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71.1. Introduction

This note discusses some of the theoretical issues relevant for the determination of
quark masses, which are fundamental parameters of the Standard Model of particle
physics. Unlike the leptons, quarks are confined inside hadrons and are not observed
as physical particles. Quark masses therefore cannot be measured directly, but must be
determined indirectly through their influence on hadronic properties. Although one often
speaks loosely of quark masses as one would of the mass of the electron or muon, any
quantitative statement about the value of a quark mass must make careful reference to
the particular theoretical framework that is used to define it. It is important to keep
this scheme dependence in mind when using the quark mass values tabulated in the data
listings.

Historically, the first determinations of quark masses were performed using quark
models. The resulting masses only make sense in the limited context of a particular quark
model, and cannot be related to the quark mass parameters of the Standard Model. In
order to discuss quark masses at a fundamental level, definitions based on quantum field
theory must be used, and the purpose of this note is to discuss these definitions and the
corresponding determinations of the values of the masses.

71.2. Mass parameters and the QCD Lagrangian

The QCD [1] Lagrangian for NF quark flavors is

L =

NF
∑

k=1

qk (i /D − mk) qk − 1

4
GµνGµν , (71.1)

where /D =
(

∂µ − igAµ

)

γµ is the gauge covariant derivative, Aµ is the gluon field, Gµν is

the gluon field strength, mk is the mass parameter of the kth quark, and qk is the quark
Dirac field. After renormalization, the QCD Lagrangian Eq. (71.1) gives finite values
for physical quantities, such as scattering amplitudes. Renormalization is a procedure
that invokes a subtraction scheme to render the amplitudes finite, and requires the
introduction of a dimensionful scale parameter µ. The mass parameters in the QCD
Lagrangian Eq. (71.1) depend on the renormalization scheme used to define the theory,
and also on the scale parameter µ. The most commonly used renormalization scheme for
QCD perturbation theory is the MS scheme.

The QCD Lagrangian has a chiral symmetry in the limit that the quark masses vanish.
This symmetry is spontaneously broken by dynamical chiral symmetry breaking, and
explicitly broken by the quark masses. The nonperturbative scale of dynamical chiral
symmetry breaking, Λχ, is around 1GeV [2]. It is conventional to call quarks heavy
if m > Λχ, so that explicit chiral symmetry breaking dominates (c, b, and t quarks are
heavy), and light if m < Λχ, so that spontaneous chiral symmetry breaking dominates
(the u and d are light and s quarks are considered to be light when using SU(3)L×SU(3)R
chiral perturbation theory). The determination of light- and heavy-quark masses is
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2 71. Quark masses

considered separately in Sec. 71.4 and Sec. 71.5 below.

At high energies or short distances, nonperturbative effects, such as chiral symmetry
breaking, become small and one can, in principle, determine quark masses by
analyzing mass-dependent effects using QCD perturbation theory. Such computations
are conventionally performed using the MS scheme at a scale µ ≫ Λχ, and give the MS
“running” mass m(µ). We use the MS scheme when reporting quark masses; one can
readily convert these values into other schemes using perturbation theory.

The µ dependence of m(µ) at short distances can be calculated using the
renormalization group equation,

µ2 dm (µ)

dµ2
= −γ(αs (µ)) m (µ) , (71.2)

where γ is the anomalous dimension which is now known to four-loop order in perturbation
theory [3,4]. αs is the coupling constant in the MS scheme. Defining the expansion
coefficients γr by

γ (αs) ≡
∞
∑

r=1

γr

(

αs

4π

)r

,

the first four coefficients are given by

γ1 = 4,

γ2 =
202

3
−

20NL

9
,

γ3 = 1249 +

(

−
2216

27
−

160

3
ζ (3)

)

NL −
140

81
N2

L,

γ4 =
4603055

162
+

135680

27
ζ (3) − 8800ζ (5)

+

(

−
91723

27
−

34192

9
ζ (3) + 880ζ (4) +

18400

9
ζ (5)

)

NL

+

(

5242

243
+

800

9
ζ (3) −

160

3
ζ (4)

)

N2
L

+

(

−
332

243
+

64

27
ζ (3)

)

N3
L,

where NL is the number of active light quark flavors at the scale µ, i.e. flavors with
masses < µ, and ζ is the Riemann zeta function (ζ(3) ≃ 1.2020569, ζ(4) ≃ 1.0823232,
and ζ(5) ≃ 1.0369278). In addition, as the renormalization scale crosses quark mass
thresholds one needs to match the scale dependence of m below and above the threshold.
There are finite threshold corrections; the necessary formulae can be found in Ref. [5].
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71. Quark masses 3

The quark masses for light quarks discussed so far are often referred to as current
quark masses. Nonrelativistic quark models use constituent quark masses, which are of
order 350MeV for the u and d quarks. Constituent quark masses model the effects of
dynamical chiral symmetry breaking, and are not directly related to the quark mass
parameters mk of the QCD Lagrangian Eq. (71.1). Constituent masses are only defined
in the context of a particular hadronic model.

71.3. Lattice Gauge Theory

The use of the lattice simulations for ab initio determinations of the fundamental
parameters of QCD, including the coupling constant and quark masses (except for the
top-quark mass) is a very active area of research (see the review on Lattice Quantum
Chromodynamics in this Review). Here we only briefly recall those features which are
required for the determination of quark masses. In order to determine the lattice spacing
(a, i.e. the distance between neighboring points of the lattice) and quark masses, one
computes a convenient and appropriate set of physical quantities (frequently chosen to
be a set of hadronic masses) for a variety of input values of the quark masses. The true
(physical) values of the quark masses are those which correctly reproduce the set of
physical quantities being used for the calibration.

The values of the quark masses obtained directly in lattice simulations are bare quark
masses, corresponding to a particular discretization of QCD and with the lattice spacing
as the ultraviolet cut-off. In order for these results to be useful in phenomenological
applications, it is necessary to relate them to renormalized masses defined in some
standard renormalization scheme such as MS. Provided that both the ultraviolet cut-off
a−1 and the renormalization scale µ are much greater than ΛQCD, the bare and
renormalized masses can be related in perturbation theory. However, in order to avoid
uncertainties due to the unknown higher-order coefficients in lattice perturbation theory,
most results obtained recently use non-perturbative renormalization to relate the bare
masses to those defined in renormalization schemes which can be simulated directly in
lattice QCD (e.g. those obtained from quark and gluon Green functions at specified
momenta in the Landau gauge [62] or those defined using finite-volume techniques and
the Schrödinger functional [63]) . The conversion to the MS scheme (which cannot be
simulated) is then performed using continuum perturbation theory.

The determination of quark masses using lattice simulations is well established and
the current emphasis is on the reduction and control of the systematic uncertainties.
With improved algorithms and access to more powerful computing resources, the
precision of the results has improved immensely in recent years. Vacuum polarisation
effects are included with Nf = 2, 2 + 1 or Nf = 2 + 1 + 1 flavors of sea quarks.
The number 2 here indicates that the up and down quarks are degenerate. In earlier
reviews, results were presented from simulations in which vacuum polarization effects
were completely neglected (this is the so-called quenched approximation), leading to
systematic uncertainties which could not be estimated reliably. It is no longer necessary
to include quenched results in compilations of quark masses. Particularly pleasing is
the observation that results obtained using different formulations of lattice QCD, with
different systematic uncertainties, give results which are largely consistent with each
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4 71. Quark masses

other. This gives us broad confidence in the estimates of the systematic errors. As the
precision of the results approaches (or even exceeds in some cases) 1%, isospin breaking
effects, including electromagnetic corrections need to be included and this is beginning
to be done as will be discussed below. The results however, are still at an early stage
and therefore, unless explicitly stated otherwise, the results presented below will neglect
isospin breaking.

Members of the lattice QCD community have organised a Flavour Lattice Averaging
Group (FLAG) which critically reviews quantities computed in lattice QCD relevant to
flavor physics, including the determination of light quark masses, against stated quality
criteria and presents its view of the current status of the results. The latest (2nd) edition
reviewed lattice results published before November 30th 2013 [16].

71.4. Light quarks

In this section we review the determination of the masses of the light quarks u, d and
s from lattice simulations and then discuss the consequences of the approximate chiral
symmetry.

71.4.1. Lattice Gauge Theory : The most reliable determinations of the strange
quark mass ms and of the average of the up and down quark masses mud = (mu + md)/2
are obtained from lattice simulations. As explained in section C above, the simulations
are generally performed with degenerate up and down quarks (mu = md) and so it is the
average which is obtained directly from the computations. Below we discuss attempts to
derive mu and md separately using lattice results in combination with other techniques,
but we start by briefly present our estimate of the current status of the latest lattice
results in the isospin symmetric limit. Based largely on references [21–25], which its
authors considered to have the most reliable estimates of the systematic uncertainties,
the FLAG Review [16] quoted as its summary of results obtained with Nf = 2+1 flavors
of sea quarks:

ms = (93.8 ± 1.5 ± 1.9) MeV , (71.3)

mud = (3.42 ± 0.06 ± 0.07) MeV (71.4)

and
ms

mud
= 27.46 ± 0.15 ± 0.41 . (71.5)

The masses are given in the MS scheme at a renormalization scale of 2GeV. The first
error comes from averaging the lattice results and the second is an estimate of the neglect
of sea-quark effects from the charm and more massive quarks. Because of the systematic
errors, these results are not simply the combinations of all the results in quadrature, but
include a judgement of the remaining uncertainties. Since the different collaborations
use different formulations of lattice QCD, the (relatively small) variations of the results
between the groups provides important information about the reliability of the estimates.

Since the publication of the FLAG review [16] there have been a number of studies
with Nf = 2+1+1 [26–28] and Nf = 2+1 [29] and a reasonable summary of the current
status may be mud = (3.4 ± 0.1)MeV, ms = (93.5 ± 2)MeV and ms/mud = 27.5 ± 0.3.
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71. Quark masses 5

To obtain the individual values of mu and md requires the introduction of isospin
breaking effects, including electromagnetism. In principle this can be done completely
using lattice field theory. Such calculations are indeed beginning (note the recent
computation of the neutron-proton mass splitting [30]) but are still at a relatively early
stage. In practice therefore, mu and md are extracted by combining lattice results with
some elements of continuum phenomenology, most frequently based on chiral perturbation
theory. Such studies include references [32,17,24,28,33,34] as well the Flavianet Lattice
Averaging Group [43]. Based on these results we summarise the current status as

mu

md
= 0.46(5) , mu = 2.15(15) MeV , md = 4.70(20) MeV . (71.6)

Again the masses are given in the MS scheme at a renormalization scale of 2GeV. Of
particular importance is the fact that mu 6= 0 since there would have been no strong CP
problem had mu been equal to zero.

The quark mass ranges for the light quarks given in the listings combine the lattice
and continuum values and use the PDG method for determining errors given in the
introductory notes.

71.4.2. Chiral Perturbation Theory : For light quarks, one can use the techniques of
chiral perturbation theory [6–8] to extract quark mass ratios. The mass term for light
quarks in the QCD Lagrangian is

ΨMΨ = ΨLMΨR + ΨRM †ΨL, (71.7)

where M is the light quark mass matrix,

M =





mu 0 0
0 md 0
0 0 ms



 , (71.8)

Ψ = (u, d, s), and L and R are the left- and right-chiral components of Ψ given by
ΨL,R = PL,RΨ, PL = (1 − γ5)/2, PR = (1 + γ5)/2. The mass term is the only term
in the QCD Lagrangian that mixes left- and right-handed quarks. In the limit M → 0,
there is an independent SU(3) × U(1) flavor symmetry for the left- and right-handed
quarks. The vector U(1) symmetry is baryon number; the axial U(1) symmetry of the
classical theory is broken in the quantum theory due to the anomaly. The remaining
Gχ = SU(3)L × SU(3)R chiral symmetry of the QCD Lagrangian is spontaneously broken
to SU(3)V , which, in the limit M → 0, leads to eight massless Goldstone bosons, the π’s,
K’s, and η.

The symmetry Gχ is only an approximate symmetry, since it is explicitly broken by
the quark mass matrix M . The Goldstone bosons acquire masses which can be computed
in a systematic expansion in M , in terms of low-energy constants, which are unknown
nonperturbative parameters of the effective theory, and are not fixed by the symmetries.
One treats the quark mass matrix M as an external field that transforms under Gχ
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6 71. Quark masses

as M → LMR†, where ΨL → LΨL and ΨR → RΨR are the SU(3)L and SU(3)R
transformations, and writes down the most general Lagrangian invariant under Gχ. Then
one sets M to its given constant value Eq. (71.8), which implements the symmetry
breaking. To first order in M one finds that [9]

m2
π0 =B (mu + md) ,

m2
π± =B (mu + md) + ∆em ,

m2
K0 = m2

K
0 =B (md + ms) , (71.9)

m2
K± =B (mu + ms) + ∆em ,

m2
η =

1

3
B (mu + md + 4ms) ,

with two unknown constants B and ∆em, the electromagnetic mass difference. From
Eq. (71.9), one can determine the quark mass ratios [9]

mu

md
=

2m2
π0 − m2

π+ + m2
K+ − m2

K0

m2
K0 − m2

K+ + m2
π+

= 0.56 ,

ms

md
=

m2
K0 + m2

K+ − m2
π+

m2
K0 + m2

π+ − m2
K+

= 20.2 , (71.10)

to lowest order in chiral perturbation theory, with an error which will be estimated
below. Since the mass ratios extracted using chiral perturbation theory use the symmetry
transformation property of M under the chiral symmetry Gχ, it is important to use
a renormalization scheme for QCD that does not change this transformation law. Any
mass independent subtraction scheme such as MS is suitable. The ratios of quark masses
are scale independent in such a scheme, and Eq. (71.10) can be taken to be the ratio of
MS masses. Chiral perturbation theory cannot determine the overall scale of the quark
masses, since it uses only the symmetry properties of M , and any multiple of M has the
same Gχ transformation law as M .

Chiral perturbation theory is a systematic expansion in powers of the light quark
masses. The typical expansion parameter is m2

K/Λ2
χ ∼ 0.25 if one uses SU(3) chiral

symmetry, and m2
π/Λ2

χ ∼ 0.02 if instead one uses SU(2) chiral symmetry. Electromagnetic
effects at the few percent level also break SU(2) and SU(3) symmetry. The mass formulæ
Eq. (71.9) were derived using SU(3) chiral symmetry, and are expected to have
approximately a 25% uncertainty due to second order corrections. This estimate of the
uncertainty is consistent with the lattice results found in Eq. (71.3) - Eq. (71.5) and more
recent calculations.

There is a subtlety which arises when one tries to determine quark mass ratios at
second order in chiral perturbation theory. The second order quark mass term [10]

(

M †
)−1

det M † (71.11)
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71. Quark masses 7

(which can be generated by instantons) transforms in the same way under Gχ as M .

Chiral perturbation theory cannot distinguish between M and
(

M †
)−1

det M †; one can

make the replacement M → M(λ) = M +λM
(

M †M
)−1

det M † in the chiral Lagrangian,

M(λ) = diag (mu(λ) , md(λ) , ms(λ))

= diag (mu + λmdms , md + λmums , ms + λmumd) , (71.12)

and leave all observables unchanged.

The combination
(

mu

md

)2

+
1

Q2

(

ms

md

)2

= 1 (71.13)

where

Q2 =
m2

s − m̂2

m2
d
− m2

u

, m̂ =
1

2
(mu + md) ,

is insensitive to the transformation in Eq. (71.12). Eq. (71.13) gives an ellipse in the
mu/md −ms/md plane. The ellipse is well-determined by chiral perturbation theory, but
the exact location on the ellipse, and the absolute normalization of the quark masses, has
larger uncertainties. Q is determined to be in the range 21–25 from η → 3π decay and
the electromagnetic contribution to the K+– K0 and π+–π0 mass differences [11].

The absolute normalization of the quark masses cannot be determined using chiral
perturbation theory. Other methods, such as lattice simulations discussed above or
spectral function sum rules [12,13] for hadronic correlation functions, which we review
next are necessary.

71.4.3. Sum Rules : Sum rule methods have been used extensively to determine
quark masses and for illustration we briefly discuss here their application to hadronic τ
decays [14]. Other applications involve very similar techniques.

The experimentally measured quantity is Rτ ,

dRτ

ds
=

dΓ/ds
(

τ− → hadrons + ντ (γ)
)

Γ (τ− → e−νeντ (γ))
(71.14)

the hadronic invariant mass spectrum in semihadronic τ decay, normalized to the leptonic
τ decay rate. It is useful to define q as the total momentum of the hadronic final state, so
s = q2 is the hadronic invariant mass. The total hadronic τ decay rate Rτ is then given
by integrating dRτ/ds over the kinematically allowed range 0 ≤ s ≤ M2

τ .

Rτ can be written as

Rτ =12π

∫ M2
τ

0

ds

M2
τ

(

1 −
s

M2
τ

)2

×

[(

1 + 2
s

M2
τ

)

ImΠT (s) + ImΠL(s)

]

(71.15)
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8 71. Quark masses

where s = q2, and the hadronic spectral functions ΠL,T are defined from the time-ordered
correlation function of two weak currents is the time-ordered correlator of the weak
interaction current (jµ(x) and jν(0)) by

Πµν(q) =i

∫

d4x eiq·x 〈0|T
(

jµ(x)jν(0)†
)

|0〉 , (71.16)

Πµν(q) = (−gµν + qµqν)ΠT (s) + qµqνΠL(s), (71.17)

and the decomposition Eq. (71.17) is the most general possible structure consistent with
Lorentz invariance.

C1

C2

Im s

Re s

m2 4m2

m2

Figure 71.1: The analytic structure of Π(s) in the complex s-plane. The contours
C1 and C2 are the integration contours discussed in the text.

By the optical theorem, the imaginary part of Πµν is proportional to the total cross-
section for the current to produce all possible states. A detailed analysis including the
phase space factors leads to Eq. (71.15). The spectral functions ΠL,T (s) are analytic in the
complex s plane, with singularities along the real axis. There is an isolated pole at s = m2

π ,
and single- and multi-particle singularities for s ≥ 4m2

π, the two-particle threshold. The
discontinuity along the real axis is ΠL,T (s + i0+) − ΠL,T (s − i0+) = 2iIm ΠL,T (s). As a
result, Eq. (71.15) can be rewritten with the replacement Im ΠL,T (s) → −iΠL,T (s)/2,
and the integration being over the contour C1. Finally, the contour C1 can be deformed
to C2 without crossing any singularities, and so leaving the integral unchanged. One
can derive a series of sum rules analogous to Eq. (71.15) by weighting the differential τ
hadronic decay rate by different powers of the hadronic invariant mass,

Rkl
τ =

∫ M2
τ

0

ds

(

1 −
s

M2
τ

)k (

s

M2
τ

)l dRτ

ds
(71.18)
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71. Quark masses 9

where dRτ/ds is the hadronic invariant mass distribution in τ decay normalized to the
leptonic decay rate. This leads to the final form of the sum rule(s),

Rkl
τ = − 6πi

∫

C2

ds

M2
τ

(

1 −
s

M2
τ

)2+k (

s

M2
τ

)l

×

[(

1 + 2
s

M2
τ

)

ΠT (s) + ΠL(s)

]

. (71.19)

The manipulations so far are completely rigorous and exact, relying only on the general
analytic structure of quantum field theory. The left-hand side of the sum rule Eq. (71.19)
is obtained from experiment. The right hand-side can be computed for s far away from
any physical cuts using the operator product expansion (OPE) for the time-ordered
product of currents in Eq. (71.16), and QCD perturbation theory. The OPE is an
expansion for the time-ordered product Eq. (71.16) in a series of local operators, and is
an expansion about the q → ∞ limit. It gives Π(s) as an expansion in powers of αs(s)
and Λ2

QCD/s, and is valid when s is far (in units of Λ2
QCD) from any singularities in the

complex s-plane.

The OPE gives Π(s) as a series in αs, quark masses, and various non-perturbative
vacuum matrix element. By computing Π(s) theoretically, and comparing with the
experimental values of Rkl

τ , one determines various parameters such as αs and the quark
masses. The theoretical uncertainties in using Eq. (71.19) arise from neglected higher
order corrections (both perturbative and non-perturbative), and because the OPE is no
longer valid near the real axis, where Π has singularities. The contribution of neglected
higher order corrections can be estimated as for any other perturbative computation.
The error due to the failure of the OPE is more difficult to estimate. In Eq. (71.19), the
OPE fails on the endpoints of C2 that touch the real axis at s = M2

τ . The weight factor
(1 − s/M2

τ ) in Eq. (71.19) vanishes at this point, so the importance of the endpoint can
be reduced by choosing larger values of k.

71.5. Heavy quarks

For heavy-quark physics one can exploit the fact that mQ ≫ ΛQCD to construct
effective theories (mQ is the mass of the heavy quark Q). The masses and decay rates of
hadrons containing a single heavy quark, such as the B and D mesons can be determined
using the heavy quark effective theory (HQET) [45]. The theoretical calculations involve
radiative corrections computed in perturbation theory with an expansion in αs(mQ)
and non-perturbative corrections with an expansion in powers of ΛQCD/mQ. Due to
the asymptotic nature of the QCD perturbation series, the two kinds of corrections are
intimately related; an example of this are renormalon effects in the perturbative expansion
which are associated with non-perturbative corrections.

Systems containing two heavy quarks such as the Υ or J/Ψ are treated using
non-relativistic QCD (NRQCD) [46]. The typical momentum and energy transfers in
these systems are αsmQ, and α2

smQ, respectively, so these bound states are sensitive to
scales much smaller than mQ. However, smeared observables, such as the cross-section
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10 71. Quark masses

for e+e− → bb averaged over some range of s that includes several bound state energy
levels, are better behaved and only sensitive to scales near mQ. For this reason, most
determinations of the c, b quark masses using perturbative calculations compare smeared
observables with experiment [47–49].

There are many continuum extractions of the c and b quark masses, some with
quoted errors of 10 MeV or smaller. There are systematic effects of comparable size,
which are typically not included in these error estimates. Reference [41], for example,
shows that even though the error estimate of mc using the rapid convergence of the αs

perturbation series is only a few MeV, the central value of mc can differ by a much larger
amount depending on which algorithm (all of which are formally equally good) is used to
determine mc from the data. This leads to a systematic error from perturbation theory
of around 20 MeV for the c quark and 25 MeV for the b quark. Electromagnetic effects,
which also are important at this precision, are often not included. For this reason, we
inflate the errors on the continuum extractions of mc and mb. The average values of mc

and mb from continuum determinations are (see Sec. G for the 1S scheme)

mc(mc) = (1.28 ± 0.025) GeV

mb(mb) = (4.18 ± 0.03) GeV , m1S
b = (4.65 ± 0.03) GeV .

Lattice simulations of QCD lead to discretization errors which are powers of mQ a
(modulated by logarithms); the power depends on the formulation of lattice QCD being
used and in most cases is quadratic. Clearly these errors can be reduced by performing
simulations at smaller lattice spacings, but also by using improved discretizations of
the theory. Recently, with more powerful computing resources, better algorithms and
techniques, it has become possible to perform simulations in the charm quark region
and beyond, also decreasing the extrapolation which has to be performed to reach the
b-quark. A novel approach proposed in [64] has been to compare the lattice results
for moments of correlation functions of cc quark-bilinear operators to perturbative
calculations of the same quantities at 4-loop order. In this way both the strong coupling
constant and the charm quark mass can be determined with remarkably small errors;
in particular mc(mc) = 1.273(6) GeV [36]. This lattice determination also uses the
perturbative expression for the current-current correlator, and so has the perturbation
theory systematic error discussed above. Recent updates using this correlator method,
both with a very similar result, can be found in [27,37]. It should be remembered that
these results were obtained in QCD with exact isospin symmetry; isospin breaking effects,
including electromagnetism may well be larger or of the order of the quoted uncertainty.

As the range of heavy-quark masses which can be used in numerical simulations
increases, results obtained by extrapolating the results to b-physics are becoming ever
more reliable (see e.g. [27]) . Traditionally however, the main approach to controlling
the discretization errors in lattice studies of heavy quark physics has been to perform
simulations of the effective theories such as HQET and NRQCD. This remains an
important technique, both in its own right and in providing additional information for
extrapolations from lower masses to the bottom region. Using effective theories, mb is
obtained from what is essentially a computation of the difference of MHb

− mb, where
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71. Quark masses 11

MHb
is the mass of a hadron Hb containing a b-quark. The relative error on mb is

therefore much smaller than that for MHb
− mb. The principal systematic errors are the

matching of the effective theories to QCD and the presence of power divergences in a−1

in the 1/mb corrections which have to be subtracted numerically. The use of HQET or
NRQCD is less precise for the charm quark, but in this case, as mentioned above, direct
QCD simulations are now possible.

71.6. Pole Mass

For an observable particle such as the electron, the position of the pole in the
propagator is the definition of its mass. In QCD this definition of the quark mass is
known as the pole mass. It is known that the on-shell quark propagator has no infrared
divergences in perturbation theory [52,53], so this provides a perturbative definition of
the quark mass. The pole mass cannot be used to arbitrarily high accuracy because of
nonperturbative infrared effects in QCD. The full quark propagator has no pole because
the quarks are confined, so that the pole mass cannot be defined outside of perturbation
theory. The relation between the pole mass mQ and the MS mass mQ is known to three
loops [54,55,56,57]

mQ = mQ(mQ)

{

1 +
4αs(mQ)

3π

+

[

−1.0414
∑

k

(

1 −
4

3

mQk

mQ

)

+ 13.4434

]

[

αs(mQ)

π

]2

+
[

0.6527N2
L − 26.655NL + 190.595

]

[

αs(mQ)

π

]3
}

, (71.20)

where αs(µ) is the strong interaction coupling constants in the MS scheme, and the sum
over k extends over the NL flavors Qk lighter than Q. The complete mass dependence of
the α2

s term can be found in [54]; the mass dependence of the α3
s term is not known.

For the b-quark, Eq. (71.20) reads

mb = mb (mb) [1 + 0.10 + 0.05 + 0.03] , (71.21)

where the contributions from the different orders in αs are shown explicitly. The two
and three loop corrections are comparable in size and have the same sign as the one
loop term. This is a signal of the asymptotic nature of the perturbation series [there is
a renormalon in the pole mass]. Such a badly behaved perturbation expansion can be
avoided by directly extracting the MS mass from data without extracting the pole mass
as an intermediate step.
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12 71. Quark masses

71.7. Numerical values and caveats

The quark masses in the particle data listings have been obtained by using a wide
variety of methods. Each method involves its own set of approximations and uncertainties.
In most cases, the errors are an estimate of the size of neglected higher-order corrections
or other uncertainties. The expansion parameters for some of the approximations are
not very small (for example, they are m2

K/Λ2
χ ∼ 0.25 for the chiral expansion and

ΛQCD/mb ∼ 0.1 for the heavy-quark expansion), so an unexpectedly large coefficient in
a neglected higher-order term could significantly alter the results. It is also important to
note that the quark mass values can be significantly different in the different schemes.

Figure 71.2: The allowed region (shown in white) for up quark and down quark
masses. This region was determined in part from papers reporting values for mu

and md (data points shown) and in part from analysis of the allowed ranges of
other mass parameters (see Fig. 71.3). The parameter (mu + md)/2 yields the two
downward-sloping lines, while mu/md yields the two rising lines originating at (0,0).
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The heavy quark masses obtained using HQET, QCD sum rules, or lattice gauge theory
are consistent with each other if they are all converted into the same scheme and scale.
We have specified all masses in the MS scheme. For light quarks, the renormalization
scale has been chosen to be µ = 2GeV. The light quark masses at 1GeV are significantly
different from those at 2GeV, m(1 GeV)/m(2 GeV) ∼ 1.33. It is conventional to choose
the renormalization scale equal to the quark mass for a heavy quark, so we have quoted
mQ(µ) at µ = mQ for the c and b quarks. Recent analyses of inclusive B meson decays
have shown that recently proposed mass definitions lead to a better behaved perturbation
series than for the MS mass, and hence to more accurate mass values. We have chosen
to also give values for one of these, the b quark mass in the 1S-scheme [58,59]. Other
schemes that have been proposed are the PS-scheme [60] and the kinetic scheme [61].

Figure 71.3: The values of each quark mass parameter taken from the Data
Listings. The points are in chronological order with the more recent measurements
at the top. Points from papers reporting no error bars are colored grey. The shaded
regions indicate values excluded by our evaluations; some regions were determined
in part through examination of Fig. 71.2.
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14 71. Quark masses

If necessary, we have converted values in the original papers to our chosen scheme
using two-loop formulæ. It is important to realized that our conversions introduce
significant additional errors. In converting to the MS b-quark mass, for example, the
three-loop conversions from the 1S and pole masses give values about 35 MeV and
135 MeV lower than the two-loop conversions. The uncertainty in αs(MZ) = 0.1181(13)
gives an uncertainty of ±10 MeV and ±35 MeV respectively in the same conversions. We
have not added these additional errors when we do our conversions. The αs value in the
conversion is correlated with the αs value used in determining the quark mass, so the
conversion error is not a simple additional error on the quark mass.

References:

1. See the review of QCD in this volume..
2. A.V. Manohar and H. Georgi, Nucl. Phys. B234, 189 (1984).
3. K.G. Chetyrkin, Phys. Lett. B404, 161 (1997).
4. J.A.M. Vermaseren, S.A. Larin, and T. van Ritbergen, Phys. Lett. B405, 327

(1997).
5. K.G. Chetyrkin, B.A. Kniehl, and M. Steinhauser, Nucl. Phys. B510, 61 (1998).
6. S. Weinberg, Physica 96A, 327 (1979).
7. J. Gasser and H. Leutwyler, Ann. Phys. 158, 142 (1984).
8. For a review, see A. Pich, Rept. on Prog. in Phys. 58, 563 (1995).
9. S. Weinberg, Trans. N.Y. Acad. Sci. 38, 185 (1977).

10. D.B. Kaplan and A.V. Manohar, Phys. Rev. Lett. 56, 2004 (1986).
11. H. Leutwyler, Phys. Lett. B374, 163 (1996).
12. S. Weinberg, Phys. Rev. Lett. 18, 507 (1967).
13. M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov, Nucl. Phys. B147, 385 (1979).
14. E. Braaten, S. Narison, and A. Pich, Nucl. Phys. B373, 581 (1992).
15. C. Bernard et al., PoS LAT2007 (2007) 090.
16. S. Aoki et al. [FLAG Collab.], Eur. Phys. J. C74, 2890 (2014).
17. A. Bazavov et al., arXiv:0903.3598 [hep-lat].
18. C. Aubin et al. [HPQCD Collab.], Phys. Rev. D70, 031504 (2004).
19. C. Aubin et al. [MILC Collab.], Phys. Rev. D70, 114501 (2004).
20. B. Blossier et al. [ETM Collab.], Phys. Rev. D82, 114513 (2010).
21. A. Bazavov et al. [MILC Collab.], PoS CD09 (2009) 007.
22. A. Bazavov et al., PoS LATTICE2010 (2010) 083.
23. S. Durr et al., Phys. Lett. B701, 265 (2011).
24. S. Durr et al., JHEP 1108, 148 (2011).
25. R. Arthur et al. [RBC and UKQCD Collabs.], Phys. Rev. D87, 094514 (2013).
26. A. Bazavov et al. [Fermilab Lattice and MILC Collabs.], Phys. Rev. D90, 074509

(2014).
27. B. Chakraborty et al., Phys. Rev. D91, 054508 (2015).
28. N. Carrasco et al. [European Twisted Mass Collab.], Nucl. Phys. B887, 19 (2014).
29. “Domain wall QCD with physical quark masses,” T. Blum et al. [RBC and UKQCD

Collabs.], arXiv:1411.7017 [hep-lat].
30. S. Borsanyi et al., Science 347, 1452 (2015).
31. Y. Aoki et al. [RBC and UKQCD Collabs.], Phys. Rev. D83, 074508 (2011).

December 1, 2017 09:36



71. Quark masses 15

32. S. Basak et al. [MILC Collab.], J. Phys. Conf. Ser. 640 (2015) 1, 012052.
33. T. Blum et al., Phys. Rev. D82, 094508 (2010).
34. S. Aoki et al., Phys. Rev. D86, 034507 (2012).
35. C.T.H. Davies et al., Phys. Rev. Lett. 104, 132003 (2010).
36. C. McNeile et al., Phys. Rev. D82, 034512 (2010).
37. K. Nakayama, B. Fahy, and S. Hashimoto, arXiv:1511.09163 [hep-lat]..
38. C. Aubin et al. [MILC Collab.], Nucl. Phys. (Proc. Supp.) 140, 231 (2005).
39. C. Aubin et al. [MILC Collab.], Phys. Rev. D70, 114501 (2004).
40. G. Colangelo et al., Eur. Phys. J. C71, 1695 (2011).
41. B. Dehnadi et al., arXiv:1102.2264 [hep-ph].
42. T. Blum et al., Phys. Rev. D76, 114508 (2007).
43. G. Colangelo et al., Eur. Phys. J. C71, 1695 (2011).
44. A. Ali Khan et al. [CP-PACS Collab.], Phys. Rev. D65, 054505 (2002); [Erratum-

ibid. D 67 (2003) 059901].
45. N. Isgur and M.B. Wise, Phys. Lett. B232, 113 (1989), ibid, B237, 527 (1990).
46. G.T. Bodwin, E. Braaten, and G.P. Lepage, Phys. Rev. D51, 1125 (1995).
47. A.H. Hoang, Phys. Rev. D61, 034005 (2000).
48. K. Melnikov and A. Yelkhovsky, Phys. Rev. D59, 114009 (1999).
49. M. Beneke and A. Signer, Phys. Lett. B471, 233 (1999).
50. A.X. El-Khadra, A.S. Kronfeld, and P.B. Mackenzie, Phys. Rev. D55, 3933 (1997).
51. S. Aoki, Y. Kuramashi, and S.i. Tominaga, Prog. Theor. Phys. 109, 383 (2003).
52. R. Tarrach, Nucl. Phys. B183, 384 (1981).
53. A. Kronfeld, Phys. Rev. D58, 051501 (1998).
54. N. Gray et al., Z. Phys. C48, 673 (1990).
55. D.J. Broadhurst, N. Gray, and K. Schilcher, Z. Phys. C52, 111 (1991).
56. K.G. Chetyrkin and M. Steinhauser, Phys. Rev. Lett. 83, 4001 (1999).
57. K. Melnikov and T. van Ritbergen, Phys. Lett. B482, 99 (2000).
58. A.H. Hoang, Z. Ligeti, A.V. Manohar, Phys. Rev. Lett. 82, 277 (1999).
59. A.H. Hoang, Z. Ligeti, A.V. Manohar, Phys. Rev. D59, 074017 (1999).
60. M. Beneke, Phys. Lett. B434, 115 (1998).
61. P. Gambino and N. Uraltsev, Eur. Phys. J. C34, 181 (2004).
62. G. Martinelli et al., Nucl. Phys. B445, 81 (1995).
63. K. Jansen et al., Phys. Lett. B372, 275 (1996).
64. I. Allison et al. [HPQCD Collab.], Phys. Rev. D78, 054513 (2008).

December 1, 2017 09:36


