Light Quarks (*u*, *d*, *s*)

OMITTED FROM SUMMARY TABLE

u-QUARK MASS

The *u*-, *d*-, and *s*-quark masses are estimates of so-called "current-quark masses," in a mass- independent subtraction scheme such as $\overline{\text{MS}}$. The ratios m_u/m_d and m_s/m_d are extracted from pion and kaon masses using chiral symmetry. The estimates of *d* and *u* masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the *u* quark could be essentially massless. The *s*-quark mass is estimated from SU(3) splittings in hadron masses.

We have normalized the $\overline{\text{MS}}$ masses at a renormalization scale of $\mu = 2$ GeV. Results quoted in the literature at $\mu = 1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.

MS M	ASS (MeV)	DOCUMENT ID		TECN
2.16	+0.49 -0.26 OUR EVALUATION	See the ideogra	m bel	ow.
2.6	± 0.4	¹ DOMINGUEZ	19	THEO
2.130	0±0.041	² BAZAVOV	18	LATT
2.27	± 0.06 ± 0.06	³ FODOR	16	LATT
2.36	± 0.24	⁴ CARRASCO	14	LATT
2.57	± 0.26 ± 0.07	⁵ AOKI	12	LATT
2.24	± 0.10 ± 0.34	⁶ BLUM	10	LATT
2.01	± 0.14	⁷ MCNEILE	10	LATT
• • •	 We do not use the following 	g data for averages	, fits,	limits, etc. • •
2.15	± 0.03 ± 0.10	⁸ DURR	11	LATT
1.9	± 0.2	⁹ BAZAVOV	10	LATT
2.01	± 0.14	⁷ DAVIES	10	LATT
2.9	± 0.2	¹⁰ DOMINGUEZ	09	THEO
2.9	± 0.8	¹¹ DEANDREA	08	THEO
3.02	± 0.33	¹² BLUM	07	LATT
2.7	± 0.4	¹³ JAMIN	06	THEO
1.9	± 0.2	¹⁴ MASON	06	LATT
2.8	± 0.2	¹⁵ NARISON	06	THEO
1.7	± 0.3	¹⁶ AUBIN	04A	LATT
-				

¹ DOMINGUEZ 19 determine the quark mass from a QCD finite energy sum rule for the divergence of the axial current.

 2 BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.

³FODOR 16 is a lattice simulation with $N_f = 2 + 1$ dynamical flavors and includes partially quenched QED effects.

⁴ CARRASCO 14 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with $m_u = m_d \neq m_s \neq m_c$. The *u* and *d* quark masses are obtained separately by using the *K* meson mass splittings and lattice results for the electromagnetic contributions.

⁵ AOKI 12 is a lattice computation using 1 + 1 + 1 dynamical quark flavors.

- ⁶ BLUM 10 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use 2+1 dynamical quark flavors.
- ⁷ DAVIES 10 and MCNEILE 10 determine $\overline{m}_{c}(\mu)/\overline{m}_{s}(\mu) = 11.85 \pm 0.16$ using a lattice computation with $N_{f} = 2 + 1$ dynamical fermions of the pseudoscalar meson masses. Mass m_{u} is obtained from this using the value of m_{c} from ALLISON 08 or MCNEILE 10 and the BAZAVOV 10 values for the light quark mass ratios, m_{s}/\overline{m} and m_{u}/m_{d} .
- ⁸ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $N_f = 2 + 1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed. The individual m_u , m_d values are obtained using the lattice determination of the average mass m_{ud} and of the ratio m_s/m_{ud} and the value of $Q = (m_s^2 m_{ud}^2) / (m_d^2 m_u^2)$ as determined from $\eta \rightarrow 3\pi$ decays.
- 9 BAZAVOV 10 is a lattice computation using 2+1 dynamical quark flavors.
- ¹⁰ DOMINGUEZ 09 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order α_s^4 .
- ¹¹ DEANDREA 08 determine $m_u m_d$ from $\eta \rightarrow 3\pi^0$, and combine with the PDG 06 lattice average value of $m_u + m_d = 7.6 \pm 1.6$ to determine m_u and m_d .
- ¹² BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
- ¹³ JAMIN 06 determine m_u (2 GeV) by combining the value of m_s obtained from the spectral function for the scalar $K\pi$ form factor with other determinations of the quark mass ratios.
- ¹⁴ MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order. The quark masses m_u and m_d were determined from their $(m_u+m_d)/2$ measurement and AUBIN 04A m_u/m_d value.
- ¹⁵ NARISON 06 uses sum rules for $e^+e^- \rightarrow$ hadrons to order α_s^3 to determine m_s combined with other determinations of the quark mass ratios.
- ¹⁶ AUBIN 04A employ a partially quenched lattice calculation of the pseudoscalar meson masses.

d-QUARK MASS

See the comment for the u quark above.

We have normalized the $\overline{\rm MS}$ masses at a renormalization scale of $\mu = 2$ GeV. Results quoted in the literature at $\mu = 1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.

MS M	ASS (MeV)		DOCUMENT ID		TECN
4.67	+0.48 -0.17 O	UR EVALUATION	See the ideogram	m bel	ow.
5.3	± 0.4		¹ DOMINGUEZ	19	THEO
4.675	5 ± 0.056		² BAZAVOV	18	LATT
4.67	± 0.06 ± 0	0.06	³ FODOR	16	LATT
5.03	± 0.26		⁴ CARRASCO	14	LATT
3.68	± 0.29 ± 0.29	0.10	⁵ AOKI	12	LATT
4.65	± 0.15 ± 0).32	⁶ BLUM	10	LATT
4.77	± 0.15		⁷ MCNEILE	10	LATT
• • •	• We do no	t use the following	data for averages	, fits,	limits, etc. $\bullet \bullet \bullet$
4.79	$\pm 0.07 \pm 0$).12	⁸ DURR	11	LATT
4.6	± 0.3		⁹ BAZAVOV	10	LATT
4.79	± 0.16		⁷ DAVIES	10	LATT
5.3	± 0.4		¹⁰ DOMINGUEZ	09	THEO
4.7	± 0.8		¹¹ DEANDREA	08	THEO

5.49	± 0.39	¹² BLUM	07	LATT
4.8	± 0.5	¹³ JAMIN	06	THEO
4.4	± 0.3	¹⁴ MASON	06	LATT
5.1	± 0.4	¹⁵ NARISON	06	THEO
3.9	± 0.5	¹⁶ AUBIN	04A	LATT

- ¹ DOMINGUEZ 19 determine the quark mass from a QCD finite energy sum rule for the divergence of the axial current.
- ² BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.
- ³FODOR 16 is a lattice simulation with $N_f = 2 + 1$ dynamical flavors and includes partially quenched QED effects.
- ⁴ CARRASCO 14 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with $m_u = m_d \neq m_s \neq m_c$. The *u* and *d* quark masses are obtained separately by using the *K* meson mass splittings and lattice results for the electromagnetic contributions.
- 5 AOKI 12 is a lattice computation using 1+1+1 dynamical quark flavors.
- ⁶ BLUM 10 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use 2+1 dynamical quark flavors.
- ⁷ DAVIES 10 and MCNEILE 10 determine $\overline{m}_{c}(\mu)/\overline{m}_{s}(\mu) = 11.85 \pm 0.16$ using a lattice computation with $N_{f} = 2 + 1$ dynamical fermions of the pseudoscalar meson masses. Mass m_{d} is obtained from this using the value of m_{c} from ALLISON 08 or MCNEILE 10 and the BAZAVOV 10 values for the light quark mass ratios, m_{s}/\overline{m} and m_{u}/m_{d} .
- ⁸ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $N_f = 2 + 1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed. The individual m_u , m_d values are obtained using the lattice determination of the average mass m_{ud} and of the ratio m_s/m_{ud} and the value of $Q = (m_s^2 m_{ud}^2) / (m_d^2 m_u^2)$ as determined from $\eta \rightarrow 3\pi$ decays.
- $9 \, {\rm BAZAVOV}$ 10 is a lattice computation using 2+1 dynamical quark flavors.
- ¹⁰ DOMINGUEZ 09 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order α_{a}^{4} .
- ¹¹DEANDREA 08 determine $m_u m_d$ from $\eta \rightarrow 3\pi^0$, and combine with the PDG 06 lattice average value of $m_u + m_d = 7.6 \pm 1.6$ to determine m_u and m_d .
- ¹² BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
- ¹³ JAMIN 06 determine m_d (2 GeV) by combining the value of m_s obtained from the spectral function for the scalar $K\pi$ form factor with other determinations of the quark mass ratios.
- ¹⁴ MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order. The quark masses m_u and m_d were determined from their $(m_u+m_d)/2$ measurement and AUBIN 04A m_u/m_d value.
- ¹⁵ NARISON 06 uses sum rules for $e^+e^- \rightarrow$ hadrons to order α_s^3 to determine m_s combined with other determinations of the quark mass ratios.
- ¹⁶ AUBIN 04A perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with continuum estimate of electromagnetic effects in the kaon masses, and one-loop perturbative renormalization constant.

$$\overline{m} = (m_u + m_d)/2$$

See the comments for the u quark above.

We have normalized the $\overline{\text{MS}}$ masses at a renormalization scale of $\mu = 2$ GeV. Results quoted in the literature at $\mu = 1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.

MS MASS (MeV)	DOCUMENT ID		TECN
3.45 $^{+0.55}_{-0.15}$ OUR EVALUATION	ON See the ideog	ram l	below.
3.9 ±0.3	¹ DOMINGUEZ	19	THEO
$4.7 \begin{array}{c} +0.8 \\ -0.7 \end{array}$	² YUAN	17	THEO
3.70 ± 0.17	³ CARRASCO	14	LATT
3.45 ± 0.12	⁴ ARTHUR	13	LATT
$3.469 \!\pm\! 0.047 \!\pm\! 0.048$	⁵ DURR	11	LATT
3.6 ±0.2	⁶ BLOSSIER	10	LATT
3.39 ± 0.06	⁷ MCNEILE	10	LATT
$\bullet \bullet \bullet$ We do not use the following	g data for averages	, fits,	limits, etc. • • •
3.59 ± 0.21	⁸ AOKI	11A	LATT
3.40 ±0.07	⁷ DAVIES	10	LATT
4.1 ± 0.2	⁹ DOMINGUEZ	09	THEO
3.72 ± 0.41	¹⁰ ALLTON	80	LATT
$3.85 \pm 0.12 \pm 0.4$	¹¹ BLOSSIER	80	LATT
$\geq 4.85 \pm 0.20$	¹² DOMINGUEZ.	08 B	THEO
HTTP://PDG.LBL.GOV	Page 5		Created: 6/1/2020 08:33

			10		
3.55	+0.05 -0.28		¹³ ISHIKAWA	08	LATT
4.026	± 0.048	1	¹⁴ NAKAMURA	08	LATT
4.25	± 0.35		¹⁵ BLUM	07	LATT
4.08	± 0.25	± 0.42	¹⁶ GOCKELER	06	LATT
4.7	± 0.2	± 0.3	¹⁷ GOCKELER	06A	LATT
3.2	± 0.3		¹⁸ MASON	06	LATT
3.95	± 0.3		¹⁹ NARISON	06	THEO
2.8	± 0.3		²⁰ AUBIN	04	LATT
4.29	± 0.14	± 0.65	²¹ AOKI	03	LATT
3.223	± 0.3		²² AOKI	03 B	LATT
4.4	± 0.1	± 0.4	²³ BECIREVIC	03	LATT
4.1	± 0.3	± 1.0	²⁴ CHIU	03	LATT

¹ DOMINGUEZ 19 determine the quark mass from a QCD finite energy sum rule for the divergence of the axial current.

² YUAN 17 determine \overline{m} using QCD sum rules in the isospin I=0 scalar channel. At the end of the "Numerical Results" section of YUAN 17 the authors discuss the significance of their larger value of the light quark mass compared to previous determinations.

³CARRASCO 14 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with $m_u = m_d \neq m_s \neq m_c$. The *u* and *d* quark masses are obtained separately by using the *K* meson mass splittings and lattice results for the electromagnetic contributions.

⁴ ARTHUR 13 is a lattice computation using 2+1 dynamical domain wall fermions. Masses at $\mu = 3$ GeV have been converted to $\mu = 2$ GeV using conversion factors given in their _paper.

 5 DURR 11 determine quark mass from a lattice computation of the meson spectrum using $N_{f} = 2 + 1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed.

⁶ BLOSSIER 10 determines quark masses from a computation of the hadron spectrum using $N_f=2$ dynamical twisted-mass Wilson fermions.

⁷ DAVIES 10 and MCNEILE 10 determine $\overline{m}_{c}(\mu)/\overline{m}_{s}(\mu) = 11.85 \pm 0.16$ using a lattice computation with $N_{f} = 2 + 1$ dynamical fermions of the pseudoscalar meson masses. Mass \overline{m} is obtained from this using the value of m_{c} from ALLISON 08 or MCNEILE 10 and the BAZAVOV 10 values for the light quark mass ratio, m_{s}/\overline{m} .

⁸ AOKI 11A determine quark masses from a lattice computation of the hadron spectrum using $N_f = 2 + 1$ dynamical flavors of domain wall fermions.

⁹DOMINGUEZ 09 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order α_a^4 .

¹⁰ ALLTON 08 use a lattice computation of the π , K, and Ω masses with 2+1 dynamical flavors of domain wall quarks, and non-perturbative renormalization.

¹¹ BLOSSIER 08 use a lattice computation of pseudoscalar meson masses and decay constants with 2 dynamical flavors and non-perturbative renormalization.

¹² DOMINGUEZ-CLARIMON 08B obtain an inequality from sum rules for the scalar twopoint correlator.

¹³ ISHIKAWA 08 use a lattice computation of the light meson spectrum with 2+1 dynamical flavors of O(a) improved Wilson quarks, and one-loop perturbative renormalization.

 $^{14}\,\rm NAKAMURA$ 08 do a lattice computation using quenched domain wall fermions and non-perturbative renormalization.

¹⁵ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.

¹⁶ GOCKELER 06 use an unquenched lattice computation of the axial Ward Identity with $N_f = 2$ dynamical light quark flavors, and non-perturbative renormalization, to obtain $\overline{m}(2 \text{ GeV}) = 4.08 \pm 0.25 \pm 0.19 \pm 0.23 \text{ MeV}$, where the first error is statistical, the second

and third are systematic due to the fit range and force scale uncertainties, respectively. We have combined the systematic errors linearly.

- ¹⁷ GOCKELER 06A use an unquenched lattice computation of the pseudoscalar meson masses with $N_f = 2$ dynamical light quark flavors, and non-perturbative renormalization.
- ¹⁸ MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order.
- ¹⁹ NARISON 06 uses sum rules for $e^+e^- \rightarrow$ hadrons to order α_s^3 to determine m_s combined with other determinations of the quark mass ratios.
- ²⁰AUBIN 04 perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with one-loop perturbative renormalization constant.
- ²¹ AOKI 03 uses quenched lattice simulation of the meson and baryon masses with degenerate light quarks. The extrapolations are done using quenched chiral perturbation theory.
- ²² The errors given in AOKI 03B were $\stackrel{+0.046}{_{-0.069}}$. We changed them to ± 0.3 for calculating the overall best values. AOKI 03B uses lattice simulation of the meson and baryon masses with two dynamical light quarks. Simulations are performed using the $\mathcal{O}(a)$ improved wilson action.
- ²³ BECIREVIC 03 perform quenched lattice computation using the vector and axial Ward identities. Uses O(a) improved Wilson action and nonperturbative renormalization.
- ²⁴ CHIU 03 determines quark masses from the pion and kaon masses using a lattice simulation with a chiral fermion action in quenched approximation.

m_u/m_d MASS RATIO

¹ FODOR 16 is a lattice simulation with $N_f = 2 + 1$ dynamical flavors and includes partially quenched QED effects.

- ²BASAK 15 is a lattice computation using 2+1 dynamical quark flavors.
- ³CARRASCO 14 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with $m_u = m_d \neq m_s \neq m_c$. The *u* and *d* quark masses are obtained separately by using the *K* meson mass splittings and lattice results for the electromagnetic contributions.

 $^4_-$ AOKI 12 is a lattice computation using 1+1+1 dynamical quark flavors.

 5 BAZAVOV 10 is a lattice computation using 2+1 dynamical quark flavors.

 6 BLUM 10 is a lattice computation using 2+1 dynamical quark flavors.

HTTP://PDG.LBL.GOV

Created: 6/1/2020 08:33

- ⁷ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
- ⁸ AUBIN 04A perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with continuum estimate of electromagnetic effects in the kaon masses.
- ⁹NELSON 03 computes coefficients in the order p^4 chiral Lagrangian using a lattice calculation with three dynamical flavors. The ratio m_u/m_d is obtained by combining this with the chiral perturbation theory computation of the meson masses to order p^4 .
- ¹⁰LEUTWYLER 96 uses a combined fit to $\eta \rightarrow 3\pi$ and $\psi' \rightarrow J/\psi(\pi,\eta)$ decay rates, and the electromagnetic mass differences of the π and K.

s-QUARK MASS

See the comment for the u quark above.

We have normalized the $\overline{\rm MS}$ masses at a renormalization scale of $\mu = 2$ GeV. Results quoted in the literature at $\mu = 1$ GeV have been rescaled by dividing by 1.35.

MS MASS (MeV)	DOCUMENT ID	TECN
93 $^{+11}_{-5}$ OUR EVALUATION	See the ideogram	below.
92.47± 0.69	BAZAVOV 18	LATT
93.85± 0.75	² LYTLE 18	LATT
87.6 ± 6.0	³ ANANTHANA16	THEO
99.6 ± 4.3	^L CARRASCO 14	LATT
94.4 ± 2.3	ARTHUR 13	LATT
94 ± 9 6	BODENSTEIN 13	THEO
$102 \pm 3 \pm 1$	FRITZSCH 12	LATT
$95.5 \pm 1.1 \pm 1.5$	DURR 11	LATT
\bullet \bullet \bullet We do not use the following c	lata for averages, fit	s, limits, etc. • •
93.6 ± 0.8	CHAKRABOR15	LATT
96.2 ± 2.7 10	⁾ AOKI 11	A LATT
95 ± 6 11	BLOSSIER 10	LATT
97.6 \pm 2.9 \pm 5.5 12	BLUM 10	LATT
92.4 ± 1.5 13	DAVIES 10	LATT
92.2 ± 1.3 13	MCNEILE 10	LATT
107.3 ±11.7	ALLTON 08	LATT
$105 \pm 3 \pm 9 \qquad 15$	BLOSSIER 08	LATT
102 ± 8 16	DOMINGUEZ 08	A THEO
90.1 $+17.2$ 17 - 6.1	ISHIKAWA 08	LATT
105.6 ± 1.2 18	NAKAMURA 08	LATT
119.5 ± 9.3	BLUM 07	LATT
$105 \pm 6 \pm 7 \qquad 20$) CHETYRKIN 06	THEO
$111 \pm 6 \pm 10$ 21	GOCKELER 06	LATT
$119 \pm 5 \pm 8 \qquad 22$	GOCKELER 06	a LATT
92 ± 9 23	JAMIN 06	THEO
87 ± 6 24	MASON 06	LATT
104 ±15 25	NARISON 06	THEO
\geq 71 ± 4, \leq 151 ± 14 26	NARISON 06	THEO
96 + 5 + 16 = 27	BAIKOV 05	THEO

81	± 22		²⁸ GAMIZ	05	THEO
125	± 28		²⁹ GORBUNOV	05	THEO
93	± 32		³⁰ NARISON	05	THEO
76	± 8		³¹ AUBIN	04	LATT
116	\pm 6	\pm 0.65	³² AOKI	03	LATT
84.5	$^{+12}_{-1.7}$		³³ AOKI	03 B	LATT
106	± 2	± 8	³⁴ BECIREVIC	03	LATT
92	\pm 9	± 16	³⁵ CHIU	03	LATT
117	± 17		³⁶ GAMIZ	03	THEO
103	± 17		³⁷ GAMIZ	03	THEO

¹ BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.

- ² LYTLE 18 combined with CHAKRABORTY 2015 determine $\overline{m}_{s}(3 \text{ GeV}) = 84.78 \pm 0.65$ MeV from a lattice simulation with $n_{f} = 2+1+1$ flavors. They also determine the quoted value $\overline{m}_{s}(2 \text{ GeV})$ for $n_{f} = 4$ dynamical flavors.
- ³ANANTHANARAYAN 16 determine $\overline{m}_s(2 \text{ GeV}) = 106.70 \pm 9.36 \text{ MeV}$ and 74.47 \pm 7.77 MeV from fits to ALEPH and OPAL τ decay data, respectively. We have used the weighted average of the two.
- ⁴ CARRASCO 14 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with $m_u = m_d \neq m_s \neq m_c$. The *u* and *d* quark masses are obtained separately by using the *K* meson mass splittings and lattice results for the electromagnetic contributions.
- ⁵ ARTHUR 13 is a lattice computation using 2+1 dynamical domain wall fermions. Masses at $\mu = 3$ GeV have been converted to $\mu = 2$ GeV using conversion factors given in their paper.

⁶ BODENSTEIN 13 determines m_s from QCD finite energy sum rules, and the perturbative computation of the pseudoscalar correlator to five-loop order.

- ⁷ FRITZSCH 12 determine m_s using a lattice computation with $N_f = 2$ dynamical flavors.
- ⁸ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $N_f = 2 + 1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed.

 9 CHAKRABORTY 15 is a lattice QCD computation that determines m_c and m_c/m_s using pseudoscalar mesons masses tuned on gluon field configurations with 2+1+1 dynamical flavors of HISQ quarks with u/d masses down to the physical value.

¹⁰ AOKI 11A determine quark masses from a lattice computation of the hadron spectrum using $N_f = 2 + 1$ dynamical flavors of domain wall fermions.

¹¹ BLOSSIER 10 determines quark masses from a computation of the hadron spectrum using $N_f=2$ dynamical twisted-mass Wilson fermions.

 12 BLUM 10 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use 2+1 dynamical quark flavors.

- ¹³ DAVIES 10 and MCNEILE 10 determine $\overline{m}_{c}(\mu)/\overline{m}_{s}(\mu) = 11.85 \pm 0.16$ using a lattice computation with $N_{f} = 2 + 1$ dynamical fermions of the pseudoscalar meson masses. Mass m_{s} is obtained from this using the value of m_{c} from ALLISON 08 or MCNEILE 10.
- ¹⁴ ALLTON 08 use a lattice computation of the π , K, and Ω masses with 2+1 dynamical flavors of domain wall quarks, and non-perturbative renormalization.
- ¹⁵ BLOSSIER 08 use a lattice computation of pseudoscalar meson masses and decay constants with 2 dynamical flavors and non-perturbative renormalization.
- ¹⁶ DOMINGUEZ 08A make determination from QCD finite energy sum rules for the pseudoscalar two-point function computed to order α_{α}^{4} .
- ¹⁷ ISHIKAWA 08 use a lattice computation of the light meson spectrum with 2+1 dynamical flavors of O(a) improved Wilson quarks, and one-loop perturbative renormalization.

- ¹⁸NAKAMURA 08 do a lattice computation using quenched domain wall fermions and non-perturbative renormalization.
- ¹⁹ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
- 20 CHETYRKIN 06 use QCD sum rules in the pseudoscalar channel to order $lpha_{
 m s}^4$
- ²¹ GOCKELER 06 use an unquenched lattice computation of the axial Ward Identity with $N_f = 2$ dynamical light quark flavors, and non-perturbative renormalization, to obtain $\overline{m}_s(2 \text{ GeV}) = 111 \pm 6 \pm 4 \pm 6$ MeV, where the first error is statistical, the second and third are systematic due to the fit range and force scale uncertainties, respectively. We have combined the systematic errors linearly.
- ²² GOCKELER 06A use an unquenched lattice computation of the pseudoscalar meson masses with $N_f = 2$ dynamical light quark flavors, and non-perturbative renormalization.
- ²³ JAMIN 06 determine \overline{m}_s (2 GeV) from the spectral function for the scalar $K\pi$ form factor.
- ²⁴ MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order.
- 25 NARISON 06 uses sum rules for $e^+e^-
 ightarrow$ hadrons to order $lpha_s^3$.
- 26 NARISON 06 obtains the quoted range from positivity of the spectral functions.
- ²⁷ BAIKOV 05 determines $\overline{m}_s(M_{\tau}) = 100 + 5 + 17 + 17$ from sum rules using the strange spectral function in τ decay. The computations were done to order α_s^3 , with an estimate of the α_s^4 terms. We have converted the result to $\mu = 2$ GeV.
- ²⁸ GAMIZ 05 determines \overline{m}_s (2 GeV) from sum rules using the strange spectral function in τ decay. The computations were done to order α_s^2 , with an estimate of the α_s^3 terms.
- ²⁹ GORBUNOV 05 use hadronic tau decays to N3LO, including power corrections.
- ³⁰ NARISON 05 determines $\overline{m}_s(2 \text{ GeV})$ from sum rules using the strange spectral function in τ decay. The computations were done to order α_s^3 .
- ³¹AUBIN 04 perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with one-loop perturbative renormalization constant.
- ³² AOKI 03 uses quenched lattice simulation of the meson and baryon masses with degenerate light quarks. The extrapolations are done using quenched chiral perturbation theory. Determines $m_s = 113.8 \pm 2.3 \substack{+5.8 \\ -2.9}$ using K mass as input and $m_s = 142.3 \pm 5.8 \substack{+22 \\ -0}$ using ϕ mass as input. We have performed a weighted average of these values.
- ³³AOKI 03B uses lattice simulation of the meson and baryon masses with two dynamical light quarks. Simulations are performed using the O(a) improved Wilson action.
- ³⁴ BECIREVIC 03 perform quenched lattice computation using the vector and axial Ward identities. Uses O(a) improved Wilson action and nonperturbative renormalization. They also quote $\overline{m}/m_s=24.3 \pm 0.2 \pm 0.6$.
- ³⁵ CHIU 03 determines quark masses from the pion and kaon masses using a lattice simulation with a chiral fermion action in quenched approximation.
- $^{36}\,{\rm GAMIZ}$ 03 determines m_s from SU(3) breaking in the τ hadronic width. The value of V_{us} is chosen to satisfy CKM unitarity.
- ³⁷ GAMIZ 03 determines m_s from SU(3) breaking in the τ hadronic width. The value of $V_{\mu s}$ is taken from the PDG.

OTHER LIGHT QUARK MASS RATIOS

m_s/m_d MASS RATIO

VALUE	DOCUMENT ID		TECN	COMMENT
17-22 OUR EVALUATION				
20.0	¹ GAO	97	THEO	
18.9 ± 0.8	² LEUTWYLER	96	THEO	Compilation
21	³ DONOGHUE	92	THEO	
18	⁴ GERARD	90	THEO	
18 to 23	⁵ LEUTWYLER	90 B	THEO	

 1 GAO 97 uses electromagnetic mass splittings of light mesons.

²LEUTWYLER 96 uses a combined fit to $\eta \rightarrow 3\pi$ and $\psi' \rightarrow J/\psi(\pi,\eta)$ decay rates, and the electromagnetic mass differences of the π and K.

³DONOGHUE 92 result is from a combined analysis of meson masses, $\eta \rightarrow 3\pi$ using second-order chiral perturbation theory including nonanalytic terms, and $(\psi(2S) \rightarrow J/\psi(1S)\pi)/(\psi(2S) \rightarrow J/\psi(1S)\eta)$.

⁴ GERARD 90 uses large N and η - η' mixing.

⁵LEUTWYLER 90B determines quark mass ratios using second-order chiral perturbation theory for the meson and baryon masses, including nonanalytic corrections. Also uses Weinberg sum rules to determine L_7 .

m_s/\overline{m} MASS RATIO

¹BAZAVOV 14A is a lattice computation using 4 dynamical flavors of HISQ fermions.

²CARRASCO 14 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with $m_u = m_d \neq m_s \neq m_c$. The *u* and *d* quark masses are obtained separately by using the *K* meson mass splittings and lattice results for the electromagnetic contributions.

 3 ARTHUR 13 is a lattice computation using 2+1 dynamical domain wall fermions.

⁴ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $N_f = 2 + 1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed.

- ⁵ AOKI 11A determine quark masses from a lattice computation of the hadron spectrum using $N_f = 2 + 1$ dynamical flavors of domain wall fermions.
- 6 BLOSSIER 10 determines quark masses from a computation of the hadron spectrum using $N_f = 2$ dynamical twisted-mass Wilson fermions.
- ⁷ ALLTON 08 use a lattice computation of the π , K, and Ω masses with 2+1 dynamical flavors of domain wall quarks, and non-perturbative renormalization.
- ⁸ BLOSSIER 08 use a lattice computation of pseudoscalar meson masses and decay constants with 2 dynamical flavors and non-perturbative renormalization.
- ⁹OLLER 07A use unitarized chiral perturbation theory to order p^4 .
- 10 Three flavor dynamical lattice calculation of pseudoscalar meson masses.

Q MASS RATIO

$Q \equiv \sqrt{(m_s^2 - \overline{m}^2)/(m_d^2 - r_d^2)}$	$m^2_{\ u}$); $\overline{m} \equiv (m$	n _u +	$(m_d)/2$
VALUE	DOCUMENT ID		TECN
\bullet \bullet \bullet We do not use the following	data for averages	, fits,	limits, etc. $\bullet \bullet \bullet$
22.1 ± 0.7	¹ COLANGELO	18	THEO
22.0 ± 0.7	² COLANGELO	17	THEO
21.6 ± 1.1	³ GUO	17	THEO
$23.4\!\pm\!0.4\!\pm\!0.5$	⁴ FODOR	16	LATT
21.4 ± 0.4	⁵ GUO	15F	THEO
22.8 ± 0.4	⁶ MARTEMYA	. 05	THEO
22.7 ± 0.8	⁷ ANISOVICH	96	THEO
¹ COLANGELO 18 obtain Q from	m a dispersive ana	lysis	of $\eta ightarrow \ 3\pi$ decay.

²COLANGELO 17 obtain Q from a dispersive analysis of KLOE collaboration data on $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays and chiral perturbation theory input.

- 3 GUO 17 determine Q from a dispersive model fit to KLOE and WASA-at-COSY data on $\eta \rightarrow \pi^+ \pi^- \pi^0$ decay and matching to chiral perturbation theory .
- ⁴ FODOR 16 is a lattice simulation with $N_f = 2 + 1$ dynamical flavors and includes partially quenched QED effects.
- ⁵ GUO 15F determine Q from a Khuri-Treiman analysis of $\eta \rightarrow 3\pi$ decays.
- ⁶MARTEMYANOV 05 determine Q from $\eta \rightarrow 3\pi$ decay.
- ⁷ANISOVICH 96 find Q from $\eta \rightarrow \pi^+ \pi^- \pi^0$ decay using dispersion relations and chiral perturbation theory.

LIGHT QUARKS (u, d, s) REFERENCES

DOMINGUEZ	19	JHEP 1902 057	C.A. Dominguez, A. Mes,	K. Schilcher (CAPE, MAINZ)
BAZAVOV	18	PR D98 054517	A. Bazavov et al. (Ferm	nilab Lattice, MILC, TUMQCD)
COLANGELO	18	EPJ C78 947	G. Colangelo <i>et al.</i>	
LYTLE	18	PR D98 014513	A.T. Lytle <i>et al.</i>	(HPQCD Collab.)
COLANGELO	17	PRL 118 022001	G. Colangelo <i>et al.</i>	(BERN, IND, JLAB)
GUO	17	PL B771 497	P. Guo <i>et al.</i>	
YUAN	17	PR D96 014034	JM. Yuan <i>et al.</i>	
ANANTHANA	.16	PR D94 116014	B. Ananthanarayan, D. Da	as (BANG, AHMED)
FODOR	16	PRL 117 082001	Z. Fodor <i>et al.</i>	(BMW Collab.)
BASAK	15	JPCS 640 012052	S. Basak <i>et al.</i>	(MILC Collab.)
CHAKRABOR	. 15	PR D91 054508	B. Chakraborty et al.	(HPQCD Collab.)
GUO	15F	PR D92 054016	P. Guo <i>et al.</i>	
BAZAVOV	14A	PR D90 074509	A. Bazavov <i>et al.</i>	(Fermi-LAT and MILC Collabs.)
CARRASCO	14	NP B887 19	N. Carrasco <i>et al.</i> (E	uropean Twisted Mass Collab.)
ARTHUR	13	PR D87 094514	R. Arthur et al.	(RBC and UKQCD Collabs.)
BODENSTEIN	13	JHEP 1307 138	S. Bodenstein, C.A. Domi	nguez, K. Schilcher (MANZ+)
AOKI	12	PR D86 034507	S. Aoki <i>et al.</i>	(PACS-CS Collab.)
FRITZSCH	12	NP B865 397	P. Fritzsch <i>et al.</i>	(ALPHA Collab.)
AOKI	11A	PR D83 074508	Y. Aoki <i>et al.</i>	(RBC-UKQCD Collab.)
DURR	11	PL B701 265	S. Durr <i>et al.</i>	(BMW Collab.)
BAZAVOV	10	RMP 82 1349	A. Bazavov et al.	(MILC Collab.)

HTTP://PDG.LBL.GOV

Page 14

Created: 6/1/2020 08:33

BLOSSIER	10 10	PR D82 114513 PR D82 004508	B. Blossier <i>et al.</i> (ETM Collab.)
	10	PRI 10/ 132003	CTH Davies et al. (HPOCD Collab.)
MCNEILE	10	PR D82 034512	C McNeile et al. (HPOCD Collab.)
DOMINGUEZ	09	PR D79 014009	CA Dominguez et al
ALLISON	08	PR D78 054513	I Allison <i>et al</i> (HPQCD Collab.)
ALLTON	08	PR D78 114509	C. Allton <i>et al.</i> (RBC and UKQCD Collabs.)
BLOSSIER	08	JHEP 0804 020	B. Blossier <i>et al.</i> (ETM Collab.)
DEANDREA	08	PR D78 034032	A. Deandrea, A. Nehme, P. Talavera
DOMINGUEZ	08A	JHEP 0805 020	C.A. Dominguez et al.
DOMINGUEZ	08B	PL B660 49	A. Dominguez-Clarimon, E. de Rafael, J. Taron
ISHIKAWA	08	PR D78 011502	T. Ishikawa <i>et al.</i> (CP-PACS and JLQCD Collabs.)
NAKAMURA	08	PR D78 034502	Y. Nakamura <i>et al.</i> (CP-PACS Collab.)
BLUM	07	PR D76 114508	T. Blum <i>et al.</i> (RBC Collab.)
OLLER	07A	EPJ A34 371	J.A. Oller, L. Roca
CHETYRKIN	06	EPJ C46 721	K.G. Chetyrkin, A. Khodjamirian
GOCKELER	06	PR D73 054508	M. Gockeler <i>et al.</i> (QCDSF and UKQCD Collabs)
GOCKELER	06A	PL B639 307	M. Gockeler <i>et al.</i> (QCDSF and UKQCD Collabs)
JAMIN	06	PR D74 074009	M. Jamin, J.A. Oller, A. Pich
MASON	06	PR D73 114501	Q. Mason <i>et al.</i> (HPQCD Collab.)
NARISON	06	PR D74 034013	S. Narison
PDG	06	JP G33 1	WM. Yao <i>et al.</i> (PDG Collab.)
BAIKOV	05	PRL 95 012003	P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn
GAMIZ	05	PRL 94 011803	E. Gamiz <i>et al.</i>
GORBUNOV	05	PR D71 013002	D.S. Gorbunov, A.A. Pivovarov
MARTEMYA	05	PR D71 017501	B.V. Martemyanov, V.S. Sopov
NARISON	05	PL B626 101	S. Narison
AUBIN	04	PR D70 031504	C. Aubin <i>et al.</i> (HPQCD, MILC, UKQCD Collabs.)
AUBIN	04A	PR D/0 114501	C. Aubin <i>et al.</i> (MILC Collab.)
AOKI	03	PR D67 034503	S. Aoki et al. (CP-PACS Collab.)
AUKI	03B	PR D68 054502	S. Aoki et al. (CP-PACS Collab.)
BECIREVIC	03	PL B558 69	D. Becirevic, V. Lubicz, C. Tarantino
CHIU	03	NP B073 217	IW. Chiu, IH. Hsien
	03	JHEP 0301 000	E. Gamiz et al.
CAO	05	PRL 90 021001	D. Nelson, G.T. Fleming, G.W. Kilcup
	97	DI D275 225	A.V. Anisovich, H. Loutvaller
	90	PL D373 333 DI R378 313	H. Loutavier
	02	PRI 60 31/1	LE Donoghue BR Holstein D Wyder (MASA)
GERARD	90	MPI 45 301	IM Gerard (MDIM)
	90R	NP R337 108	H Leutwyler (RERN)
	500	NI 2001 100	(DEIIII)