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16.1. Effective Field Theories

Quantum field theories provide the most precise computational tools for describing
physics at the highest energies. One of their characteristic features is that they almost
inevitably involve multiple length scales. When trying to determine the value of an
observable, quantum field theory demands that all possible virtual states and hence all
particles be included in the calculation. Since these particles have widely different masses,
the final prediction is sensitive to many scales. This fact represents a formidable challenge
from a practical point of view. No realistic quantum field theories can be solved exactly,
so that one needs to resort to approximation schemes; these, however, are typically most
straightforward when only a single scale is involved at a time.

Effective field theories (EFTs) provide a general theoretical framework to deal with
the multi-scale problems of realistic quantum field theories. This framework aims at
reducing such problems to a combination of separate and simpler single-scale problems;
simultaneously, however, it provides an organization scheme whereby the other scales are
not omitted but allowed to play their role in a separate step of the computation. The
philosophy and basic principles of this approach are very generic, and correspondingly
EFTs represent a widely used method in many different areas of high-energy physics,
from the low-energy scales of atomic and nuclear physics to the high-energy scales of
(partly yet unknown) elementary-particle physics, see [1–3] for some early references.
EFTs can play a role both within analytic perturbative computations and in the context
of non-perturbative numerical simulations; One of the simplest applications of EFTs to
particle physics concerns the description of an underlying theory that is only probed at
energy scales E < Λ. Any particle with mass m > Λ cannot be produced as a real state
and therefore only leads to short-distance virtual effects. Thus, one can construct an
effective theory in which the quantum fluctuations of such heavy particles are “integrated
out” from the generating functional for Green functions. This results in a simpler theory
containing only those degrees of freedom that are relevant to the energy scales under
consideration. In fact, the standard model of particle physics itself is widely viewed as an
EFT of some yet unknown, more fundamental theory.

The development of any effective theory starts by identifying the degrees of freedom that
are relevant to describe the physics at a given energy (or length) scale and constructing
the Lagrangian describing the interactions among these fields. Short-distance quantum
fluctuations associated with much smaller length scales are absorbed into the coefficients
of the various operators in the effective theory. These coefficients are determined in a
matching procedure, by requiring that the EFT reproduces the matrix elements of the full
theory up to power corrections. In many cases the effective Lagrangian exhibits enhanced
symmetries compared with the fundamental theory, allowing for simple and sometimes
striking predictions relating different observables.
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2 16. Heavy-quark and soft-collinear effective theory

16.2. Heavy-Quark Effective Theory

Heavy-quark systems provide prime examples for applications of the EFT technology,
because the hierarchy mQ ≫ ΛQCD (with Q = b, c) provides a natural separation
of scales. Physics at the scale mQ is of a short-distance nature and can be treated
perturbatively, while for heavy-quark systems there is always also some hadronic physics
governed by the confinement scale ΛQCD of the strong interaction. Being able to separate
the short-distance and long-distance effects associated with these two scales is crucial for
any quantitative description. For instance, if the long-distance hadronic matrix elements
are obtained from lattice QCD, then it is necessary to analytically compute the effects
of short-wavelength modes that do not fit on the lattice. In many other instances, the
long-distance physics can be encoded in a small number of hadronic parameters.

16.2.1. General idea and derivation of the effective Lagrangian : The simplest
effective theory for heavy-quark systems is the heavy-quark effective theory (HQET) [4–7]
(see [8,9] for detailed discussions). It provides a simplified description of the soft
interactions of a single heavy quark with light partons. This includes the interactions
that bind the heavy quark with other light partons inside heavy mesons and baryons.

A softly interacting heavy quark is nearly on-shell. Its momentum may be decomposed
as pQ = mQv + k, where v is the 4-velocity of the hadron containing the heavy quark.
The “residual momentum” k results from the soft interactions of the heavy quark with
its environment and satisfies v · k ∼ ΛQCD and k2 ∼ Λ2

QCD, which in the rest frame of

the heavy hadron reduces to kµ ∼ ΛQCD. In the limit mQ ≫ ΛQCD, the soft interactions
do not change the 4-velocity of the heavy quark, which is therefore a conserved quantum
number that is often used as a label on the effective heavy-quark fields. A nearly on-shell
Dirac spinor has two large and two small components. We define

Q(x) = e−imQv·x [hv(x) + Hv(x)] , (16.1)

where

hv(x) = eimQv·x 1 + /v

2
Q(x) , Hv(x) = eimQv·x 1 − /v

2
Q(x) (16.2)

are the large (“upper”) and small (“lower”) components of the spinor field, respectively.
The extraction of the phase factor in Eq. (16.1) implies that the fields hv and Hv carry
the residual momentum k. The field Hv is 1/mQ suppressed relative to hv and describes
quantum fluctuations far off the mass shell. Integrating it out using its equations of
motion yields the HQET Lagrangian

LHQET = h̄v iv · Ds hv +
1

2mQ

[

h̄v(iDs)
2hv + Cmag(µ)

g

2
h̄v σµν Gµν

s hv

]

+ . . . . (16.3)

The covariant derivative iD
µ
s = i∂µ +gA

µ
s and the field strength G

µν
s contain only the soft

gluon field. Hard gluons have been integrated out, and their effects are contained in the
Wilson coefficients of the operators in the effective Lagrangian. From the leading operator
one derives the Feynman rules of HQET. The new operators entering at subleading
order are referred to as the “kinetic energy” and “chromo-magnetic interaction”. The
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16. Heavy-quark and soft-collinear effective theory 3

kinetic-energy operator corresponds to the first correction term in the Taylor expansion
of the relativistic energy E = mQ + ~p 2/2mQ + . . .. Lorentz invariance, which is encoded
as a reparametrization invariance of the effective Lagrangian [10], ensures that its Wilson
coefficient is not renormalized (Ckin ≡ 1). The coefficient Cmag of the chromo-magnetic
operator receives corrections starting at one-loop order.

16.2.2. Spin-flavor symmetry : The leading term in the HQET Lagrangian exhibits
a global spin-flavor symmetry. Its physical meaning is that, in the infinite mass limit,
the properties of hadronic systems containing a single heavy quark are insensitive to
the spin and flavor of the heavy quark [11,12]. The spin symmetry results from the
fact that there are no Dirac matrices in the leading term of the effective Lagrangian
in Eq. (16.3), implying that the interactions of the heavy quark with soft gluons leave
its spin unchanged. The flavor symmetry arises since the mass of the heavy quark does
not appear at leading order. For nQ heavy quarks moving at the same velocity, one can

simply extend Eq. (16.3) by summing over nQ identical terms for heavy-quark fields hi
v.

The result is invariant under rotations in flavor space. When combined with the spin
symmetry, the symmetry group becomes promoted to SU(2nQ). These symmetries are
broken by the operators at subleading power in the 1/mQ expansion.

The spin-flavor symmetry leads to many interesting relations between the properties of
hadrons containing a heavy quark. The most direct consequences concern the spectroscopy
of such states [13]. In the heavy-quark limit, the spin of the heavy quark and the total
angular momentum j of the light degrees of freedom are separately conserved by the
strong interactions. Because of heavy-quark symmetry, the dynamics is independent of
the spin and mass of the heavy quark. Hadronic states can thus be classified by the
quantum numbers (flavor, spin, parity, etc.) of the light degrees of freedom. The spin
symmetry predicts that, for fixed j 6= 0, there is a doublet of degenerate states with total
spin J = j ± 1/2. The flavor symmetry relates the properties of states with different
heavy-quark flavor.

16.2.3. Weak decay form factors : Of particular interest are the relations between
the weak decay form factors of heavy mesons, which parametrize hadronic matrix elements
of currents between two mesons containing a heavy quark. These relations have been
derived by Isgur and Wise [12], generalizing ideas developed by Nussinov and Wetzel [14]
and Voloshin and Shifman [15]. For the purpose of this discussion, it is convenient to
work with a mass-independent normalization of meson states and use velocity rather than
momentum variables.

Consider the elastic scattering of a pseudoscalar meson, P (v) → P (v′), induced by
an external vector current coupled to the heavy quark contained in P , which acts as a
color source moving with the meson’s velocity v. The action of the current is to replace
instantaneously the color source by one moving at velocity v′. Soft gluons need to be
exchanged in order to rearrange the light degrees of freedom and build up the final state
meson moving at velocity v′. This rearrangement leads to a form-factor suppression. The
important observation is that, in the mQ → ∞ limit, the form factor can only depend on
the Lorentz boost γ = v ·v′ connecting the rest frames of the initial and final-state mesons
(as long as γ = O(1)). In the effective theory the hadronic matrix element describing the
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4 16. Heavy-quark and soft-collinear effective theory

scattering process can therefore be written as

〈P (v′)| h̄v′γ
µhv |P (v)〉 = ξ(v · v′)(v + v′)µ, (16.4)

with a form factor ξ(v · v′) that is real and independent of mQ. By flavor symmetry,
the form factor remains identical when one replaces the heavy quark Q in one of the
meson states by a heavy quark Q′ of a different flavor, thereby turning P into another
pseudoscalar meson P ′. At the same time, the current becomes a flavor-changing vector
current. This universal form factor is called the Isgur-Wise function [12]. For equal
velocities the vector current Jµ = h̄vγµhv is conserved in the effective theory, irrespective
of the flavor of the heavy quarks. The corresponding conserved charges are the generators
of the flavor symmetry. It follows that the Isgur-Wise function is normalized at the point
of equal velocities: ξ(1) = 1. Since the recoil energy of the daughter meson P ′ in the rest
frame of the parent meson P is Erecoil = mP ′ (v · v′ − 1), the point v · v′ = 1 is referred
to as the zero-recoil limit. The heavy-quark spin symmetry leads to additional relations
among weak decay form factors. It can be used to relate matrix elements involving
vector mesons to those involving pseudoscalar mesons, which once again can be described
completely in terms of the universal Isgur-Wise function.

The form factor relations imposed by heavy-quark symmetry describe the semileptonic
decay processes B̄ → D ℓ ν̄ and B̄ → D∗ℓ ν̄ in the limit of infinite heavy-quark masses.
They are model-independent consequences of QCD. The known normalization of the
Isgur-Wise function at zero recoil can be used to obtain a model-independent measurement
of the element |Vcb| of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The semileptonic
decay B̄ → D∗ℓ ν̄ is particularly well suited for this purpose [16]. Experimentally
this is a very clean mode, since the reconstruction of the D∗ meson mass provides a
powerful rejection against background. From the theoretical point of view, it is ideal
since the decay rate at zero recoil is protected by Luke’s theorem against first-order power
corrections in 1/mQ [17]. This is described in more detail in Section 12. Corrections to

the heavy-quark symmetry relations for the B̄ → D(∗) form factors near zero recoil can
also be constrained using sum rules derived in the small-velocity limit [18,19].

16.2.4. Decoupling transformation : At leading order in 1/mQ, the couplings of
soft gluons to heavy quarks in the effective Lagrangian Eq. (16.3) can be removed by

the field redefinition hv(x) = Yv(x) h
(0)
v (x), where Yv(x) is a soft Wilson line along the

direction of v, extending from minus infinity to the point x. In terms of the new fields

the leading-order HQET Lagrangian becomes LHQET = h̄
(0)
v iv · ∂ h

(0)
v . It describes a free

theory as far as the strong interactions of heavy quarks are concerned. However, the
theory is nevertheless non-trivial in the presence of external sources. Consider, e.g., the
case of a weak-interaction heavy-quark current

h̄v′γ
µ(1 − γ5)hv = h̄

(0)
v′

γµ(1 − γ5) Y
†
v′

Yv h
(0)
v , (16.5)

where v and v′ are the velocities of the heavy mesons containing the heavy quarks. Unless
the two velocities are equal, corresponding to the zero-recoil limit discussed above, the
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16. Heavy-quark and soft-collinear effective theory 5

object Y
†
v′

Yv is non-trivial, and hence the soft gluons do not decouple from the heavy

quarks inside the current operator. One may interpret Y
†
v′

Yv as a Wilson loop with a cusp
at the point x, where the two paths parallel to the different velocity vectors intersect.
The presence of the cusp leads to non-trivial ultra-violet behavior (for v 6= v′), which is
described by a cusp anomalous dimension Γc(v · v′) that was calculated at two-loop order
in [20]. It coincides with the velocity-dependent anomalous dimension of heavy-quark
currents, which was introduced in the context of HQET in [21]. The interpretation of
heavy quarks as Wilson lines is a useful tool, which was put forward in one of the very first
papers on the subject [4]. This technology will be useful in the study of the interactions
of heavy quarks with collinear degrees of freedom discussed later in this review.

16.2.5. Heavy-quark expansion for inclusive decays : The theoretical description
of inclusive decays of hadrons containing a heavy quark exploits two observations [22–26]:
bound-state effects related to the initial state can be calculated using the heavy-quark
expansion, and the fact that the final state consists of a sum over many hadronic
channels eliminates the sensitivity to the properties of individual final-state hadrons. The
second feature rests on the hypothesis of quark-hadron duality, i.e. the assumption that
decay rates are calculable in QCD after a smearing procedure has been applied [27]. In
semileptonic decays, the integration over the lepton spectrum provides a smearing over
the invariant hadronic mass of the final state (global duality). For nonleptonic decays,
where the total hadronic mass is fixed, the summation over many hadronic final states
provides an averaging (local duality). Since global duality is a much weaker assumption,
the theoretical control of inclusive semileptonic decays is on firmer footing.

Using the optical theorem, the inclusive decay width of a hadron Hb containing a b
quark can be written in the form

Γ(Hb) =
1

MHb

Im 〈Hb| i

∫

d4x T {Heff(x),Heff(0)} |Hb〉 . (16.6)

The effective weak Hamiltonian for b-quark decays consists of dimension-6 four-fermion
operators and dipole operators [28]. Because of the large mass of the b quark, it follows
that the separation of fields in the time-ordered product in Eq. (16.6) is small, of order
x ∼ 1/mb. It is thus possible to construct an operator-product expansion (OPE) for the
time-ordered product, in which it is represented as a series of local operators in HQET.
The leading operator h̄vhv has a trivial matrix element. The next contributions arise
at O(1/m2

b) and give rise to two parameters µ2
π(Hb) and µ2

G(Hb), which are defined as
the matrix elements of the heavy-quark kinetic energy and chromo-magnetic interaction
inside the hadron Hb, respectively [29]. For the ground-state heavy mesons and baryons,
one has µ2

G(B) = 3(m2
B∗ −m2

B)/4 ≃ 0.36GeV2 and µ2
G(Λb) = 0. Thus, the total inclusive

decay rate of a hadron Hb can be written as [23,24]

Γ(Hb) =
G2

F m5
b |Vcb|

2

192π3
[c1 + c2

µ2
π(Hb)

2m2
b

+ c3
µ2

G(Hb)

2m2
b

+ O(
1

m3
b

) + . . .], (16.7)

where the prefactor arises from the loop integrations and is proportional to the fifth
power of the b-quark mass. The coefficient functions ci are calculable order by order in
perturbation theory.
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6 16. Heavy-quark and soft-collinear effective theory

From the fully inclusive width in Eq. (16.7) one can obtain the lifetime of a heavy
hadron via τ(Hb) = 1/Γ(Hb). Due to the universality of the leading term in the heavy-
quark expansion, lifetime ratios such as τ(B−)/τ(B̄0), τ(B̄0

s )/τ(B̄0) and τ(Λb)/τ(B̄0)
are particularly sensitive to the hadronic parameters determining the power corrections
in the expansion. In order to understand these ratios theoretically, it is necessary to
include phase-space enhanced power corrections of order (ΛQCD/mb)

3 [30,31] as well as
short-distance perturbative effects [32] in the calculation.

A formula analogous to Eq. (16.7) can be derived for differential distributions in
specific inclusive decay processes, assuming that these distributions are integrated over
a sufficiently large region of phase space to ensure quark-hadron duality. Important
examples are the distributions in the lepton energy and the lepton invariant mass, as
well as moments of the invariant hadronic mass distribution in the semileptonic processes
B̄ → Xu ℓ ν̄ and B̄ → Xc ℓ ν̄. A global fit of semileptonic decay distributions can be
used to determine the CKM matrix elements |Vub| and |Vcb| along with heavy-quark
parameters such as the masses mb, mc and the hadronic parameters µ2

π(B), µ2
G(B).

These determinations provide some of the most accurate values for these parameters [33].

16.2.6. Shape functions and non-local power corrections : In certain regions of
phase space, in which the hadronic final state in an inclusive heavy-hadron decay is made
up of light energetic partons, the local OPE for inclusive decays must be replaced by
a more complicated expansion involving hadronic matrix elements of non-local light-ray
operators [34,35]. Prominent examples are the radiative decay B̄ → Xsγ for large photon
energy Eγ near mB/2, and the semileptonic decay B̄ → Xu ℓ ν̄ at large lepton energy or
small hadronic invariant mass. In these cases, the differential decay rates at leading order
in the heavy-quark expansion can be written in the factorized form dΓ = H J ⊗ S [36],
where the hard function H and the jet function J are calculable in perturbation theory.
The characteristic scales for these functions are set by mb and (mbΛQCD)1/2, respectively.
The soft function

S(ω) =

∫

dt

4π
e−iωt 〈B̄(v)| h̄v(tn)Yn(tn)Y †

n (0)hv(0)|B̄(v)〉 (16.8)

is a genuinely non-perturbative object called the shape function [34,35]. Here Yn are
soft Wilson lines along a light-like direction n aligned with the momentum of the
hadronic final-state jet. The jet function and the shape function share a common variable
ω ∼ ΛQCD, and the symbol ⊗ denotes a convolution in this variable.

While the hard functions are different for the decays B̄ → Xsγ and B̄ → Xu ℓν̄, the
jet and soft functions are identical at leading order in ΛQCD/mQ. This is particularly
important for the shape function, which introduces non-perturbative physics into the
theoretical predictions for the decay rates in the regions of experimental interest. The
fact that both processes depend on the same non-perturbative function makes it possible
to use the measured shape of the B̄ → Xsγ photon spectrum to reduce the theoretical
uncertainties in the determination of the CKM element |Vub| from semileptonic decays.
In higher orders of the heavy-quark expansion, an increasing number of subleading jet
and soft functions are required to describe the decay distributions [37]. These have
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16. Heavy-quark and soft-collinear effective theory 7

been analyzed in detail at order 1/mb [38–40]. In the case of B̄ → Xsγ, some of these
non-local effects survive in the total decay rate and give rise to irreducible hadronic
uncertainties [41]. The technology for deriving the corresponding factorization theorems
relies on the soft-collinear effective theory, to which we now turn.

16.3. Soft-Collinear Effective Theory

As discussed in the previous section, soft gluons that bind a heavy quark inside a
heavy meson cannot change the virtuality of that heavy quark by a significant amount.
The ratio ΛQCD/mQ provides the expansion parameter in HQET, which is a small
parameter since mQ ≫ ΛQCD. This obviously does not work when considering light
quarks. However, if the energy Q of the quarks is large, the ratio ΛQCD/Q provides
a small parameter, which can be used to construct an effective theory. One major
difference to HQET is that light energetic quarks cannot only emit soft gluons, but they
can also emit collinear gluons (an energetic gluon in the same direction as the original
quark), without parametrically changing their virtuality. Thus, to fully reproduce the
long-distance physics of energetic quarks requires that one includes their interactions
with both soft and collinear particles. The resulting effective theory is therefore called
soft-collinear effective theory (SCET) [42–44].

A single energetic particle can always be boosted to a frame where all momentum
components have similar size, in which case there is no small expansion parameter. Thus
the presence of energetic particles must refer to a reference frame defined by external
kinematics. SCET has a wide range of applications; some examples are the production of
energetic, light states in the decay of a heavy particle in its rest frame, the production
of energetic jets in collider environments, and the scattering of energetic particles off a
target at rest. In this brief review we will outline the main features of this effective theory
and mention a few selected applications.

16.3.1. General idea of the expansion : Consider a quark with virtuality much
less than its energy Q, moving along the direction ~n. It is convenient to parameterize
the momentum pn of this particle in terms of its light-cone components, defined by
(p−n , p+

n , p⊥n ) = (n̄ · pn, n · pn, p⊥n ), where nµ = (1, ~n) and n̄µ = (1,−~n) are light-like
vectors, and n ·p⊥n = n̄ ·p⊥n = 0. The subscript n on the momentum indicates the direction
of the collinear particle. In terms of these light-cone components, the virtuality satisfies
p2
n = p+

n p−n + p⊥2
n . The individual components of the momentum obey

(p−n , p+
n , p⊥n ) ∼ Q(1, λ2, λ), (16.9)

where λ2 = p2/Q2 is the expansion parameter of SCET. The virtuality of such an
energetic particle remains parametrically unchanged if it interacts with energetic particles
in the same direction n, or with soft particles with momentum scaling as

(p−s , p+
s , p⊥s ) ∼ Q(λ2, λ2, λ2). (16.10)

SCET is constructed in such a way as to reproduce the long-distance dynamics arising
from the interactions of collinear and soft degrees of freedom.
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8 16. Heavy-quark and soft-collinear effective theory

In the above power counting the transverse momenta of soft degrees of freedom scale
as p⊥s ∼ Qλ2, which is much smaller than the transverse momenta p⊥c ∼ Qλ of collinear
fields. This theory is usually called SCETI. If the external kinematics require that the
transverse momenta of both soft and collinear fields are of the same size, p⊥c ∼ p⊥s , then
the appropriate degrees of freedom have the scaling pc ∼ Q(1, λ2, λ) and ps ∼ Q(λ, λ, λ).
This theory is usually called SCETII and is required, e.g., for exclusive hadronic decays
such as B̄ → Dπ, where the virtuality of both collinear and soft degrees of freedom are
set by ΛQCD, or for the description of transverse-momentum distributions at colliders.

16.3.2. Leading-order Lagrangian : The derivation of the SCET Lagrangian follows
similar steps as described for HQET in Section 16.2.1. One begins by deriving the
Lagrangian for a theory containing only a single collinear sector. Similar to HQET, one
separates the full QCD field into two components, qn(x) = ψn(x) + Ξn(x), where (with
n · n̄ = 2)

ψn(x) =
n/n̄/

4
qn(x) , Ξn(x) =

n̄/n/

4
qn(x). (16.11)

The degrees of freedom described by the field Ξn are far off shell and can therefore be
eliminated using its equation of motion. This gives

Ln = ψ̄n(x)

[

in · D + iD/ ⊥ 1

in̄ · D
iD/⊥

]

n̄/

2
ψn(x). (16.12)

As a next step, one separates the large and residual momentum components by
decomposing the collinear momentum into a “label” and a residual momentum,
pµ = Pµ + kµ with n · P = 0. One then performs a phase redefinition on the collinear
fields, such that ψn(x) = eiP ·x ξn(x). Derivatives acting on the fields ξn(x) now only pick
out the residual momentum. Since unlike in HQET the label momentum in SCET is not
conserved, one defines a label operator Pµ acting as Pµξn(x) = Pµξn(x) [43], as well as
a corresponding covariant label operator iDµ

n = Pµ + gAµ
n(x). Note that at leading order

in power counting iD
µ
n does not contain the soft gluon field. This leads to the final SCET

Lagrangian [43–46]

Ln = ξ̄n(x)

[

in · Dn + gn · As + iD/⊥
n

1

in̄ · Dn
iD/⊥

n

]

n̄/

2
ξn(x) + . . . , (16.13)

where we have split in · D into a collinear piece in · Dn = in · ∂ + gn · An and a soft
piece gn ·As. This latter term gives rise to the only interaction between a collinear quark
and soft gluons at leading power in λ. The ellipses represent higher-order interactions
between soft and collinear particles.

The Lagrangian describing collinear fields in different light-like directions is simply
given by the sum of the Lagrangians for each direction n, i.e. L =

∑

n Ln. The soft
gluons are the same in each individual Lagrangian. An alternative way to understand the
separation between large and small momentum components is to derive the Lagrangian
of SCET in position space [46]. In this case no label operators are required, and the
dependence on short-distance effects is contained in non-localities at short distances. An
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16. Heavy-quark and soft-collinear effective theory 9

important difference between SCET and HQET is that the SCET Lagrangian is not
corrected by short distance fluctuations. The physical reason is that in the construction
described above no high-momentum modes have been integrated out [46]. Such hard
modes arise when different collinear sectors are coupled via some external current (e.g. in
jet production at e+e− or hadron colliders), or when collinear particles are produced in
the rest frame of a decaying heavy object (such as in B decays). Short-distance effects
are then incorporated in the Wilson coefficients of the external source operators.

16.3.3. Collinear gauge invariance and Wilson lines : An important aspect of
SCET is the implementation of local gauge invariance. Because the effective field
operators describe modes with certain momentum scalings, the effective Lagrangian
respects only residual gauge symmetries. One of them satisfies the collinear scaling

(n̄ · ∂, n · ∂, ∂⊥) Un(x) ∼ Q(1, λ2, λ) Un(x), (16.14)

and one the soft scaling

(n̄ · ∂, n · ∂, ∂⊥) Us(x) ∼ Q(λ2, λ2, λ2) Us(x). (16.15)

The fact that collinear fields in different directions do not transform under the same
gauge transformations implies that each collinear sector, containing particles with large
momenta along a certain direction, has to be separately gauge invariant. This requires
the introduction of collinear Wilson lines [43]

Wn(x) = P exp

[

−ig

∫ 0

−∞
ds n̄ · An(sn̄ + x)

]

, (16.16)

which transform under collinear gauge transformations according to Wn → UnWn. Thus,

the combination χn ≡ W
†
n ψn is gauge invariant. In a similar manner, one can define the

gauge-invariant gluon field Bµ
n = g−1W †

n iDµ
nWn [47,48]. Collinear operators in SCET

are typically constructed from such gauge-invariant building blocks.

16.3.4. Derivation of factorization theorems : One of the important applications
of SCET is to understand how to factorize cross sections involving energetic particles
moving in different directions into simpler pieces that can either be calculated
perturbatively or determined from data. Factorization theorems have been around for
much longer than SCET; see [49] for a review. However, the effective theory allows for a
conceptually simpler understanding of certain classes of factorization theorems [47], since
most simplifications happen already at the level of the Lagrangian. The discussion in this
section is valid to leading order in the power counting of the effective theory.

As discussed in the previous section, the Lagrangian of SCET does not involve any
couplings between collinear particles moving in different directions. Soft gluons couple to
collinear quarks only through the term ξ̄n g n·As(n̄//2) ξn in the effective Lagrangian in
Eq. (16.13). This coupling is similar to the coupling of soft gluons to heavy quarks in
HQET, see Section 16.2.4. It can be removed by means of the field redefinition [44]

ψn(x) = Yn(x)ψ
(0)
n (x) , Aa

n(x) = Y ab
n (x)A

b(0)
n (x), (16.17)
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10 16. Heavy-quark and soft-collinear effective theory

where Yn and Y ab
n live in the fundamental and adjoint representations of SU(3),

respectively. This fact greatly facilitates proofs of factorization theorems in SCET. A
QCD operator O(x) describing the interactions of collinear partons moving in different
directions can thus be written as (omitting color indices for simplicity)

〈O(x)〉 = CO(µ) 〈C
(0)
na (x)C

(0)
nb

(x)C
(0)
n1

(x) . . .C
(0)
nN

(x)[YnaYnb
Yn1

. . .YnN
](x)

〉

µ
. (16.18)

Here C
(0)
ni

(x) denotes a gauge-invariant combination of collinear fields (either quark
or gluon fields) in the direction ni. The hard matching coefficient CO accounts for
short-distance effects at the scale Q. The soft Wilson lines can either be in a color
triplet or color octet representation, and are collectively denoted by Yni

. Both the matrix
elements and the coefficient CO depend on the renormalization scale µ.

Having defined the operator mediating a given process, one can calculate the cross
section by squaring the operator, taking the forward matrix element and integrating over
the phase space of all final-state particles. The absence of interactions between collinear
degrees of freedom moving along different directions or soft degrees of freedom implies
that the forward matrix element can be factorized as

〈

in
∣

∣O(x)O†(0)
∣

∣in
〉

= |C0(µ)|2
〈

ina
∣

∣Cna(x)C†na
(0)

∣

∣ina
〉

µ

〈

inb

∣

∣Cnb
(x)C†nb

(0)
∣

∣inb

〉

µ

×
〈

0
∣

∣Cn1
(x)C†n1

(0)
∣

∣0
〉

µ
· · ·

〈

0
∣

∣CnN
(x)C†nN

(0)
∣

∣0
〉

µ

×
〈

0
∣

∣[Yna . . .YnN
](x)[Yna . . .YnN

]†(0)
∣

∣0
〉

µ
.

(16.19)

Thus, the matrix element can be written as a product of simpler structures, each of which
can be evaluated separately.

The vacuum matrix elements of the outgoing collinear fields are determined by jet
functions Ji(µ). As long as the relevant scale (for example the jet mass) is sufficiently
large, these functions can be calculated perturbatively. The matrix elements of the
incoming collinear fields are non-perturbative objects Bp/N (µ) called beam functions for

parton p in nucleon N [50]. For many applications they can be related perturbatively to
the well-known parton distribution functions. Finally, the vacuum matrix element of the
soft Wilson lines defines a so-called soft function Sab...N (µ). The shared dependence on
x in the above equation implies that in momentum space the various components of the
factorization theorem are convoluted with one another. Deriving this convolution requires
a careful treatment of the phase-space integration, in particular treating the large and
residual components of each momentum appropriately.

Putting all information together, the differential cross section for a proton-proton
collision with N jet-like objects can schematically be written as

dσ ∼
∑

ab

Hab(µ)[Ba/P (µ)Bb/P (µ)] ⊗ [J1(µ) . . . JN (µ)] ⊗ Sab...N (µ). (16.20)

The hard function is equal to the square of the matching coefficient, Hab(µ) = |CO(µ)|2.
It should be mentioned that the most difficult part of traditional factorization proofs
involves showing that so-called Glauber gluons do not spoil the above factorization
theorem [51]. This question has not yet been fully addressed in the context of SCET.
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16.3.5. Resummation of large logarithms : SCET can be used to sum the large
logarithms arising in perturbative calculations to all orders in the strong coupling constant
αs. In general, perturbation theory will generate a logarithmic dependence on any ratio of
scales r in a problem. For processes that involve initial or final states with energy much in
excess of their mass, there are two powers of logarithms for every power of αs. These are
referred to as Sudakov logarithms. For widely separated scales these large logarithms can
spoil the convergence of fixed-order perturbation theory. One thus needs to reorganize
the expansion in such a way that αsL = O(1) is kept fixed, with L = ln r. More precisely,
a proper resummation requires summing logarithms of the form αn

s Lm with m ≤ n + 1 in
the logarithm of a cross section, by writing lnσ ∼ Lg0(αsL) + g1(αsL) + αsg2(αsL) + . . .,
with functions gn(x) that need to be determined.

The important ingredient in achieving this resummation is the fact that SCET
factorizes a given cross section into simpler pieces, each of which depends on a single
physical scale. The only dependence on that scale can arise through logarithms of its ratio
with the renormalization scale µ. Thus, for each of the components in the factorization
theorem one can choose a renormalization scale µ for which the large logarithmic terms
are absent. Of course, the factorization formula requires a common renormalization scale
µ in all its components, and one therefore has to use the renormalization group (RG) to
evolve the various component functions from their preferred scale to the common scale
µ. A novel feature of RG equations in SCET, as opposed to other EFTs, is that the
anomalous dimensions entering the evolution equations of the hard, beam, jet and soft
functions in a factorization formula such as Eq. (16.20) contain a single power of the
logarithm of the relevant energy scale. For example, the anomalous dimension γH of the
hard function has the form

γH(µ) = cH Γcusp(αs) ln
Q2

µ2
+ γ(αs), (16.21)

where cH is a process-dependent coefficient and Γcusp denotes the so-called cusp
anomalous dimension [20,52]. The non-cusp part γ of the anomalous dimension
is process dependent. The presence of a logarithm in the anomalous dimension is
characteristic of Sudakov problems and arises since the perturbative series contains double
logarithms of scale ratios.

The anomalous dimension γH is known at two-loop order for arbitrary n-parton
amplitudes containing massless or massive external partons [53–56]. Solving the RG
equations one can systematically resum all large logarithms of scale ratios in the factorized
cross section and express the functions gn(αsL) introduced above in terms of ratios of
running coupling constants. In order to compute the first two terms Lg0(αsL) + g1(αsL)
in lnσ, corresponding to the next-to-leading logarithmic (NLL) approximation, one
needs two-loop expressions for the cusp anomalous dimension and β function, one-loop
expressions for the non-cusp pieces in the anomalous dimensions, and tree-level matching
conditions for all component functions at their characteristic scales. To calculate the next
term αsg2(αsL) in the expansion, corresponding to NNLL order, one needs to go one
order higher in the loop expansion, and so on.
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16.3.6. Factorization and resummation in SCETII : The effective theory SCETII
contains collinear and soft particles with momenta scaling as (p−n , p+

n , p⊥n ) ∼ Q(1, λ2, λ)
and (p−s , p+

s , p⊥s ) ∼ Q(λ, λ, λ). They have the same small virtuality (p2
n ∼ p2

s ∼ Q2λ2)
but differ in their rapidities. An important class of observables, for which this scaling is
relevant, contains cross sections for processes in which the transverse momenta of particles
are constrained by external kinematics. The prime example are the transverse-momentum
distributions of electroweak gauge bosons or Higgs bosons produced at hadron colliders.
The parton transverse momenta are constrained by the fact that their vector sum must be
equal and opposite to the transverse momentum qT of the boson. Standard RG evolution
in the effective theory controls the logarithms arising from the fact that the virtualities of
the collinear and soft modes are much smaller than the hard scale Q in the process (the
boson mass). However, additional large logarithms arise since the rapidities of collinear

and soft modes are parametrically different, such that e|yc−ys| ∼ 1/λ. These logarithms
need to be factorized in the cross section and resummed by other means.

Two equivalent approaches exist for how to deal with the additional rapidity
logarithms. In the first approach, they are interpreted as a consequence of a “collinear
anomaly” of the effective theory SCETII, resulting from the fact that a classical rescaling
symmetry of the effective Lagrangian is broken by quantum effects [57]. The extra large
logarithms can be resummed by means of simple differential equations, which typically
state that (in an appropriate space) the logarithm of the cross section contains only
a single logarithm of λ ∼ qT /Q, to all orders in perturbation theory. An alternative
approach to resum the rapidity logarithms uses the “rapidity renormalization group”, in
which the relevant differential equations are obtained by considering a new type of scale
variation in a parameter ν, which separates the phase space for collinear and soft particles
along a hyperbola in the (p−, p+) plane [58]. In contrast to the standard RG, there is
no running coupling involved in the ν evolution, since the different contributions live at
the same virtuality.

SCETII also plays an important role in the study of factorization for a variety of
exclusive B meson decays, such as B̄ → πℓν, B̄ → K∗γ and B̄ → ππ, for which the
virtualities of energetic (collinear) final-state particles are of order ΛQCD, which is also
the scale for the soft light degrees of freedom contained in the initial-state B meson.

16.3.7. Applications : Most of the applications of SCET are either in flavor physics,
where the decay of a heavy B meson can give rise to energetic light partons, or in collider
physics, where the presence of jets naturally leads to collimated sets of energetic particles.
For many of these applications alternative approaches existed before the invention of
SCET, but the effective theory has opened up alternative ways to understand the physics
of these processes. For several examples, however, SCET has allowed new insights. The
investigation of heavy-to-light form factors has been instrumental for understanding
factorization in exclusive semileptonic B decays [59]. SCET has also provided a
field-theoretic basis for the QCD factorization approach to exclusive, non-leptonic decays
of B mesons [60]. Using SCET methods, proofs of factorization were derived for the
color-allowed decay B̄0 → D+π− [61], the color-suppressed decay B̄0 → D0π0 [62], and
the radiative decay B̄ → K∗γ [63]. Further examples are factorization theorems and the
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resummation of endpoint logarithms for quarkonia production [64], the resummation of
large logarithmic terms for the thrust [65] and jet broadening [66] distributions in e+e−

annihilation beyond NLL order, the development of new factorizable observables to veto
extra jets [67], all-orders factorization theorems for processes containing electroweak
Sudakov logarithms [68], and the resummation of threshold (soft gluon) logarithms
for several important processes at hadron colliders [69–71]. Recently, there has been a
lot of activity describing pT -based resummation at hadron colliders. Examples are the
transverse-momentum distributions of electroweak bosons [57] and jets [72]. We now
describe three applications in more detail.

Event-shape distributions, in particular the thrust distribution, have been measured
to high accuracy at LEP [73]. They can be used for a determination of the strong
coupling constant αs. SCET has increased the theoretical accuracy in the calculations of
the thrust and C-parameter distributions significantly. First, it has allowed to increase
the perturbative accuracy of the thrust spectrum. The resummation of logarithms of τ ,
which become important for τ ≪ 1, has been performed to N3LL [65], two orders beyond
what was previously available. Combining this resummation with the known two-loop
spectrum [74,75] gives precise perturbative predictions both at small and large values
of τ . Second, the factorization of the cross section in SCET has made it possible to
include non-perturbative physics through a shape function, in analogy with the B-physics
case discussed in Section 16.2.6. Comparing the theoretical predictions to the measured
thrust and C-parameter distributions yields a precise value of the strong coupling
constant αs(mZ), which however is lower than the average value cited in ”Quantum
Chromodynamics” review, Section 9, by several standard deviations [76,77]. For more
discussions on this, see ”Quantum Chromodynamics” review, Section 9.

The Higgs-boson production cross section in gluon fusion at the LHC, defined with a
jet veto stating that no jet in the final state has transverse momentum above a threshold
pveto
T , can be factorized in the form [78,79] (see [80] for a corresponding calculation

outside the SCET framework)

σ(pveto
T ) = H(mH , µ)(

νB

νS
)−2Fgg(R,pveto

T
,µ)Sgg(R, pveto

T , µ,
νS

pveto
T

)

×

∫ 1

τ

dz

z
Bg/P (z, R, pveto

T , µ,
νB

mH
) Bg/P (

τ

z
, R, pveto

T , µ,
νB

mH
),

(16.22)

where τ = m2
H/s, and µ ∼ pveto

T is a common factorization scale. The beam functions
Bg/P , the soft function Sgg and the exponent Fgg all depend on the jet radius R as well
as the jet clustering algorithm. The scale dependence of the hard function H is controlled
by standard RG evolution in SCET. The beam functions can be factorized further into
calculable collinear kernels convoluted with parton distribution functions. In addition
to the renormalization scale µ, the beam and soft functions depend on two rapidity
scales νB ∼ mH and νS ∼ pveto

T , respectively. In [78] the default values νB = mH and
νS = pveto

T are used for these scales, and the soft function Sgg is absorbed into the beam
functions. In [79] the exponent Fgg is called −γ

g
ν/2. The second factor on the right-hand

side of the factorization formula Eq. (16.22), which resums large rapidity logarithms,
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14 16. Heavy-quark and soft-collinear effective theory

implies that the logarithm of the jet-veto cross section contains a single large logarithm
lnσ = −2Fgg(R, pveto

T , µ) ln(mH/pveto
T ) + . . . not contained in the hard function. Its

coefficient can be calculated in fixed-order perturbation theory.

Obtaining more precise fixed-order calculations has been an important goal for many
years. A major difficulty in these calculations is the proper handling of the infrared
singularities that arise in both virtual and real contributions. A method based on
N -jettiness (TN ) subtraction/slicing to obtain the NNLO result from a much easier NLO
calculation, combined with information about the singular dependence of the cross section
on the TN resolution variable [81,82], has been used to compute various processes with
final states containing up to one colored particle [83–85]. While the NLO calculations
can be performed using well established techniques, the singular dependence on TN can
be calculated using SCET at NNLO. Calculations of the leading power corrections in
T0/Q [86,87] have helped to improved the numerical stability for several processes.

16.4. Open issues and perspectives

HQET has successfully passed many experimental tests, and there are not many open
questions that still need to be addressed. One concept that has not been derived from
first principles is the notion of quark-hadron duality, which underlies the application of
HQET to the description of inclusive decays of B mesons. The validity of global duality
(at energies even lower than those relevant in B decays) has been tested experimentally
using high-precision data on semileptonic B decays and on hadronic τ decays, and
good agreement between theory and data was found. However, assigning a theoretical
uncertainty due to possible duality violations remains a difficult task. Another known
issue is that the measured values of the CKM element |Vub| extracted from exclusive or
inclusive decays of B mesons differ from each other by several standard deviations (see
”Semileptonic Bottom Hadron Decays and the Determination of Vcb and Vub” review,
Section 89). This measurement relies on the heavy-quark limit, and the uncertainty
quoted includes a theoretical estimate of the effect of power corrections arising from
the finite b-quark mass. It remains an open question whether the discrepancy is due to
underestimated theoretical or experimental uncertainties, or whether it may hint to the
existence of new physics.

SCET, on the other hand, is still an active field of research, and new results are being
obtained regularly. An important example concerns the understanding of non-global
logarithms arising in hadron-collider processes with jets [88,89]. SCET-based fixed-order
calculations have helped to shed some light on the nature of these logarithms [90–92].
However, for a long time a fully factorized form of jet cross sections has not been available,
despite significant progress towards this goal [93,94]. A consistent factorization formula
for non-global jet observables was developed in [95,96]. It requires the introduction of
a new collinear-soft mode in the SCET Lagrangian. First phenomenological applications
of the formalism developed in these references have been presented in [97]. Another
active field concerns the study of Glauber gluons in SCET [98] and their relation
to the BFKL equation familiar from small-x physics [99]. A systematic account of
Glauber effects in the context of SCET has been developed in [100]. It sets the
basis for a solid understanding of their impact on factorization proofs. Glauber gluons
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also play an important role in SCET-based analysis of jet propagation in dense QCD
media [101–104], which gives rise to the jet-quenching phenomenon in heavy-ion
collisions. An important open question facing some applications of SCET concerns
factorized expressions containing endpoint-divergent convolution integrals. This problem
arises, for example, in the description of heavy-to-light form factors such as FB̄→π(q2) at
large recoil [105].

We close this short review by mentioning a particularly nice application combining the
methods of heavy-particle EFTs such as HQET and non-relativistic QCD with SCET in
the context of describing the interactions of heavy dark matter (with mass M ≫ v) with
SM particles. In [106] it was realized that the interactions of heavy, weakly interacting
massive particles (WIMPs) with nuclear targets can be described in a model-independent
way using heavy-particle EFTs. The WIMPs are charged under SU(2)L and can interact
with electroweak gauge bosons and the Higgs boson. The WIMP EFT was later extended
by describing the produced, highly energetic electroweak gauge bosons in terms of soft
or collinear fields in SCET [107–109]. This allows one to systematically separate all
relevant mass scales, resum electroweak Sudakov logarithms and disentangle the so-called
Sommerfeld enhancement from the short-distance hard annihilation process.
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