photon/electron interactions at high
to ultrahigh energies. Neutrons are not discussed.

33.1. Notation

The notation and important numerical values are shown in Table 33.1.

33.2. Electronic energy loss by heavy particles [1-33]

33.2.1. Moments and cross sections :

The electronic interactions of fast charged particles with speed v = (¢ occur in single
collisions with energy losses W [1], leading to ionization, atomic, or collective excitation.
Most frequently the energy losses are small (for 90% of all collisions the energy losses are
less than 100 eV). In thin absorbers few collisions will take place and the total energy
loss will show a large variance [1]; also see Sec. 33.2.9 below. For particles with charge
ze more massive than electrons (“heavy” particles), scattering from free electrons is
adequately described by the Rutherford differential cross section [2],

dop(W;8) _ 2ar 2mec?2% (1 — BPW/Wiax)
aw 32 W2 ’
where Winax is the maximum energy transfer possible in a single collision. But in matter

electrons are not free. W must be finite and depends on atomic and bulk structure. For
electrons bound in atoms Bethe [3] used “Born Theorie” to obtain the differential cross

section
dog(W;B) _ dor(W,p)
aw AW
Electronic binding is accounted for by the correction factor B(W). Examples of B(W)
and dog/dW can be seen in Figs. 5 and 6 of Ref. 1.

Bethe’s theory extends only to some energy above which atomic effects are not
important. The free-electron cross section (Eq. (33.1)) can be used to extend the cross
section to Wpax. At high energies op is further modified by polarization of the medium,
and this “density effect,” discussed in Sec. 33.2.5, must also be included. Less important
corrections are discussed below.

The mean number of collisions with energy loss between W and W + dW occurring in
a distance dx is Nedz (do/dW)dW , where do(W; 3)/dW contains all contributions. It is
convenient to define the moments

M;(8) = Neax/vvﬂ

(33.1)

B(W). (33.2)

daWﬁ)

yi , (33.3)
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33. Passage of particles through matter 3

Table 33.1: Summary of variables used in this section. The kinematic variables 3
and ~ have their usual relativistic meanings.

Symbol Definition Value or (usual) units
mec?  electron mass x 2 0.510998928(11) MeV
re  classical electron radius
e? 4megmec? 2.817 940 3267(27) fm
« fine structure constant
e? /4meghc 1/137.035999 074(44)
N4 Avogadro’s number 6.022 141 29(27) x 1023 mol !
p  density g cm™3
x  mass per unit area g cm ™2
M incident particle mass MeV /c?
F  incident part. energy yMc? MeV
T  kinetic energy, (v — 1)Mc? MeV
W energy transfer to an electron MeV
in a single collision
k  bremsstrahlung photon energy MeV
z  charge number of incident particle
Z  atomic number of absorber
A atomic mass of absorber g mol~!
K 47N r2mec? 0.307 075 MeV mol~! em?
I mean excitation energy eV (Nota bene!)
d(Py) density effect correction to ionization energy loss
hwyp  plasma energy Vp(Z/A) x 28.816 eV
VAT Ner3 mec? | L pingem™3
Ne  electron density (units of r¢) ™3

w;  weight fraction of the jth element in a compound or mixture

n; o number of jth kind of atoms in a compound or mixture

Xo radiation length g cm ™2

E. critical energy for electrons MeV

Eyc critical energy for muons GeV

Es  scale energy (/4w /« Mec? 21.2052 MeV
Rjpr  Moliere radius g cm ™2

so that My is the mean number of collisions in dz, M; is the mean energy loss in
dx, (Mg — M1)2 is the variance, etc. The number of collisions is Poisson-distributed
with mean My. N, is either measured in electrons/g (N, = N4Z/A) or electrons/cm?
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4 33. Passage of particles through matter

(Ne = Ny pZ/A). The former is used throughout this chapter, since quantities of interest
(dE/dz, Xg, etc.) vary smoothly with composition when there is no density dependence.
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Fig. 33.1: Mass stopping power (= (—dF /dz)) for positive muons in copper as a function
of By = p/Mc over nine orders of magnitude in momentum (12 orders of magnitude in
kinetic energy). Solid curves indicate the total stopping power. Data below the break at
B~ ~ 0.1 are taken from ICRU 49 [4], and data at higher energies are from Ref. 5. Vertical
bands indicate boundaries between different approximations discussed in the text. The
short dotted lines labeled “u~ 7 illustrate the “Barkas effect,” the dependence of stopping
power on projectile charge at very low energies [6]. dE/dz in the radiative region is not
simply a function of j.

33.2.2. Maximum energy transfer in a single collision :
For a particle with mass M,
2mec2 62,.)/2
1+ 2yme/M + (me/M)?

Wmax = (33.4)
In older references [2,8] the “low-energy” approximation Wiax = 2mec? 32~2, valid for
2vyme < M, is often implicit. For a pion in copper, the error thus introduced into dE/dz
is greater than 6% at 100 GeV. For 2yme > M, Wiax = Mc? 627.

At energies of order 100 GeV, the maximum 4-momentum transfer to the electron can
exceed 1 GeV /¢, where hadronic structure effects significantly modify the cross sections.
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33. Passage of particles through matter 5

This problem has been investigated by J.D. Jackson [9], who concluded that for hadrons
(but not for large nuclei) corrections to dF/dx are negligible below energies where
radiative effects dominate. While the cross section for rare hard collisions is modified, the
average stopping power, dominated by many softer collisions, is almost unchanged.

33.2.3. Stopping power at intermediate energies :

The mean rate of energy loss by moderately relativistic charged heavy particles,
My /éz, is well-described by the “Bethe equation,”

dE\ 1. 2mec® B2 Winax 2 6(87)

It describes the mean rate of energy loss in the region 0.1 < Gy < 1000 for intermediate-Z
materials with an accuracy of a few percent.

This is the mass stopping power; with the symbol definitions and values given in
Table 33.1, the units are MeV g~ 'cm?. As can be seen from Fig. 33.2, (—dE /dz) defined
in this way is about the same for most materials, decreasing slowly with Z. The linear
stopping power, in MeV /em, is (—dE/dx) p, where p is the density in g/cm?,

Whax is defined in Sec. 33.2.2. At the lower limit the projectile velocity becomes
comparable to atomic electron “velocities” (Sec. 33.2.6), and at the upper limit radiative
effects begin to be important (Sec. 33.6). Both limits are Z dependent. A minor
dependence on M at the highest energies is introduced through Wyax, but for all
practical purposes (dF/dz) in a given material is a function of [ alone.

Few concepts in high-energy physics are as misused as (dE/dz). The main problem is
that the mean is weighted by very rare events with large single-collision energy deposits.
Even with samples of hundreds of events a dependable value for the mean energy loss
cannot be obtained. Far better and more easily measured is the most probable energy
loss, discussed in Sec. 33.2.9. The most probable energy loss in a detector is considerably
below the mean given by the Bethe equation.

In a TPC (Sec. 34.6.5), the mean of 50%—70% of the samples with the smallest signals
is often used as an estimator.

Although it must be used with cautions and caveats, (dF /dz) as described in Eq. (33.5)
still forms the basis of much of our understanding of energy loss by charged particles.
Extensive tables are available[4,5, pdg.1bl.gov/AtomicNuclearProperties/|.

For heavy projectiles, like ions, additional terms are required to account for higher-
order photon coupling to the target, and to account for the finite size of the target radius.
These can change dFE/dz by a factor of two or more for the heaviest nuclei in certain
kinematic regimes [7].

The function as computed for muons on copper is shown as the “Bethe” region of
Fig. 33.1. Mean energy loss behavior below this region is discussed in Sec. 33.2.6, and the
radiative effects at high energy are discussed in Sec. 33.6. Only in the Bethe region is it a
function of ( alone; the mass dependence is more complicated elsewhere. The stopping
power in several other materials is shown in Fig. 33.2. Except in hydrogen, particles with
the same velocity have similar rates of energy loss in different materials, although there
is a slow decrease in the rate of energy loss with increasing Z. The qualitative behavior
difference at high energies between a gas (He in the figure) and the other materials shown
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6 33. Passage of particles through matter
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Figure 33.2: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous

helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for
muons and pions, are not included. These become significant for muons in iron for
B~y 2 1000, and at lower momenta for muons in higher-Z absorbers. See Fig. 33.23.

in the figure is due to the density-effect correction, §(37), discussed in Sec. 33.2.5. The
stopping power functions are characterized by broad minima whose position drops from
By = 3.5 to 3.0 as Z goes from 7 to 100. The values of minimum ionization as a function
of atomic number are shown in Fig. 33.3.

In practical cases, most relativistic particles (e.g., cosmic-ray muons) have mean energy
loss rates close to the minimum; they are “minimum-ionizing particles,” or mip’s.

Eq. (33.5) may be integrated to find the total (or partial) “continuous slowing-down
approximation” (CSDA) range R for a particle which loses energy only through ionization
and atomic excitation. Since dE/dx depends only on 3, R/M is a function of E/M or
pe/M. In practice, range is a useful concept only for low-energy hadrons (R S Ay, where
A7 is the nuclear interaction length), and for muons below a few hundred GeV (above
which radiative effects dominate). R/M as a function of Sy = p/Mc is shown for a
variety of materials in Fig. 33.4.

The mass scaling of dE'/dx and range is valid for the electronic losses described by the
Bethe equation, but not for radiative losses, relevant only for muons and pions.
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33. Passage of particles through matter 7
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Figure 33.3: Mass stopping power at minimum ionization for the chemical
elements. The straight line is fitted for Z > 6. A simple functional dependence on
Z is not to be expected, since (—dF /dz) also depends on other variables.

33.2.4. Mean excitation energy :

“The determination of the mean excitation energy is the principal non-trivial task in the
evaluation of the Bethe stopping-power formula” [10]. Recommended values have varied
substantially with time. Estimates based on experimental stopping-power measurements
for protons, deuterons, and alpha particles and on oscillator-strength distributions and
dielectric-response functions were given in ICRU 49 [4]. See also ICRU 37 [11]. These
values, shown in Fig. 33.5, have since been widely used. Machine-readable versions can

also be found [12].

33.2.5. Density effect :

As the particle energy increases, its electric field flattens and extends, so that the
distant-collision contribution to Eq. (33.5) increases as In(3y. However, real media
become polarized, limiting the field extension and effectively truncating this part of the
logarithmic rise [2-8,15-16]. At very high energies,

0/2 — In(hwp/I) +Infy —1/2, (33.6)

where §(3v)/2 is the density effect correction introduced in Eq. (33.5) and hw,, is the

plasma energy defined in Table 33.1. A comparison with Eq. (33.5) shows that |dF/dz|
then grows as In 87 rather than In 32~2, and that the mean excitation energy I is replaced
by the plasma energy hwp. The ionization stopping power as calculated with and without
the density effect correction is shown in Fig. 33.1. Since the plasma frequency scales as
the square root of the electron density, the correction is much larger for a liquid or solid
than for a gas, as is illustrated by the examples in Fig. 33.2.

The density effect correction is usually computed using Sternheimer’s parameteriza-
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8 33. Passage of particles through matter
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Figure 33.4: Range of heavy charged particles in liquid (bubble chamber)
hydrogen, helium gas, carbon, iron, and lead. For example: For a KT whose
momentum is 700 MeV /¢, By = 1.42. For lead we read R/M =~ 396, and so the
range is 195 g cm™2 (17 cm).

tion [15]:
2(In10)z — C if x > xq;
_J2(n10)z — C + a(xy —x)k if g <z < xq;
2B7) = 0 if z < zg (nonconductors); (33.7)

80102(@=0) if x < z¢ (conductors)

Here x = log;gn = logig(p/Mc). C (the negative of the C' used in Ref. 15) is obtained

by equating the high-energy case of Eq. (33.7) with the limit given in Eq. (33.6). The

other parameters are adjusted to give a best fit to the results of detailed calculations

for momenta below Mcexp(x1). Parameters for elements and nearly 200 compounds and
mixtures of interest are published in a variety of places, notably in Ref. 16. A recipe for
finding the coefficients for nontabulated materials is given by Sternheimer and Peierls [17],
and is summarized in Ref. 5.

October 1, 2016 19:59
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Figure 33.5: Mean excitation energies (divided by Z) as adopted by the ICRU [11].
Those based on experimental measurements are shown by symbols with error flags;
the interpolated values are simply joined. The grey point is for liquid Ha; the black
point at 19.2 eV is for Hy gas. The open circles show more recent determinations by
Bichsel [13]. The dash-dotted curve is from the approximate formula of Barkas [14]
used in early editions of this Review.

The remaining relativistic rise comes from the Bzfy growth of Wiax, which in turn is
due to (rare) large energy transfers to a few electrons. When these events are excluded,
the energy deposit in an absorbing layer approaches a constant value, the Fermi plateau
(see Sec. 33.2.8 below). At even higher energies (e.g., > 332 GeV for muons in iron, and
at a considerably higher energy for protons in iron), radiative effects are more important
than ionization losses. These are especially relevant for high-energy muons, as discussed
in Sec. 33.6.

33.2.6. Energy loss at low energies :

Shell corrections C'/Z must be included in the square brackets of of Eq. (33.5) [4,11,13,14]
to correct for atomic binding having been neglected in calculating some of the contribu-
tions to Eq. (33.5). The Barkas form [14] was used in generating Fig. 33.1. For copper it
contributes about 1% at Gy = 0.3 (kinetic energy 6 MeV for a pion), and the correction
decreases very rapidly with increasing energy.

Equation 33.2, and therefore Eq. (33.5), are based on a first-order Born approximation.
Higher-order corrections, again important only at lower energies, are normally included
by adding the “Bloch correction” z2Lo(f3) inside the square brackets (Eq.(2.5) in [4]) .

An additional “Barkas correction” zL1(/3) reduces the stopping power for a negative
particle below that for a positive particle with the same mass and velocity. In a 1956
paper, Barkas et al. noted that negative pions had a longer range than positive pions [6].
The effect has been measured for a number of negative/positive particle pairs, including
a detailed study with antiprotons [18].

A detailed discussion of low-energy corrections to the Bethe formula is given in
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10 33. Passage of particles through matter

ICRU 49 [4]. When the corrections are properly included, the Bethe treatment is
accurate to about 1% down to 3 =~ 0.05, or about 1 MeV for protons.

For 0.01 < g < 0.05, there is no satisfactory theory. For protons, one usually relies
on the phenomenological fitting formulae developed by Andersen and Ziegler [4,19]. As
tabulated in ICRU 49 [4], the nuclear plus electronic proton stopping power in copper is
113 MeV ecm? g~ at T = 10 keV (B~ = 0.005), rises to a maximum of 210 MeV cm? g—!
at T ~ 120 keV (By = 0.016), then falls to 118 MeV em? g~ at T'= 1 MeV (3y = 0.046).
Above 0.5-1.0 MeV the corrected Bethe theory is adequate.

For particles moving more slowly than ~ 0.01c¢ (more or less the velocity of the outer
atomic electrons), Lindhard has been quite successful in describing electronic stopping
power, which is proportional to § [20]. Finally, we note that at even lower energies,
e.g., for protons of less than several hundred eV, non-ionizing nuclear recoil energy loss
dominates the total energy loss [4,20,21].

33.2.7. Energetic knock-on electrons (6 rays) :
The distribution of secondary electrons with kinetic energies T' > I is [2]
?N 1 Z 1 F(T
1, 7 1 F(T)
dl'de 2 Ap2 T2
for I < T < Wax, where Wiax is given by Eq. (33.4). Here [ is the velocity of the
primary particle. The factor F' is spin-dependent, but is about unity for T" < Wpyax.
For spin-0 particles F(T) = (1 — 32T /Whax); forms for spins 1/2 and 1 are also
given by Rossi [2]( Sec. 2.3, Eqns. 7 and 8). Additional formulae are given in Ref. 22.
Equation (33.8) is inaccurate for T close to I [23].
0 rays of even modest energy are rare. For a 3 ~ 1 particle, for example, on average
only one collision with T, > 10 keV will occur along a path length of 90 cm of Ar gas [1].
A ) ray with kinetic energy T, and corresponding momentum pe is produced at an
angle 6 given by

(33.8)

cos 0 = (Te /pe) (Pmax/Wmax) » (33.9)

where pmax is the momentum of an electron with the maximum possible energy transfer
Wmax-

33.2.8. Restricted energy

loss rates for relativistic ionizing particles : Further insight can be obtained by
examining the mean energy deposit by an ionizing particle when energy transfers are
restricted to T' < Weut < Wiax. The restricted energy loss rate is

_d_E — 2Zi 1 In 2mec? B2y Weut
de' T<Wcut A 52 2 I2
ﬁz Wcut o
—— |1 — = . 33.10
2 + Wiax 2 ( )

This form approaches the normal Bethe function (Eq. (33.5)) as Weut — Whax. It
can be verified that the difference between Eq. (33.5) and Eq. (33.10) is equal to

f%,‘fg:x T(d?N/dTdz)dT, where d?°N/dTdz is given by Eq. (33.8).
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Figure 33.6: Bethe dF/dx, two examples of restricted energy loss, and the Landau
most probable energy per unit thickness in silicon. The change of Aj,/x with
thickness = illustrates its alnz + b dependence. Minimum ionization (dE/dx|min)
is 1.664 MeV g~!cm?2. Radiative losses are excluded. The incident particles are
muons.

Since Weyt replaces Winax in the argument of the logarithmic term of Eq. (33.5), the
(v term producing the relativistic rise in the close-collision part of dF /dz is replaced by
a constant, and |dE/dx|r<w,,, approaches the constant “Fermi plateau.” (The density
effect correction ¢ eliminates the explicit 4+ dependence produced by the distant-collision
contribution.) This behavior is illustrated in Fig. 33.6, where restricted loss rates for
two examples of Wiyt are shown in comparison with the full Bethe dE/dx and the
Landau-Vavilov most probable energy loss (to be discussed in Sec. 33.2.9 below).

“Restricted energy loss” is cut at the total mean energy, not the single-collision energy
above Weyt It is of limited use. The most probable energy loss, discussed in the next
Section, is far more useful in situations where single-particle energy loss is observed.

33.2.9. Fluctuations in energy loss :

For detectors of moderate thickness = (e.g. scintillators or LAr cells),* the energy loss
probability distribution f(A; v, z) is adequately described by the highly-skewed Landau
(or Landau-Vavilov) distribution [24,25]. The most probable energy loss is [26]f
2m C2 2,2
2mEB b 8- s(8y) (33.11)

A, = ¢l
p=&|n—7 i

* G < 0.05-0.1, where G is given by Rossi [Ref. 2, Eq. 2.7(10)]. It is Vavilov’s k [25].
It is proportional to the absorber’s thickness, and as such parameterizes the constants
describing the Landau distribution. These are fairly insensitive to thickness for G < 0.1,
the case for most detectors.

T Practical calculations can be expedited by using the tables of § and 3 from the text ver-
sions of the muon energy loss tables to be found at pdg.1bl.gov/AtomicNuclearProperties.
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12 33. Passage of particles through matter

where ¢ = (K/2) (Z/A) 2%(x/3%) MeV for a detector with a thickness z in g cm™2, and
4 =0.200 [26]. ¥ While dE/dx is independent of thickness, A,/ scales as alnz +b. The
density correction §(37) was not included in Landau’s or Vavilov’s work, but it was later
included by Bichsel [26]. The high-energy behavior of §(37) (Eq. (33.6)) is such that

2
A, — & [ln 2me’ ¢ ]

+J (33.12)
By2100 2

(hwp)
Thus the Landau-Vavilov most probable energy loss, like the restricted energy loss,
reaches a Fermi plateau. The Bethe dF/dx and Landau-Vavilov-Bichsel A, /x in silicon
are shown as a function of muon energy in Fig. 33.6. The energy deposit in the 1600 pm
case is roughly the same as in a 3 mm thick plastic scintillator.

Energy loss [MeV cm?/g]
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Figure 33.7: Electronic energy deposit distribution for a 10 GeV muon traversing
1.7 mm of silicon, the stopping power equivalent of about 0.3 cm of PVC
scintillator [1,13,28]. The Landau-Vavilov function (dot-dashed) uses a Rutherford
cross section without atomic binding corrections but with a kinetic energy transfer
limit of Wiax. The solid curve was calculated using Bethe-Fano theory. My(A)
and M7 (A) are the cumulative Oth moment (mean number of collisions) and 1st
moment (mean energy loss) in crossing the silicon. (See Sec. 33.2.1. The fwhm of
the Landau-Vavilov function is about 4¢ for detectors of moderate thickness. A,
is the most probable energy loss, and (A) divided by the thickness is the Bethe

(dE/dx).

The distribution function for the energy deposit by a 10 GeV muon going through a
detector of about this thickness is shown in Fig. 33.7. In this case the most probable
energy loss is 62% of the mean (M1((A))/Mi(c0)). Folding in experimental resolution

! Rossi [2], Talman [27], and others give somewhat different values for j. The most
probable loss is not sensitive to its value.
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Figure 33.8: Straggling functions in silicon for 500 MeV pions, normalized to unity
at the most probable value d,/x. The width w is the full width at half maximum.

displaces the peak of the distribution, usually toward a higher value. 90% of the collisions
(M1({A))/M1(c0)) contribute to energy deposits below the mean. It is the very rare
high-energy-transfer collisions, extending to Wiax at several GeV, that drives the mean
into the tail of the distribution. The large weight of these rare events makes the mean
of an experimental distribution consisting of a few hundred events subject to large
fluctuations and sensitive to cuts. The mean of the energy loss given by the Bethe
equation, Eq. (33.5), is thus ill-defined experimentally and is not useful for describing
energy loss by single particles.? Tt rises as Invy because Winax increases as 7 at high
energies. The most probable energy loss should be used.

A practical example: For muons traversing 0.25 inches of PVT plastic scintillator, the
ratio of the most probable F loss rate to the mean loss rate via the Bethe equation is
[0.69,0.57,0.49,0.42,0.38] for T;, = [0.01,0.1,1,10,100] GeV. Radiative losses add less
than 0.5% to the total mean energy deposit at 10 GeV, but add 7% at 100 GeV. The
most probable E loss rate rises slightly beyond the minimum ionization energy, then is
essentially constant.

The Landau distribution fails to describe energy loss in thin absorbers such as gas TPC
cells [1] and Si detectors [26], as shown clearly in Fig. 1 of Ref. 1 for an argon-filled TPC
cell. Also see Talman [27]. While A, /z may be calculated adequately with Eq. (33.11),
the distributions are significantly wider than the Landau width w = 4 [Ref. 26, Fig. 15].
Examples for 500 MeV pions incident on thin silicon detectors are shown in Fig. 33.8.
For very thick absorbers the distribution is less skewed but never approaches a Gaussian.

The most probable energy loss, scaled to the mean loss at minimum ionization, is

9 1t does find application in dosimetry, where only bulk deposit is relevant.
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shown in Fig. 33.9 for several silicon detector thicknesses.
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Figure 33.9: Most probable energy loss in silicon, scaled to the mean loss of a
minimum ionizing particle, 388 eV /um (1.66 MeV g~lcm?).
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33.2.10. FEnergy loss in mixtures and compounds :

A mixture or compound can be thought of as made up of thin layers of pure elements
in the right proportion (Bragg additivity). In this case,

<2—5>=ij <%>j , (33.13)

where dE/dz|; is the mean rate of energy loss (in MeV g cm™2) in the jth element.
Eq. (33.5) can be inserted into Eq. (33.13) to find expressions for (Z/A), (I'), and (¢); for
example, (Z/A) = Y w;Z;/A; = > n;Z;/> njA;. However, (I) as defined this way is
an underestimate, because in a compound electrons are more tightly bound than in the
free elements, and (4) as calculated this way has little relevance, because it is the electron
density that matters. If possible, one uses the tables given in Refs. 16 and 29, that include
effective excitation energies and interpolation coefficients for calculating the density effect
correction for the chemical elements and nearly 200 mixtures and compounds. Otherwise,
use the recipe for § given in Ref. 5 and 17, and calculate (I) following the discussion in
Ref. 10. (Note the “13%” rule!)
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33.2.11. Ionization yields : Physicists frequently

relate total energy loss to the number of ion pairs produced near the particle’s track.
This relation becomes complicated for relativistic particles due to the wandering of
energetic knock-on electrons whose ranges exceed the dimensions of the fiducial volume.
For a qualitative appraisal of the nonlocality of energy deposition in various media by such
modestly energetic knock-on electrons, see Ref. 30. The mean local energy dissipation per
local ion pair produced, W, while essentially constant for relativistic particles, increases
at slow particle speeds [31]. For gases, W can be surprisingly sensitive to trace amounts
of various contaminants [31]. Furthermore, ionization yields in practical cases may be
greatly influenced by such factors as subsequent recombination [32].

33.3. Multiple scattering through small angles

A charged particle traversing a medium is deflected by many small-angle scatters.
Most of this deflection is due to Coulomb scattering from nuclei as described by the
Rutherford cross section. (However, for hadronic projectiles, the strong interactions also
contribute to multiple scattering.) For many small-angle scatters the net scattering and
displacement distributions are Gaussian via the central limit theorem. Less frequent
“hard” scatters produce non-Gaussian tails. These Coulomb scattering distributions
are well-represented by the theory of Moliere [34]. Accessible discussions are given by
Rossi [2] and Jackson [33], and exhaustive reviews have been published by Scott [35] and
Motz et al. [36]. Experimental measurements have been published by Bichsel [37]( low
energy protons) and by Shen et al. [38]( relativistic pions, kaons, and protons).*

If we define

1

Oy = 0T = NG orms (33.14)

then it is sufficient for many applications to use a Gaussian approximation for the central
98% of the projected angular distribution, with an rms width given by [39,40]

13.6 M
_ BOMeV T, [1 +0.0381In(z/Xo)]| . (33.15)

0
0 Bep

Here p, Bc, and z are the momentum, velocity, and charge number of the incident particle,
and z/X( is the thickness of the scattering medium in radiation lengths (defined below).
This value of 6y is from a fit to Moliere distrib