94. Width Determinations of the Υ States

As is the case for the \(J/\psi(1S) \) and \(\psi(2S) \), the full widths of the \(b\bar{b} \) states \(\Upsilon(1S) \), \(\Upsilon(2S) \), and \(\Upsilon(3S) \) are not directly measurable, since they are much narrower than the energy resolution of the \(e^+e^- \) storage rings where these states are produced. The common indirect method to determine \(\Gamma \) starts from

\[
\Gamma = \Gamma_{\ell\ell}/B_{\ell\ell},
\]

(94.1)

where \(\Gamma_{\ell\ell} \) is one leptonic partial width and \(B_{\ell\ell} \) is the corresponding branching fraction (\(\ell = e, \mu, \) or \(\tau \)). One then assumes \(e-\mu-\tau \) universality and uses

\[
\Gamma_{\ell\ell} = \Gamma_{ee}
\]

\[
B_{\ell\ell} = \text{average of } B_{ee}, B_{\mu\mu}, \text{ and } B_{\tau\tau}.
\]

(94.2)

The electronic partial width \(\Gamma_{ee} \) is also not directly measurable at \(e^+e^- \) storage rings, only in the combination \(\Gamma_{ee}\Gamma_{\text{had}}/\Gamma \), where \(\Gamma_{\text{had}} \) is the hadronic partial width and

\[
\Gamma_{\text{had}} + 3\Gamma_{ee} = \Gamma.
\]

(94.3)

This combination is obtained experimentally from the energy-integrated hadronic cross section

\[
\int_{\text{resonance}} \sigma(e^+e^- \to \Upsilon \to \text{hadrons})dE
\]

\[
= \frac{6\pi^2 \Gamma_{ee}\Gamma_{\text{had}}}{M^2 \Gamma} C_r = \frac{6\pi^2 \Gamma_{ee}^{(0)}\Gamma_{\text{had}}}{M^2 \Gamma} C_r^{(0)},
\]

(94.4)

where \(M \) is the \(\Upsilon \) mass, and \(C_r \) and \(C_r^{(0)} \) are radiative correction factors. \(C_r \) is used for obtaining \(\Gamma_{ee} \) as defined in Eq. (94.1), and contains corrections from all orders of QED for describing \((b\bar{b}) \to e^+e^- \). The lowest order QED value \(\Gamma_{ee}^{(0)} \), relevant for comparison with potential-model calculations, is defined by the lowest order QED graph (Born term) alone, and is about 7% lower than \(\Gamma_{ee} \).

The Listings give experimental results on \(B_{ee}, B_{\mu\mu}, B_{\tau\tau}, \) and \(\Gamma_{ee}\Gamma_{\text{had}}/\Gamma \). The entries of the last quantity have been re-evaluated consistently using the correction procedure of KURAEV 85 [1]. The partial width \(\Gamma_{ee} \) is obtained from the average values for \(\Gamma_{ee}\Gamma_{\text{had}}/\Gamma \) and \(B_{\ell\ell} \) using

\[
\Gamma_{ee} = \frac{\Gamma_{ee}\Gamma_{\text{had}}}{\Gamma(1-3B_{\ell\ell})}.
\]

(94.5)

The total width \(\Gamma \) is then obtained from Eq. (94.1). We do not list \(\Gamma_{ee} \) and \(\Gamma \) values of individual experiments. The \(\Gamma_{ee} \) values in the Meson Summary Table are also those defined in Eq. (94.1).

References: