Figure 18.8: The proton structure function F_2^p measured in electromagnetic scattering of electrons and positrons on protons (collider experiments H1 and ZEUS for $Q^2 \geq 2$ GeV2), in the kinematic domain of the HERA data (see Fig. 18.10 for data at smaller x and Q^2), and for electrons (SLAC) and muons (BCDMS, E665, NMC) on a fixed target. Statistical and systematic errors added in quadrature are shown. The H1+ZEUS combined values are obtained from the measured reduced cross section and converted to F_2^p with a HERAPDF NLO fit, for all measured points where the predicted ratio of F_2^p to reduced cross-section was within 10% of unity. The data are plotted as a function of Q^2 in bins of fixed x. Some points have been slightly offset in Q^2 for clarity. The H1+ZEUS combined binning in x is used in this plot; all other data are rebinned to the x values of these data. For the purpose of plotting, F_2^p has been multiplied by 2^{i_x}, where i_x is the number of the x bin, ranging from $i_x = 1$ ($x = 0.85$) to $i_x = 24$ ($x = 0.00005$). References: H1 and ZEUS—H. Abramowicz et al., Eur. Phys. J. C75, 580 (2015) (for both data and HERAPDF parameterization); BCDMS—A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989) (as given in [86]); E665—M.R. Adams et al., Phys. Rev. D54, 3006 (1996); NMC—M. Arneodo et al., Nucl. Phys. B483, 3 (1997); SLAC—L.W. Whitlow et al., Phys. Lett. B282, 475 (1992).
Figure 18.9: The deuteron structure function F_2^d measured in electromagnetic scattering of electrons (SLAC) and muons (BCDMS, E665, NMC) on a fixed target, shown as a function of Q^2 for bins of fixed x. Statistical and systematic errors added in quadrature are shown. For the purpose of plotting, F_2^d has been multiplied by 2^{i_x}, where i_x is the number of the x bin, ranging from 1 ($x = 0.85$) to 29 ($x = 0.0009$). References: BCDMS—A.C. Benvenuti et al., Phys. Lett. B237, 592 (1990). E665, NMC, SLAC—same references as Fig. 18.8.
18. Structure functions

Figure 18.10: a) The deuteron structure function F_2 measured in deep inelastic scattering of muons on a fixed target (NMC) is compared to the structure function F_2 from neutrino-iron scattering (CCFR and NuTeV) using $F_2^d = (5/18)F_2^\nu - x(s+\bar{s})/6$, where heavy-target effects have been taken into account. The data are shown versus Q^2, for bins of fixed x. The NMC data have been rebinned to CCFR and NuTeV x values. For the purpose of plotting, a constant $c(x) = 0.05i_x$ is added to F_2, where i_x is the number of the x bin, ranging from 0 ($x = 0.75$) to 7 ($x = 0.175$). For $i_x = 8$ ($x = 0.125$) to 11 ($x = 0.015$), $2c(x)$ has been added. References: NMC—M. Arneodo et al., Nucl. Phys. B483, 3 (1997); CCFR/NuTeV—U.K. Yang et al., Phys. Rev. Lett. 86, 2741 (2001); NuTeV—M. Tzanov et al., Phys. Rev. D74, 012008 (2006).

b) The proton structure function F_2^p mostly at small x and Q^2, measured in electromagnetic scattering of electrons and positrons (H1, ZEUS), electrons (SLAC), and muons (BCDMS, NMC) on protons. Lines are ZEUS Regge and HERAPDF parameterizations for lower and higher Q^2, respectively. The width of the bins can be up to 10% of the stated Q^2. Some points have been slightly offset in x for clarity. The H1+ZEUS combined values for $Q^2 \geq 3.5$ GeV2 are obtained from the measured reduced cross section and converted to F_2^p with a HERAPDF NLO fit, for all measured points where the predicted ratio of F_2^p to reduced cross-section was within 10% of unity. A turn-over is visible in the low-x points at medium Q^2 (3.5 GeV2 and 6 GeV2) for the H1+ZEUS combined values. In order to obtain F_2^p from the measured reduced cross-section, F_L must be estimated; for the points shown, this estimate is obtained from HERAPDF2.0. No F_L value consistent with the HERA data can eliminate the turn-over. This may indicate that at low x and Q^2 there are contributions to the structure functions that cannot be described in standard DGLAP evolution.

Statistical and systematic errors added in quadrature are shown for both plots.
Figure 18.11: a) The charm-quark structure function $F_{2cc}(x, Q^2)$, i.e. that part of the inclusive structure function $F_2^{p\bar{p}}$ arising from the production of charm quarks, measured in electromagnetic scattering of positrons on protons (H1, ZEUS) and muons on iron (EMC). For the purpose of plotting, a constant $c(Q) = 0.07iQ^{1.7}$ is added to F_{2cc} where iQ is the number of the Q^2 bin, ranging from 1 ($Q^2 = 2.5 \text{ GeV}^2$) to 12 ($Q^2 = 2000 \text{ GeV}^2$).

b) The bottom-quark structure function $F_{2bb}(x)$. For the purpose of plotting, a constant $c(Q) = 0.01iQ^{1.6}$ is added to F_{2bb} where iQ is the number of the Q^2 bin, ranging from 1 ($Q^2 = 5 \text{ GeV}^2$) to 12 ($Q^2 = 2000 \text{ GeV}^2$).

For both plots, statistical and systematic errors added in quadrature are shown. The data are given as a function of x in bins of Q^2. Points may have been slightly offset in x for clarity. Some data have been rebinned to common Q^2 values. Also shown is the MMHT2014 parameterization given at several Q^2 values (L. A. Harland-Lang et al., Eur. Phys. J. C75, 204 (2015)).
Figure 18.12: The structure function $x F_3^{\gamma Z}$ measured in electroweak scattering of a) electrons on protons (H1 and ZEUS) and b) muons on carbon (BCDMS). The line in a) is the HERAPDF parameterization. References: H1 and ZEUS—H. Abramowicz et al., Eur. Phys. J. C75, 580 (2015) (for both data and HERAPDF parameterization); BCDMS—A. Argento et al., Phys. Lett. B140, 142 (1984).

c) The structure function $x F_3$ of the nucleon measured in ν-Fe scattering. The data are plotted as a function of Q^2 in bins of fixed x. For the purpose of plotting, a constant $c(x) = 0.5(i_x - 1)$ is added to $x F_3$, where i_x is the number of the x bin as shown in the plot. The NuTeV and CHORUS points have been shifted to the nearest corresponding x bin as given in the plot and slightly offset in Q^2 for clarity. References: CCFR—W.G. Seligman et al., Phys. Rev. Lett. 79, 1213 (1997); NuTeV—M. Tzanov et al., Phys. Rev. D74, 012008 (2006); CHORUS—G. ¨Oneng¨ut et al., Phys. Lett. B632, 65 (2006).

Statistical and systematic errors added in quadrature are shown for all plots.
Figure 18.13: Top panels: The longitudinal structure function F_L as a function of x in bins of fixed Q^2 measured on the proton (except for the SLAC data which also contain deuterium data). BCDMS, NMC, and SLAC results are from measurements of R (the ratio of longitudinal to transverse photon absorption cross sections) which are converted to F_L by using the BDCMS parameterization of F_2 (A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989)). It is assumed that the Q^2 dependence of the fixed-target data is small within a given Q^2 bin. Some of the other data may have been rebinned to common Q^2 values. Some points have been slightly offset in x for clarity. Also shown is the MSTW2008 parameterization given at three Q^2 values (A.D. Martin et al., Eur. Phys. J. C63, 189 (2009)). References: H1—V. Andreev et al., Eur. Phys. J. C74, 2814 (2014); ZEUS—S. Chekanov et al., Phys. Lett. B682, 8 (2009); H. Abramowicz et al., Phys. Rev. D90, 072002 (2014); BCDMS—A. Benvenuti et al., Phys. Lett. B223, 485 (1989); NMC—M. Arneodo et al., Nucl. Phys. B483, 3 (1997); SLAC—L.W. Whitlow et al., Phys. Lett. B250, 193 (1990) and numerical values from the thesis of L.W. Whitlow (SLAC-357).

The results shown in the bottom plot require the assumption of the validity of the QCD form for the F_2 structure function in order to extract F_L. Statistical and systematic errors added in quadrature are shown for both plots.
Figure 18.14: The spin-dependent structure function $xg_1(x)$ of the proton, deuteron, and neutron (from 3He target) measured in deep inelastic scattering of polarized electrons/positrons: E142 ($Q^2 \sim 0.3 - 10$ GeV2), E143 ($Q^2 \sim 0.3 - 10$ GeV2), E154 ($Q^2 \sim 1 - 17$ GeV2), E155 ($Q^2 \sim 1 - 40$ GeV2), JLab E99-117 ($Q^2 \sim 2.71 - 4.83$ GeV2), HERMES ($Q^2 \sim 0.18 - 20$ GeV2), CLAS ($Q^2 \sim 1 - 5$ GeV2) and muons: EMC ($Q^2 \sim 1.5 - 100$ GeV2), SMC ($Q^2 \sim 0.01 - 100$ GeV2), COMPASS ($Q^2 \sim 0.001 - 100$ GeV2), shown at the measured Q^2 (except for EMC data given at $Q^2 = 10.7$ GeV2 and E155 data given at $Q^2 = 5$ GeV2). Note that $g_1^n(x)$ may also be extracted by taking the difference between $g_1^d(x)$ and $g_1^p(x)$, but these values have been omitted in the bottom plot for clarity. Statistical and systematic errors added in quadrature are shown.

References:
Figure 18.15: The hadronic structure function of the photon F_2^γ divided by the fine structure constant α measured in e^+e^- scattering, shown as a function of Q^2 for bins of x. Data points have been shifted to the nearest corresponding x bin as given in the plot. Some points have been offset in Q^2 for clarity. Statistical and systematic errors added in quadrature are shown. For the purpose of plotting, a constant $c(x) = 1.5i_x$ is added to F_2^γ/α where i_x is the number of the x bin, ranging from 1 ($x = 0.0055$) to 8 ($x = 0.9$).