QUARKS

The u-, d-, and s-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\rm MS}$ at a scale $\mu \approx$ 2 GeV. The c- and b-quark masses are the "running" masses in the MS scheme. For the b-quark we also quote the 1S mass. These can be different from the heavy quark masses obtained in potential models.

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$m_u = 2.2^{+0.6}_{-0.4} \; ext{MeV} \qquad ext{Charge} = rac{2}{3} \; e \quad I_z = +rac{1}{2} \ m_u/m_d = 0.38 - 0.58$$

$$I(J^P)=rac{1}{2}(rac{1}{2}^+)$$
 $m_d=4.7^{+0.5}_{-0.4}$ MeV \qquad Charge $=-rac{1}{3}$ e \qquad $I_z=-rac{1}{2}$

 $m_s/m_d = 17-22$ $\overline{m} = (m_u + m_d)/2 = 3.5^{+0.7}_{-0.3} \text{ MeV}$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_s / ((m_u + m_d)/2) = 27.3 \pm 0.7$$

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $m_C = 1.28 \pm 0.03 \text{ GeV}$ Charge $= \frac{2}{3} e$ Charm = +1 $m_c/m_s = 11.72 \pm 0.25$ $m_b/m_c = 4.53 \pm 0.05$

$$\pm 0.25$$
 ± 0.05
 ± 0.05

$$m_b - m_c = 3.45 \pm 0.05 \text{ GeV}$$

 $m_s = 96^{+8}_{-4} \text{ MeV}$ Charge $= -\frac{1}{3} e \text{ Strangeness} = -1$

$$I(J^P)=0(\tfrac{1}{2}^+)$$

 $Charge = -\frac{1}{2} e \qquad Bottom = -1$

Mass
$$m = 4.18^{+0.04}_{-0.03} \text{ GeV}$$
 Charge $= -\frac{1}{3} e$ Bottom $= -1$

Citation: C. Patrignani et~al. (Particle Data Group), Chin. Phys. C, ${\bf 40}$, 100001 (2016) and 2017 update

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$\mathsf{Charge} = \tfrac{2}{3} \ e \qquad \mathsf{Top} = +1$$

Mass (direct measurements) $m=173.1\pm0.6~{\rm GeV}^{~[a,b]}~({\rm S}=1.6)$ Mass from cross-section measurements) $m=160^{+5}_{-4}~{\rm GeV}^{~[a]}$ Mass (Pole from cross-section measurements) $m=173.5\pm1.1~{\rm GeV}$ $m_t-m_{\overline{t}}=-0.2\pm0.5~{\rm GeV}~({\rm S}=1.1)$ Full width $\Gamma=1.41^{+0.19}_{-0.15}~{\rm GeV}~({\rm S}=1.4)$ $\Gamma(W\,b)/\Gamma(W\,q\,(q=b,\,s,\,d))=0.957\pm0.034~({\rm S}=1.5)$

t-quark EW Couplings

$$F_0 = 0.685 \pm 0.020$$

 $F_- = 0.320 \pm 0.013$
 $F_+ = 0.002 \pm 0.011$

$$F_{V+A}$$
 $<$ 0.29, CL $=$ 95%

t DECAY MODES	Fraction (I _i /I)	Confidence level	(MeV/c)
$t \rightarrow Wq(q = b, s, d)$			_
t ightarrow W b			_
$t ightarrow \ \ell u_\ell$ anything	[c,d] (9.4±2.4) %		_
$t \rightarrow e \nu_e b$	$(13.3\pm0.6)~\%$		_
$t ightarrow \; \mu u_{\mu} b$	$(13.4\pm0.6)~\%$		-
$t \rightarrow q \overline{q} b$	$(66.5\pm1.4)~\%$		_

$\Delta T = 1$ weak neutral current (T1) modes

b' (4th Generation) Quark, Searches for

Mass
$$m > 190$$
 GeV, CL = 95% $(p\overline{p}, \text{ quasi-stable } b')$
Mass $m > 755$ GeV, CL = 95% $(pp, \text{ neutral-current decays})$
Mass $m > 675$ GeV, CL = 95% $(pp, \text{ charged-current decays})$
Mass $m > 46.0$ GeV, CL = 95% $(e^+e^-, \text{ all decays})$

t' (4th Generation) Quark, Searches for

$$m(t'(2/3)) > 782$$
 GeV, CL = 95% (neutral-current decays) $m(t'(2/3)) > 700$ GeV, CL = 95% (charged-current decays) $m(t'(5/3)) > 800$ GeV, CL = 95%

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
- [b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s}=7$ TeV. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- [c] ℓ means e or μ decay mode, not the sum over them.
- [d] Assumes lepton universality and W-decay acceptance.
- [e] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

Created: 5/30/2017 17:13