$B_J(5970)^0$

$$I(J^P) = \frac{1}{2}(?^?)$$
 Status: **

I, J, P need confirmation.

Quantum numbers shown are quark-model predictions.

$B_{J}(5970)^{0}$ MASS

OUR FIT uses m_{B^+} and $m_{B_1(5970)^0} - m_{B^+}$ to determine $m_{B_1(5970)^0}$.

VALUE (MeV)

DOCUMENT ID

5971±5 OUR FIT

$m_{B_1(5970)^0} - m_{B^+}$

VALUE (MeV) DOCUMENT ID TECN COMMENT 691 ±5 OUR FIT 691 ±5 OUR AVERAGE ¹ AAIJ 15AB LHCB pp at 7, 8 TeV $689.9 \pm 2.9 \pm 5.1$ 10K ² AALTONEN 141 CDF 698 ± 5 ± 12 2.6k $p\overline{p}$ at 1.96 TeV • • • We do not use the following data for averages, fits, limits, etc. • • • 3 AAIJ 10K 15AB LHCB pp at 7, 8 TeV $714.3 \pm 6.4 \pm 5.1$ 1 AAIJ 1 5AB reports $[m_{B^0_{_I}}-m_{B^+}]-m_{\pi^-}=550.4\pm2.9\pm5.1$ MeV which we adjust by the π^- mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=(-1)^J$ and uses two relativistic Breit-Wigner functions in the fit for mass difference. ² AALTONEN 14I reports $m_{B_I}(5970)^0-m_{B^+}-m_{\pi^-}=558\pm5\pm12$ MeV which we adjusted by the π^- mass. 3 AAIJ 15AB reports $[m_{B^0_{\star}}^{}-m_{B^+}^{}]-m_{\pi^-}^{}=575\pm6\pm5$ MeV which we adjust by the π^- mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P = (-1)^J$ and uses three relativistic Breit-Wigner functions

$m_{B_J(5970)^0} - m_{B^{*+}}$

VALUE (MeV) ___EVTS __DOCUMENT_ID __TECN __COMMENT_

• • • We do not use the following data for averages, fits, limits, etc. • •

 $691.6 \pm 3.7 \pm 5.1$ 10k ⁴ AAIJ 15AB LHCB *pp* at 7, 8 TeV

⁴ AAIJ 15AB reports $[m_{B_J^0} - m_{B^+}] - (m_{B^{*+}} - m_{B^+}) - m_{\pi^-} = 552 \pm 4 \pm 5 \text{ MeV}$

which we adjust by the π^- mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=-(-1)^J$, $(m_{B^{*+}}-m_{B^+})=45.01\pm0.30\pm0.23$ MeV, and uses three relativistic Breit-Wigner functions in the fit for mass difference.

in the fit for mass difference.

Created: 6/5/2018 19:00

$B_{J}(5970)^{0}$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
81 ± 12 OUR AVERAGE					
$82\pm$ $8\pm$ 9	10K	⁵ AAIJ	15 AB	LHCB	<i>pp</i> at 7, 8 TeV
$70^{+30}_{-20}\pm30$	2.6k	AALTONEN	141	CDF	$p\overline{p}$ at 1.96 TeV
• • • We do not use the following data for averages, fits, limits, etc. • •					
56± 7± 9	10K	⁶ AAIJ	15 AB	LHCB	pp at 7, 8 TeV
$82\pm10\pm~9$	10K	⁷ AAIJ	15 AB	LHCB	<i>pp</i> at 7, 8 TeV
⁵ Assuming $P = (-1)^J$ and using two relativistic Breit-Wigner functions in the fit for mass					

$B_J(5970)^0$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$B^{+}\pi^{-}$	possibly seen
Γ ₂	$B^{*+}\pi^{-}$	seen

B_J(5970)⁰ BRANCHING RATIOS

$\Gamma(B^+\pi^-)/\Gamma_{total}$					Γ_1/Γ
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
possibly seen	10K	⁸ AAIJ	15AB LHCB	<i>pp</i> at 7, 8 TeV	
possibly seen	2.6k	AALTONEN	14ı CDF	$p\overline{p}$ at 1.96 TeV	
8 A $B\pi$ decay is forbi	dden fron	n a $P=-(-1)^{ extstyle J}$ p	arent, wherea	s $B^*\pi$ is allowed.	

$\Gamma(B^{*+}\pi^{-})/\Gamma_{total}$					Γ_2/Γ
VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT	
seen	10K	AAIJ	15AB LHCB	<i>pp</i> at 7, 8 TeV	
seen	2.6k	AALTONEN	14ı CDF	$p\overline{p}$ at 1.96 TeV	

B_J(5970)⁰ REFERENCES

AAIJ	15AB JHEP 1504 024	R. Aaij <i>et al.</i>	(LHCb Collab.)
AALTONEN	14I PR D90 012013	T. Aaltonen <i>et al.</i>	(CDF Collab.)

Created: 6/5/2018 19:00

difference. 6 Assuming $P=(-1)^J$ and using three relativistic Breit-Wigner functions in the fit for

mass difference. ⁷ Assuming $P = -(-1)^J$ and using three relativistic Breit-Wigner functions in the fit for mass difference.