QUARKS

The u-, d-, and s-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\mathrm{MS}}$ at a scale $\mu \approx 2 \mathrm{GeV}$. The c - and b-quark masses are the "running" masses in the MS scheme. For the b-quark we also quote the $1 S$ mass. These can be different from the heavy quark masses obtained in potential models.

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{u}=2.2_{-0.4}^{+0.6} \mathrm{MeV} \\
& m_{u} / m_{d}=0.38-0.58
\end{aligned} \quad \text { Charge }=\frac{2}{3} \text { e } \quad I_{z}=+\frac{1}{2}
$$

$\boldsymbol{d} \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}{ }^{+}\right)$

$$
\begin{aligned}
& m_{d}=4.7_{-0.4}^{+0.5} \mathrm{MeV} \quad \text { Charge }=-\frac{1}{3} \text { e } \quad I_{z}=-\frac{1}{2} \\
& m_{s} / m_{d}=17-22 \\
& \bar{m}=\left(m_{u}+m_{d}\right) / 2=3.5_{-0.3}^{+0.7} \mathrm{MeV}
\end{aligned}
$$

$\boldsymbol{s} \quad I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)$

$$
\begin{aligned}
& m_{s}=96_{-4}^{+8} \mathrm{MeV} \quad \text { Charge }=-\frac{1}{3} \text { e Strangeness }=-1 \\
& m_{s} /\left(\left(m_{u}+m_{d}\right) / 2\right)=27.3 \pm 0.7
\end{aligned}
$$

$$
I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{c}=1.28 \pm 0.03 \mathrm{GeV} \quad \text { Charge }=\frac{2}{3} e \quad \text { Charm }=+1 \\
& m_{c} / m_{s}=11.72 \pm 0.25 \\
& m_{b} / m_{c}=4.53 \pm 0.05 \\
& m_{b}-m_{c}=3.45 \pm 0.05 \mathrm{GeV}
\end{aligned}
$$

b

$$
I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)
$$

$$
\text { Charge }=-\frac{1}{3} e \quad \text { Bottom }=-1
$$

$$
\text { Mass } m=4.18_{-0.03}^{+0.04} \mathrm{GeV} \quad \text { Charge }=-\frac{1}{3} \text { e } \quad \text { Bottom }=-1
$$

$$
I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)
$$

$$
\text { Charge }=\frac{2}{3} e \quad \text { Top }=+1
$$

Mass (direct measurements) $m=173.1 \pm 0.6 \mathrm{GeV}[a, b] \quad(\mathrm{S}=1.6)$ Mass from cross-section measurements) $m=160_{-4}^{+5} \mathrm{GeV}$ [a] Mass (Pole from cross-section measurements) $m=173.5 \pm 1.1 \mathrm{GeV}$ $m_{t}-m_{\bar{t}}=-0.2 \pm 0.5 \mathrm{GeV} \quad(\mathrm{S}=1.1)$
Full width $\Gamma=1.41_{-0.15}^{+0.19} \mathrm{GeV} \quad(\mathrm{S}=1.4)$
$\Gamma(W b) / \Gamma(W q(q=b, s, d))=0.957 \pm 0.034 \quad(S=1.5)$

t-quark EW Couplings

$$
\begin{aligned}
& F_{0}=0.685 \pm 0.020 \\
& F_{-}=0.320 \pm 0.013 \\
& F_{+}=0.002 \pm 0.011 \\
& F_{V+A}<0.29, \mathrm{CL}=95 \%
\end{aligned}
$$

$\Delta T=1$ weak neutral current (T1) modes

$t \rightarrow Z q(q=u, c)$	$T 1$	$[e]<$	5	$\times 10^{-4}$	95%
$t \rightarrow \ell^{+} \bar{q} \bar{q}^{\prime}\left(q=d, s, b ; q^{\prime}=u, c\right)$	$<$	1.6	$\times 10^{-3}$	95%	-

$b^{\prime}\left(4^{\text {th }}\right.$ Generation) Quark, Searches for

$$
\begin{array}{ll}
\text { Mass } m>190 \mathrm{GeV}, \mathrm{CL}=95 \% & \left(p \bar{p}, \text { quasi-stable } b^{\prime}\right) \\
\text { Mass } m>755 \mathrm{GeV}, \mathrm{CL}=95 \% & (p p, \text { neutral-current decays }) \\
\text { Mass } m>675 \mathrm{GeV}, \mathrm{CL}=95 \% & (p p, \text { charged-current decays }) \\
\text { Mass } m>46.0 \mathrm{GeV}, \mathrm{CL}=95 \% & \left(e^{+} e^{-}, \text {all decays }\right)
\end{array}
$$

$t^{\prime}\left(4^{\text {th }}\right.$ Generation) Quark, Searches for

$$
\begin{array}{ll}
m\left(t^{\prime}(2 / 3)\right)>782 \mathrm{GeV}, \mathrm{CL}=95 \% & \text { (neutral-current decays) } \\
m\left(t^{\prime}(2 / 3)\right)>700 \mathrm{GeV}, \mathrm{CL}=95 \% & \text { (charged-current decays) } \\
m\left(t^{\prime}(5 / 3)\right)>800 \mathrm{GeV}, \mathrm{CL}=95 \% &
\end{array}
$$

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

[a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
[b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s}=7 \mathrm{TeV}$. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of $173.2 \pm 0.9 \mathrm{GeV}$. See the note "The Top Quark' in the Quark Particle Listings of this Review.
[c] ℓ means e or μ decay mode, not the sum over them.
[d] Assumes lepton universality and W-decay acceptance.
[e] This limit is for $\Gamma(t \rightarrow Z q) / \Gamma(t \rightarrow W b)$.

