$I(J^{P}) = \frac{3}{2}(\frac{5}{2}^{-})$ Status: ***

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

Δ (1930) POLE POSITION

REAL PART				
VALUE (MeV)	DOCUMENT ID			COMMENT
1840 to 1920 (\approx 1880) OUR ESTIM	IATE			
$1848 \pm 9 \pm 19$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
$1890\!\pm\!50$	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet \bullet We do not use the following a	lata for averages	, fits,	limits, e	tc. • • •
1863	HUNT	19	DPWA	Multichannel
1836	ROENCHEN	15A	DPWA	Multichannel
2001	ARNDT	06	DPWA	π N \rightarrow π N, η N
1883	VRANA	00	DPWA	Multichannel
1850	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1 Fit to the amplitudes of HOFHI	FR 79.			

-2×IMAGINARY PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
230 to 330 (\approx 280) OUR ESTIMATE				
$321 \pm 17 \pm 7$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
260 ± 60	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet \bullet We do not use the following (data for averages	, fits,	limits, e	tc. • • •
260	HUNT	19	DPWA	Multichannel
724	ROENCHEN	15A	DPWA	Multichannel
387	ARNDT	06	DPWA	π N $ ightarrow$ π N, η N
250	VRANA	00	DPWA	Multichannel
180	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1 Fit to the amplitudes of HOEHI	ER 79.			

Δ (1930) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
8 to 20 (\approx 14) OUR ESTIMATE				
$9{\pm}1{\pm}1$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
18 ± 6	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet \bullet We do not use the following	data for averages	s, fits,	limits, e	etc. ● ● ●
34	ROENCHEN	15A	DPWA	Multichannel
7	ARNDT	06	DPWA	π N \rightarrow π N, η N
20	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1				

¹ Fit to the amplitudes of HOEHLER 79.

PHASE θ				
VALUE (°)	DOCUMENT ID		TECN	COMMENT
$-$ 40 to -10 (\approx $-$ 30) OUR EST	IMATE			
$- 37 \pm 3 \pm 7$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
$- 20 \pm 40$	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
- 155	ROENCHEN	15A	DPWA	Multichannel
- 12	ARNDT	06	DPWA	π N \rightarrow π N, η N
1 Fit to the amplitudes of HOEH	LER 79.			

△(1930) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized	residue in $N\pi$ –	$\rightarrow \Delta(1930) \rightarrow \Sigma K$	
MODULUS	PHASE (°)	DOCUMENT ID TEC	N COMMENT
$\bullet \bullet \bullet$ We do	not use the followin	g data for averages, fits, limits, e	etc. • • •
0.043	-0.5	ROENCHEN 15A DP	WA Multichannel
Normalized	residue in $N\pi$ –	\rightarrow $\Delta(1930)$ \rightarrow $\Delta\pi$, <i>D</i> -wave	2
MODULUS	PHASE (°)	DOCUMENT ID TEC	N COMMENT
\bullet \bullet \bullet We do	not use the followin	g data for averages, fits, limits, e	etc. • • •
0.15	30	ROENCHEN 15A DP	WA Multichannel
Normalized	residue in $N\pi$ –	$ ightarrow \Delta(1930) ightarrow \Delta\pi$, G-wave	
MODULUS	PHASE (°)	DOCUMENT ID TEC	N COMMENT
\bullet \bullet \bullet We do	not use the followin	g data for averages, fits, limits, e	etc. • • •
0.009	121	ROENCHEN 15A DP	NA Multichannel

Δ (1930) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1900 to 2000 (\approx 1950) OUR ESTI	MATE			
1988± 32	¹ HUNT	19	DPWA	Multichannel
2233± 53	¹ ARNDT	06	DPWA	π N \rightarrow π N, η N
1940± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$1901\pm~15$	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$\bullet \bullet \bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
$1930\pm~12$	¹ SHRESTHA	12A	DPWA	Multichannel
1932 ± 100	VRANA	00	DPWA	Multichannel
¹ Statistical error only.				

Δ (1930) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
200 to 400 (≈ 300) OUR ESTIMA	TE			
500 ± 160	¹ HUNT	19	DPWA	Multichannel
773±187	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
$320\pm~60$	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$195\pm~60$	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet \bullet We do not use the following	data for averages	s, fits,	limits, e	tc. • • •
235± 39	¹ SHRESTHA	12A	DPWA	Multichannel
316±237	VRANA	00	DPWA	Multichannel
1 Statistical error only.				

Δ (1930) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
Γ ₁	Νπ	5–15 %
Γ2	$N\gamma$	0.0-0.01 %
Γ ₃	$N\gamma$, helicity ${=}1/2$	0.0–0.005 %
Г ₄	N γ , helicity=3/2	0.0–0.004 %

△(1930) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{total}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
5 to 15 (\approx 10) OUR ESTIMAT	E				
9.5 ± 0.1	¹ HUNT	19	DPWA	Multichannel	
8.1 ± 1.2	¹ ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$	
14 ±4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
4 ±3	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
\bullet \bullet \bullet We do not use the following	data for averages	s, fits,	limits, e	tc. ● ● ●	
7.9±0.4	¹ SHRESTHA	12A	DPWA	Multichannel	
9 ±8	VRANA	00	DPWA	Multichannel	
1 Statistical error only.					

Δ (1930) PHOTON DECAY AMPLITUDES AT THE POLE

Δ (1930) $\rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

MODULUS (GeV $^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN	COMMENT
$0.130^{\mathrm{+0.073}}_{\mathrm{-0.096}}$	-50^{+77}_{-26}	ROENCHEN	14	DPWA	
$\bullet \bullet \bullet$ We do not use	the following data for	or averages, fits,	limits	s, etc. •	• •
-0.270	33	ROENCHEN	15A	DPWA	Multichannel

$\begin{array}{c|c} \Delta(1930) \rightarrow N\gamma, \mbox{ helicity-3/2 amplitude } A_{3/2} \\ \hline \mbox{ MODULUS (GeV^{-1/2}) } & \mbox{ PHASE (°) } & \mbox{ DOCUMENT ID } & \mbox{ TECN } & \mbox{ COMMENT } \\ \hline \mbox{ -0.056} {}^{+0.003}_{-0.151} & \mbox{ 168} {}^{+72}_{-76} & \mbox{ ROENCHEN } 14 & \mbox{ DPWA } \\ \hline \mbox{ \bullet \bullet We do not use the following data for averages, fits, limits, etc. } \hline \mbox{ \bullet \bullet } \\ \hline \mbox{ 0.153 } & \mbox{ 81 } & \mbox{ ROENCHEN } 154 & \mbox{ DPWA } \\ \hline \end{array}$

△(1930) BREIT-WIGNER PHOTON DECAY AMPLITUDES

Δ (1930) $\rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.043 ± 0.008	¹ HUNT	19	DPWA	Multichannel
-0.007 ± 0.010	¹ ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following	, data for averages	s, fits,	limits, e	tc. ● ● ●
0.011 ± 0.003	¹ SHRESTHA	12A	DPWA	Multichannel
¹ Statistical error only.				

Δ (1930) $\rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.020 ± 0.017	¹ HUNT	19	DPWA	Multichannel
$0.005 \!\pm\! 0.010$	¹ ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
\bullet \bullet \bullet We do not use the following	g data for averages	s, fits,	limits, e	tc. • • •
0.002 ± 0.002	¹ SHRESTHA	12A	DPWA	Multichannel
¹ Statistical error only.				

Δ (1930) REFERENCES

For early references, see Physics Letters 111B 1 (1982).

HUNT ROENCHEN PDG	19 15A 14	PR C99 055205 EPJ A51 70 CP C38 070001	B.C. Hunt, D.M. Manley D. Roenchen <i>et al.</i> K. Olive <i>et al</i>	(PDG Collab)
ROENCHEN	14	EPJ A50 101	D. Roenchen <i>et al.</i>	(1.2.6.661103.)
Also		EPJ A51 63 (errat.)	D. Roenchen <i>et al.</i>	
SVARC	14	PR C89 045205	A. Svarc <i>et al.</i> (RBI	Zagreb, UNI Tuzla)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSU)
ARNDT	06	PR C74 045205	R.A. Arndt <i>et al.</i>	(ĠWU)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H. Lee	(PITT, ANL)
ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Workma	an Ì (VPI)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KÀRL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky <i>et al.</i>	(CMÙ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky <i>et al.</i>	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al.</i>) (KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP