$\Upsilon(11020)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

$\Upsilon(11020)$ MASS

VALUE (MeV) DOCUMENT ID TECN COMMENT

$10992.9^{+10.0}_{-3.1}$ OUR AVERAGE

• • • We do not use the following data for averages, fits, limits, etc. • • •

Υ (11020) WIDTH

VALUE (MeV) DOCUMENT ID TECN COMMENT

49 $\begin{array}{c} + \ 9 \\ -15 \end{array}$ OUR AVERAGE

27 $\begin{array}{c} +27 \\ -11 \end{array} \begin{array}{c} +5 \\ -12 \end{array}$ 6 MIZUK 16 BELL $e^+e^- \rightarrow h_b(1P,2P)\pi^+\pi^-$

BELL $e^+e^- \rightarrow \Upsilon(1S, 2S, 3S) \pi^+\pi^-$

Created: 6/5/2018 19:00

⁷ SANTEL

61 + 9 + 2

¹ From a simultaneous fit to the $h_b(\text{nP})\pi^+\pi^-$, n=1, 2 cross sections at 22 energy points within $\sqrt{s}=10.77$ –11.02 GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with eight resonance parameters (a mass and width for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single relative phase, a single relative amplitude, and two overall normalization factors, one for each n). The systematic error estimate is dominated by possible interference with a small nonresonant continuum amplitude.

² From a simultaneous fit to the $\Upsilon({\sf nS})\pi^+\pi^-$, $n=1,\,2,\,3$ cross sections at 25 energy points within $\sqrt{s}=10.6$ –11.05 GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with fourteen resonance parameters (a mass, width, and three amplitudes for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single universal relative phase, and three decoherence coefficients, one for each n). Continuum contributions were measured (and therefore fixed) to be zero.

³ From a fit to the total hadronic cross sections measured at 60 energy points within \sqrt{s} = 10.82–11.05 GeV to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with $1/\sqrt{s}$ dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, one relative phase, and one decoherence coefficient).

⁴ Not including uncertain and potentially large systematic errors due to assumed continuum amplitude $1/\sqrt{s}$ dependence and related interference contributions.

⁵ In a model where a flat non-resonant $b\overline{b}$ -continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties not estimated.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$39.3 + 1.7 + 1.3 \\ - 1.6 - 2.4$	^{8,9} SANTEL	16	BELL	$e^+e^- \rightarrow$	hadrons
37 ± 3	¹⁰ AUBERT			$e^{+}e^{-}\rightarrow$	
61 ± 13 ± 22	BESSON	85	CLEO	$e^+e^- \rightarrow$	hadrons
90 + 20	LOVELOCK	85	CUSB	$e^+e^- \rightarrow$	hadrons

- ⁶ From a simultaneous fit to the $h_b(\text{nP})\pi^+\pi^-$, n=1, 2 cross sections at 22 energy points within $\sqrt{s}=10.77$ –11.02 GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with eight resonance parameters (a mass and width for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single relative phase, a single relative amplitude, and two overall normalization factors, one for each n). The systematic error estimate is dominated by possible interference with a small nonresonant continuum amplitude.
- ⁷ From a simultaneous fit to the $\Upsilon(\rm nS)\pi^+\pi^-$, $n{=}1$, 2, 3 cross sections at 25 energy points within $\sqrt{s}=10.6{-}11.05$ GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with fourteen resonance parameters (a mass, width, and three amplitudes for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single universal relative phase, and three decoherence coefficients, one for each n). Continuum contributions were measured (and therefore fixed) to be zero.
- ⁸ From a fit to the total hadronic cross sections measured at 60 energy points within \sqrt{s} = 10.82–11.05 GeV to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with $1/\sqrt{s}$ dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, one relative phase, and one decoherence coefficient).
- ⁹ Not including uncertain and potentially large systematic errors due to assumed continuum amplitude $1/\sqrt{s}$ dependence and related interference contributions.
- 10 In a model where a flat non-resonant $b\overline{b}$ -continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties not estimated.

au(11020) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	e^+e^-	$(2.7^{+1.0}_{-0.8}) \times 10^{-6}$

au(11020) PARTIAL WIDTHS

				Γ_1
DOCUMENT ID		TECN	COMMENT	
BESSON	85	CLEO	$e^+e^- ightarrow $ hadrons	
LOVELOCK	85	CUSB	$e^+e^- ightarrow hadrons$	
	BESSON	BESSON 85	BESSON 85 CLEO	BESSON 85 CLEO $e^+e^- \rightarrow hadrons$

Υ (11020) REFERENCES

MIZUK	16	PRL 117 142001	R. Mizuk et al.	(BELLE	Collab.)
SANTEL	16	PR D93 011101	D. Santel et al.	(BELLE	Collab.)
AUBERT	09E	PRL 102 012001	B. Aubert et al.	(BABAR	Collab.)
BESSON	85	PRL 54 381	D. Besson et al.	(CLEO	Collab.)
LOVELOCK	85	PRL 54 377	D.M.J. Lovelock et al.	(CUSB	Collab.)

Created: 6/5/2018 19:00