е

$J = \frac{1}{2}$

e MASS (atomic mass units u)

The primary determination of an electron's mass comes from measuring the ratio of the mass to that of a nucleus, so that the result is obtained in u (atomic mass units). The conversion factor to MeV is more uncertain than the mass of the electron in u; indeed, the recent improvements in the mass determination are not evident when the result is given in MeV. In this datablock we give the result in u, and in the following datablock in MeV.

VALUE (10 ⁻⁶ u)		DOCUMENT ID		TECN	COMMENT
548.579909070)±0.00000016	MOHR	16	RVUE	2014 CODATA value
• • • We do r	not use the followir	ng data for average	s, fits,	limits, e	etc. • • •
548.57990946	± 0.0000022	MOHR	12	RVUE	2010 CODATA value
548.57990943	± 0.0000023	MOHR	08	RVUE	2006 CODATA value
548.57990945	± 0.0000024	MOHR	05	RVUE	2002 CODATA value
548.5799092	± 0.000004	¹ BEIER	02	CNTR	Penning trap
548.5799110	± 0.000012	MOHR	99	RVUE	1998 CODATA value
548.5799111	± 0.000012	² FARNHAM	95	CNTR	Penning trap
548.579903	± 0.000013	COHEN	87	RVUE	1986 CODATA value
¹ BEIER 02	compares Larmor	frequency of the el	lectron	bound	in a ${}^{12}C^{5+}$ ion with the

¹BEIER 02 compares Larmor frequency of the electron bound in a ${}^{12}C^{3+}$ ion w cyclotron frequency of a single trapped ${}^{12}C^{5+}$ ion.

 2 FARNHAM 95 compares cyclotron frequency of trapped electrons with that of a single trapped $^{12}C^{6+}$ ion.

e MASS

2010 CODATA (MOHR 12) gives the conversion factor from u (atomic mass units, see the above datablock) to MeV as 931.494061(21). Earlier values use the then-current conversion factor. The conversion error dominates the uncertainty of the masses given below.

VALUE (MeV)		DOCUMEN	IT ID	TECN	COMMENT
0.5109989461	±0.000000031	MOHR	16	RVUE	2014 CODATA value
$\bullet \bullet \bullet$ We do	not use the follow	wing data for	averages, f	its, limits	, etc. ● ● ●
0.510998928	± 0.00000011	MOHR	12	RVUE	2010 CODATA value
0.510998910	± 0.00000013	MOHR	08	RVUE	2006 CODATA value
0.510998918	± 0.00000044	MOHR	05	RVUE	2002 CODATA value
0.510998901	± 0.00000020	^{1,2} BEIER	02	CNTR	Penning trap
0.510998902	± 0.00000021	MOHR	99	RVUE	1998 CODATA value
0.510998903	± 0.00000020	^{1,3} FARNHA	M 95	CNTR	Penning trap
0.510998895	± 0.00000024	1 COHEN	87	RVUE	1986 CODATA value
0.5110034	± 0.000014	COHEN	73	RVUE	1973 CODATA value
¹ Converted 931.4940	d to MeV using 13 ± 0.000037 MeV	; the 1998 (eV/u.	CODATA	value of	the conversion constant,

- ²BEIER 02 compares Larmor frequency of the electron bound in a ${}^{12}C^{5+}$ ion with the cyclotron frequency of a single trapped ${}^{12}C^{5+}$ ion. ³FARNHAM 95 compares cyclotron frequency of trapped electrons with that of a single
- trapped $^{12}C^{6+}$ ion.

$$(m_{e^+} - m_{e^-}) / m_{average}$$

A test of CPT invariance.

VALUE	<u>CL%</u>	<u>DOCUMENT ID</u>		TECN	COMMENT				
<8 × 10 ⁻⁹	90 sa tha falla	¹ FEE	93	CNTR	Positronium spectroscopy				
		wing uata for average	ges, i	its, innits	ϕ , etc. • • •				
$< 4 \times 10^{-23}$	90	² DOLGOV	14		From photon mass limit				
$< 4 \times 10^{-8}$	90	CHU	84	CNTR	Positronium spectroscopy				
¹ FEE 93 value is is exactly half th ² DOLGOV 14 re electron and po 1×10^{-18} eV of	$<4 \times 10^{-0}$ 90 CHO 84 CNTR Positronium spectroscopy ¹ FEE 93 value is obtained under the assumption that the positronium Rydberg constant is exactly half the hydrogen one. ² DOLGOV 14 result is obtained under the assumption that any mass difference between electron and positron would lead to a non-zero photon mass. The PDG 12 limit of 1×10^{-18} eV on the photon mass is in turn used to derive the value quoted here.								
		$ a \pm a$	1/0						

$$|q_{e^+} + q_{e^-}|/e$$

A test of CPT invariance. See also similar tests involving the proton.

VALUE	DOCUMENT ID		TECN	COMMENT
<4 × 10 ⁻⁸	¹ HUGHES	92	RVUE	
• • We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
$< 2 \times 10^{-18}$	² SCHAEFER	95	THEO	Vacuum polarization
$<1 \times 10^{-18}$	³ MUELLER	92	THEO	Vacuum polarization
1				

¹ HUGHES 92 uses recent measurements of Rydberg-energy and cyclotron-frequency ra- 2 SCHAEFER 95 removes model dependency of MUELLER 92.

 3 MUELLER 92 argues that an inequality of the charge magnitudes would, through higherorder vacuum polarization, contribute to the net charge of atoms.

e MAGNETIC MOMENT ANOMALY

$\mu_{e}/\mu_{B} - 1 = (g-2)/2$									
VALUE (units 10^{-6})	DOCUMENT ID		TECN	CHG	COMMENT				
$1159.65218091 \pm 0.0000026$	MOHR	16	RVUE		2014 CODATA value				
$\bullet \bullet \bullet$ We do not use the follow	wing data for ave	rages,	fits, limi	ts, etc	. • • •				
$1159.65218076 \pm 0.00000027$	MOHR	12	RVUE		2010 CODATA value				
$1159.65218073 \pm 0.0000028$	HANNEKE	08	MRS		Single electron				
$1159.65218111 \pm 0.00000074$	¹ MOHR	08	RVUE		2006 CODATA value				
$1159.65218085 \pm 0.00000076$	² ODOM	06	MRS	_	Single electron				
$1159.6521859 \ \pm 0.0000038$	MOHR	05	RVUE		2002 CODATA value				
$1159.6521869 \ \pm 0.0000041$	MOHR	99	RVUE		1998 CODATA value				
1159.652193 ± 0.000010	COHEN	87	RVUE		1986 CODATA value				
$1159.6521884 \ \pm 0.0000043$	VANDYCK	87	MRS	_	Single electron				
$1159.6521879 \ \pm 0.0000043$	VANDYCK	87	MRS	+	Single positron				
1 MOHR 08 average is domi	nated by ODOM	06.							

²Superseded by HANNEKE 08 per private communication with Gerald Gabrielse.

$$(g_{e^+} - g_{e^-}) / g_{average}$$

A test of CPT invariance.

<i>VALUE</i> (units 10 ⁻¹²)	CL%	DOCUMENT ID		TECN	COMMENT
$-$ 0.5 \pm 2.1		¹ VANDYCK	87	MRS	Penning trap
\bullet \bullet \bullet We do not use the	following	data for averages	, fits,	limits, e	etc. • • •
< 12	95	² VASSERMAN	87	CNTR	Assumes $m_{e^+} = m_{e^-}$
22 ± 64		SCHWINBERG	81	MRS	Penning trap
1 VANDYCK 87 measu	red $(g_/)$	$g_{\pm}){-1}$ and we co	nvert	ed it.	
² VASSERMAN 87 me	asured (g	$(g_{+} - g_{-})/(g_{-2})$. We	multipli	ed by $(g-2)/g = 1.2 imes$
10 ⁻³ .					

e ELECTRIC DIPOLE MOMENT (d)

A nonzero value is forbidden by both T invariance and P invariance.

<i>VALUE</i> (10 ⁻²⁸ <i>e</i> cm)	CL%	DOCUMENT ID		TECN	COMMENT		
< 0.11	90	¹ ANDREEV	18	CNTR	ThO molecules		
• • • We do not use the follow	ving data	for averages, fits,	limits	etc. •	• •		
< 1.3	90	² CAIRNCROSS	17	ESR	$^{180} H f^{19} F$		
$-$ 5570 \pm 7980 \pm 120		КІМ	15	CNTR	molecules Gd ₃ Ga ₅ O ₁₂ molecules		
< 0.87	90	³ BARON	14	CNTR	ThO molecules		
< 6050	90	⁴ ECKEL	12	CNTR	Eu _{0.5} Ba _{0.5} TiO ₃		
< 10.5	90	⁵ HUDSON	11	NMR	Molecules YbF molecules		
6.9 ± 7.4		REGAN	02	MRS	205 II beams		
$18 \pm 12 \pm 10$		⁶ COMMINS	94	MRS	²⁰⁵ TI beams		
-27 ± 83		• ABDULLAH	90	MRS	²⁰⁵ II beams		
-1400 ± 2400		СНО	89	NMR	IIF molecules		
$-$ 150 \pm 550 \pm 150		MURTHY	89		Cs, no <i>B</i> field		
$-$ 5000 ± 11000		LAMOREAUX	87	NMR	¹⁹⁹ Hg		
19000 ± 34000	90	SANDARS	75	MRS	Thallium		
7000 ± 22000	90	PLAYER	70	MRS	Xenon		
< 30000	90	WEISSKOPF	68	MRS	Cesium		
¹ ANDREEV 18 gives a measurement corresponding to this limit as $(4.3 \pm 3.1 \pm 2.6) \times 10^{-30}$ ecm. ² CAIRNCROSS 17 gives a measurement corresponding to this limit as $(0.09 \pm 0.77 \pm 0.17) \times 10^{-28}$							
³ BARON 14 gives a measurement corresponding to this limit as $(-0.21 \pm 0.37 \pm 0.25) \times$							
10^{-20} ecm. ⁴ ECKEL 12 gives a measurement corresponding to this limit as $(-1.07 \pm 3.06 \pm 1.74) \times 10^{-25}$							
5 HUDSON 11 gives a measure 10^{-28} com	urement co	orresponding to th	is lim	it as (—	2.4 \pm 5.7 \pm 1.5) $ imes$		

 10^{-20} ecm. ⁶ABDULLAH 90, COMMINS 94, and REGAN 02 use the relativistic enhancement of a valence electron's electric dipole moment in a high-Z atom.

e⁻ MEAN LIFE / BRANCHING FRACTION

A test of charge conservation. See the "Note on Testing Charge Conservation and the Pauli Exclusion Principle" following this section in our 1992 edition (Physical Review **D45** S1 (1992), p. VI.10).

Most of these experiments are one of three kinds: Attempts to observe (a) the 255.5 keV gamma ray produced in $e^- \rightarrow \nu_e \gamma$, (b) the (K) shell x ray produced when an electron decays without additional energy deposit, e.g., $e^- \rightarrow \nu_e \overline{\nu}_e \nu_e$ ("disappearance" experiments), and (c) nuclear de-excitation gamma rays after the electron disappears from an atomic shell and the nucleus is left in an excited state. The last can include both weak boson and photon mediating processes. We use the best $e^- \rightarrow \nu_e \gamma$ limit for the Summary Tables.

Note that we use the mean life rather than the half life, which is often reported.

e	\rightarrow	$\nu_{e}\gamma$	and	astrop	hysical	limits
---	---------------	-----------------	-----	--------	---------	--------

VALUE	(yr)	CL%	DOCUMENT ID		TECN	COMMENT
>6.6	× 10 ²⁸	90	AGOSTINI	15B	BORX	$e^- \rightarrow \nu \gamma$
• • •	We do not	use the follow	ing data for avera	ges, f	its, limit	s, etc. ● ● ●
>1.2	imes 10 ²⁴	90	ABGRALL	17	HPGE	electron decay to invisible
>1.22	imes 10 ²⁶	68	¹ KLAPDOR-K	. 07	CNTR	$e^- \rightarrow \nu \gamma$
>4.6	imes 10 ²⁶	90	BACK	02	BORX	$e^- \rightarrow \nu \gamma$
>3.4	$\times 10^{26}$	68	BELLI	00 B	DAMA	$e^- ightarrow ~ u \gamma$, liquid Xe
>3.7	$\times 10^{25}$	68	AHARONOV	95 B	CNTR	$e^- \rightarrow \nu \gamma$
>2.35	$\times 10^{25}$	68	BALYSH	93	CNTR	$e^- ightarrow ~ u \gamma$, 76 Ge detector
>1.5	$\times 10^{25}$	68	AVIGNONE	86	CNTR	$e^- \rightarrow \nu \gamma$
>1	imes 10 ³⁹		² ORITO	85	ASTR	Astrophysical argument
>3	imes 10 ²³	68	BELLOTTI	83 B	CNTR	$e^- \rightarrow \nu \gamma$

¹ The authors of A. Derbin et al, arXiv:0704.2047v1 argue that this limit is overestimated by at least a factor of 5.

 2 ORITO 85 assumes that electromagnetic forces extend out to large enough distances and that the age of our galaxy is 10^{10} years.

Disappearance and nuclear-de-excitation experiments

VALUE (yr)	CL%	DOCUMENT ID	-	TECN	COMMENT
>6.4 × 10 ²⁴	68	¹ BELLI	99 B	DAMA	De-excitation of ¹²⁹ Xe
\bullet \bullet \bullet We do not u	use the fol	lowing data for av	erage	s, fits, lir	nits, etc. • • •
>4.2 $ imes$ 10 ²⁴	68	BELLI	99	DAMA	lodine L-shell disappearance
$> 2.4 \times 10^{23}$	90	² BELLI	99 D	DAMA	De-excitation of ¹²⁷ I (in NaI)
$> 4.3 \times 10^{23}$	68	AHARONOV	95 B	CNTR	Ge K-shell disappearance
$>2.7 \times 10^{23}$	68	REUSSER	91	CNTR	Ge K-shell disappearance
$>2 \times 10^{22}$	68	BELLOTTI	83 B	CNTR	Ge K-shell disappearance
_					

¹BELLI 99B limit on charge nonconserving e^- capture involving excitation of the 236.1 keV nuclear state of ¹²⁹Xe; the 90% CL limit is 3.7×10^{24} yr. Less stringent limits for other states are also given.

² BELLI 99D limit on charge nonconserving e^- capture involving excitation of the 57.6 keV nuclear state of ¹²⁷I. Less stringent limits for the other states and for the state of ²³Na are also given.

LIMITS ON LEPTON-FLAVOR VIOLATION IN PRODUCTION

Forbidden by lepton family number conservation.

This section was added for the 2008 edition of this *Review* and is not complete. For a list of further measurements see references in the papers listed below.

$\sigma(e^+e^- \rightarrow e^{\pm}\tau^{\mp}) / \sigma(e^+e^- \rightarrow \mu^+\mu^-)$									
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT				
<8.9 × 10 ⁻⁶	95	AUBERT	07 P	BABR	e^+e^- at $E_{ m cm}=10.58~{ m GeV}$				
\bullet \bullet \bullet We do not use	the follow	ving data for ave	rages,	fits, lim	its, etc. ● ● ●				
$< 1.8 imes 10^{-3}$	95	GOMEZ-CAD	91	MRK2	e^+e^- at $E_{cm}=$ 29 GeV				
$\sigma(e^+e^- \rightarrow \mu^{\pm}\tau)$	⁺ τ) / σ($e^+e^- ightarrow \mu^+\mu^+$	u ⁻)						
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT				
<4.0 × 10 ⁻⁶	95	AUBERT	07 P	BABR	e^+e^- at $E_{\rm cm}=10.58~{ m GeV}$				
\bullet \bullet \bullet We do not use	the follow	ving data for ave	rages,	fits, lim	its, etc. ● ● ●				
${<}6.1\times10^{-3}$	95	GOMEZ-CAD	91	MRK2	e^+e^- at $E_{ m cm}=$ 29 GeV				

e REFERENCES

ANDREEV	18	NAT 562 355	V. Andreev et al.	(ACME Collab.)
ABGRALL	17	PRL 118 161801	N. Abgrall <i>et al.</i>	(MAJORANA Collab.)
CAIRNCROSS	17	PRL 119 153001	W.B. Cairncross et al.	NIST,COLO)
MOHR	16	RMP 88 035009	P.J. Mohr, D.B. Newell, B.N.	Taylor (NIST)
AGOSTINI	15B	PRL 115 231802	M. Agostini <i>et al.</i>	(Borexino Collab.)
KIM	15	PR D91 102004	Y.J. Kim <i>et al.</i>	(IND, YALE, LANL)
BARON	14	SCIENCE 343 269	J. Baron <i>et al.</i>	(ACME Collab.)
DOLGOV	14	PL B732 244	A.D. Dolgov, V.A. Novikov	, , , , , , , , , , , , , , , , , , ,
ECKEL	12	PRL 109 193003	S. Eckel, A.O. Sushkov, S.K.	Lamoreaux (YALE)
MOHR	12	RMP 84 1527	P.J. Mohr, B.N. Taylor, D.B.	Newell (NIST)
PDG	12	PR D86 010001	J. Beringer et al.	(PDG Collab.)
HUDSON	11	NAT 473 493	J.J. Hadson <i>et al.</i>) (LOIC)
HANNEKE	08	PRL 100 120801	D. Hanneke, S. Fogwell, G. G.	abrielse (HARV)
MOHR	08	RMP 80 633	P.J. Mohr, B.N. Taylor, D.B.	Newell (NIST)
AUBERT	07P	PR D75 031103	B. Aubert <i>et al.</i>	(BABAR Collab.)
KLAPDOR-K	07	PL B644 109	H.V. Klapdor-Kleingrothaus, I.V	. Krivosheina, I.V. Titkova
ODOM	06	PRL 97 030801	B. Odom <i>et al.</i>	(HARV)
MOHR	05	RMP 77 1	P.J. Mohr, B.N. Taylor	(NIST)
BACK	02	PL B525 29	H.O. Back <i>et al.</i>	(Borexino/SASSO Collab.)
BEIER	02	PRL 88 011603	T. Beier <i>et al.</i>	· · · · · · · · · · · · · · · · · · ·
REGAN	02	PRL 88 071805	B.C. Regan <i>et al.</i>	
BELLI	00B	PR D61 117301	P. Belli <i>et al.</i>	(DAMA Collab.)
BELLI	99	PL B460 236	P. Belli <i>et al.</i>	(DAMA Collab.)
BELLI	99B	PL B465 315	P. Belli <i>et al.</i>	(DAMA Collab.)
BELLI	99D	PR C60 065501	P. Belli <i>et al.</i>	(DAMA Collab.)
MOHR	99	JPCRD 28 1713	P.J. Mohr, B.N. Taylor) (NIST)
Also		RMP 72 351	P.J. Mohr, B.N. Taylor	(NIST)
AHARONOV	95B	PR D52 3785	Y. Aharonov <i>et al.</i>	(SCUC, PNL, ZÀRA+)
Also		PL B353 168	Y. Aharonov <i>et al.</i>	(SCUC, PNL, ZARA+)
FARNHAM	95	PRL 75 3598	D.L. Farnham, R.S. van Dyck,	P.B. Schwinberg (WASH)
SCHAEFER	95	PR A51 838	A. Schaefer, J. Reinhardt	(FRAN)
COMMINS	94	PR A50 2960	E.D. Commins et al.	,
BALYSH	93	PL B298 278	A. Balysh <i>et al.</i>	(KIAE, MPIH, SASSO)
FEE	93	PR A48 192	M.S. Fee et al.	· · · · · · · · · · · · · · · · · · ·
HUGHES	92	PRL 69 578	R.J. Hughes, B.I. Deutch	(LANL, AARH)
MUELLER	92	PRL 69 3432	B. Muller, M.H. Thoma) (DUKE)
PDG	92	PR D45 S1	K. Hikasa <i>et al.</i>	(KEK, LBL, BÒST+)
GOMEZ-CAD	91	PRL 66 1007	J.J. Gomez-Cadenas <i>et al.</i>	(SLAC MARK-2 Collab.)

HTTP://PDG.LBL.GOV

Page 5

REUSSER	91	PL B255 143	D. Reusser <i>et al.</i>	(NEUC, CIT, PSI)
ABDULLAH	90	PRL 65 2347	K. Abdullah <i>et al.</i>	(LBL, UCB)
CHO	89	PRL 63 2559	D. Cho, K. Sangster, E.A. Hinds	(YALE)
MURTHY	89	PRL 63 965	S.A. Murthy et al.	(ÀMHT)
COHEN	87	RMP 59 1121	E.R. Cohen, B.N. Taylor	(RISČ, NBS)
LAMOREAUX	87	PRL 59 2275	S.K. Lamoreaux et al.	(WASH)
VANDYCK	87	PRL 59 26	R.S. van Dyck, P.B. Schwinberg, H.G.	. Dehmelt (WASH)
VASSERMAN	87	PL B198 302	I.B. Vasserman et al.	(NOVO)
Also		PL B187 172	I.B. Vasserman <i>et al.</i>	(NOVO)
AVIGNONE	86	PR D34 97	F.T. Avignone <i>et al.</i>	(PNL, SCUC)
ORITO	85	PRL 54 2457	S. Orito, M. Yoshimura	(ŤOKY, KEK)
CHU	84	PRL 52 1689	S. Chu, A.P. Mills, J.L. Hall (E	BELL, NBS, COLO)
BELLOTTI	83B	PL 124B 435	E. Bellotti <i>et al.</i>	(MILA)
SCHWINBERG	81	PRL 47 1679	P.B. Schwinberg, R.S. van Dyck, H.G.	. Dehmelt (WASH)
SANDARS	75	PR A11 473	P.G.H. Sandars, D.M. Sternheimer	(OXÈ, BNL)
COHEN	73	JPCRD 2 664	E.R. Cohen, B.N. Taylor	(RISC, NBS)
PLAYER	70	JP B3 1620	M.A. Player, P.G.H. Sandars	` (OXF)
WEISSKOPF	68	PRL 21 1645	M.C. Weisskopf <i>et al.</i>	(BRAN)

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$