$$\chi_{c1}(3872)$$

$$I^{G}(J^{PC}) = 0^{+}(1^{++})$$

also known as X(3872)

This state shows properties different from a conventional $q \overline{q}$ state. A candidate for an exotic structure. See the review on non- $q \overline{q}$ states.

First observed by CHOI 03 in $B \rightarrow K \pi^+ \pi^- J/\psi(1S)$ decays as a narrow peak in the invariant mass distribution of the $\pi^+ \pi^- J/\psi(1S)$ final state. Isovector hypothesis excluded by AUBERT 05B and CHOI 11.

AAIJ 13Q perform a full five-dimensional amplitude analysis of the angular correlations between the decay products in $B^+ \rightarrow \chi_{c1}(3872) \, {\cal K}^+$ decays, where $\chi_{c1}(3872) \rightarrow J/\psi \pi^+ \pi^-$ and $J/\psi \rightarrow \mu^+ \mu^-$, which unambiguously gives the $J^{PC} = 1^{++}$ assignment under the assumption that the $\pi^+ \pi^-$ and J/ψ are in an S-wave. AAIJ 15AO extend this analysis with more data to limit D-wave contributions to < 4% at 95% CL.

See the review on "Spectroscopy of Mesons Containing Two Heavy Quarks."

VALUE (MeV	′)	EVTS	DOCUMENT ID		TECN	COMMENT
3871.69±	0.17 OUR A	VERAGE				
$3871.9\ \pm$	$0.7\ \pm 0.2$	20 ± 5	ABLIKIM	14	BES3	$e^+e^- \rightarrow J/\psi \pi^+\pi^-\gamma$
$3871.95\pm$	$0.48 \!\pm\! 0.12$	0.6k	AAIJ	12H	LHCB	$pp \rightarrow J/\psi \pi^+ \pi^- X$
$3871.85\pm$	$0.27 \!\pm\! 0.19$	~ 170	¹ СНОІ	11	BELL	$B \rightarrow K \pi^+ \pi^- J/\psi$
3873 +	${}^{1.8}_{1.6}\ \pm 1.3$	27 ± 8	² DEL-AMO-SA	. 10 в	BABR	$B ightarrow \omegaJ/\psiK$
$3871.61\pm$	$0.16 \!\pm\! 0.19$	6k	^{2,3} AALTONEN	09 AU	CDF2	$p\overline{p} \rightarrow J/\psi \pi^+ \pi^- X$
$3871.4\ \pm$	$0.6\ \pm 0.1$	93.4	AUBERT	08Y	BABR	$B^+ \rightarrow K^+ J/\psi \pi^+ \pi^-$
$3868.7 \ \pm$	$1.5\ \pm 0.4$	9.4	AUBERT	08Y	BABR	$B^0 \rightarrow K^0_S J/\psi \pi^+ \pi^-$
$3871.8\ \pm$	$3.1\ \pm 3.0$	522	^{2,4} ABAZOV	04F	D0	$p \overline{p} \rightarrow J/\psi \pi^+ \pi^- X$
• • • We	do not use t	he followi	ng data for average	s, fits	, limits,	etc. • • •
3873.3 \pm	$1.1 \hspace{0.1in} \pm 1.0$	45	⁵ ABLIKIM	19v	BES	$e^+e^- \rightarrow \gamma \omega J/\psi$
3860.0 ±	10.4	13.6	^{2,6} AGHASYAN	18A	COMP	$\gamma^* N \rightarrow X \pi^{\pm} N'$
$3868.6 \ \pm$	$1.2\ \pm 0.2$	8	⁷ AUBERT	06	BABR	$B^0 \rightarrow K^0_{S} J/\psi \pi^+ \pi^-$
$3871.3\ \pm$	$0.6\ \pm 0.1$	61	⁷ AUBERT	06	BABR	$B^- \rightarrow \tilde{K}^- J/\psi \pi^+ \pi^-$
$3873.4\ \pm$	1.4	25	⁸ AUBERT	05 R	BABR	$B^+ \rightarrow K^+ J/\psi \pi^+ \pi^-$
$3871.3\ \pm$	$0.7\ \pm 0.4$	730	^{2,9} ACOSTA	04	CDF2	$p \overline{p} \rightarrow J/\psi \pi^+ \pi^- X$
$3872.0\ \pm$	$0.6\ \pm 0.5$	36	¹⁰ CHOI	03	BELL	$B \rightarrow K \pi^+ \pi^- J/\psi$
3836 ±	13	58	^{2,11} ANTONIAZZI	94	E705	$\begin{array}{c} 300 \ \pi^{\pm} \operatorname{Li} \rightarrow \\ J/\psi \ \pi^{+} \ \pi^{-} X \end{array}$
1					- 1	0

χ_{c1} (3872) MASS FROM $J/\psi X$ MODE

 1 The mass difference for the $\chi_{c1}(3872)$ produced in B^+ and B^0 decays is $(-0.71\pm0.96\pm0.19)$ MeV.

 2 Width consistent with detector resolution.

HTTP://PDG.LBL.GOV

Created: 6/1/2020 08:32

 3 A possible equal mixture of two states with a mass difference greater than 3.6 MeV/c² is excluded at 95% CL. ⁴ Calculated from the corresponding $m_{\chi_{c1}(3872)} - m_{J/\psi}$ using $m_{J/\psi}$ =3096.916 MeV.

⁵ Fit with fixed width and including two resonances, X(3915) and X(3960).

⁶Could be a different state. ⁷Calculated from the corresponding $m_{\chi_{c1}(3872)} - m_{\psi(2S)}$ using $m_{\psi(2S)} = 3686.093$ MeV. Superseded by AUBERT 08Y.

⁸Calculated from the corresponding $m_{\chi_{c1}(3872)} - m_{\psi(2S)}$ using $m_{\psi(2S)} =$ 3685.96MeV. Superseded by AUBERT 06. 9 Superseded by AALTONEN 09AU.

¹⁰ Superseded by CHOI 11.

 11 A lower mass value can be due to an incorrect momentum scale for soft pions.

χ_{c1} (3872) MASS FROM $\overline{D}^{*0} D^0$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT				
• • • We do not use the following data for averages, fits, limits, etc. • •									
$3872.9^{+0.6}_{-0.4}{+0.4}_{-0.5}$	50	1,2 AUSHEV	10	BELL	$B ightarrow \overline{D}^{*0} D^0 K$				
$3875.1^{+0.7}_{-0.5}{\pm}0.5$	33 ± 6	² AUBERT	08 B	BABR	$B ightarrow \overline{D}^{*0} D^0 K$				
$3875.2 {\pm} 0.7 {+} {0.9 \atop -} {1.8}$	24 ± 6	^{2,3} GOKHROO	06	BELL	$B \rightarrow D^0 \overline{D}{}^0 \pi^0 K$				
1					0 6 0 1				

¹ Calculated from the measured $m_{\chi_{c1}(3872)} - m_{\overline{D}^0} - m_{\overline{D}^0} = 1.1^{+0.6}_{-0.4} + 0.1_{-0.4}_{-0.3}$ MeV. ² Experiments report $D^{*0}\overline{D}^0$ invariant mass above $D^{*0}\overline{D}^0$ threshold because D^{*0} decay products are kinematically constrained to the D^{*0} mass, even though the D^{*0} may decay ³ Superseded by AUSHEV 10.

 $m_{\chi_{c1}(3872)} - m_{J/\psi}$ VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT 04F D0 $p\overline{p} \rightarrow J/\psi \pi^+ \pi^- X$ 774.9±3.1±3.0 522 ABAZOV $m_{\chi_{c1}(3872)} - m_{\psi(2S)}$ DOCUMENT ID VALUE (MeV) EVTS TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 05r BABR $B^+ \rightarrow K^+ J/\psi \pi^+ \pi^-$ ¹ AUBERT 187.4 ± 1.4 25 ¹Superseded by AUBERT 06.

χ_{c1} (3872) WIDTH

VALUE (MeV)	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
<1.2	90		CHOI	11	BELL	$B \rightarrow K \pi^+ \pi^- J/\psi$
• • • We do not	use the	following	data for average	s, fits,	limits,	etc. • • •
<2.4	90		ABLIKIM	14	BES3	$e^+e^- \rightarrow J/\psi \pi^+\pi^-\gamma$
<3.3	90		AUBERT	08Y	BABR	$B^+ \rightarrow K^+ J/\psi \pi^+ \pi^-$
<4.1	90	69	AUBERT	06	BABR	$B \rightarrow K \pi^+ \pi^- J/\psi$
<2.3	90	36	¹ CHOI	03	BELL	$B \rightarrow K \pi^+ \pi^- J/\psi$
¹ Superseded b	у СНОІ	11.				
HTTP://PDG	.LBL.G	OV	Page 2		Crea	ated: 6/1/2020 08:32

χ_{c1} (3872) WIDTH FROM $\overline{D}^{*0} D^0$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not use	the following d	ata for averages,	, fits, li	mits, etc	2. • • •
$3.9^{+2.8}_{-1.4}^{+0.2}_{-1.1}$	50	¹ AUSHEV	10	BELL	$B ightarrow \overline{D}^{*0} D^0 K$
$3.0^{+1.9}_{-1.4}{\pm}0.9$	33 ± 6	AUBERT	08 B	BABR	$B ightarrow \overline{D}^{*0} D^0 K$
1		()		- / /	-*0=0

¹With a measured value of $B(B \rightarrow \chi_{c1}(3872)K) \times B(\chi_{c1}(3872) \rightarrow D^{*0}\overline{D}^{0}) = (0.80 \pm 0.20 \pm 0.10) \times 10^{-4}$, assumed to be equal for both charged and neutral modes.

	Mode	Fraction (Γ_i/Γ)
Γ_1	e ⁺ e ⁻	
Γ2	$\pi^+\pi^- J/\psi(1S)$	> 3.2 %
Γ ₃	$ ho^{0}$ $J/\psi(1S)$	
Г4	$\omega J/\psi(1S)$	> 2.3 %
Г ₅	$D^{0} D^{0} \pi^{0}$	>40 %
Г ₆	$D^{*0} D^0$	>30 %
Γ ₇	$\gamma \gamma$	
1 ₈		
lg F	D^+D^-	
I 10	$\gamma \chi_{c1}$	
¹ 11 Г	$\gamma \chi_{c2}$	
12 Г.	$\pi^0 \chi_{c2}$	
г 13 Гта	$\pi^{0}\chi_{c1}$	> 2.0 /0
' 14 Γ₁ _Γ	$\sim \frac{1}{2}$	$> 7 \times 10^{-3}$
Γ ₁₆	$\gamma \psi \varphi$ $\gamma \psi (2S)$	> 4 %
Γ ₁₇	$\pi^{+}\pi^{-}n_{c}(1S)$	not seen
Γ_{18}^{17}	$\pi^+\pi^-\chi_{c1}$	not seen
Γ ₁₉	pp	not seen
-	C-viola	nting decays

χ_{c1} (3872) DECAY MODES

 $\Gamma_{20} \quad \eta J/\psi$

$\chi_{c1}(3872)$ PARTIAL WIDTHS

Г(е+е-)						Γ1
VALUE (eV)	CL%	DOCUMENT IL)	TECN	COMMENT	
• • • We do no	ot use the	e following data fo	r avera	ges, fits,	limits, etc. • • •	
< 4.3	90	¹ ABLIKIM	15V	BES3	4.0–4.4 $e^+e^- \rightarrow \pi^+\pi^-$	J/ψ
<280	90	² YUAN	04	RVUE	$e^+e^- ightarrow \pi^+\pi^- J/\psi$	•
¹ ABLIKIM	15∨ rep	orts this limit	from t	he mea	asurement of $\Gamma(\chi_{c1}(3872$	$) \rightarrow$
$\pi^+\pi^- J/\psi$	$(1S)) \times$	$\Gamma(\chi_{c1}(3872) \rightarrow$	e^+e^-)/Γ <	0.13 eV using $\Gamma(\chi_{c1}(3872))$	2) →
$\pi^+\pi^- J/\psi$	(1 <i>S</i>))/Γ	= 3%.				

² Using BAI 98E data on $e^+e^- \rightarrow \pi^+\pi^-\ell^+\ell^-$. Assuming that $\Gamma(\pi^+\pi^- J/\psi)$ of $\chi_{c1}(3872)$ is the same as that of $\psi(2S)$ (85.4 keV).

	2	χ _{c1} (3872) Г(і)Г(<i>e</i> +	`e [_])/Г	(total)
$\Gamma(\pi^+\pi^- J/\eta)$	<i>∳</i> (1 <i>5</i>)) ×	$\Gamma(e^+e^-)/\Gamma_{tc}$	otal		$\Gamma_2\Gamma_1/\Gamma$
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT
< 0.13 • • • We do r	90 not use the f	ABLIKIM ollowing data fo	15∨ r avera	BES3 ges, fits,	4.0-4.4 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$, limits, etc. • • •
< 6.2	90 1	² AUBERT	05 D	BABR	$10.6 \ e^+ e^- \rightarrow \\ K^+ K^- \pi^+ \pi^- \gamma$
< 8.3 <10	90 90	² DOBBS ³ YUAN	05 04	CLE3 RVUE	$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
¹ Using B(χ) < 0.37 eV PDG 04. ² Assuming ³ Using BAI production	$c_1(3872) \rightarrow$ from AUBE $\chi_{c1}(3872)$ h 98E data ou cross sectio	$J/\psi \pi^+ \pi^-)$ ERT 05D and B has $J^{PC} = 1^{-1}$ h $e^+ e^- \rightarrow \pi^-$ n and using B(J	$B(J/\psi - (J/\psi - H)) = -(H)$ $H_{\pi} = -(H)$ $H_{\pi} = -(H)$	$\psi \rightarrow \mu^{-} \mu^{+} \mu^{+} \mu^{-}$ $+ \ell^{-} F^{-} F^{-} \mu^{+} \mu^{-}$	$(+\mu^-) \cdot \Gamma(\chi_{c1}(3872) \rightarrow e^+e^-)$ $(\mu^-) = 0.0588 \pm 0.0010$ from the from theoretical calculation of the $(-) = (5.88 \pm 0.10)\%$.
$\Gamma(\pi^+\pi^- J/\eta)$	¢(15)) ×	χ_{c1} (3872) Γ Γ $(\gamma\gamma)/ \Gamma_{ ext{total}}$	(i)Γ(γ	$(\gamma)/Γ(t$	cotal) Γ ₂ Γ ₇ /Γ
VALUE (eV)	<u>Ci</u>	<u>DOCUN</u>	MENT IL) mos fits	TECN COMMENT
<12.9	or use the i) ¹ DOBF	3S	05	CLE3 $e^+e^- \rightarrow \pi^+\pi^- I/\psi\gamma$
¹ Assuming	$\chi_{c1}(3872)$ h	as positive C pa	arity an	d spin 0	
Γ(ω J/ψ(1S) <u>VALUE (eV)</u>)) × Γ(γγ	y)/F_{total <u>%</u>}	1ENT ID)	Г₄Г₇/Г <u>тесп</u> <u>соммент</u>
• • • We do r	not use the f	ollowing data fo	r avera	ges, fits,	, limits, etc. • • •
<1.7 ¹ Assuming	90 X _{C1} (3872) h	¹ LEES as spin 2.		12ad	BABR $e^+e^- \rightarrow e^+e^- \omega J/\psi$
$\Gamma(\pi^+\pi^-\eta_c($	1 <i>5</i>)) × Г	$(\gamma\gamma)/\Gamma_{ m total}$			Γ ₁₇ Γ ₇ /Γ
VALUE (eV) <11.1	<u> </u>	<u>DOCUMEN</u> LEES	IT ID	<u> </u>	$\frac{CN}{ABR} \frac{COMMENT}{e^+e^- \rightarrow e^+e^-\pi^+\pi^-\eta_c}$
	,	(_{c1} (3872) BR	ANCH	IING R	ATIOS
$\Gamma(\pi^+\pi^-J/\eta)$	ψ(1 <i>S</i>))/Γ _{tα}	otal VTS DOCU	MENT I	D	Г2/Г <i>тесл соммент</i>

HTTP://PDG.LBL.GOV

>0.032

 93 ± 17

¹ AUBERT

08Y BABR $B \rightarrow \chi_{c1}(3872) K$

• • • We do not use the following data for averages, fits, limits, etc. • • •

seen	151	² BALA	15	BELL	$B \rightarrow \chi_{c1}(3872) K \pi$
>0.05	30	³ AUBERT	05 R	BABR	$B^+ \rightarrow K^+ \pi^+ \pi^- J/\psi$
>0.05	36 ± 7	⁴ CHOI	03	BELL	$B^+ \rightarrow K^+ \pi^+ \pi^- J/\psi$
¹ AUBERT 08Y	reports [$\Gamma(\chi$	$_{c1}(3872) \rightarrow$	$\pi^+\pi^-$	$J/\psi(1S)$	$)/\Gamma_{total}] \times [B(B^+ \rightarrow$
χ_{c1} (3872) K^+	$)] = (8.4 \pm 1.5$	$\pm 0.7) \times 10^{-6}$	which we	e divide b	by our best value B($B^+ ightarrow$
$\chi_{c1}(3872) K^+$	$) < 2.6 \times 10^{-1}$	4.			
² BALA 15 repo	orts $B(\chi_{c1}(38))$	72) $\rightarrow \pi^+ \pi^-$	$^{-}J/\psi$) >	< В(<i>B</i> ⁰	$\rightarrow \chi_{c1}(3872) K^+ \pi^-)$
$=$ (7.9 \pm 1.3	\pm 0.4) $ imes$ 10	$^{-6}$ and B(χ_{c}	:1(3872)	$\rightarrow \pi$	$^+\pi^- J/\psi) \times B(B^+ \rightarrow$
$\chi_{c1}(3872) K^0$	$\pi^+) = (10.6 \pm$	$ a 3.0 \pm 0.9) imes 1$	10 ⁻⁶ .		
³ Superseded by	AUBERT 08Y.	AUBERT 05R r	eports [Г	$(\chi_{c1}(38))$	72) $\rightarrow \pi^{+}\pi^{-}J/\psi(1S))/$
$\Gamma_{total}] imes [B(E)]$	$3^+ \rightarrow \chi_{c1}(38)$	$(72) K^+)] = (1.$	28 ± 0.4	$1) \times 10^{-1}$	$^{-5}$ which we divide by our
best value B(E	$\beta^+ \rightarrow \chi_{c1}(38)$	72) K^+) < 2.6	$\times 10^{-4}$.		

⁴ CHOI 03 reports $[\Gamma(\chi_{c1}(3872) \rightarrow \pi^{+}\pi^{-}J/\psi(1S))/\Gamma_{total}] \times [B(B^{+} \rightarrow \chi_{c1}(3872)K^{+})] / [B(B^{+} \rightarrow \psi(2S)K^{+})] / [B(\psi(2S) \rightarrow J/\psi(1S)\pi^{+}\pi^{-})] = 0.063 \pm 0.012 \pm 0.007$ which we multiply or divide by our best values $B(B^{+} \rightarrow \chi_{c1}(3872)K^{+}) < 2.6 \times 10^{-4}$, $B(B^{+} \rightarrow \psi(2S)K^{+}) = (6.19 \pm 0.22) \times 10^{-4}$, $B(\psi(2S) \rightarrow J/\psi(1S)\pi^{+}\pi^{-}) = (34.68 \pm 0.30) \times 10^{-2}$.

$\Gamma(\omega J/\psi(1S))/\Gamma_{\text{total}}$

VALUE	 EVTS	DOCUMENT ID	TECN	COMMENT
>0.023	21 ± 7	¹ DEL-AMO-SA10B	BABR	$B^+ \rightarrow \omega J/\psi K^+$
1		- (

¹DEL-AMO-SANCHEZ 10B reports $[\Gamma(\chi_{c1}(3872) \rightarrow \omega J/\psi(1S))/\Gamma_{\text{total}}] \times [B(B^+ \rightarrow \chi_{c1}(3872)K^+)] = (6 \pm 2 \pm 1) \times 10^{-6}$ which we divide by our best value $B(B^+ \rightarrow \chi_{c1}(3872)K^+) < 2.6 \times 10^{-4}$. DEL-AMO-SANCHEZ 10B also reports $B(B^0 \rightarrow \chi_{c1}(3872)K^0) \times B(\chi_{c1}(3872) \rightarrow J/\psi\omega) = (6 \pm 3 \pm 1) \times 10^{-6}$.

$\Gamma(\omega J/\psi(1S))/\Gamma(\pi^+\pi^-J/\psi(1S))$							
VALUE	DOCUMENT ID	TECN	COMMENT				
1.1 ± 0.4 OUR AVERAGE	Error includes scale factor of	1.7.					
$1.6^{+0.4}_{-0.3}{\pm}0.2$	¹ ABLIKIM 19v	BES	$e^+e^- \rightarrow \gamma \omega J/\psi$				
$0.8 {\pm} 0.3$	² DEL-AMO-SA10B	BABR	$B ightarrow \omegaJ/\psiK$				
-							

¹Fit with fixed width and including two resonances, X(3915) and X(3960).

² Statistical and systematic errors added in quadrature. Uses the values of $B(B \rightarrow \chi_{c1}(3872)K) \times B(\chi_{c1}(3872) \rightarrow J/\psi \pi^+ \pi^-)$ reported in AUBERT 08Y, taking into account the common systematics.

$\Gamma(D^0 \overline{D}{}^0 \pi^0) / \Gamma_{\text{total}}$	h					Г ₅ /Г
VALUE	EVTS	DOCUMENT ID		TECN	<u>COMMENT</u>	
>0.4	17 ± 5	¹ GOKHROO	06	BELL	$B^+ \rightarrow D^0$	$D\overline{D}^{0}\pi^{0}K^{+}$
¹ GOKHROO 06	reports [$\Gamma(\chi_{c1}(3872) \rightarrow$	D^0	$\overline{D}^0 \pi^0$	/Γ _{total}] ×	$[B(B^+ \rightarrow$
$\chi_{c1}(3872) K^+)]$	$=$ (1.02 \pm	$(0.31^{+0.21}_{-0.29}) imes 10^{-1}$	-4 w	hich we	divide by or	ur best value
$B(B^+ \rightarrow \chi_{c1})$	872) <i>K</i> +) <	$< 2.6 \times 10^{-4}$.				

HTTP://PDG.LBL.GOV

 Γ_4/Γ

 $\Gamma(D^0\overline{D}^0\pi^0)/\Gamma(\pi^+\pi^-J/\psi(1S))$ Γ_5/Γ_2 TECN COMMENT VALU DOCUMENT ID ¹ GOKHROO BELL $B \rightarrow D^0 \overline{D}{}^0 \pi^0 K$ 06 seen • • • We do not use the following data for averages, fits, limits, etc. • • • 10 BELL $B \rightarrow D^0 \overline{D}{}^0 \pi^0 K$ AUSHEV seen ¹May not necessarily be the same state as that observed in the $J/\psi \pi^+\pi^-$ mode. Supersedes CHISTOV 04. $\Gamma(\overline{D}^{*0}D^0)/\Gamma_{total}$ Γ_6/Γ $\frac{DOCUMENT \ ID}{1} \text{ AUSHEV} \qquad 10 \quad \text{BELL} \quad B^+ \to D^*$ EVTS VALUE 41^{+9}_{-8} 10 BELL $B^+ \rightarrow D^{*0}\overline{D}^0K^+$ >0.30 • • • We do not use the following data for averages, fits, limits, etc. • • • 08B BABR $B^+ \rightarrow \overline{D}^{*0} D^0 K^+$ ² AUBERT 27 ± 6 >0.6 ¹ AUSHEV 10 reports $[\Gamma(\chi_{c1}(3872) \rightarrow \overline{D}^{*0}D^0)/\Gamma_{total}] \times [B(B^+ \rightarrow \chi_{c1}(3872)K^+)] =$ $(0.77 \pm 0.16 \pm 0.10) \times 10^{-4}$ which we divide by our best value B($B^+ \rightarrow \chi_{c1}(3872) K^+$) $< 2.6 \times 10^{-4}$. ² AUBERT 08B reports $[\Gamma(\chi_{c1}(3872) \rightarrow \overline{D}^{*0}D^0)/\Gamma_{total}] \times [B(B^+ \rightarrow \chi_{c1}(3872)K^+)]$ = (1.67 \pm 0.36 \pm 0.47) imes 10⁻⁴ which we divide by our best value B(B^+ \rightarrow $\chi_{c1}(3872)K^+) < 2.6 \times 10^{-4}.$ $\Gamma(D^0\overline{D}{}^0)/\Gamma(\pi^+\pi^-J/\psi(1S))$ Γ_8/Γ_2 DOCUMENT ID TECN • • • We do not use the following data for averages, fits, limits, etc. • • • BELL $B \rightarrow K D^0 \overline{D}^0$ CHISTOV 04 not seen $\Gamma(D^+D^-)/\Gamma(\pi^+\pi^-J/\psi(1S))$ Γ_9/Γ_2 DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • CHISTOV 04 BELL $B \rightarrow KD^+D^$ not seen $\Gamma(\gamma \chi_{c1})/\Gamma(\pi^+\pi^- J/\psi(1S))$ Γ_{10}/Γ_{2} $\begin{array}{c|c} \frac{\textit{DOCUMENT ID}}{1} & \frac{\textit{TECN}}{\textit{BHARDWAJ}} & \frac{\textit{COMMENT}}{\textit{BHARDWAJ}} & 13 & \textit{BELL} & B^+ \rightarrow \chi_{c1} \gamma K^+ \\ \textit{CHOI} & 03 & \textit{BELL} & B \rightarrow K \pi^+ \pi^- J/\psi \end{array}$ VALUE not seen <0.89 90 ¹Reported B($B^{\pm} \rightarrow \chi_{c1}(3872) \, \text{K}^{\pm}$) × B($\chi_{c1}(3872) \rightarrow \gamma \chi_{c1}$) < 1.9×10⁻⁶ at 90% CL $\Gamma(\gamma \chi_{c2})/\Gamma(\pi^+\pi^- J/\psi(1S))$ Γ_{11}/Γ_2 VALUE DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ BHARDWAJ 13 BELL $B^{\pm} \rightarrow \chi_{c2} \gamma K^{\pm}$ not seen ¹Reported B($B^{\pm} \rightarrow \chi_{c1}(3872) \, K^{\pm}$) × B($\chi_{c1}(3872) \rightarrow \gamma \chi_{c2}$) < 6.7 × 10⁻⁶ at 90% CL.

 $\Gamma(\gamma J/\psi)/\Gamma_{\text{total}}$ Γ_{15}/Γ VALUE EVTS TECN COMMENT 11 BELL $B^{\pm} \rightarrow \gamma J/\psi K^{\pm}$ ¹ BHARDWAI >7 × 10⁻ • • • We do not use the following data for averages, fits, limits, etc. • • • 20 ² AUBERT 09B BABR $B^+ \rightarrow \gamma J/\psi K^+$ >0.011 ³ AUBERT, BE 06M BABR $B^+ \rightarrow \gamma J/\psi K^+$ 19 >0.013 ¹BHARDWAJ 11 reports $[\Gamma(\chi_{c1}(3872) \rightarrow \gamma J/\psi)/\Gamma_{total}] \times [B(B^+ \rightarrow \chi_{c1}(3872)K^+)]$ = $(1.78^{+0.48}_{-0.44} \pm 0.12) \times 10^{-6}$ which we divide by our best value B($B^+ \rightarrow$ $\chi_{c1}(3872) K^+) < 2.6 \times 10^{-4}.$ ²AUBERT 09B reports $[\Gamma(\chi_{c1}(3872) \rightarrow \gamma J/\psi)/\Gamma_{total}] \times [B(B^+ \rightarrow \chi_{c1}(3872)K^+)]$ = $(2.8 \pm 0.8 \pm 0.1) \times 10^{-6}$ which we divide by our best value B($B^+ \rightarrow \chi_{c1}(3872) K^+$) $< 2.6 \times 10^{-4}$. ³ Superseded by AUBERT 09B. AUBERT, BE 06M reports [$\Gamma(\chi_{c1}(3872) \rightarrow \gamma J/\psi)/\Gamma_{total}$] × $[B(B^+ \rightarrow \chi_{c1}(3872)K^+)] = (3.3 \pm 1.0 \pm 0.3) \times 10^{-6}$ which we divide by our best value B($B^+ \rightarrow \chi_{c1}(3872) K^+$) < 2.6 × 10⁻⁴. $\Gamma(\gamma \psi(2S))/\Gamma_{\text{total}}$ Γ_{16}/Γ VALUE DOCUMENT ID EVTS TECN COMMENT 14AH LHCB $B^+ \rightarrow \gamma \psi(2S) K^+$ 36 ± 9 ¹ AAIJ seen ² AUBERT 09B BABR $B^+ \rightarrow \gamma \psi(2S) K^+$ >0.04 $25\,\pm\,7$ • • • We do not use the following data for averages, fits, limits, etc. • • • ³ BHARDWAJ 11 BELL $B^+ \rightarrow \gamma \psi(2S) K^+$ not seen ¹ From 36.4 \pm 9.0 events of $\chi_{c1}(3872) \rightarrow J/\psi\gamma$ decays with a statistical significance of 4.4σ . ² AUBERT 09B reports $[\Gamma(\chi_{c1}(3872) \rightarrow \gamma \psi(2S))/\Gamma_{total}] \times [B(B^+ \rightarrow \chi_{c1}(3872)K^+)]$ = $(9.5 \pm 2.7 \pm 0.6) \times 10^{-6}$ which we divide by our best value B($B^+ \rightarrow \chi_{c1}(3872) K^+$) $< 2.6 \times 10^{-4}$. ³BHARDWAJ 11 reports B($B^+ \rightarrow K^+ \chi_{c1}(3872)$) × B($\chi_{c1} \rightarrow \gamma \psi(2S)$) < 3.45×10⁻⁶ at 90% CL. $\Gamma(\gamma \psi(2S))/\Gamma(\gamma J/\psi)$ Γ_{16}/Γ_{15} VALUE DOCUMENT ID TECN COMMENT CL% EVTS 2.6 \pm 0.6 OUR AVERAGE ¹ AAIJ 14AH LHCB $B^+ \rightarrow \gamma \psi(2S) K^+$ $2.46 \!\pm\! 0.64 \!\pm\! 0.29$ 36 ± 9 09B BABR $B^+ \rightarrow \gamma c \overline{c} K'$ AUBERT 3.4 ± 1.4 • • We do not use the following data for averages, fits, limits, etc. • • • BHARDWAJ 11 BELL $B^+ \rightarrow \gamma \psi(2S) K^+$ < 2.190 ¹ From 36.4 \pm 9.0 events of $\chi_{c1}(3872) \rightarrow J/\psi\gamma$ decays with a statistical significance of 4.4σ . $\Gamma(\pi^+\pi^-\chi_{c1})/\Gamma_{total}$ Γ_{18}/Γ VALUE TECN COMMENT DOCUMENT ID

not seen ¹ BHARDWAJ 16 BELL $B^+ \rightarrow \pi^+ \pi^- \chi_{c1} K^+$ ¹ BHARDWAJ 16 quotes B($B^+ \rightarrow \chi_{c1}(3872) K^+$)·B($\chi_{c1}(3872) \rightarrow \pi^+ \pi^- \chi_{c1}$) < 1.5 × 10⁻⁶ at 90% CL.

 $\Gamma(p\overline{p})/\Gamma_{\text{total}}$ Γ_{19}/Γ VALUE DOCUMENT ID TECN COMMENT 1 ΔΔΙΙ 17AD LHCB $pp \rightarrow B^+ X \rightarrow p\overline{p}K^+ X$ not seen ¹ AAIJ 17AD reports $B(B^+ \rightarrow \chi_{c1}(3872)K^+ \rightarrow p\overline{p}K^+)/B(B^+ \rightarrow J/\psi K^+ \rightarrow p\overline{p}K^+)$ $< 2.0 (2.5) \times 10^{-3}$ at 90% (95%) CL. $\Gamma(p\overline{p})/\Gamma(\pi^+\pi^-J/\psi(1S))$ Γ_{19}/Γ_2 DOCUMENT ID TECN COMMENT VALUE $< 2.0 \times 10^{-3}$ $1 \Delta \Delta II$ 13s LHCB $B^+ \rightarrow \rho \overline{\rho} K^+$ ¹ AAIJ 13S reports $[\Gamma(\chi_{c1}(3872) \rightarrow p\overline{p})/\Gamma(\chi_{c1}(3872) \rightarrow \pi^+\pi^- J/\psi(1S))] \times [B(B^+ \rightarrow D^+)/\Gamma(\chi_{c1}(3872) \rightarrow \pi^+)/\Gamma(\chi_{c1}(3872) \rightarrow \pi^+)/\Gamma(\chi_{c$ $\chi_{c1}(3872) K^+$, $\chi_{c1} \rightarrow J/\psi \pi^+ \pi^-)] < 1.7 \times 10^{-8}$ which we divide by our best value $B(B^+ \to \chi_{c1}(3872) K^+, \chi_{c1} \to J/\psi \pi^+ \pi^-) = 8.6 \times 10^{-6}.$ $\Gamma(\pi^{0}\chi_{c0})/\Gamma(\pi^{+}\pi^{-}J/\psi(1S))$ Γ_{14}/Γ_{2} VALUE ____<u>TECN</u>___COMMENT DOCUMENT ID 190 BES3 $e^+e^- \rightarrow \gamma \chi_{c1}(3872)$ <19 90 ABLIKIM $\Gamma(\pi^{0}\chi_{c1})/\Gamma(\pi^{+}\pi^{-}J/\psi(1S))$ Γ_{13}/Γ_2 VALUE (units 10^{-2}) CL% EVTS DOCUMENT ID TECN COMMENT 19U BES3 $e^+e^- \rightarrow \gamma \chi_{c1}(3872)$ $88^{+33}_{-27}\pm10$ 10.8 ABLIKIM • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ BHARDWAJ 19 BELL $B^{\pm} \rightarrow \chi_{c1} \pi^0 K^{\pm}$ 90 <97 ¹BHARDWAJ 19 reports $B(B^{\pm} \rightarrow \chi_{c1}(3872) K^{\pm}) \times B(\chi_{c1}(3872) \rightarrow \pi^{0}\chi_{c1}) < 8.1 \times 10^{-1}$ 10^{-6} at 90% CL which was divided by B($B^{\pm} \rightarrow \chi_{c1}(3872) K^{\pm}$) × B($\chi_{c1}(3872) \rightarrow$ $J/\psi \pi^+ \pi^-) = (8.63 \pm 0.97) \times 10^{-6}$ from CHOI 11. $\Gamma(\pi^{0}\chi_{c2})/\Gamma(\pi^{+}\pi^{-}J/\psi(1S))$ Γ_{12}/Γ_2 TECN COMMENT DOCUMENT ID 190 BES3 $e^+e^- \rightarrow \gamma \chi_{c1}(3872)$ <1.1 ABLIKIM C-violating decays $\Gamma(\eta J/\psi)/\Gamma(\pi^+\pi^- J/\psi(1S))$ Γ_{20}/Γ_2 VALUE DOCUMENT ID TECN COMMENT ^{1,2} IWASHITA <0.4 90 14 BELL $B \rightarrow K \eta J/\psi$ \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet 04Y BABR $B \rightarrow K \eta J/\psi$ 90 AUBERT < 0.6 ¹ IWASHITA 14 reports $[\Gamma(\chi_{c1}(3872) \rightarrow \eta J/\psi)/\Gamma(\chi_{c1}(3872) \rightarrow \pi^+\pi^- J/\psi(1S))] \times$ $[B(B^+ \rightarrow \chi_{c1}(3872)K^+, \chi_{c1} \rightarrow J/\psi \pi^+ \pi^-)] < 3.8 \times 10^{-6}$ which we divide by our best value B($B^+ \to \chi_{c1}(3872) K^+$, $\chi_{c1} \to J/\psi \pi^+ \pi^-$) = 8.6 × 10⁻⁶. ²IWASHITA 14 also scans the $\eta J/\psi$ mass range 3.8–4.75 GeV and sets upper limits for $B(B^{\pm} \rightarrow \chi_{c1}(3872) K^{\pm}) \times B(\chi_{c1}(3872) \rightarrow \eta J/\psi)$ in 5 MeV intervals.

χ_{c1} (3872) REFERENCES

ABLIKIM	19U	PRL 122 202001	M. Ablikim <i>et al.</i>	(BESIII	Collab.)
ABLIKIM	19V	PRL 122 232002	M. Ablikim <i>et al.</i>	(BESIII	Collab.)
BHARDWAJ	19	PR D99 111101	V. Bhardwaj <i>et al.</i>	(BELLE	Collab.)
AGHASYAN	18A	PL B783 334	M. Aghasyan <i>et al.</i>	(COMPASS	Collab.)
AAIJ	17AD	PL B769 305	R. Aaij <i>et al.</i>) (LHCb	Collab.)
BHARDWAJ	16	PR D93 052016	V. Bhardwaj <i>et al.</i>	(ÈELLE	Collab.)
AAIJ	15AO	PR D92 011102	R. Aaij <i>et al.</i>	(LHCb	Collab.)
ABLIKIM	15V	PL B749 414	M. Ablikim <i>et al.</i>	(BESIII	Collab.)
BALA	15	PR D91 051101	A. Bala <i>et al.</i>	(BELLE	Collab.)
AAIJ	14AH	NP B886 665	R. Aaij <i>et al.</i>	(LHCb	Collab.)
ABLIKIM	14	PRL 112 092001	M. Ablikim <i>et al.</i>	(BESIII	Collab.)
IWASHITA	14	PTEP 2014 043C01	T. Iwashita <i>et al.</i>	(BELLE	Collab.)
AAIJ	13Q	PRL 110 222001	R. Aaij <i>et al.</i>	(LHCb	Collab.) JP
AAIJ	13S	EPJ C73 2462	R. Aaij <i>et al.</i>	LHCb	Collab.)
BHARDWAJ	13	PRL 111 032001	V. Bhardwaj <i>et al.</i>	(BELLE	Collab.)
AAIJ	12H	EPJ C72 1972	R. Aaij <i>et al.</i>	(LHCb	Collab.)
LEES	12AD	PR D86 072002	J.P. Lees et al.	(BABAR	Collab.)
LEES	12AE	PR D86 092005	J.P. Lees <i>et al.</i>	(BABAR	Collab.)
BHARDWAJ	11	PRL 107 091803	V. Bhardwaj <i>et al.</i>	(BELLE	Collab.)
CHOI	11	PR D84 052004	SK. Choi <i>et al.</i>	(BELLE	Collab.)
AUSHEV	10	PR D81 031103	T. Aushev <i>et al.</i>	BELLE	Collab.)
DEL-AMO-SA	. 10B	PR D82 011101	P. del Amo Sanchez <i>et al.</i>	(BABAR	Collab.)
AALTONEN	09AU	PRL 103 152001	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
AUBERT	09B	PRL 102 132001	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	08B	PR D77 011102	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	08Y	PR D77 111101	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	06	PR D73 011101	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT,BE	06M	PR D74 071101	B. Aubert <i>et al.</i>	(BABAR	Collab.)
GOKHROO	06	PRL 97 162002	G. Gokhroo <i>et al.</i>	(BELLE	Collab.)
AUBERT	05B	PR D71 031501	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	05D	PR D71 052001	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	05R	PR D71 071103	B. Aubert <i>et al.</i>	(BABAR	Collab.)
DOBBS	05	PRL 94 032004	S. Dobbs <i>et al.</i>	(CLEO	Collab.)
ABAZOV	04F	PRL 93 162002	V.M. Abazov <i>et al.</i>	(D0	Collab.)
ACOSTA	04	PRL 93 072001	D. Acosta <i>et al.</i>	(CDF	Collab.)
AUBERT	04Y	PRL 93 041801	B. Aubert <i>et al.</i>	(BABAR	Collab.)
CHISTOV	04	PRL 93 051803	R. Chistov <i>et al.</i>	(BELLE	Collab.)
PDG	04	PL B592 1	S. Eidelman <i>et al.</i>	(PDG	Collab.)
YUAN	04	PL B579 74	C.Z. Yuan <i>et al.</i>		
CHOI	03	PRL 91 262001	SK. Choi <i>et al.</i>	(BELLE	Collab.)
BAI	98E	PR D57 3854	J.Z. Bai <i>et al.</i>	(BES	Collab.)
ANTONIAZZI	94	PR D50 4258	L. Antoniazzi <i>et al.</i>	(E705	Collab.)