Charged Higgs Bosons (H^{\pm} and $H^{\pm\pm}$), Searches for

CONTENTS:

```
H^{\pm} (charged Higgs) mass limits for m_{H^+} < m(top) H^{\pm} (charged Higgs) mass limits for m_{H^+} > m(top) H^{\pm\pm} (doubly-charged Higgs boson) mass limits — Limits for H^{\pm\pm} with T_3=\pm 1 — Limits for H^{\pm\pm} with T_3=0
```

H^{\pm} (charged Higgs) mass limits for $\mathsf{m}_{H^{\pm}} < \mathsf{m}(\mathsf{top})$

Unless otherwise stated, LEP limits assume B($H^+ \to \tau^+ \nu$)+B($H^+ \to c\overline{s}$)=1, and hold for all values of B($H^+ \to \tau^+ \nu_{\tau}$), and assume H^+ weak isospin of T_3 =+1/2. In the following, $\tan\beta$ is the ratio of the two vacuum expectation values in two-doublet models (2HDM).

The limits are also applicable to point-like technipions. For a discussion of techniparticles, see the Review of Dynamical Electroweak Symmetry Breaking in this Review.

Limits obtained at the LHC are given in the \mathbf{m}_h^{mod-} benchmark scenario, see CARENA 13, and hold for all $\tan\!\beta$ values.

For limits obtained in hadronic collisions before the observation of the top quark, and based on the top mass values inconsistent with the current measurements, see the 1996 (Physical Review **D54** 1 (1996)) Edition of this Review.

Searches in e^+e^- collisions at and above the Z pole have conclusively ruled out the existence of a charged Higgs in the region $m_{H^+} \lesssim 45$ GeV, and are meanwhile superseded by the searches in higher energy e^+e^- collisions at LEP. Results that are by now obsolete are therefore not included in this compilation, and can be found in a previous Edition (The European Physical Journal **C15** 1 (2000)) of this Review.

In the following, and unless otherwise stated, results from the LEP experiments (ALEPH, DELPHI, L3, and OPAL) are assumed to derive from the study of the $e^+e^- \rightarrow H^+H^-$ process. Limits from $b \rightarrow s \gamma$ decays are usually stronger in generic 2HDM models than in Supersymmetric models.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
none 80-140	95	¹ AAD	15AF ATLS	$t \rightarrow bH^+$
none 90-155	95			$t ightarrow \ bH^+$, $H^+ ightarrow \ au^+ u$
> 80	95	³ LEP	13 LEP	$e^+e^- \rightarrow H^+H^-, E_{cm} \le$
> 76.3	95	⁴ ABBIENDI	12 OPAL	$e^{+}e^{-} \rightarrow H^{+}H^{-}, E_{cm} \leq 209 \text{GeV}$
> 74.4	95	ABDALLAH	04ı DLPH	$E_{ m cm} \leq$ 209 GeV
> 76.5	95	ACHARD	03E L3	$E_{\sf cm} \leq 209 \; {\sf GeV}$
> 79.3	95	HEISTER	02P ALEP	$E_{\sf cm} \leq 209 \; {\sf GeV}$

HTTP://PDG.LBL.GOV

Page 1

• • • We do not use the following data for averages, fits, limits, etc. • •

```
19AH CMS
                                            <sup>5</sup> SIRUNYAN
                                                                                          H^+ \rightarrow \tau^+ \nu
                                            <sup>6</sup> SIRUNYAN
                                                                                          H^+ \rightarrow W^+ Z
                                                                      19BP CMS
                                            <sup>7</sup> SIRUNYAN
                                                                                          t \rightarrow bH^+, H^+ \rightarrow
                                                                      19cc CMS
                                                                                               W^{+}A^{0}.A^{0} \rightarrow u^{+}
                                            <sup>8</sup> SIRUNYAN
                                                                                          H^+ \rightarrow W^+ Z
                                                                      19cq CMS
                                                                                          \overline{t}bH^+ or t \to bH^+.
                                            9 AABOUD
                                                                      18BWATLS
                                                                                              H^+ \rightarrow \tau^+ \nu
                                                                                          \overline{t}bH^+, H^+ \rightarrow t\overline{b}
                                          <sup>10</sup> AABOUD
                                                                      18CD ATLS
                                          <sup>11</sup> AABOUD
                                                                                          H^{\pm} \rightarrow W^{\pm} Z
                                                                      18CH ATLS
                                          <sup>12</sup> HALLER
                                                                             RVUE
                                                                                          b \rightarrow s\gamma
                                          <sup>13</sup> SIRUNYAN
                                                                                          t \rightarrow bH^+, H^+ \rightarrow c\overline{b}
                                                                      18D0 CMS
                                          <sup>14</sup> MISIAK
                                                                      17
                                                                             RVUE
                                                                                        b \rightarrow s(d)\gamma
                                          <sup>15</sup> SIRUNYAN
                                                                      17AE CMS
                                                                                          H^{\pm} \rightarrow W^{\pm} Z
                                          <sup>16</sup> AABOUD
                                                                                          t(b) H^{+}. H^{+} \rightarrow \tau^{+} \nu
                                                                      16A ATLS
                                                                                          t(b) H^+, H^+ \rightarrow t \overline{b}
                                          <sup>17</sup> AAD
                                                                      16AJ ATLS
                                          <sup>18</sup> AAD
                                                                                          qq \rightarrow H^+, H^+ \rightarrow t\overline{b}
                                                                      16AJ ATLS
                                          <sup>19</sup> AAD
                                                                                          t H<sup>±</sup>
                                                                      15AF ATLS
                                          <sup>20</sup> AAD
                                                                                         H^{\pm} \rightarrow W^{\pm} Z
                                                                      15M ATLS
                                          <sup>21</sup> KHACHATRY...15AX CMS
                                                                                          tH^+, H^+ \rightarrow t\overline{b}
                                          <sup>22</sup> KHACHATRY...15AX CMS
                                                                                          tH^{\pm}, H^{\pm} \rightarrow \tau^{\pm}\nu
                                                                                          t \rightarrow bH^+, H^+ \rightarrow c\overline{s}
                                          <sup>23</sup> KHACHATRY...15BF CMS
                                                                                          H_2^0 \rightarrow H^{\pm} W^{\mp} \rightarrow
                                          <sup>24</sup> AAD
                                                                      14M ATLS
                                                                                              H^0 W^{\pm} W^{\mp}. H^0 \rightarrow b \overline{b}
                                          <sup>25</sup> AALTONEN
                                                                      14A CDF
                                                                                          t \rightarrow b \tau \nu
                                          <sup>26</sup> AAD
                                                                                          t \rightarrow bH^+
                                                                      13AC ATLS
                                          <sup>27</sup> AAD
                                                                      13V ATLS
                                                                                          t \rightarrow bH^+, lepton non-
                                                                                              universality
                                          <sup>28</sup> AAD
                                                                      12BH ATLS
                                                                                          t \rightarrow bH^+
                                          <sup>29</sup> CHATRCHYAN 12AA CMS
                                                                                          t \rightarrow bH^+
                                                                                          t \rightarrow bH^+, H^+ \rightarrow W^+A^0
                                          <sup>30</sup> AALTONEN
                                                                      11P CDF
                                          <sup>31</sup> DESCHAMPS
                                                                             RVUE
>316
                              95
                                                                     10
                                                                                         Type II, flavor physics data
                                          <sup>32</sup> AALTONEN
                                                                                          t \rightarrow bH^+
                                                                      09AJ CDF
                                          <sup>33</sup> ABAZOV
                                                                      09AC D0
                                                                                          t \rightarrow bH^+
                                          <sup>34</sup> ABAZOV
                                                                      09AG D0
                                                                                          t \rightarrow bH^+
                                          <sup>35</sup> ABAZOV
                                                                                          t \rightarrow bH^+
                                                                      09AI D0
                                          <sup>36</sup> ABAZOV
                                                                                          H^+ \rightarrow t \overline{b}
                                                                      09P
                                                                             D0
                                          <sup>37</sup> ABULENCIA
                                                                      06E CDF
                                                                                          t \rightarrow bH^+
                                              ABBIENDI
                                                                                         B(\tau \nu) = 1
> 92.0
                                                                      04
                                                                              OPAL
                              95
                                          <sup>38</sup> ABDALLAH
> 76.7
                              95
                                                                      041
                                                                             DLPH Type I
                                          <sup>39</sup> ABBIENDI
                                                                      03
                                                                              OPAL
                                                                                         \tau \rightarrow \mu \overline{\nu} \nu, e \overline{\nu} \nu
                                          <sup>40</sup> ABAZOV
                                                                                          t \rightarrow bH^+. H \rightarrow \tau \nu
                                                                      02B D0
                                          <sup>41</sup> BORZUMATI
                                                                     02
                                                                              RVUE
                                          <sup>42</sup> ABBIENDI
                                                                      01Q OPAL
                                                                                          B \rightarrow \tau \nu_{\tau} X
                                          <sup>43</sup> BARATE
                                                                      01E ALEP
                                                                                          B \rightarrow \tau \nu_{\tau}
                                          44 GAMBINO
>315
                              99
                                                                      01
                                                                              RVUE
                                                                                          b \rightarrow s\gamma
                                                                                          t \rightarrow bH^+, H \rightarrow \tau \nu
                                          <sup>45</sup> AFFOLDER
                                                                      001
                                                                              CDF
                                                                             OPAL E_{cm} \le 183 \text{ GeV}
                                              ABBIENDI
> 59.5
                              95
                                                                      99E
                                          <sup>46</sup> ABBOTT
                                                                      99E D0
                                                                                          t \rightarrow bH^+
```

```
<sup>47</sup> ACKERSTAFF 99D OPAL 	au	o e
u
u, \mu
u
u
                                         <sup>48</sup> ACCIARRI
                                                                    97F L3
                                         <sup>49</sup> AMMAR
                                                                    97B CLEO \tau \rightarrow \mu \nu \nu
                                         <sup>50</sup> COARASA
                                                                    97 RVUE B \rightarrow \tau \nu_{\tau} X
                                         <sup>51</sup> GUCHAIT
                                                                    97 RVUE t \rightarrow bH^+, H \rightarrow \tau \nu
                                         <sup>52</sup> MANGANO
                                                                    97 RVUE B_{u(c)} \rightarrow \tau \nu_{\tau}
                                         <sup>53</sup> STAHL
                                                                            RVUE \tau \rightarrow \mu \nu \nu
                                         <sup>54</sup> ALAM
                                                                            CLE2 b \rightarrow s \gamma
>244
                             95
                                         <sup>55</sup> BUSKULIC
                                                                    95
                                                                            ALEP b \rightarrow \tau \nu_{\tau} X
```

- 1 AAD 15AF search for $t\overline{t}$ production followed by $t\to bH^+$, $H^+\to \tau^+\nu$ in 19.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. Upper limits on B($t\to bH^+$) B($H^+\to \tau\nu$) between 2.3×10^{-3} and 1.3×10^{-2} (95% CL) are given for $m_{H^+}=80$ –160 GeV. See their Fig. 8 for the excluded regions in different benchmark scenarios of the MSSM. The region $m_{H^+}<140$ GeV is excluded for $\tan\beta>1$ in the considered scenarios.
- 2 KHACHATRYAN 15AX search for $t\,\overline{t}$ production followed by $t\to b\,H^+$, $H^+\to \tau^+\nu$ in 19.7 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=8$ TeV. Upper limits on B($t\to b\,H^+$) B($H^+\to \tau\nu$) between 1.2×10^{-2} and 1.5×10^{-3} (95% CL) are given for $m_{H^+}=80$ –160 GeV. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM. The region $m_{H^+}<155$ GeV is excluded for $\tan\beta>1$ in the considered scenarios.
- ³ LEP 13 give a limit that refers to the Type II scenario. The limit for B($H^+ \to \tau \nu$) = 1 is 94 GeV (95% CL), and for B($H^+ \to cs$) = 1 the region below 80.5 as well as the region 83–88 GeV is excluded (95% CL). LEP 13 also search for the decay mode $H^+ \to A^0 W^*$ with $A^0 \to b \overline{b}$, which is not negligible in Type I models. The limit in Type I models is 72.5 GeV (95% CL) if $m_{\Delta 0} > 12$ GeV.
- ⁴ ABBIENDI 12 also search for the decay mode $H^+ \rightarrow A^0 W^*$ with $A^0 \rightarrow b \overline{b}$.
- ⁵ SIRUNYAN 19AH search for H^+ in the decay of a pair-produced t quark, or in associated tbH^+ or nonresonant $b\overline{b}H^+W^-$ production, followed by $H^+\to \tau^+\nu$, in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. Upper limits on cross section times branching ratio between 6 pb and 5 fb (95% CL) are given for $m_{H^+}=80$ –3000 GeV (including the non-resonant production near the top quark mass), see their Fig. 6 (left). See their Fig. 6 (right) for the excluded regions in the $m_h^{\rm mod}-$ scenario of the MSSM.
- ⁶SIRUNYAN 19BP search for vector boson fusion production of H^+ decaying to $H^+ \to W^+ Z \to \ell^+ \nu \ell^+ \ell^-$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. See their Fig. 7 for limits on cross section times branching ratio for $m_{H^+}=0.3$ –2.0 TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
- ⁷ SIRUNYAN 19CC search for $t \to bH^+$ from pair produced top quarks, with the decay chain $H^+ \to W^+A^0$, $A^0 \to \mu^+\mu^-$ in 35.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV. See their Fig. 2 for limits on the product of branching ratios for $m_{A^0}=15$ –75 GeV.
- ⁸ SIRUNYAN 19CQ search for vector boson fusion production of H^+ decaying to $H^+ \to W^+ Z \to \ell^+ \nu q \overline{q}$ or $q \overline{q} \ell^+ \ell^-$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. See their Fig. 5 for limits on cross section times branching ratio for $m_{H^+}=0.6$ –2.0 TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
- ⁹AABOUD 18BW search for $\overline{t}\,b\,H^+$ associated production or the decay $t\to b\,H^+$, followed by $H^+\to \tau^+\nu$, in 36.1 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=13$ TeV. See their Fig. 8(a) for upper limits on cross section times branching ratio for $m_{H^+}=90$ –2000 GeV, and Fig. 8(b) for limits on B($t\to b\,H^+$) B($H^+\to \tau^+\nu$) for $m_{H^+}=90$ –160 GeV. See also their Fig. 9 for the excluded region in the hMSSM parameter space.

- 10 AABOUD 18CD search for $\overline{t}\,bH^+$ associated production followed by $H^+\to t\,\overline{b}$ in 36.1 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=$ 13 TeV. See their Fig. 8 for upper limits on cross section times branching ratio for $m_{H^+}=$ 0.2–2 TeV. See also their Fig. 9 for the excluded region in the parameter space of the $m_h^{\rm mod}-$ and hMSSM scenarios of the MSSM. The theory predictions overlaid to the experimental limits to determine the excluded m_{H^+} range are shown without their respective uncertainty band.
- ¹¹ AABOUD 18CH search for vector boson fusion production of H^\pm decaying to $H^\pm \to W^\pm Z \to \ell^\pm \nu \ell^+ \ell^-$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. See their Fig. 7 for limits on cross section times branching ratio for $m_{H^\pm}=0.2$ –0.9 TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
- ¹² HALLER 18 give 95% CL lower limits on m_{H^+} of 590 GeV in type II two Higgs doublet model from combined data (including an unpublished BELLE result) for B($b \rightarrow s \gamma$).
- ¹³ SIRUNYAN 18DO search for $t\overline{t}$ production followed by $t\to bH^+$, $H^+\to c\overline{b}$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. See their Fig. 3 for upper limits on B($t\to bH^+$) for $m_{H^+}=90$ –150 GeV assuming that B($H^+\to c\overline{b}$) = 1 and B($H^+\to bH^+$) + B($H^+\to bH^+$) = 1.
- ¹⁴ MISIAK 17 give 95% CL lower limits on m_{H^+} between 570 and 800 GeV in type II two Higgs doublet model from combined data (including an unpublished BELLE result) for B($b \rightarrow s(d)\gamma$).
- 15 SIRUNYAN 17AE search for vector boson fusion production of H^\pm decaying to $H^\pm \to W^\pm Z \to \ell^\pm \nu \ell^+ \ell^-$ in 15.2 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV. See their Fig. 3 for limits on cross section times branching ratio for $m_{H^\pm}=0.2$ –2.0 TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
- 16 AABOUD 16A search for t(b) H^\pm associated production followed by $H^+ \to \tau^+ \nu$ in 3.2 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV. Upper limits on $\sigma(t(b)$ $H^\pm)$ B($H^+ \to \tau \nu$) between 1.9 pb and 15 fb (95% CL) are given for $m_{H^+}=200$ –2000 GeV, see their Fig. 6. See their Fig. 7 for the excluded regions in the hMSSM scenario.
- ¹⁷ AAD 16AJ search for t(b) H^{\pm} associated production followed by $H^{\pm} \rightarrow tb$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. See their Fig. 6 for upper limits on $\sigma(t(b)$ $H^{\pm})$ B($H^{+} \rightarrow tb$) for $m_{H^{+}}=200$ –600 GeV.
- 18 AAD 16AJ search for H^\pm production from quark-antiquark annihilation, followed by $H^\pm\to tb$, in 20.3 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=8$ TeV. See their Fig. 10 for upper limits on $\sigma(H^\pm)$ B($H^+\to tb$) for $m_{H^+}=400$ –3000 GeV.
- ^19 AAD 15AF search for $t\,H^\pm$ associated production followed by $H^\pm\to \tau^\pm\nu$ in 19.5 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=8$ TeV. Upper limits on $\sigma(t\,H^\pm)$ B($H^+\to \tau\nu$) between 760 and 4.5 fb (95% CL) are given for $m_{H^+}=180$ –1000 GeV. See their Fig. 8 for the excluded regions in different benchmark scenarios of the MSSM.
- 20 AAD 15M search for vector boson fusion production of H^\pm decaying to $H^\pm \to W^\pm Z \to q \overline{q} \ell^+ \ell^-$ in 20.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. See their Fig. 2 for limits on cross section times branching ratio for $m_{H^\pm}=200$ –1000 GeV, and Fig. 3 for limits on thetriplet vacuum expectation value fraction in the Georgi-Machacek model.
- ²¹ KHACHATRYAN 15AX search for tH^\pm associated production followed by $H^\pm\to tb$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. Upper limits on $\sigma(tH^\pm)$ B($H^+\to t\overline{b}$) between 2.0 and 0.13 pb (95% CL) are given for $m_{H^+}=180$ –600 GeV. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM.
- 22 KHACHATRYAN 15AX search for tH^\pm associated production followed by $H^\pm\to\tau^\pm\nu$ in 19.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. Upper limits on $\sigma(tH^\pm)$ B($H^+\to\tau\nu$) between 380 and 25 fb (95% CL) are given for $m_{H^+}=180$ –600 GeV. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM.

- ²³ KHACHATRYAN 15BF search for $t\overline{t}$ production followed by $t\to bH^+$, $H^+\to c\overline{s}$ in 19.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. Upper limits on B($t\to bH^+$) B($H^+\to c\overline{s}$) between 1.2×10^{-2} and 6.5×10^{-2} (95% CL) are given for $m_{H^+}=90$ –160 GeV.
- ²⁴ AAD 14M search for the decay cascade $H_2^0 \to H^\pm W^\mp \to H^0 W^\pm W^\mp$, H^0 decaying to $b\overline{b}$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. See their Table III for limits on cross section times branching ratio for $m_{H_2^0}=325$ –1025 GeV and $m_{H^+}=225$ –925 GeV.
- ²⁵ AALTONEN 14A measure B($t \to b \tau \nu$) = 0.096 \pm 0.028 using 9 fb⁻¹ of $p \overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. For $m_{H^+}=80$ –140 GeV, this measured value is translated to a limit B($t \to b H^+$) < 0.059 at 95% CL assuming B($H^+ \to \tau^+ \nu$) = 1.
- ²⁶ AAD 13AC search for $t\overline{t}$ production followed by $t\to bH^+$, $H^+\to c\overline{s}$ (flavor unidentified) in 4.7 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. Upper limits on B($t\to bH^+$) between 0.05 and 0.01 (95%CL) are given for $m_{H^+}=90$ –150 GeV and B($H^+\to c\overline{s}$)=1.
- ²⁷ AAD 13V search for $t\overline{t}$ production followed by $t\to bH^+$, $H^+\to \tau^+\nu$ through violation of lepton universality with 4.6 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. Upper limits on B($t\to bH^+$) between 0.032 and 0.044 (95% CL) are given for $m_{H^+}=90$ –140 GeV and B($H^+\to \tau^+\nu$) = 1. By combining with AAD 12BH, the limits improve to 0.008 to 0.034 for $m_{H^+}=90$ –160 GeV. See their Fig. 7 for the excluded region in the $m_h^{\rm max}$ scenario of the MSSM.
- ²⁸ AAD 12BH search for $t\,\overline{t}$ production followed by $t\to b\,H^+$, $H^+\to \tau^+\nu$ with 4.6 fb⁻¹ of $p\,p$ collisions at $E_{\rm cm}=7$ TeV. Upper limits on B($t\to b\,H^+$) between 0.01 and 0.05 (95% CL) are given for $m_{H^+}=90$ –160 GeV and B($H^+\to \tau^+\nu$) = 1. See their Fig. 8 for the excluded region in the $m_h^{\rm max}$ scenario of the MSSM.
- ²⁹ CHATRCHYAN 12AA search for $t\bar{t}$ production followed by $t\to bH^+$, $H^+\to \tau^+\nu$ with 2 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. Upper limits on B($t\to bH^+$) between 0.019 and 0.041 (95% CL) are given for $m_{H^+}=80$ –160 GeV and B($H^+\to \tau^+\nu$)=1.
- 30 AALTONEN 11P search in 2.7 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV for the decay chain $t\to~bH^+,~H^+\to~W^+A^0,~A^0\to~\tau^+\tau^-$ with m_{A^0} between 4 and 9 GeV. See their Fig. 4 for limits on B($t\to~bH^+$) for 90 $< m_{H^+} < 160$ GeV.
- ³¹ DESCHAMPS 10 make Type II two Higgs doublet model fits to weak leptonic and semileptonic decays, $b \to s \gamma$, B, B_s mixings, and $Z \to b \overline{b}$. The limit holds irrespective of $\tan \beta$.
- ³² AALTONEN 09AJ search for $t \to bH^+$, $H^+ \to c\overline{s}$ in $t\overline{t}$ events in 2.2 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. Upper limits on B($t \to bH^+$) between 0.08 and 0.32 (95% CL) are given for $m_{H^+}=60$ –150 GeV and B($H^+ \to c\overline{s}$) = 1.
- ³³ ABAZOV 09AC search for $t \to bH^+$, $H^+ \to \tau^+ \nu$ in $t\overline{t}$ events in 0.9 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. Upper limits on B($t \to bH^+$) between 0.19 and 0.25 (95% CL) are given for $m_{H^+}=80$ –155 GeV and B($H^+ \to \tau^+ \nu$) = 1. See their Fig. 4 for an excluded region in a MSSM scenario.
- ³⁴ ABAZOV 09AG measure $t\overline{t}$ cross sections in final states with ℓ + jets (ℓ = e, μ), $\ell\ell$, and $\tau\ell$ in 1 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV, which constrains possible $t\to bH^+$ branching fractions. Upper limits (95% CL) on B($t\to bH^+$) between 0.15 and 0.40 (0.48 and 0.57) are given for B($H^+\to \tau^+\nu$) = 1 (B($H^+\to c\overline{s}$) = 1) for $m_{H^+}=80$ –155 GeV.
- 35 ABAZOV 09AI search for $t \to bH^+$ in $t\overline{t}$ events in 1 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm CM}=1.96$ TeV. Final states with ℓ + jets ($\ell=e,\mu$), $\ell\ell$, and $\tau\ell$ are examined. Upper limits on B($t \to bH^+$) (95% CL) between 0.15 and 0.19 (0.19 and 0.22) are given for B($H^+ \to bH^+$)

- $au^+
 u)=1$ (B($H^+ o c\overline{s})=1$) for $m_{H^+}=80$ –155 GeV. For B($H^+ o au^+
 u$) = 1 also a simultaneous extraction of B($t o bH^+$) and the $t\overline{t}$ cross section is performed, yielding a limit on B($t o bH^+$) between 0.12 and 0.26 for $m_{H^+}=80$ –155 GeV. See their Figs. 5–8 for excluded regions in several MSSM scenarios.
- 36 ABAZOV 09P search for H^+ production by $q\,\overline{q}'$ annihilation followed by $H^+\to t\,\overline{b}$ decay in 0.9 fb $^{-1}$ of $p\,\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. Cross section limits in several two-doublet models are given for $m_{H^+}=180$ –300 GeV. A region with 20 $\lesssim \tan\beta \lesssim$ 70 is excluded (95% CL) for 180 GeV $\lesssim m_{H^+} \lesssim$ 184 GeV in type-I models.
- ³⁷ ABULENCIA 06E search for associated H^0 W production in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. A fit is made for $t\overline{t}$ production processes in dilepton, lepton + jets, and lepton $+\tau$ final states, with the decays $t\to W^+b$ and $t\to H^+b$ followed by $H^+\to \tau^+\nu$, $c\overline{s}$, $t^*\overline{b}$, or W^+H^0 . Within the MSSM the search is sensitive to the region $\tan\beta<1$ or >30 in the mass range $m_{H^+}=80$ –160 GeV. See Fig. 2 for the excluded region in a certain MSSM scenario.
- 38 ABDALLAH 04I search for $e^+e^- \rightarrow H^+H^-$ with H^\pm decaying to $\tau\nu$, cs, or W^*A^0 in Type-I two-Higgs-doublet models.
- 39 ABBIENDI 03 give a limit $m_{H^+}>1.28{\rm tan}\beta$ GeV (95%CL) in Type II two-doublet models.
- 40 ABAZOV 02B search for a charged Higgs boson in top decays with $H^+\to \tau^+\nu$ at $E_{\rm cm}{=}1.8$ TeV. For $m_{H^+}{=}75$ GeV, the region $\tan\beta>32.0$ is excluded at 95%CL. The excluded mass region extends to over 140 GeV for $\tan\beta$ values above 100.
- ⁴¹ BORZUMATI 02 point out that the decay modes such as $b\overline{b}W$, A^0W , and supersymmetric ones can have substantial branching fractions in the mass range explored at LEP II and Tevatron.
- ⁴² ABBIENDI 01Q give a limit $\tan\beta/m_{H^+} < 0.53~{\rm GeV}^{-1}$ (95%CL) in Type II two-doublet models.
- 43 BARATE 01E give a limit $\tan\!\beta/m_{H^+} < 0.40~{\rm GeV}^{-1}$ (90% CL) in Type II two-doublet models. An independent measurement of $B\to ~\tau\nu_{\tau}\,{\rm X}$ gives $\tan\!\beta/m_{H^+} < 0.49~{\rm GeV}^{-1}$ (90% CL).
- ⁴⁴ GAMBINO 01 use the world average data in the summer of 2001 B($b \rightarrow s \gamma$) = (3.23 \pm 0.42) \times 10⁻⁴. The limit applies for Type-II two-doublet models.
- ⁴⁵ AFFOLDER 00I search for a charged Higgs boson in top decays with $H^+ \to \tau^+ \nu$ in $p\overline{p}$ collisions at $E_{\rm cm}{=}1.8$ TeV. The excluded mass region extends to over 120 GeV for $\tan\beta$ values above 100 and B($\tau\nu$) = 1. If B($t\to bH^+$) \gtrsim 0.6, m_{H^+} up to 160 GeV is excluded. Updates ABE 97L.
- ⁴⁶ ABBOTT 99E search for a charged Higgs boson in top decays in $p\overline{p}$ collisions at $E_{\rm cm}{=}1.8$ TeV, by comparing the observed $t\overline{t}$ cross section (extracted from the data assuming the dominant decay $t \to bW^+$) with theoretical expectation. The search is sensitive to regions of the domains $\tan\beta \lesssim 1$, $50 < m_{H^+} ({\rm GeV}) \lesssim 120$ and $\tan\beta \gtrsim 40$, $50 < m_{H^+} ({\rm GeV}) \lesssim 160$. See Fig. 3 for the details of the excluded region.
- ⁴⁷ ACKERSTAFF 99D measure the Michel parameters ρ , ξ , η , and $\xi\delta$ in leptonic τ decays from $Z \to \tau \tau$. Assuming e- μ universality, the limit $m_{H^+} > 0.97 \tan\beta$ GeV (95%CL) is obtained for two-doublet models in which only one doublet couples to leptons.
- ⁴⁸ ACCIARRI 97F give a limit $m_{H^+}>2.6~{\rm tan}\beta$ GeV (90% CL) from their limit on the exclusive $B\to~ au\,
 u_{ au}$ branching ratio.
- 49 AMMAR 97B measure the Michel parameter ρ from $\tau\to e\nu\nu$ decays and assumes e/μ universality to extract the Michel η parameter from $\tau\to \mu\nu\nu$ decays. The measurement is translated to a lower limit on $m_{\mbox{$H^+$}}$ in a two-doublet model $m_{\mbox{$H^+$}}>0.97$ tan β GeV (90% CL).

- 50 COARASA 97 reanalyzed the constraint on the $(m_{H^\pm}, \tan\beta)$ plane derived from the inclusive $B \to \tau \nu_{\tau} X$ branching ratio in GROSSMAN 95B and BUSKULIC 95. They show that the constraint is quite sensitive to supersymmetric one-loop effects.
- ⁵¹ GUCHAIT 97 studies the constraints on m_{H^+} set by Tevatron data on $\ell \tau$ final states in $t \bar{t} \to (W b) (H b), W \to \ell \nu, H \to \tau \nu_{\tau}$. See Fig. 2 for the excluded region.
- ⁵² MANGANO 97 reconsiders the limit in ACCIARRI 97F including the effect of the potentially large $B_C \to \tau \nu_{\tau}$ background to $B_U \to \tau \nu_{\tau}$ decays. Stronger limits are obtained.
- ⁵³ STAHL 97 fit τ lifetime, leptonic branching ratios, and the Michel parameters and derive limit $m_{H^+} > 1.5 \tan \beta$ GeV (90% CL) for a two-doublet model. See also STAHL 94.
- 54 ALAM 95 measure the inclusive $b \to s \gamma$ branching ratio at $\Upsilon(4S)$ and give B($b \to s \gamma$)< 4.2×10^{-4} (95% CL), which translates to the limit $m_{H^+} > [244 + 63/(\tan\beta)^{1.3}]$ GeV in the Type II two-doublet model. Light supersymmetric particles can invalidate this bound.
- ⁵⁵ BUSKULIC 95 give a limit $m_{H^+} > 1.9 \tan\beta$ GeV (90% CL) for Type-II models from $b \to \tau \nu_{\tau} X$ branching ratio, as proposed in GROSSMAN 94.

H^{\pm} (charged Higgs) mass limits for $M_{H^{+}} > M(top)$

Limits obtained at the LHC are given in the \mathbf{m}_h^{mod-} benchmark scenario, see CARENA 13, and depend on the $\tan\beta$ values.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
> 181	95	$^{ m 1}$ AABOUD	18BWATLS	$tan\beta=10$
> 249	95	¹ AABOUD	18BWATLS	$ an\!eta=20$
> 390	95	¹ AABOUD	18BWATLS	$ an\!eta=30$
> 894	95	¹ AABOUD	18BWATLS	$ an\!eta=40$
>1017	95	¹ AABOUD	18BWATLS	$ an\!eta=50$
>1103	95	$^{ m 1}$ $^{ m AABOUD}$	18BWATLS	$ an\!eta=60$

 $^{^1}$ AABOUD 18BW search for $\overline{t}\,b\,H^+$ associated production in 36.1 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=13$ TeV. See also their Fig. 9 for the excluded region in the hMSSM parameter space.

- $H^{\pm\pm}$ (doubly-charged Higgs boson) mass limits

This section covers searches for a doubly-charged Higgs boson with couplings to lepton pairs. Its weak isospin T_3 is thus restricted to two possibilities depending on lepton chiralities: $T_3(H^{\pm\pm})=\pm 1$, with the coupling $g_{\ell\ell}$ to $\ell_L^-\ell_L'^-$ and $\ell_R^+\ell_R'^+$ ("left-handed") and $T_3(H^{\pm\pm})=0$, with the coupling to $\ell_R^-\ell_R'^-$ and $\ell_L^+\ell_L'^+$ ("right-handed"). These Higgs bosons appear in some left-right symmetric models based on the gauge group $\mathrm{SU}(2)_L\times\mathrm{SU}(2)_R\times\mathrm{U}(1)$, the type-II seesaw model, and the Zee-Babu model. The two cases are listed separately in the following. Unless noted, one of the lepton flavor combinations is assumed to be dominant in the decay.

Limits for $H^{\pm\pm}$ with $T_3=\pm 1$

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>220	95	¹ AABOUD	19к ATLS	$W^{\pm}W^{\pm}$
>768	95	² AABOUD	18BC ATLS	e e

18BC ATLS

 $\mu\mu$

² AABOUD

95

>846

```
<sup>3</sup> AAD
>468
                               95
                                                                15AG ATLS
                                          <sup>4</sup> AAD
>400
                               95
                                                                15AP ATLS
                                                                                e\tau
                                           <sup>4</sup> AAD
>400
                               95
                                                                15AP ATLS
                                                                                \mu \tau
                                          <sup>5</sup> CHATRCHYAN 12AU CMS
                               95
>169
                                          <sup>5</sup> CHATRCHYAN 12AU CMS
>300
                               95
                                                                                \mu \tau
                                          <sup>5</sup> CHATRCHYAN 12AU CMS
                               95
>293
                                          <sup>5</sup> CHATRCHYAN 12AU CMS
                               95
>395
                                                                                \mu \mu
                                          <sup>5</sup> CHATRCHYAN 12AU CMS
>391
                               95
                                          <sup>5</sup> CHATRCHYAN 12AU CMS
>382
                               95
                                          <sup>6</sup> ABDALLAH
> 98.1
                               95
                                                                      DLPH
                                          <sup>7</sup> ABBIENDI
> 99.0
                               95
                                                                02C OPAL
• • We do not use the following data for averages, fits, limits, etc.
                                          <sup>8</sup> SIRUNYAN
                                                                19cq CMS
                                          <sup>9</sup> SIRUNYAN
                                                                18cc CMS
                                          <sup>3</sup> AAD
>551
                               95
                                                                15AG ATLS
                                                                                e e
                                          <sup>3</sup> AAD
>516
                               95
                                                                15AG ATLS
                                                                                W^{(*)\pm}W^{(*)\pm}
                                         <sup>10</sup> KANEMURA
                                                                15
                                                                      RVUE
                                                                                W^{\pm}W^{\pm}
                                         <sup>11</sup> KHACHATRY...15D CMS
                                                                                W(*) \pm W(*) \pm
                                         <sup>12</sup> KANEMURA
                                                                14
                                                                      RVUE
                                         <sup>13</sup> AAD
>330
                               95
                                                                13Y ATLS
                                         <sup>13</sup> AAD
>237
                               95
                                                                13Y ATLS
                                         ^{14}\,\mathrm{AAD}
>355
                               95
                                                                12AY ATLS
                                                                                \mu\mu
                                         <sup>15</sup> AAD
>398
                               95
                                                                12CQ ATLS
                                                                                \mu\mu
                                         <sup>15</sup> AAD
                               95
                                                                12cq ATLS
>375
                                         ^{15} AAD
>409
                               95
                                                                12cq ATLS
                                                                                e e
                                         <sup>16</sup> ABAZOV
>128
                               95
                                                                12A D0
                                         <sup>16</sup> ABAZOV
                               95
                                                                12A D0
>144
                                         <sup>17</sup> AALTONEN
>245
                               95
                                                                11AF CDF
                                         <sup>17</sup> AALTONEN
                               95
                                                                11AF CDF
>210
                                                                                e\mu
                                         <sup>17</sup> AALTONEN
                                                                11AF CDF
                               95
>225
                                         <sup>18</sup> AALTONEN
>114
                               95
                                                                08AA CDF
                                                                                e\tau
                                         <sup>18</sup> AALTONEN
                               95
                                                                08AA CDF
>112
                                                                                \mu \tau
                                         <sup>19</sup> ABAZOV
                               95
                                                                08V D0
>168
                                                                                single H^{\pm\pm}
                                         <sup>20</sup> AKTAS
                                                                06A H1
                                         <sup>21</sup> ACOSTA
>133
                               95
                                                                05L CDF
                                                                                stable
                                         <sup>22</sup> ABAZOV
>118.4
                               95
                                                                04E D0
                                                                                \mu\mu
                                         <sup>23</sup> ABBIENDI
                                                                                E_{
m cm} \leq 209 GeV, single
                                                                03Q OPAL
                                         <sup>24</sup> GORDEEV
                                                                97
                                                                      SPEC
                                                                                muonium conversion
                                         <sup>25</sup> ASAKA
                                                                95
                                                                      THEO
                                         <sup>26</sup> ACTON
> 45.6
                               95
                                                                92M OPAL
                                         <sup>27</sup> ACTON
> 30.4
                               95
                                                                92M OPAL
                                         <sup>28</sup> SWARTZ
                                                                      MRK2
none 6.5-36.6
                                                                90
```

 $^{^1}$ AABOUD 19K search for pair production of $H^{++}H^{--}$ followed by the decay $H^{\pm\pm}\to W^\pm\,W^\pm$ in 36.1 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=13$ TeV. The search is interpreted in a doublet-triplet extension of the scalar sector with a vev of 0.1 GeV, leading to B($H^{\pm\pm}\to W^\pm\,W^\pm)=1$. See their Fig. 5 for limits on the cross section for $m_{H^{++}}$ between 200 and 700 GeV.

- 2 See their Figs. 11(b) and 13 for limits with smaller branching ratios.
- ³ AAD 15AG search for $H^{++}H^{--}$ production in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Fig. 5 for limits for arbitrary branching ratios.
- ⁴ AAD 15AP search for $H^{++}H^{--}$ production in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. The limit assumes 100% branching ratio to the specified final state.
- ⁵ CHATRCHYAN 12AU search for $H^{++}H^{--}$ production with 4.9 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Table 6 for limits including associated $H^{++}H^{-}$ production or assuming different scenarios.
- ⁶ ABDALLAH 03 search for $H^{++}H^{--}$ pair production either followed by $H^{++} \rightarrow \tau^+ \tau^+$, or decaying outside the detector.
- ⁷ ABBIENDI 02C searches for pair production of $H^{++}H^{--}$, with $H^{\pm\pm}\to \ell^{\pm}\ell^{\pm}$ ($\ell,\ell'=e,\mu,\tau$). The limit holds for $\ell=\ell'=\tau$, and becomes stronger for other combinations of leptonic final states. To ensure the decay within the detector, the limit only applies for $g(H\ell\ell)\gtrsim 10^{-7}$.
- ⁸ SIRUNYAN 19CQ search for $H^{\pm\pm}$ production by vector boson fusion followed by the decay $H^{\pm\pm} \to W^\pm W^\pm \to q q \ell \nu$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. See their Fig. 5 for limits on cross section times branching ratio for $m_{H^{\pm\pm}}$ between 0.6 and 2 TeV.
- ⁹ SIRUNYAN 18CC search for $H^{\pm\pm}$ production by vector boson fusion followed by the decay $H^{\pm\pm}\to W^\pm W^\pm$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. See their Fig. 3 for limits on cross section times branching ratio for $m_{H^{\pm\pm}}$ between 200 and 1000 GeV.
- ¹⁰ KANEMURA 15 examine the case where H^{++} decays preferentially to $W^{(*)}$ $W^{(*)}$ and estimate that a lower mass limit of \sim 84 GeV can be derived from the same-sign dilepton data of AAD 15AG if H^{++} decays with 100% branching ratio to $W^{(*)}$ $W^{(*)}$.
- 11 KHACHATRYAN 15D search for $H^{\pm\pm}$ production by vector boson fusion followed by the decay $H^{\pm\pm}\to~W^\pm\,W^\pm$ in 19.4 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=8$ TeV. See their Fig. 4 for limits on cross section times branching ratio for $m_{H^{++}}$ between 160 and 800 GeV.
- ¹² KANEMURA 14 examine the case where H^{++} decays preferentially to $W^{(*)}$ $W^{(*)}$ and estimate that a lower mass limit of \sim 60 GeV can be derived from the same-sign dilepton data of AAD 12CY.
- ¹³AAD 13Y search for $H^{++}H^{--}$ production in a generic search of events with three charged leptons in 4.6 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. The limit assumes 100% branching ratio to the specified final state.
- 14 AAD 12AY search for $H^{++}H^{--}$ production with 1.6 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. The limit assumes 100% branching ratio to the specified final state.
- 15 AAD 12CQ search for $H^{++}H^{--}$ production with 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Table 1 for limits assuming smaller branching ratios.
- 16 ABAZOV 12A search for $H^{++}H^{--}$ production in 7.0 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV.
- ¹⁷ AALTONEN 11AF search for $H^{++}H^{--}$ production in 6.1 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV.
- ¹⁸ AALTONEN 08AA search for $H^{++}H^{--}$ production in $p\overline{p}$ collisions at $E_{\rm cm}=$ 1.96 TeV. The limit assumes 100% branching ratio to the specified final state.
- ¹⁹ ABAZOV 08V search for $H^{++}H^{--}$ production in $p\overline{p}$ collisions at $E_{\rm cm}=$ 1.96 TeV. The limit is for B($H\to\mu\mu$) = 1. The limit is updated in ABAZOV 12A.
- 20 AKTAS 06A search for single $H^{\pm\pm}$ production in ep collisions at HERA. Assuming that H^{++} only couples to $e^+\mu^+$ with $g_{e\,\mu}=0.3$ (electromagnetic strength), a limit $m_{H^{++}}>141$ GeV (95% CL) is derived. For the case where H^{++} couples to $e\tau$ only the limit is 112 GeV.

- ²¹ ACOSTA 05L search for $H^{++}H^{--}$ pair production in $p\bar{p}$ collisions. The limit is valid for $g_{\ell\ell'} < 10^{-8}$ so that the Higgs decays outside the detector.
- ²² ABAZOV 04E search for $H^{++}H^{--}$ pair production in $H^{\pm\pm}\to\mu^\pm\mu^\pm$. The limit is valid for $g_{\mu\mu}\gtrsim 10^{-7}$.
- ABBIENDI 03Q searches for single $H^{\pm\pm}$ via direct production in $e^+e^- \rightarrow e^\mp e^\mp H^{\pm\pm}$, and via t-channel exchange in $e^+e^- \rightarrow e^+e^-$. In the direct case, and assuming B($H^{\pm\pm} \rightarrow \ell^\pm \ell^\pm$) = 1, a 95% CL limit on h_{ee} < 0.071 is set for $m_{H^{\pm\pm}}$ < 160 GeV (see Fig. 6). In the second case, indirect limits on h_{ee} are set for $m_{H^{\pm\pm}}$ < 2 TeV (see Fig. 8).
- 24 GORDEEV 97 search for muonium-antimuonium conversion and find $G_{M\overline{M}}/G_F < 0.14$ (90% CL), where $G_{M\overline{M}}$ is the lepton-flavor violating effective four-fermion coupling. This limit may be converted to $m_{H^{++}} > 210$ GeV if the Yukawa couplings of H^{++} to ee and $\mu\mu$ are as large as the weak gauge coupling. For similar limits on muonium-antimuonium conversion, see the muon Particle Listings.
- 25 ASAKA 95 point out that H^{++} decays dominantly to four fermions in a large region of parameter space where the limit of ACTON 92M from the search of dilepton modes does not apply.
- ²⁶ ACTON 92M limit assumes $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$ or $H^{\pm\pm}$ does not decay in the detector. Thus the region $g_{\ell\ell} \approx 10^{-7}$ is not excluded.
- 27 ACTON 92M from $\Delta\Gamma_{7}$ <40 MeV.
- $^{28}\,\text{SWARTZ}$ 90 assume $H^{\pm\pm}\to \ell^{\pm}\ell^{\pm}$ (any flavor). The limits are valid for the Higgs-lepton coupling g(H\$\ell\$\ell\$\ell\$) $\gtrsim 7.4\times 10^{-7}/[m_H/\text{GeV}]^{1/2}$. The limits improve somewhat for $e\,e$ and $\mu\mu$ decay modes.

Limits for $H^{\pm\pm}$ with $T_3=0$

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
> 58	95	¹ AABOUD	18BC ATLS	e e
>723	95	$^{ m 1}$ AABOUD	18BC ATLS	$\mu\mu$
>402	95	² AAD	15AG ATLS	$e\mu$
>290	95	³ AAD	15AP ATLS	e au
>290	95	³ AAD	15AP ATLS	μau
> 97.3	95	⁴ ABDALLAH	03 DLPH	au au
> 97.3	95	⁵ ACHARD	03F L3	au au
> 98.5	95	⁶ ABBIENDI	02c OPAL	au au
14/ 1 .			c	

• • We do not use the following data for averages, fits, limits, etc.

>374	95	² AAD	15AG ATLS	e e
>438	95	² AAD	15AG ATLS	$\mu\mu$
>251	95	⁷ AAD	12AY ATLS	$\mu\mu$
>306	95	⁸ AAD	12cq ATLS	$\mu\mu$
>310	95	⁸ AAD	12cq ATLS	$e\mu$
>322	95	⁸ AAD	12cq ATLS	e e
>113	95	⁹ ABAZOV	12A D0	μau
>205	95	¹⁰ AALTONEN	11AF CDF	$\mu\mu$
>190	95	¹⁰ AALTONEN	11AF CDF	$e\mu$
>205	95	¹⁰ AALTONEN	11AF CDF	e e
>145	95	¹¹ ABAZOV	08V D0	$\mu\mu$
		¹² AKTAS	06A H1	single $H^{\pm\pm}$
>109	95	¹³ ACOSTA	05L CDF	stable

> 98.2	95	¹⁴ ABAZOV	04E	D0	$\mu\mu$
		¹⁵ ABBIENDI	03Q	OPAL	$E_{\rm cm} \leq$ 209 GeV, single
					$H^{\pm\pm}$
		¹⁶ GORDEEV	97	SPEC	muonium conversion
> 45.6	95	¹⁷ ACTON	92M	OPAL	
> 25.5	95	¹⁸ ACTON	92M	OPAL	
none 7 3-34 3	95	¹⁹ SWART7	90	MRK2	

- 1 See their Figs. 12(b) and 14 for limits with smaller branching ratios.
- ²AAD 15AG search for $H^{++}H^{--}$ production in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Fig. 5 for limits for arbitrary branching ratios.
- 3 AAD 15AP search for $H^{++}H^{--}$ production in 20.3 fb $^{-1}$ of pp collisions at $E_{
 m cm}=8$ TeV. The limit assumes 100% branching ratio to the specified final state.
- 4 ABDALLAH 03 search for $H^{++}H^{--}$ pair production either followed by $H^{++}
 ightarrow$
- $au^+ au^+$, or decaying outside the detector. 5 ACHARD 03F search for $e^+ e^- o H^{++} H^{--}$ with $H^{\pm\pm} o \ell^\pm \ell'^\pm$. The limit holds for $\ell=\ell'= au$, and slightly different limits apply for other flavor combinations. The limit is valid for $g_{\rho \rho'} \gtrsim 10^{-7}$.
- 6 ABBIENDI 02C searches for pair production of $H^{++}H^{--}$, with $H^{\pm\pm}
 ightarrow ~\ell^\pm\ell^\pm$ (ℓ,ℓ' $=e,\mu,\tau$). the limit holds for $\ell=\ell'=\tau$, and becomes stronger for other combinations of leptonic final states. To ensure the decay within the detector, the limit only applies for $g(H\ell\ell) \gtrsim 10^{-7}$.
- ⁷AAD 12AY search for $H^{++}H^{--}$ production with 1.6 fb⁻¹ of pp collisions at $E_{cm} =$ 7 TeV. The limit assumes 100% branching ratio to the specified final state.
- ⁸ AAD 12CQ search for $H^{++}H^{--}$ production with 4.7 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Table 1 for limits assuming smaller branching ratios.
- 9 ABAZOV 12A search for $H^{++}H^{--}$ production in 7.0 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{cm}=$
- 10 AALTONEN 11AF search for $H^{++}H^{--}$ production in 6.1 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV.
- ¹¹ ABAZOV 08V search for $H^{++}H^{--}$ production in $p\overline{p}$ collisions at $E_{\rm cm}=$ 1.96 TeV. The limit is for B($H\to \mu\mu$) = 1. The limit is updated in ABAZOV 12A.
- 12 AKTAS 06A search for single $H^{\pm\pm}$ production in ep collisions at HERA. Assuming that ${\it H^{++}}$ only couples to $e^+\mu^+$ with ${\it g}_{e\,\mu}=$ 0.3 (electromagnetic strength), a limit $m_{H^{++}}~>$ 141 GeV (95% CL) is derived. For the case where H^{++} couples to e au only
- the limit is 112 GeV. 13 ACOSTA 05L search for $H^{++}H^{--}$ pair production in $p\overline{p}$ collisions. The limit is valid for $g_{\ell \ell'} < 10^{-8}$ so that the Higgs decays outside the detector.
- ¹⁴ ABAZOV 04E search for $H^{++}H^{--}$ pair production in $H^{\pm\pm}\to~\mu^\pm\mu^\pm$. The limit is valid for $g_{\mu\mu} \gtrsim 10^{-7}$.
- ¹⁵ ABBIENDI 03Q searches for single $H^{\pm\pm}$ via direct production in $e^+e^- \to e^\mp e^\mp H^{\pm\pm}$, and via t-channel exchange in $e^+e^- \rightarrow e^+e^-$. In the direct case, and assuming B($H^{\pm\pm}
 ightarrow \, \ell^{\pm} \ell^{\pm}$) = 1, a 95% CL limit on $h_{ee}~<$ 0.071 is set for $m_{H^{\pm\pm}}~<$ 160 GeV (see Fig. 6). In the second case, indirect limits on h_{ee} are set for $m_{H^{\pm\pm}}$ < 2 TeV (see
- 16 GORDEEV 97 search for muonium-antimuonium conversion and find $G_{M\overline{M}}/G_{F} < 0.14$ (90% CL), where $G_{M\overline{M}}$ is the lepton-flavor violating effective four-fermion coupling. This limit may be converted to $m_{H^{++}} >$ 210 GeV if the Yukawa couplings of H^{++} to ee and $\mu\mu$ are as large as the weak gauge coupling. For similar limits on muoniumantimuonium conversion, see the muon Particle Listings.

H^{\pm} and $H^{\pm\pm}$ REFERENCES

AABOUD	19K	EPJ C79 58	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
SIRUNYAN	19AH	JHEP 1907 142	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BP	PL B795 281	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19CC	PRL 123 131802	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19CQ	PL B798 134985	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	-	EPJ C78 199	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		JHEP 1809 139	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		JHEP 1811 085	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PL B787 68	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
HALLER	18	EPJ C78 675	J. Haller <i>et al.</i>	(Gfitter Group)
SIRUNYAN		PRL 120 081801	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
		JHEP 1811 115	,	\
SIRUNYAN		EPJ C77 201	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
MISIAK	17	PRL 119 141802	M. Misiak, M. Steinhauser	(CMC C-II-L)
SIRUNYAN			A.M. Sirunyan et al.	(CMS Collab.)
AABOUD		PL B759 555	M. Aaboud et al.	(ATLAS Collab.)
AAD		JHEP 1603 127	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 1503 088	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 1503 041	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 1508 138	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15M	PRL 114 231801	G. Aad <i>et al.</i>	(ATLAS Collab.)
KANEMURA	15	PTEP 2015 051B02	S. Kanemura <i>et al.</i>	
KHACHATRY	. 15AX	JHEP 1511 018	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	. 15BF	JHEP 1512 178	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	. 15D	PRL 114 051801	V. Khachatryan et al.	(CMS Collab.)
AAD	14M	PR D89 032002	G. Aad <i>et al.</i>	(ATLAS Collab.)
AALTONEN	14A	PR D89 091101	T. Aaltonen et al.	`(CDF Collab.)
KANEMURA	14	PR D90 115018	S. Kanemura <i>et al.</i>	(1
AAD		EPJ C73 2465	G. Aad et al.	(ATLAS Collab.)
AAD	13V	JHEP 1303 076	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	13Y	PR D87 052002	G. Aad <i>et al.</i>	(ATLAS Collab.)
CARENA	13	EPJ C73 2552	M. Carena <i>et al.</i>	(711 E713 CONIGD.)
LEP	13	EPJ C73 2463		ELPHI, L3, OPAL, LEP)
AAD		PR D85 032004	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 1206 039	G. Aad et al.	(ATLAS Collab.)
AAD		EPJ C72 2244	G. Aad et al.	(ATLAS Collab.)
AAD	-	JHEP 1212 007	G. Aad et al.	(ATLAS Collab.)
ABAZOV	12A	PRL 108 021801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABBIENDI	127	EPJ C72 2076	G. Abbiendi <i>et al.</i>	
		JHEP 1207 143		(OPAL Collab.) (CMS Collab.)
			S. Chatrohyan et al.	
		EPJ C72 2189	S. Chatrchyan et al.	(CMS Collab.)
AALTONEN		PRL 107 181801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11P	PRL 107 031801	T. Aaltonen <i>et al.</i>	(CLED ODCAY LADD)
DESCHAMPS	10	PR D82 073012	O. Deschamps <i>et al.</i>	(CLER, ORSAY, LAPP)
AALTONEN		PRL 103 101803	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV		PR D80 051107	V.M. Abazov et al.	(D0 Collab.)
ABAZOV		PR D80 071102	V.M. Abazov et al.	(D0 Collab.)
ABAZOV		PL B682 278	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	09P	PRL 102 191802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
AALTONEN		PRL 101 121801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	V80	PRL 101 071803	V.M. Abazov et al.	(D0 Collab.)
ABULENCIA	06E	PRL 96 042003	A. Abulencia <i>et al.</i>	(CDF Collab.)
AKTAS	06A	PL B638 432	A. Aktas <i>et al.</i>	(H1 Collab.)
ACOSTA	05L	PRL 95 071801	D. Acosta et al.	(CDF Collab.)
ABAZOV	04E	PRL 93 141801	V.M. Abazov et al.	`(D0 Collab.)
ABBIENDI	04	EPJ C32 453	G. Abbiendi et al.	(OPAL Collab.)
ABDALLAH	041	EPJ C34 399	J. Abdallah <i>et al.</i>	(DÈLPHI Collab.)
ABBIENDI	03	PL B551 35	G. Abbiendi et al.	` (OPAL Collab.)
ABBIENDI	03Q	PL B577 93	G. Abbiendi et al.	(OPAL Collab.)
/ LODIE NOT				

 $^{^{17}}$ ACTON 92M limit assumes $H^{\pm\pm}\to \ell^\pm\ell^\pm$ or $H^{\pm\pm}$ does not decay in the detector. Thus the region $g_{\ell\ell}\approx 10^{-7}$ is not excluded. 18 ACTON 92M from $\Delta\Gamma_Z<$ 40 MeV. 19 SWARTZ 90 assume $H^{\pm\pm}\to \ell^\pm\ell^\pm$ (any flavor). The limits are valid for the Higgslepton coupling g($H\ell\ell$) $\gtrsim 7.4\times 10^{-7}/[m_H/{\rm GeV}]^{1/2}$. The limits improve somewhat for ee and $\mu\mu$ decay modes.

ABDALLAH ACHARD ACHARD ABAZOV ABBIENDI BORZUMATI	03 03E 03F 02B 02C 02	PL B552 127 PL B575 208 PL B576 18 PRL 88 151803 PL B526 221 PL B549 170	J. Abdallah <i>et al.</i> P. Achard <i>et al.</i> P. Achard <i>et al.</i> V.M. Abazov <i>et al.</i> G. Abbiendi <i>et al.</i> F.M. Borzumati, A. Djouadi	(DELPHI Collab.) (L3 Collab.) (L3 Collab.) (D0 Collab.) (OPAL Collab.)
HEISTER	02P	PL B543 1	A. Heister <i>et al.</i>	(ALEPH Collab.)
ABBIENDI BARATE	01Q 01E	PL B520 1 EPJ C19 213	G. Abbiendi <i>et al.</i> R. Barate <i>et al.</i>	(OPAL Collab.) (ALEPH Collab.)
GAMBINO	01	NP B611 338	P. Gambino, M. Misiak	(ALEPH Collab.)
AFFOLDER	001	PR D62 012004	T. Affolder <i>et al.</i>	(CDF Collab.)
PDG	00	EPJ C15 1	D.E. Groom <i>et al.</i>	(PDG Collab.)
ABBIENDI	99E	EPJ C7 407	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBOTT	99E	PRL 82 4975	B. Abbott et al.	(D0 Collab.)
ACKERSTAFF	99D	EPJ C8 3	K. Ackerstaff et al.	(OPAL Collab.)
ABE	97L	PRL 79 357	F. Abe <i>et al.</i>	(CDF Collab.)
ACCIARRI	97F	PL B396 327	M. Acciarri et al.	(L3 Collab.)
AMMAR	97B	PRL 78 4686	R. Ammar et al.	(CLEO Collab.)
COARASA	97	PL B406 337	J.A. Coarasa, R.A. Jimenez, J. Sola	
GORDEEV	97	PAN 60 1164	V.A. Gordeev et al.	(PNPI)
CHCHAIT	07	Translated from YAF		(
GUCHAIT	97	PR D55 7263	M. Guchait, D.P. Roy	(TATA)
MANGANO STAHL	97	PL B410 299 ZPHY C74 73	M. Mangano, S. Slabospitsky	(DONN)
PDG	97 96	PR D54 1	A. Stahl, H. Voss R. M. Barnett <i>et al.</i>	(BONN)
ALAM	96 95	PR D54 1 PRL 74 2885	M.S. Alam <i>et al.</i>	(PDG Collab.) (CLEO Collab.)
ASAKA	95 95	PL B345 36	T. Asaka, K.I. Hikasa	(CLEO Collab.)
BUSKULIC	95 95	PL B343 444	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
GROSSMAN	95B	PL B357 630	Y. Grossman, H. Haber, Y. Nir	(ALLITI Collab.)
GROSSMAN	94	PL B332 373	Y. Grossman, Z. Ligeti	
STAHL	94	PL B324 121	A. Stahl	(BONN)
ACTON	92M	PL B295 347	P.D. Acton <i>et al.</i>	(OPAL Collab.)
SWARTZ	90	PRL 64 2877	M.L. Swartz <i>et al.</i>	(Mark II Collab.)
				(