b' (4th Generation) Quark, Searches for

b'(-1/3)-quark/hadron mass limits in $p\overline{p}$ and pp collisions

D(-1/3)-quark/rie			anu	pp con	1310113
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>730	95	¹ SIRUNYAN		CMS	
>880	95	² KHACHATRY	.16AN	CMS	B(b' ightarrow Wt) = 1
>620	95	³ AAD	15by	ATLS	Wt, Zb, hb modes
>730	95	⁴ AAD	15by	ATLS	B(b' ightarrow Wt) = 1
>810	95	⁵ AAD	15z	ATLS	
>755	95	⁶ AAD		ATLS	
>675	95	⁷ CHATRCHYAN	131	CMS	B(b' o W t) = 1
>190	95	⁸ ABAZOV	08X	D0	c au = 200 mm
>190	95	⁹ ACOSTA	03	CDF	quasi-stable <i>b</i> ′
• • • We do not use t	he follov	ving data for averag	ges, fi	ts, limits	, etc. ● ● ●
<350, 580–635, >700	95	¹⁰ AAD	15ar	ATLS	$B(b' \rightarrow Hb) = 1$
>690	95	¹¹ AAD	15CN	ATLS	$B(b' \rightarrow Wq) = 1 (q=u)$
>480	95	¹² AAD	12AT	ATLS	$B(b' \to Wt) = 1$
>400	95	¹³ AAD	12AU	ATLS	$B(b' \rightarrow Zb) = 1$
>350	95	¹⁴ AAD	12BC	ATLS	$B(b' \rightarrow Wq) = 1$
					(q=u,c)
>450	95	¹⁵ AAD		ATLS	B(b' o W t) = 1
>685	95	¹⁶ CHATRCHYAN	I 12вн	CMS	$m_{t'} = m_{b'}$
>611	95	¹⁷ CHATRCHYAN	12X	CMS	$B(b' \to Wt) = 1$
>372	95	¹⁸ AALTONEN	11J	CDF	$b' \rightarrow W t$
>361	95	¹⁹ CHATRCHYAN	11L	CMS	Repl. by CHA-
>338	95	²⁰ AALTONEN	10H	CDF	$\begin{array}{c} TRCHYAN 12x \\ b' \to Wt \end{array}$
> 380-430	95 95	²¹ FLACCO	10H 10	RVUE	
		^{,23} AALTONEN			$m_{b'} > m_{t'}$
>268			07C	CDF	$B(b' \to Zb) = 1$
>199	95	²⁴ AFFOLDER	00	CDF	NC: $b' \rightarrow Zb$
>148	95	²⁵ ABE	98N	CDF	NC: $b' \rightarrow Zb + \text{vertex}$
> 96	95	²⁶ ABACHI	97D	D0	NC: $b' \rightarrow b\gamma$
>128	95	²⁷ ABACHI	95F	D0	$\ell\ell$ + jets, ℓ + jets
> 75	95	²⁸ MUKHOPAD ²⁹ ABE		RVUE	NC: $b' \rightarrow b\ell\ell$
> 85	95 05	³⁰ ABE	92 005	CDF	CC: <i>ℓℓ</i>
> 72	95 05		90B	CDF	$CC: e + \mu$
> 54	95 05	³¹ AKESSON	90 005	UA2	CC: $e + jets + E_T$
> 43	95 05	³² ALBAJAR ³³ ALBAJAR	90B	UA1	CC: μ + jets
> 34	95	³³ ALBAJAR	88	UA1	CC: e or μ + jets

¹SIRUNYAN 17AU based on 2.3–2.6 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Limit on pairproduced singlet vector-like b' using one lepton and several jets. The mass bound is given for a b' transforming as a singlet under the electroweak symmetry group, assumed to decay through W, Z or Higgs boson (which decays to jets) and to a third generation quark.

² KHACHATRYAN 16AN based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Limit on pairproduced vector-like b' using 1, 2, and >2 leptons as well as fully hadronic final states.

Other limits depending on the branching fractions to tW, bZ, and bH are given in Table IX.

- ³AAD 15BY based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Limit on pair-produced vector-like b' assuming the branching fractions to W, Z, and h modes of the singlet model. Used events containing $\geq 2\ell + \not \!\!E_T + \geq 2j$ ($\geq 1 b$) and including a same-sign lepton pair.
- ⁴ AAD 15BY based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Limit on pair-produced chiral b'-quark. Used events containing $\geq 2\ell + \not{\!\!E}_T + \geq 2j$ ($\geq 1 b$) and including a same-sign lepton pair.
- ⁵ AAD 15Z based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Used events with $\ell + \not{\!\!E}_T + 2$ 6j ($\geq 1 b$) and at least one pair of jets from weak boson decay, primarily designed to select the signature $b'\overline{b'} \rightarrow WWt\overline{t} \rightarrow WWWWb\overline{b}$. This is a limit on pair-produced vector-like b'. The lower mass limit is 640 GeV for a vector-like singlet b'.
- ⁶ Based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. No significant excess over SM expectation is found in the search for pair production or single production of b' in the events with dilepton from a high $p_T Z$ and additional jets ($\geq 1 b$ -tag). If instead of B($b' \rightarrow Wt$) = 1 an electroweak singlet with B($b' \rightarrow Wt$) ~ 0.45 is assumed, the limit reduces to 685 GeV.
- ⁷Based on 5.0 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 13I looked for events with one isolated electron or muon, large E_T , and at least four jets with large transverse momenta, where one jet is likely to originate from the decay of a bottom quark.
- ⁸ Result is based on 1.1 fb⁻¹ of data. No signal is found for the search of long-lived particles which decay into final states with two electrons or photons, and upper bound on the cross section times branching fraction is obtained for $2 < c\tau < 7000$ mm; see Fig. 3. 95% CL excluded region of b' lifetime and mass is shown in Fig. 4.
- ⁹ ACOSTA 03 looked for long-lived fourth generation quarks in the data sample of 90 pb^{-1} of $\sqrt{s}=1.8$ TeV $p\overline{p}$ collisions by using the muon-like penetration and anomalously high ionization energy loss signature. The corresponding lower mass bound for the charge (2/3)e quark (t') is 220 GeV. The t' bound is higher than the b' bound because t' is more likely to produce charged hadrons than b'. The 95% CL upper bounds for the production cross sections are given in their Fig. 3.
- ¹⁰ AAD 15AR based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Used lepton-plus-jets final state. See Fig. 24 for mass limits in the plane of B($b' \rightarrow Wt$) vs. B($b' \rightarrow Hb$) from $b'\overline{b'} \rightarrow Hb + X$ searches.
- ¹² Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. No signal is found for the search of heavy quark pair production that decay into W and a t quark in the events with a high p_T isolated lepton, large E_T , and at least 6 jets in which one, two or more dijets are from W.
- ¹³ Based on 2.0 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. No $b' \rightarrow Zb$ invariant mass peak is found in the search of heavy quark pair production that decay into Z and a b quark in events with $Z \rightarrow e^+e^-$ and at least one b-jet. The lower mass limit is 358 GeV for a vector-like singlet b' mixing solely with the third SM generation.
- ¹⁴Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. No signal is found for the search of heavy quark pair production that decay into W and a quark in the events with dileptons, large $\not{\!\!E}_T$, and ≥ 2 jets.
- 15 Based on 1.04 fb $^{-1}$ of pp data at \sqrt{s} = 7 TeV. AAD 12BE looked for events with two isolated like-sign leptons and at least 2 jets, large $\not\!\!\!E_T$ and H $_T~>$ 350 GeV.
- ¹⁶ Based on 5 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 12BH searched for QCD and EW production of single and pair of degenerate 4'th generation quarks that decay

to *bW* or *tW*. Absence of signal in events with one lepton, same-sign dileptons or trileptons gives the bound. With a mass difference of 25 GeV/c² between $m_{t'}$ and $m_{b'}$,

the corresponding limit shifts by about $\pm 20 \text{ GeV/c}^2$.

- 17 Based on 4.9 fb $^{-1}$ of pp data at \sqrt{s} = 7 TeV. CHATRCHYAN 12X looked for events with trileptons or same-sign dileptons and at least one b jet.
- ¹⁸ Based on 4.8 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. AALTONEN 11J looked for events with $\ell + E_T + \ge 5j$ ($\ge 1 \ b$ or c). No signal is observed and the bound $\sigma(b'\overline{b}')$ < 30 fb for $m_{b'} > 375$ GeV is found for $B(b' \rightarrow Wt) = 1$.
- ¹⁹ Based on 34 pb⁻¹ of data in pp collisions at 7 TeV. CHATRCHYAN 11L looked for multijet events with trileptons or same-sign dileptons. No excess above the SM background excludes $m_{b'}$ between 255 and 361 GeV at 95% CL for B($b' \rightarrow Wt$) = 1.
- ²⁰ Based on 2.7 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. AALTONEN 10H looked for pair production of heavy quarks which decay into tW^- or tW^+ , in events with same sign dileptons (e or μ), several jets and large missing E_T . The result is obtained for b' which decays into tW^- . For the charge 5/3 quark ($T_{5/3}$) which decays into tW^+ , $m_{T_{5/3}} > 365$ GeV (95% CL) is found when it has the charge -1/3 partner B of the same mass.
- ²¹ FLACCO 10 result is obtained from AALTONEN 10H result of $m_{b'} > 338$ GeV, by relaxing the condition B($b' \rightarrow Wt$) = 100% when $m_{b'} > m_{t'}$.
- ²² Result is based on 1.06 fb⁻¹ of data. No excess from the SM Z+jet events is found when Z decays into ee or $\mu\mu$. The $m_{b'}$ bound is found by comparing the resulting upper bound on $\sigma(b'\overline{b}')$ [1-(1-B($b' \rightarrow Zb$))²] and the LO estimate of the b' pair production cross section shown in Fig. 38 of the article.
- ²³ HUANG 08 reexamined the b' mass lower bound of 268 GeV obtained in AALTONEN 07C that assumes $B(b' \rightarrow Zb) = 1$, which does not hold for $m_{b'} > 255$ GeV. The lower mass bound is given in the plane of $\sin^2(\theta_{t\,b'})$ and $m_{b'}$.
- ²⁴ AFFOLDER 00 looked for b' that decays in to b+Z. The signal searched for is bbZZ events where one Z decays into e^+e^- or $\mu^+\mu^-$ and the other Z decays hadronically. The bound assumes $B(b' \rightarrow Zb) = 100\%$. Between 100 GeV and 199 GeV, the 95%CL upper bound on $\sigma(b' \rightarrow \overline{b'}) \times B^2(b' \rightarrow Zb)$ is also given (see their Fig. 2).
- ²⁵ ABE 98N looked for $Z \rightarrow e^+e^-$ decays with displaced vertices. Quoted limit assumes $B(b' \rightarrow Zb)=1$ and $c\tau_{b'}=1$ cm. The limit is lower than m_Z+m_b (~ 96 GeV) if $c\tau > 22$ cm or $c\tau < 0.009$ cm. See their Fig. 4.
- ²⁶ ABACHI 97D searched for b' that decays mainly via FCNC. They obtained 95%CL upper bounds on B($b'\overline{b}' \rightarrow \gamma + 3$ jets) and B($b'\overline{b}' \rightarrow 2\gamma + 2$ jets), which can be interpreted as the lower mass bound $m_{b'} > m_Z + m_b$.
- ²⁷ ABACHI 95F bound on the top-quark also applies to b' and t' quarks that decay predominantly into W. See FROGGATT 97.
- ²⁸ MUKHOPADHYAYA 93 analyze CDF dilepton data of ABE 92G in terms of a new quark decaying via flavor-changing neutral current. The above limit assumes $B(b' \rightarrow b\ell^+\ell^-)=1\%$. For an exotic quark decaying only via virtual Z [$B(b\ell^+\ell^-)=3\%$], the limit is 85 GeV.
- ²⁹ABE 92 dilepton analysis limit of >85 GeV at CL=95% also applies to b' quarks, as discussed in ABE 90B.
- 30 ABE 90B exclude the region 28–72 GeV.
- ³¹AKESSON 90 searched for events having an electron with p_T > 12 GeV, missing momentum > 15 GeV, and a jet with E_T > 10 GeV, $|\eta| < 2.2$, and excluded $m_{b'}$ between 30 and 69 GeV.

- 32 For the reduction of the limit due to non-charged-current decay modes, see Fig. 19 of ALBAJAR 90B.
- ³³ ALBAJAR 88 study events at $E_{cm} = 546$ and 630 GeV with a muon or isolated electron, accompanied by one or more jets and find agreement with Monte Carlo predictions for the production of charm and bottom, without the need for a new quark. The lower mass limit is obtained by using a conservative estimate for the $b' \overline{b'}$ production cross section and by assuming that it cannot be produced in ${\it W}$ decays. The value quoted here is revised using the full $O(\alpha_c^3)$ cross section of ALTARELLI 88.

b'(-1/3) mass limits from single production in $p\overline{p}$ and pp collisions

		• •	•	
VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>1500	95	¹ AAD 16A	H ATLS	$egin{array}{cccc} g \: b ightarrow b' ightarrow \: t \: W, \: {\sf B}(b' ightarrow t \: W) = 1 \end{split}$
>1390	95	² KHACHATRY16	CMS	$egin{array}{ccc} g \ b ightarrow egin{array}{ccc} b' ightarrow & t \ W, \ {\sf B}(b' ightarrow b') = 1 \end{array}$
>1430	95	³ KHACHATRY16	CMS	$egin{array}{ccc} g \ b ightarrow egin{array}{ccc} b' ightarrow & t \ W, \ {\sf B}(b' ightarrow & t \ W) = 1 \end{array}$
>1530	95	⁴ KHACHATRY16	CMS	$\begin{array}{ccc} g \ b \rightarrow b' \rightarrow t \ W, \ B(b' \rightarrow t \ W) = 1 \end{array}$
> 693	95	⁵ ABAZOV 11F	D0	$q u \rightarrow q' b' \rightarrow q' (W u)$ $\widetilde{\kappa}_{u,b'} = 1, \ B(b' \rightarrow W u) = 1$
> 430	95	⁵ ABAZOV 11F	D0	$\begin{array}{c} \kappa_{ub'} = 1, \ B(b' \to vv b) = 1 \\ qd \to qb' \to q(Zd) \\ \widetilde{\kappa}_{db'} = \sqrt{2}, \ B(b' \to Zd) = 1 \end{array}$

- ¹AAD 16AH based on 20.3 fb⁻¹ of data in pp collisions at 8 TeV. No significant excess over SM expectation is found in the search for a vector-like b' in the single-lepton and dilepton channels (ℓ or $\ell\ell$) + 1,2,3 j (\geq 1b). The model assumes that the b' has the excited quark couplings.
- ² Based on 19.7 fb⁻¹ of data in pp collisions at 8 TeV. Limit on left-handed b' assuming 100% decay to tW and using all-hadronic, lepton + jets, and dilepton final states.
- ³Based on 19.7 fb⁻¹ of data in pp collisions at 8 TeV. Limit on right-handed b' assuming
- ⁴ Based on 19.7 fb⁻¹ of data in pp collisions at 8 TeV. Limit on right-handed *b* assuming 100% decay to *t W* and using all-hadronic, lepton + jets, and dilepton final states. ⁴ Based on 19.7 fb⁻¹ of data in pp collisions at 8 TeV. Limit on vector-like *b'* assuming 100% decay to *t W* and using all-hadronic, lepton+jets, and dilepton final states.
- ⁵Based on 5.4 fb⁻¹ of data in ppbar collisions at 1.96 TeV. ABAZOV 11F looked for single production of b' via the W or Z coupling to the first generation up or down quarks, respectively. Model independent cross section limits for the single production processes $p\overline{p} \rightarrow b'q \rightarrow Wuq$, and $p\overline{p} \rightarrow b'q \rightarrow Zdq$ are given in Figs. 3 and 4, respectively, and the mass limits are obtained for the model of ATRE 09 with degenerate bi-doublets of vector-like quarks.

MASS LIMITS for b' (4th Generation) Quark or Hadron in e^+e^- Collisions

Search for hadrons containing a fourth-generation -1/3 quark denoted b'.

The last column specifies the assumption for the decay mode (CC denotes the conventional charged-current decay) and the event signature which is looked for.

VALUE (GeV)	CL%	DOCUMENT ID	Ũ		COMMENT
>46.0	95	¹ DECAMP	90F	ALEP	any decay

•	• •	We do	not use	the	following	data [·]	for	averages,	fits,	limits,	etc.	•	•	•
---	-----	-------	---------	-----	-----------	-------------------	-----	-----------	-------	---------	------	---	---	---

		wing data for average.	5, 1105,	mmus, c	
none 96–103	95	² ABDALLAH	07	DLPH	$b' \rightarrow bZ, cW$
		³ ADRIANI	93 G	L3	Quarkonium
>44.7	95	ADRIANI	9 3M	L3	$\Gamma(Z)$
>45	95	ABREU	91F	DLPH	$\Gamma(Z)$
none 19.4–28.2	95	ABE	90 D	VNS	Any decay; event shape
>45.0	95	ABREU	90 D	DLPH	B(CC) = 1; event shape
>44.5	95	⁴ ABREU	90 D	DLPH	$b' \rightarrow c H^-, H^- \rightarrow \overline{c}s, \tau^- \nu$
>40.5	95	⁵ ABREU	90 D	DLPH	$\Gamma(Z \rightarrow \text{hadrons})$
>28.3	95	ADACHI	90	TOPZ	B(FCNC)=100%; isol. γ or 4 jets
>41.4	95	⁶ AKRAWY	90 B	OPAL	Any decay; acoplanarity
>45.2	95	⁶ AKRAWY	90 B	OPAL	B(CC) = 1; acopla- narity
>46	95	⁷ AKRAWY	90J	OPAL	$b^\prime ightarrow \ \gamma + { m any}$
>27.5	95	⁸ ABE	89E	VNS	B(CC) =1; μ , e
none 11.4-27.3	95	⁹ ABE	89 G	VNS	$B(b' ightarrow b\gamma) > 10\%;$ isolated γ
>44.7	95	¹⁰ ABRAMS	89 C	MRK2	B(<i>CC</i>)= 100%; isol. track
>42.7	95	¹⁰ ABRAMS	89 C	MRK2	B(bg)= 100%; event shape
>42.0	95	¹⁰ ABRAMS	89C	MRK2	Any decay; event shape
>28.4	95	^{11,12} ADACHI	89 C	TOPZ	$B(CC) = 1; \mu$
>28.8	95	¹³ ENO	89	AMY	B(CC) \gtrsim 90%; μ , e
>27.2	95	^{13,14} ENO	89	AMY	any decay; event shape
>29.0	95	¹³ ENO	89	AMY	${ m B}(b' ightarrow bg)\gtrsim 85\%;$ event shape
>24.4	95	¹⁵ IGARASHI	88	AMY	μ,e
>23.8	95	¹⁶ SAGAWA	88	AMY	event shape
>22.7	95	¹⁷ ADEVA	86	MRKJ	μ
>21		¹⁸ ALTHOFF	84C	TASS	R, event shape
>19		¹⁹ ALTHOFF	841	TASS	Aplanarity
1			~		

¹ DECAMP 90F looked for isolated charged particles, for isolated photons, and for four-jet final states. The modes $b' \rightarrow bg$ for $B(b' \rightarrow bg) > 65\% b' \rightarrow b\gamma$ for $B(b' \rightarrow b\gamma) > 5\%$ are excluded. Charged Higgs decay were not discussed. ² ABDALLAH 07 searched for b' pair production at E_{cm} =196-209 GeV, with 420 pb⁻¹.

² ABDALLAH 07 searched for b' pair production at E_{cm} =196–209 GeV, with 420 pb⁻¹. No signal leads to the 95% CL upper limits on B(b' \rightarrow bZ) and B(b' \rightarrow cW) for $m_{b'}$ = 96 to 103 GeV.

³ ADRIANI 93G search for vector quarkonium states near Z and give limit on quarkonium-Z mixing parameter $\delta m^2 < (10-30) \text{ GeV}^2$ (95%CL) for the mass 88–94.5 GeV. Using Richardson potential, a 1S ($b'\overline{b}'$) state is excluded for the mass range 87.7–94.7 GeV. This range depends on the potential choice.

⁴ ABREU 90D assumed $m_{H^-} < m_{b'} - 3$ GeV.

⁵ Superseded by ABREU 91F.

 6 AKRAWY 90B search was restricted to data near the Z peak at $E_{\rm cm}=91.26~{\rm GeV}$ at LEP. The excluded region is between 23.6 and 41.4 GeV if no H^+ decays exist. For charged Higgs decays the excluded regions are between $(m_{H^+}~+~1.5~{\rm GeV})$ and 45.5 GeV.

⁷AKRAWY 90J search for isolated photons in hadronic Z decay and derive

 $B(Z \rightarrow b' \overline{b'}) \cdot B(b' \rightarrow \gamma X) / B(Z \rightarrow hadrons) < 2.2 \times 10^{-3}$. Mass limit assumes $B(b' \rightarrow \gamma X) > 10\%$.

- ⁸ABE 89E search at $E_{\rm cm} = 56-57$ GeV at TRISTAN for multihadron events with a spherical shape (using thrust and acoplanarity) or containing isolated leptons.
- $^9\,{\rm ABE}$ 89G search was at $E_{\rm cm}$ = 55–60.8 GeV at TRISTAN.
- ¹⁰ If the photonic decay mode is large (B($b' \rightarrow b\gamma$) > 25%), the ABRAMS 89C limit is 45.4 GeV. The limit for for Higgs decay ($b' \rightarrow cH^-$, $H^- \rightarrow \overline{c}s$) is 45.2 GeV.
- 11 ADACHI 89C search was at $E_{\rm cm}=56.5{\rm -}60.8~{\rm GeV}$ at TRISTAN using multi-hadron events accompanying muons.
- 12 ADACHI 89C also gives limits for any mixture of C C and bg decays.
- 13 ENO 89 search at $E_{\rm cm} = 50-60.8$ at TRISTAN.
- 14 ENO 89 considers arbitrary mixture of the charged current, bg, and b γ decays.
- ¹⁵ IGARASHI 88 searches for leptons in low-thrust events and gives $\Delta R(b') < 0.26$ (95% CL) assuming charged current decay, which translates to $m_{b'} > 24.4$ GeV.
- ¹⁶SAGAWA 88 set limit $\sigma(top) < 6.1$ pb at CL=95% for top-flavored hadron production from event shape analyses at $E_{\rm CM} = 52$ GeV. By using the quark parton model crosssection formula near threshold, the above limit leads to lower mass bounds of 23.8 GeV for charge -1/3 quarks.
- ¹⁷ ADEVA 86 give 95%CL upper bound on an excess of the normalized cross section, ΔR , as a function of the minimum c.m. energy (see their figure 3). Production of a pair of 1/3 charge quarks is excluded up to $E_{\rm cm} = 45.4$ GeV.
- ¹⁸ ALTHOFF 84C narrow state search sets limit $\Gamma(e^+e^-)$ B(hadrons) <2.4 keV CL = 95% and heavy charge 1/3 quark pair production m > 21 GeV, CL = 95%.
- ¹⁹ ALTHOFF 841 exclude heavy quark pair production for 7 < m < 19 GeV (1/3 charge) using aplanarity distributions (CL = 95%).

REFERENCES FOR Searches for (Fourth Generation) b' Quark

KHACHATRY AAD AAD AAD AAD CHATRCHYAN AAD AAD AAD AAD AAD AAD	16AH 16AN 16I 15AR 15BY 15CN 15Z 14AZ 13I 12AT 12AT 12BE 12BH 12X 11J 11F	JHEP 1711 085 JHEP 1602 110 PR D93 112009 JHEP 1601 166 JHEP 1508 105 JHEP 1510 150 PR D92 112007 PR D91 112011 JHEP 1411 104 JHEP 1301 154 PRL 109 032001 PRL 109 071801 PR D86 012007 JHEP 1204 069 PR D86 012003 JHEP 1204 069 PR D86 112003 JHEP 1205 123 PRL 106 141803 PRL 106 081801 PL B701 204 PRL 104 091801 PRL 105 111801 PR D79 054018 PRL 101 111802 PR D77 037302 PR D76 072006 EPJ C50 507 PRL 90 131801 PRL 84 835 PR D58 051102 PRL 78 3818	 A.M. Sirunyan et al. G. Aad et al. V. Khachatryan et al. V. Khachatryan et al. G. Aad et al. S. Chatrchyan et al. G. Aad et al. S. Chatrchyan et al. C.J. Flacco et al. A. Atre et al. Y.M. Abazov et al. P.Q. Hung, M. Sher T. Aaltonen et al. J. Abdallah et al. D. Acosta et al. A. Affolder et al. F. Abe et al. S. Abachi et al. 	(CMS Collab.) (ATLAS Collab.) (CMS Collab.) (ATLAS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (UVA, WILL) (CDF Collab.) (UVA, WILL) (CDF Collab.) (CDF Collab.)
---	--	--	---	---

HTTP://PDG.LBL.GOV

Created: 6/5/2018 19:00