n

 $I(J^{P}) = \frac{1}{2}(\frac{1}{2}^{+})$ Status: ***

We have omitted some results that have been superseded by later experiments. See our earlier editions.

Anyone interested in the neutron should look at these two review articles: D. Dubbers and M.G. Schmidt, "The neutron and its role in cosmology and particle physics," Reviews of Modern Physics **83** 1111 (2011); and F.E. Wietfeldt and G.L. Greene, "The neutron lifetime," Reviews of Modern Physics **83** 1173 (2011).

n MASS (atomic mass units u)

The mass is known much more precisely in u (atomic mass units) than in MeV. See the next data block.

VALUE (u)	DOCUMENT IL)	TECN	COMMENT
$1.00866491588 \pm 0.0000000049$	MOHR	16	RVUE	2014 CODATA value
\bullet \bullet \bullet We do not use the following data	for averages,	fits, l	imits, et	C. ● ● ●
$1.00866491600 \pm 0.0000000043$	MOHR	12	RVUE	2010 CODATA value
$1.00866491597 \pm 0.0000000043$	MOHR	80	RVUE	2006 CODATA value
$1.00866491560 \pm 0.0000000055$	MOHR	05	RVUE	2002 CODATA value
$1.00866491578 \pm 0.0000000055$	MOHR	99	RVUE	1998 CODATA value
$1.008665904 \pm 0.00000014$	COHEN	87	RVUE	1986 CODATA value

n MASS (MeV)

The mass is known much more precisely in u (atomic mass units) than in MeV. The conversion from u to MeV, 1 u = 931.494 0054(57)) MeV/c^2 (MOHR 16, the 2014 CODATA value), involves the relatively poorly known electronic charge.

VALUE (MeV)		DOCUMENT ID		TECN	COMMENT
939.5654133	3±0.0000058	MOHR	16	RVUE	2014 CODATA value
• • • We d	o not use the fo	llowing data for averages	, fits,	limits, e	etc. ● ● ●
939.565379	± 0.000021	MOHR	12	RVUE	2010 CODATA value
939.565346	± 0.000023	MOHR	08	RVUE	2006 CODATA value
939.565360	± 0.000081	MOHR	05	RVUE	2002 CODATA value
939.565331	± 0.000037	¹ KESSLER	99	SPEC	$n p ightarrow d \gamma$
939.565330	± 0.000038	MOHR	99	RVUE	1998 CODATA value
939.56565	± 0.00028	^{2,3} DIFILIPPO	94	TRAP	Penning trap
939.56563	± 0.00028	COHEN	87	RVUE	1986 CODATA value
939.56564	± 0.00028	^{3,4} GREENE	86	SPEC	$n p ightarrow d \gamma$
939.5731	± 0.0027	³ COHEN	73	RVUE	1973 CODATA value

 1 We use the 1998 CODATA u-to-MeV conversion factor (see the heading above) to get this mass in MeV from the much more precisely measured KESSLER 99 value of 1.00866491637 \pm 0.0000000082 u.

² The mass is known much more precisely in u: $m = 1.0086649235 \pm 0.000000023$ u. We use the 1986 CODATA conversion factor to get the mass in MeV.

³ These determinations are not independent of the $m_n - m_p$ measurements below.

 4 The mass is known much more precisely in u: $m=1.008664919\pm 0.00000014$ u.

n MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
939.485±0.051	59	¹ CRESTI	86	HBC	$\overline{p} p \rightarrow \overline{n} n$
1 This is a corrected	rocult (coo	the erratum)	Tho o	rror is s	tatistical The maximum

⁺ This is a corrected result (see the erratum). The error is statistical. The maximum systematic error is 0.029 MeV.

$(m_n - m_{\overline{n}})/m_n$

A test of *CPT* invariance. Calculated from the *n* and \overline{n} masses, above.

VALUE

DOCUMENT ID

$(9\pm6) \times 10^{-5}$ OUR EVALUATION

 $m_n - m_p$

VALUE (MeV)	DOCUMENT IL)	TECN	COMMENT	
$1.29333205 \pm 0.00000051$	¹ MOHR	16	RVUE	2014 CODATA value	
$\bullet~\bullet~\bullet$ We do not use the following	data for averag	es, fits,	limits, e	tc. ● ● ●	
$1.29333217 \pm 0.00000042$	² MOHR	12	RVUE	2010 CODATA value	
$1.29333214 \pm 0.00000043$	³ MOHR	08	RVUE	2006 CODATA value	
$1.2933317 \ \pm 0.0000005$	⁴ MOHR	05	RVUE	2002 CODATA value	
$1.2933318 \ \pm 0.0000005$	⁵ MOHR	99	RVUE	1998 CODATA value	
1.293318 ± 0.000009	⁶ COHEN	87	RVUE	1986 CODATA value	
1.2933328 ± 0.0000072	GREENE	86	SPEC	$n p ightarrow d \gamma$	
1.293429 ± 0.000036	COHEN	73	RVUE	1973 CODATA value	
1 The 2014 CODATA mass differ	ence in <i>u</i> is <i>m_n</i>	$-m_p$	= 1.001	$38844900(51)\times 10^{-3}u.$	
² The 2010 CODATA mass differ	ence in <i>u</i> is m _n	$-m_p$	= 1.388	$44919(45) \times 10^{-3}u.$	
3 Calculated by us from the MOI	HR 08 ratio <i>m_n</i>	$/m_p =$	1.00137	7841918(46). In u, m _n -	
$m_p = 1.38844920(46) imes 10^{-3}$	u.				
⁴ Calculated by us from the MOF	IR 05 ratio <i>m_n/</i>	$m_p = 1$	1.001378	$341870 \pm 0.0000000058.$	
In u, $m_n - m_p = (1.3884487)$	\pm 0.000006) >	10-3	u.		
⁵ Calculated by us from the MOHR 99 ratio $m_n/m_p = 1.00137841887 \pm 0.00000000058$.					
In u, $m_n - m_p = (1.3884489 \pm 0.000006) \times 10^{-3}$ u.					
⁶ Calculated by us from the COH	IEN 87 ratio <i>m</i> ,	$m_p = \frac{m_p}{a}$	1.0013	78404 \pm 0.000000009. In	
u, $m_n - m_p = 0.001388434 \pm$	= 0.000000009 u				

n MEAN LIFE

Limits on lifetimes for bound neutrons are given in the section "p <code>PARTIAL MEAN LIVES."</code>

We average seven of the best eight measurements, those made with ultracold neutrons (UCN's). If we include the one in-beam measurement with a comparable error (YUE 13), we get 879.6 \pm 0.8 s, where the scale factor is now 2.0.

For a recent discussion of the long-standing disagreement between inbeam and UCN results, see CZARNECKI 18 (Physical Review Letters 120 202002 (2018)). For a full review of all matters concerning the neutron lifetime until about 2010, see WIETFELDT 11, F.E. Wietfeldt and G.L. Greene, "The neutron lifetime," Reviews of Modern Physics 83 1173 (2011).

VALUE (s)	DOCUMENT ID	TECN COMMENT
879.4 \pm 0.6 OUR AVERAGE	Error includes scale fa	actor of 1.6. See the ideogram below.
$878.3 \pm \ 1.6 \pm \ 1.0$	EZHOV 18	CNTR UCN magneto-gravit. trap
$877.7 \pm \ 0.7 + \ 0.4 \\ - \ 0.2$	¹ PATTIE 18	CNTR UCN asym. magnetic trap
$881.5 \pm 0.7 \pm 0.6$	SEREBROV 18	CNTR UCN gravitational trap
880.2 ± 1.2	² ARZUMANOV 15	CNTR UCN double bottle
$882.5 \pm \ 1.4 \pm \ 1.5$	³ STEYERL 12	CNTR UCN material bottle
$880.7 \pm \ 1.3 \pm \ 1.2$	PICHLMAIER 10	CNTR UCN material bottle
$878.5 \pm 0.7 \pm 0.3$	SEREBROV 05	CNTR UCN gravitational trap
• • • We do not use the follo	wing data for averages,	, fits, limits, etc. \bullet \bullet
$887.7 \pm \ 1.2 \pm \ 1.9$	⁴ YUE 13	CNTR In-beam <i>n</i> , trapped <i>p</i>
$881.6 \pm \ 0.8 \pm \ 1.9$	⁵ ARZUMANOV 12	CNTR See ARZUMANOV 15
$886.3 \pm \ 1.2 \pm \ 3.2$	NICO 05	CNTR See YUE 13
$886.8 \pm 1.2 \pm 3.2$	DEWEY 03	CNTR See NICO 05
$885.4 \pm 0.9 \pm 0.4$	ARZUMANOV 00	CNTR See ARZUMANOV 12
$889.2 \pm 3.0 \pm 3.8$	BYRNE 96	CNTR Penning trap
882.6 ± 2.7	⁶ MAMPE 93	CNTR UCN material bottle
$888.4 \pm \ 3.1 \pm \ 1.1$	⁷ NESVIZHEV 92	CNTR UCN material bottle
888.4± 2.9	ALFIMENKOV 90	CNTR See NESVIZHEVSKII 92
$893.6 \pm \ 3.8 \pm \ 3.7$	BYRNE 90	CNTR See BYRNE 96
$878 \pm 27 \pm 14$	KOSSAKOW 89	TPC Pulsed beam
887.6± 3.0	MAMPE 89	CNTR See STEYERL 12
877 ±10	PAUL 89	CNTR Magnetic storage ring
876 ± 10 ± 19	LAST 88	SPEC Pulsed beam
891 ± 9	SPIVAK 88	CNTR Beam
903 ±13	KOSVINTSEV 86	CNTR UCN material bottle
937 ±18	⁸ BYRNE 80	CNTR
875 ± 95	KOSVINTSEV 80	CNTR
881 ± 8	BONDAREN 78	CNTR See SPIVAK 88
918 ±14	CHRISTENSEN72	CNTR

 1 PATTIE 18 uses a new technique, with a semi-toroidal magneto-gravitational asymmetric trap and a novel in situ *n*-detector.

 2 ARZUMANOV 15 is a reanalysis of their 2008–2010 dataset, with improved systematic corrections of of ARZUMANOV 00 and ARZUMANOV 12.

 3 STEYERL 12 is a detailed reanalysis of neutron storage loss corrections to the raw data of MAMPE 89, and it replaces that value.

 4 YUE 13 differs from NICO 05 in that a different and better method was used to measure the neutron density in the fiducial volume. This shifted the lifetime by +1.4 seconds and reduced the previously largest source of systematic uncertainty by a factor of five.

 5 ARZUMANOV 12 reanalyzes its systematic corrections in ARZUMANOV 00 and obtains this corrected value.

⁶IGNATOVICH 95 calls into question some of the corrections and averaging procedures used by MAMPE 93. The response, BONDARENKO 96, denies the validity of the criticisms.

⁷ The NESVIZHEVSKII 92 measurement has been withdrawn by A. Serebrov.

HTTP://PDG.LBL.GOV

Page 3 Created: 9/11/2020 15:16

⁸ The BYRNE 80 measurement has been withdrawn (J. Byrne, private communication, 1990).

n MAGNETIC MOMENT

See the "Note on Baryon Magnetic Moments" in the Λ Listings.

VALUE (μ_N)	DOCUMENT ID		TECN	COMMENT
$-1.91304273 \pm 0.00000045$	MOHR	16	RVUE	2014 CODATA value
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
$-1.91304272\pm\!0.00000045$	MOHR	12	RVUE	2010 CODATA value
$-1.91304273 \pm 0.00000045$	MOHR	08	RVUE	2006 CODATA value
$-1.91304273 \pm 0.00000045$	MOHR	05	RVUE	2002 CODATA value
$-1.91304272 \pm 0.00000045$	MOHR	99	RVUE	1998 CODATA value
$-1.91304275 \pm 0.00000045$	COHEN	87	RVUE	1986 CODATA value
$-1.91304277\pm\!0.00000048$	¹ GREENE	82	MRS	

 $^1\,\text{GREENE}$ 82 measures the moment to be (1.04187564 \pm 0.00000026) $\times\,10^{-3}$ Bohr magnetons. The value above is obtained by multiplying this by $m_p/m_e = 1836.152701 \pm$ 0.000037 (the 1986 CODATA value from COHEN 87).

n ELECTRIC DIPOLE MOMENT

A nonzero value is forbidden by both T invariance and P invariance. A number of early results have been omitted. See RAMSEY 90, GOLUB 94, and LAMOREAUX 09 for reviews.

The results are upper limits on $|d_n|$.

VALUE $(10^{-25} e cm)$	CL%	DOCUMENT ID		TECN	COMMENT
< 0.18	90	¹ ABEL	20	MRS	UCN
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$					
< 0.22	95	² SAHOO	17		199 Hg atom EDM $+$ theory
< 0.16	95	GRANER	16	MRS	199 Hg atom EDM $+$ theory
< 0.30	90	³ PENDLEBURY	´ 15	MRS	Supersedes BAKER 06
< 0.55	90	SEREBROV	15	MRS	UCN's, $h\nu = 2\mu_n B \pm 2d_n E$
< 0.55	90	⁴ SEREBROV	14	MRS	See SEREBROV 15
< 0.29	90	⁵ BAKER	06	MRS	See PENDLEBURY 15
< 0.63	90	⁶ HARRIS	99	MRS	$d = (-0.1 \pm 0.36) \times 10^{-25}$
< 0.97	90	ALTAREV	96	MRS	See SEREBROV 14
< 1.1	95	ALTAREV	92	MRS	See ALTAREV 96
< 1.2	95	SMITH	90	MRS	See HARRIS 99
< 2.6	95	ALTAREV	86	MRS	$d = (-1.4 \pm 0.6) \times 10^{-25}$
0.3 ± 4.8		PENDLEBURY	84	MRS	Ultracold neutrons
< 6	90	ALTAREV	81	MRS	$d = (2.1 \pm 2.4) \times 10^{-25}$
<16	90	ALTAREV	79	MRS	$d = (4.0 \pm 7.5) imes 10^{-25}$
1 ABEL 20 ropor	+c d = (0)	$(1 \pm 1 + 1 \pm 0 + 2) \times (1 \pm 1 \pm 1 \pm 1)$	n-20	5 a cm v	alua corresponding to the listed

ABEL 20 reports $d = (0.0 \pm 1.1 \pm 0.2) \times 10^{-10}$ e cm value corresponding to the listed limit.

 2 SAHOO 17 develops theory to calculate this limit from the measured limit by GRANER 16 of the 199 Hg atom EDM.

³PENDLEBURY 15 reports $d = (-0.21 \pm 1.82) \times 10^{-26}$ e cm value corresponding to the listed limit. ⁴SEREBROV 14 includes the data of ALTAREV 96.

 5 LAMOREAUX 07 faults BAKER 06 for not including in the estimate of systematic error an effect due to the Earth's rotation. BAKER 07 replies (1) that the effect was included implicitly in the analysis and (2) that further analysis confirms that the BAKER 06 limit is correct as is. See also SILENKO 07.

 6 This HARRIS 99 result includes the result of SMITH 90. However, the averaging of the results of these two experiments has been criticized by LAMOREAUX 00.

n MEAN-SQUARE CHARGE RADIUS

The mean-square charge radius of the neutron, $\langle r_n^2 \rangle$, is related to the neutron-electron scattering length b_{ne} by $\langle r_n^2 \rangle = 3(m_e a_0/m_n) b_{ne}$, where m_e and m_n are the masses of the electron and neutron, and a_0 is the Bohr radius. Numerically, $\langle r_n^2 \rangle = 86.34 \ b_{ne}$, if we use a_0 for a nucleus with infinite mass.

VALUE (fm ²)	DOCUMENT ID		COMMENT		
-0.1161 ± 0.0022 OUR AVERAGE	Error includes s	cale f	actor of 1.3. See the ideogram		
below.					
$-0.115 \ \pm 0.002 \ \pm 0.003$	KOPECKY	97	<i>ne</i> scattering (Pb)		
$-0.124 \pm 0.003 \pm 0.005$	KOPECKY	97	<i>ne</i> scattering (Bi)		
-0.114 ± 0.003	KOESTER	95	<i>ne</i> scattering (Pb, Bi)		
-0.134 ± 0.009	ALEKSANDR	.86	<i>ne</i> scattering (Bi)		
-0.115 ± 0.003	¹ KROHN	73	<i>ne</i> scattering (Ne, Ar, Kr, Xe)		

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

-0.117	$+0.007 \\ -0.011$	BELUSHKIN	07	Dispersion analysis
-0.113	$\pm 0.003 \ \pm 0.004$	KOPECKY	95	<i>ne</i> scattering (Pb)
-0.114	± 0.003	KOESTER	86	<i>ne</i> scattering (Pb, Bi)
-0.118	± 0.002	KOESTER	76	<i>ne</i> scattering (Pb)
-0.120	± 0.002	KOESTER	76	<i>ne</i> scattering (Bi)
-0.116	± 0.003	KROHN	66	ne scattering (Ne, Ar, Kr, Xe)

 1 This value is as corrected by KOESTER 76.

n MAGNETIC RADIUS

This is the rms magnetic ra	dius, $\sqrt{\langle r_M^2 \rangle}$.		
VALUE (fm)	DOCUMENT ID		COMMENT
$0.864^{+0.009}_{-0.008}$ OUR AVERAGE			
0.89 ± 0.03	EPSTEIN	14	Using <i>ep</i> , <i>en</i> , $\pi\pi$ data
$0.862^{+0.009}_{-0.008}$	BELUSHKIN	07	Dispersion analysis

n ELECTRIC POLARIZABILITY α_n

Following is the electric polarizability α_n defined in terms of the induced electric dipole moment by $\mathbf{D} = 4\pi\epsilon_0\alpha_n\mathbf{E}$. For a review, see SCHMIED-MAYER 89.

For very complete reviews of the polarizability of the nucleon and Compton scattering, see SCHUMACHER 05 and GRIESSHAMMER 12.

$VALUE (10^{-4} \text{ fm}^3)$	DOCUMENT ID		TECN	COMMENT
11.8 \pm 1.1 OUR AVERAGE				
$11.55 \pm 1.25 \pm 0.8$	MYERS	14	CNTR	$\gamma d \rightarrow \gamma d$
12.5 \pm 1.8 $^{+1.6}_{-1.3}$	¹ KOSSERT	03	CNTR	$\gamma d \rightarrow \gamma p n$
$12.0 ~\pm~ 1.5 ~\pm 2.0$	SCHMIEDM	91	CNTR	n Pb transmission
$10.7 \begin{array}{c} + & 3.3 \\ - & 10.7 \end{array}$	ROSE	90 B	CNTR	$\gamma d \rightarrow \gamma n p$
\bullet \bullet \bullet We do not use the following	data for averages	, fits,	limits, e	etc. ● ● ●
$8.8 \pm 2.4 \pm 3.0$	² LUNDIN	03	CNTR	$\gamma d \rightarrow \gamma d$
13.6	³ KOLB	00	CNTR	$\gamma d \rightarrow \gamma n p$
$0.0~\pm~5.0$	⁴ KOESTER	95	CNTR	n Pb, n Bi transmission
$11.7 \ + \ 4.3 \ -11.7$	ROSE	90	CNTR	See ROSE 90B
8 ± 10	KOESTER	88	CNTR	n Pb, n Bi transmission
12 ± 10	SCHMIEDM	88	CNTR	n Pb, n C transmission

¹KOSSERT 03 gets $\alpha_n - \beta_n = (9.8 \pm 3.6 {+2.1 \atop -1.1} \pm 2.2) \times 10^{-4} \text{ fm}^3$, and uses $\alpha_n + \beta_n$ = (15.2 \pm 0.5) \times 10 $^{-4}~{\rm fm}^3$ from LEVCHUK 00. Thus the errors on α_n and β_n are

anti-correlated. ² LUNDIN 03 measures $\alpha_N - \beta_N = (6.4 \pm 2.4) \times 10^{-4}$ fm³ and uses accurate values for α_p and α_p and a precise sum-rule result for $\alpha_n + \beta_n$. The second error is a model uncertainty, and errors on α_n and β_n are anticorrelated. The data from this paper aer included in the analysis of MYERS 14.

 $^3\,\text{KOLB}$ 00 obtains this value with a lower limit of $7.6\times10^{-4}\,\text{fm}^3$ but no upper limit from this experiment alone. Combined with results of ROSE 90, the 1- σ range is (7.6–14.0) \times $10^{-4} \, \text{fm}^3$

⁴KOESTER 95 uses natural Pb and the isotopes 208, 207, and 206. See this paper for a discussion of methods used by various groups to extract $\alpha_{\textit{n}}$ from data.

n MAGNETIC POLARIZABILITY β_n

VALUE (10^{-4} fm^3)	DOCUMENT IL)	TECN	COMMENT	
3.7 \pm 1.2 OUR AVERAGE					
$3.65\!\pm\!1.25\!\pm\!0.8$	MYERS	14	CNTR	$\gamma d \rightarrow \gamma d$	
$2.7 \ \pm 1.8 \ +1.3 \\ -1.6$	¹ KOSSERT	03	CNTR	$\gamma d \rightarrow \gamma p n$	
$6.5 \pm 2.4 \pm 3.0$	² LUNDIN	03	CNTR	$\gamma d \rightarrow \gamma d$	
\bullet \bullet \bullet We do not use the following	g data for averag	es, fits,	limits, e	etc. • • •	
1.6	³ KOLB	00	CNTR	$\gamma d \rightarrow \gamma n p$	
1 KOSSERT 03 gets $lpha_{m{n}}-eta_{m{n}}$ =	$=(9.8\pm3.6^{+2.1}_{-1.1})$	$\frac{1}{1} \pm 2.2$	$) imes 10^{-4}$	⁴ fm ³ , and uses $lpha_{\it n}+eta_{\it n}$	
$=(15.2\pm0.5) imes10^{-4}~{ m fm}^3$ fm 3	from LEVCHUK	00. TI	nus the	errors on $lpha_{\it n}$ and $eta_{\it n}$ are	
anti-correlated. ² LUNDIN 03 measures $\alpha_{M} = 0$	$B_{AV} = (64 + 24)$	4) × 10 ⁻	-4 _{fm} 3	and uses accurate values	
for α_n and α_n and a precise s	sum-rule result for \pm	or $\alpha_n +$	β_n . Th	e second error is a model	
uncertainty, and errors on α_n and β_n are anticorrelated.					
³ KOLB 00 obtains this value with an upper limit of 7.6×10^{-4} fm ³ but no lower limit from					
this experiment alone. Combin	ed with results o	of ROSE	5 90, the	e 1- σ range is (1.2–7.6) $ imes$	
10 ⁻⁴ fm ³ .					

n CHARGE

See also " $|q_p + q_e|/e$ " in the proton Listings.

VALUE (10 ⁻²¹ e)	DOCUMENT ID		TECN	COMMENT		
$-$ 0.2 \pm 0.8 OUR AVERAGE						
$- 0.1 \pm 1.1$	¹ BRESSI	11		Neutrality of SF ₆		
$- 0.4 \pm 1.1$	² BAUMANN	88		Cold <i>n</i> deflection		
\bullet \bullet \bullet We do not use the following	data for averages	s, fits,	limits, e	tc. • • •		
-15 ± 22	³ GAEHLER	82	CNTR	Cold <i>n</i> deflection		
¹ As a limit, this BRESSI 11 value is $< 1 \times 10^{-21} e$. ² The BAUMANN 88 error ± 1.1 gives the 68% CL limits about the the value -0.4 . ³ The GAEHLER 82 error ± 22 gives the 90% CL limits about the the value -15 .						

LIMIT ON nn OSCILLATIONS

Mean Time for $n\overline{n}$ Transition in Vacuum

A test of $\Delta B=2$ baryon number nonconservation. MOHAPATRA 80 and MOHAPATRA 89 discuss the theoretical motivations for looking for $n\overline{n}$ oscillations. DOVER 83 and DOVER 85 give phenomenological analyses. The best limits come from looking for the decay of neutrons bound in nuclei. However, these analyses require model-dependent corrections for nuclear effects. See KABIR 83, DOVER 89, ALBERICO 91, and GAL 00 for discussions. Direct searches for $n \rightarrow \overline{n}$ transitions using reactor neutrons are cleaner but give somewhat poorer limits. We include limits for both free and bound neutrons in the Summary Table. See MOHAPATRA 09 and PHILLIPS 16 for recent reviews.

VALUE (s)		CL%	DOCUMENT ID		TECN	COMMENT
>2.7 ×	: 10 ⁸	90	ABE	15C	CNTR	<i>n</i> bound in oxygen
>8.6 ×	: 10 ⁷	90	BALDO	94	CNTR	Reactor (free) neutrons
• • • W	'e do not use t	he following	; data for averag	ges, fit	s, limits	, etc. ● ● ●
$>$ 1.37 \times	10 ⁸	90 1	AHARMIM	17	SNO	n bound in deuteron
>1.3 ×	10 ⁸	90	CHUNG	0 2B	SOU2	<i>n</i> bound in iron
>1 ×	10 ⁷	90	BALDO	90	CNTR	See BALDO-CEOLIN 94
>1.2 ×	10 ⁸	90	BERGER	90	FREJ	<i>n</i> bound in iron
>4.9 ×	10 ⁵	90	BRESSI	90	CNTR	Reactor neutrons
>4.7 ×	10 ⁵	90	BRESSI	89	CNTR	See BRESSI 90
>1.2 ×	10 ⁸	90	TAKITA	86	CNTR	<i>n</i> bound in oxygen
>1 ×	10 ⁶	90	FIDECARO	85	CNTR	Reactor neutrons
>8.8 ×	10 ⁷	90	PARK	85 B	CNTR	
>3 ×	10 ⁷		BATTISTONI	84	NUSX	
> 0.27-	$1.1 imes 10^{8}$		JONES	84	CNTR	
>2 ×	10 ⁷		CHERRY	83	CNTR	
1 The	AHARMIM 17	value is an	unbounded limi	t (it c	loes not	assume a positive lifetime).

The bounded limit is 1.23×10^8 sec.

LIMIT ON nn' OSCILLATIONS

Lee and Yang (LEE 56) proposed the existence of mirror world in an attempt to restore global parity symmetry. A possible candidate for dark

matter. Limits depend on assumptions about fields B and B'. See the papers for details. See BEREZHIANI 18 for a recent discussion.

VALUE (s)	CL%	DOCUMENT ID		TECN	COMMENT
>448	90	SEREBROV	09A	CNTR	Assumes $B'~<$ 100 nT
\bullet \bullet \bullet We do not us	e the follow	ving data for ave	rages,	fits, lim	its, etc. ● ● ●
> 17	95 1	BEREZHIANI	18	CNTR	UCN, scan of <i>B</i> field
> 12	95 ²	ALTAREV	09A	CNTR	UCN, scan 0 $\leq B \leq$ 12.5 $\mu { m T}$
>414	90	SEREBROV	08	CNTR	UCN, <i>B</i> field on & off
>103	95	BAN	07	CNTR	UCN, <i>B</i> field on & off

¹ The *B* field was set to (0.09, 0.12, 0.21) G. Limits on oscillation time are valid for any mirror field B' in (0.08–0.17) G, and for aligned fields *B* and B'. For larger values of B', the limits are significantly reduced.

²Losses of neutrons due to oscillations to mirror neutrons would be maximal when the magnetic fields B and B' in the two worlds were equal. Hence the scan over B by ALTAREV 09A: the limit applies for any B' over the given range. At B' = 0, the limit is 141 s (95% CL).

n DECAY MODES

Mode Confidence level Fraction (Γ_i/Γ) Γ₁ $pe^-\overline{\nu}_e$ 100 % $9.2\pm0.7) imes 10^{-3}$ Γ_2 $pe^-\overline{\nu}_e\gamma$ [a] (hydrogen-atom $\overline{\nu}_{P}$ $\times 10^{-3}$ Га 2.7 95% < Charge conservation (Q) violating mode $\times 10^{-27}$ Г⊿ $p\nu_e\overline{\nu}_e$ Q 8 68% <

Baryon number violating decay

 $\Gamma_5 e^+e^-$ invisible

[a] This limit is for γ energies between 0.4 and 782 keV.

n BRANCHING RATIOS

$\Gamma(pe^-\overline{\nu}_e\gamma)/\Gamma_{\rm total}$ Γ_2/Γ VALUE (units 10^{-3}) CL% DOCUMENT ID TECN COMMENT ¹ BALES RDK2 Two different set-ups $9.17 \pm 0.24 \pm 0.64$ 16 • • • We do not use the following data for averages, fits, limits, etc. • • • ² COOPER $3.09\!\pm\!0.11\!\pm\!0.30$ 10 CNTR See BALES 16 NICO 06 CNTR See COOPER 10 $3.13 \pm 0.11 \pm 0.33$ ³ BECK 90 02 CNTR γ , p, e^- coincidence <6.9 1 BALES 16 gets a branching fraction of (5.82 \pm 0.23 \pm 0.62) \times 10 $^{-3}$ for a photon energy

range 0.4 to 14.0 keV, and with a different detector array, $(3.35 \pm 0.05 \pm 0.15) \times 10^{-3}$ for 14.1 to 782 keV. Our result above is the sum; the error on the sum is completely dominated by the error on the lower range.

 2 This COOPER 10 result is for γ energies between 15 and 340 keV.

³ This BECK 02 limit is for γ energies between 35 and 100 keV.

HTTP://PDG.LBL.GOV

Page 9

Created: 9/11/2020 15:16

$\Gamma(hydrogen-atom \overline{\nu}_e$)/Γ _{total}					Г ₃ /Г
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<0.27 × 10 ⁻²	95	¹ CZARNECKI	18		Lifetime analysis	
• • • We do not use the	e following	g data for averages	s, fits,	limits, e	etc. • • •	
$< 3 \times 10^{-2}$	95	² GREEN	90	RVUF		

 1 CZARNECKI 18 limit from an analysis of experimental discrepancies on the neutron

lifetime and axial coupling applies as well to other possible exotic neutron decays. ² GREEN 90 infers that τ (hydrogen-atom $\overline{\nu}_e$) > 3×10^4 s by comparing neutron lifetime measurements made in storage experiments with those made in β -decay experiments. However, the result depends sensitively on the lifetime measurements, and does not of course take into account more recent measurements of same.

$\frac{\Gamma(p\nu_e\overline{\nu}_e)}{\Gamma_{\text{total}}}$ Forbidden by charge conservation

Γ4/Γ

	i ensidadin sy enid	. 80				
VALU	E	CL%	DOCUMENT ID		TECN	COMMENT
<8	× 10 ⁻²⁷	68 1	NORMAN	96	RVUE	$^{71}\text{Ga} ightarrow ^{71}\text{Ge}$ neutrals
• • •	 We do not use the 	ne following	data for average	es, fits	s, limits,	etc. • • •
<9.7	$7 imes 10^{-18}$	90	ROY	83	CNTR	$^{113}\mathrm{Cd} \rightarrow ~^{113m}\mathrm{Inneut.}$
<7.9	9×10^{-21}		VAIDYA	83	CNTR	87 Rb $\rightarrow ~^{87m}$ Srneut.
<9	imes 10 ⁻²⁴	90	BARABANOV	80	CNTR	$^{71}\text{Ga} ightarrow ~^{71}\text{GeX}$
<3	$ imes$ 10 $^{-19}$		NORMAN	79	CNTR	$^{87}\text{Rb} ightarrow ^{87m}$ Srneut.
1.				~ -		

 1 NORMAN 96 gets this limit by attributing SAGE and GALLEX counting rates to the charge-nonconserving transition $^{71}\text{Ga} \rightarrow ~^{71}\text{Ge+neutrals}$ rather than to solar-neutrino reactions.

$\Gamma(e^+e^- \text{ invisible})/\Gamma_{\text{total}}$

 Γ_5/Γ

	Daryon number	violating ut	JCay				
<u>VALU</u>	E	<u>CL%</u>	DOCUMENT I	D	TECN	COMMENT	
• • •	• We do not use t	the followin	g data for avera	ges, fits,	limits, e	etc. • • •	
<0.0)1	90	¹ KLOPF	19	CNTR	re-interpretation of MUND 13	
$<\!\!1$	imes 10 ⁻⁴	90	² SUN	18	SPEC	Ultracold <i>n</i> , polarized	
1 k ii 2 c	(LOPF 19 value i nvisible state, χ . strengthening to fe	is for baryon The limit is $ew imes 10^{-6}$	n number violat valid for KE(e ⁻¹ ⁴ above approxi	ing deca e) rar mately 1	y of neu nge betw 00 keV.	tron to electrons plus an een 32 keV and 664 keV,	
- 3	² SUN 18 value is for baryon number violating decay of neutron to electrons plus an invisible						
S	tate, χ . The limit	IS Valid for	r 044 kev > r\⊏	.(e'e)	> 100 1	KeV. Assuming this decay	
2	<i>cee</i> is the only allo	owed χ dec:	ay channel, a 0.0)1 BR is r	ruled out	: for 644 keV > $E(e^+e^-)$	

> 100 keV at over 5 σ .

See the related review(s):

Baryon Decay Parameters

$n \rightarrow p e^- \overline{\nu}_e$ DECAY PARAMETERS

See the above "Note on Baryon Decay Parameters." For discussions of recent results, see the references cited at the beginning of the section on the neutron mean life. For discussions of the values of the weak coupling constants g_A and g_V obtained using the neutron lifetime and asymmetry parameter A, comparisons with other methods of obtaining these constants, and implications for particle physics and for astrophysics, see DUBBERS 91 and WOOLCOCK 91. For tests of the V-A theory of neutron decay, see EROZOLIMSKII 91B, MOSTOVOI 96, NICO 05, SEV-ERIJNS 06, and ABELE 08.

$\lambda \equiv g_A$	/ gv					
VALUE			DOCUMENT ID		TECN	COMMENT
-1.2756	± 0.0013	OUR AVERAG	E Error includes	s scale	e factor o	of 2.6. See the ideogram
below.			1			
-1.27641	$L \pm 0.00045$	± 0.00033		19	SPEC	pulsed cold <i>n</i> , polarized
-1.2772	± 0.0020	-	² BROWN	18	UCNA	Ultracold <i>n</i> , polarized
-1.284	± 0.014		³ DARIUS	17	SPEC	Cold <i>n</i> , unpolarized
-1.2748	± 0.0008	+0.0010 -0.0011	⁴ MUND	13	SPEC	Cold <i>n</i> , polarized
-1.275	± 0.006	± 0.015	SCHUMANN	80	CNTR	Cold n, polarized
-1.2686	± 0.0046	±0.0007	⁵ MOSTOVOI	01	CNTR	A and $B \times$ polariza-
-1.266	± 0.004		LIAUD	97	TPC	Cold <i>n</i> , polarized, <i>A</i>
-1.2594	± 0.0038	(⁶ YEROZLIM	97	CNTR	Cold <i>n</i> , polarized, A
-1.262	± 0.005		BOPP	86	SPEC	Cold <i>n</i> , polarized, A
• • • We	e do not us	e the following o	data for averages	, fits,	limits, e	tc. ● ● ●
-1.2755	± 0.0030	-	⁷ MENDENHALI	_13	UCNA	See BROWN 18
-1.27590	0±0.00239	+0.00331 -0.00377	⁸ PLASTER	12	UCNA	See MENDENHALL 13
-1.27590	$0^{+0.00409}_{-0.00445}$		LIU	10	UCNA	See PLASTER 12
-1.2739	± 0.0019	9	⁹ ABELE	02	SPEC	See MUND 13
-1.274	± 0.003		ABELE	97 D	SPEC	Cold n, polarized, A
-1.266	± 0.004		SCHRECK	95	TPC	See LIAUD 97
-1.2544	± 0.0036		EROZOLIM	91	CNTR	See YEROZOLIM- SKY 97
-1.226	± 0.042		MOSTOVOY	83	RVUE	
-1.261	± 0.012		EROZOLIM	79	CNTR	Cold n, polarized, A
-1.259	± 0.017	10	⁰ STRATOWA	78	CNTR	p recoil spectrum, a
-1.263	± 0.015		EROZOLIM	77	CNTR	See EROZOLIMSKII 79
-1.250	± 0.036	10	DOBROZE	75	CNTR	See STRATOWA 78
-1.258	± 0.015	13	¹ KROHN	75	CNTR	Cold n, polarized, A
-1.263	± 0.016	12	² KROPF	74	RVUE	n decay alone
-1.250	± 0.009	12	² KROPF	74	RVUE	$n ext{ decay} + ext{ nuclear ft}$
1.445		0	1005 0 00017		0010	

MAERKISCH 19 gets A = $-0.11985\pm0.00017\pm0.00012.$

 2 BROWN 18 gets A = $-0.12054 \pm 0.00044 \pm 0.00068$ and $\lambda = -1.2783 \pm 0.0022$. We quote the combined values that include the earlier UCNA measurements (MENDEN-HALL 13).

 3 DARIUS 17 calculates this value from the measurement of the *a* parameter (see below).

 4 This MUND 13 value includes earlier PERKEO II measurements (ABELE 02 and ABELE 97D).

- ⁵ MOSTOVOI 01 measures the two *P*-odd correlations *A* and *B*, or rather *SA* and *SB*, where *S* is the *n* polarization, in free neutron decay.
- $\frac{6}{2}$ YEROZOLIMSKY 97 makes a correction to the EROZOLIMSKII 91 value.
- ⁷ MENDENHALL 13 gets $A = -0.11954 \pm 0.00055 \pm 0.00098$ and $\lambda = -1.2756 \pm 0.0030$. We quote the nearly identical values that include the earlier UCNA measurement (PLASTER 12), with a correction to that result.
- 8 This PLASTER 12 value is identical with that given in LIU 10, but the experiment is now described in detail.
- ⁹ This is the combined result of ABELE 02 and ABELE 97D.
- 10 These experiments measure the absolute value of g_A/g_V only.
- ¹¹ KROHN 75 includes events of CHRISTENSEN 70.
- ¹² KROPF 74 reviews all data through 1972.

$$\lambda \equiv g_A / g_V$$

e⁻ ASYMMETRY PARAMETER A

This is the neutron-spin electron-momentum correlation coefficient. Unless otherwise noted, the values are corrected for radiative effects and weak magnetism. In the Standard Model, A is related to $\lambda \equiv g_A/g_V$ by $A = -2 \lambda (\lambda + 1) / (1 + 3\lambda^2)$; this assumes that g_A and g_V are real.

VALUE	DOCUMENT ID		TECN	COMMENT
-0.11958 ± 0.00021 OUR AVERAG	E Error includes	scale	factor o	of 1.2.
$-0.11985 \pm 0.00017 \pm 0.00012$	¹ MAERKISCH	19	SPEC	pulsed cold n, polarized
$-0.12015 \pm 0.00034 \pm 0.00063$	² BROWN	18	UCNA	Ultracold n, polarized
$-0.11926 \pm 0.00031 \substack{+ 0.00036 \\ - 0.00042}$	³ MUND	13	SPEC	Cold <i>n</i> , polarized
$-0.1160\ \pm 0.0009\ \pm 0.0012$	LIAUD	97	ТРС	Cold n, polarized
-0.1135 ± 0.0014	⁴ YEROZLIM	97	CNTR	Cold n, polarized
-0.1146 ± 0.0019	BOPP	86	SPEC	Cold n, polarized

• • • We do not use the following data for averages, fits, limits, etc. • • •

$-0.11952\!\pm\!0.00110$	⁵ MENDENHAL	L13	UCNA	See BROWN 18
$-0.11966 \pm 0.00089 {+0.00123 \atop -0.00140}$	⁶ PLASTER	12	UCNA	See MENDENHALL 13
$-0.11966 \pm 0.00089 {+0.00123 \atop -0.00140}$	LIU	10	UCNA	See PLASTER 12
$-0.1138 \pm 0.0046 \pm 0.0021$	PATTIE	09	SPEC	Ultracold n, polarized
-0.1189 ± 0.0007	⁷ ABELE	02	SPEC	See MUND 13
-0.1168 ± 0.0017	⁸ MOSTOVOI	01	CNTR	Inferred
-0.1189 ± 0.0012	ABELE	97 D	SPEC	Cold <i>n</i> , polarized
$-0.1160\ \pm 0.0009\ \pm 0.0011$	SCHRECK	95	TPC	See LIAUD 97
-0.1116 ± 0.0014	EROZOLIM	91	CNTR	See YEROZOLIM- SKY 97
-0.114 ± 0.005	⁹ EROZOLIM	79	CNTR	Cold <i>n</i> , polarized
-0.113 ± 0.006	⁹ KROHN	75	CNTR	Cold <i>n</i> , polarized

¹MAERKISCH 19 further derive a value for the CKM-element $|V_{ud}| = 0.97351 \pm 0.00060$, using $\tau_n = 879.7(8)$ sec and the relation from CZARNECKI 18.

² BROWN 18 gets $A = -0.12054 \pm 0.00044 \pm 0.00068$ and $\lambda = -1.2783 \pm 0.0022$. We quote the combined values that include the earlier UCNA measurements (MENDEN-HALL 13).

³ This MUND 13 value includes earlier PERKEO II measurements (ABELE 02 and ABELE 97D), with a correction to those results.

⁴YEROZOLIMSKY 97 makes a correction to the EROZOLIMSKII 91 value.

⁵ MENDENHALL 13 gets $A = -0.11954 \pm 0.00055 \pm 0.00098$ and $\lambda = -1.2756 \pm 0.0030$. We quote the nearly identical values that include the earlier UCNA measurement (PLASTER 12), with a correction to that result.

 6 This PLASTER 12 value is identical with that given in LIU 10, but the experiment is _ now described in detail.

7 This is the combined result of ABELE 02 and ABELE 97D.

⁸ MOSTOVOI 01 calculates this from its measurement of $\lambda = g_A/g_V$ above.

⁹ These results are not corrected for radiative effects and weak magnetism, but the corrections are small compared to the errors.

$\overline{\nu}_{e}$ ASYMMETRY PARAMETER B

This is the neutron-spin antineutrino-momentum correlation coefficient. In the Standard Model, B is related to $\lambda \equiv g_A/g_V$ by $B = 2\lambda(\lambda - 1) / (1 + 3\lambda^2)$; this assumes that g_A and g_V are real.

VALUE	DOCUMENT ID		TECN	COMMENT			
0.9807 ± 0.0030 OUR AVERAGE							
$0.9802 \pm 0.0034 \pm 0.0036$	SCHUMANN	07	CNTR	Cold n, polarized			
$0.967 \pm 0.006 \pm 0.010$	KREUZ	05	CNTR	Cold n, polarized			
0.9801 ± 0.0046	SEREBROV	98	CNTR	Cold n, polarized			
0.9894 ± 0.0083	KUZNETSOV	95	CNTR	Cold n, polarized			
1.00 ± 0.05	CHRISTENSE	170	CNTR	Cold n, polarized			
0.995 ± 0.034	EROZOLIM	70C	CNTR	Cold n, polarized			
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
0.9876 ± 0.0004	¹ MOSTOVOI	01	CNTR	Inferred			

¹MOSTOVOI 01 calculates this from its measurement of $\lambda = g_A/g_V$ above.

PROTON ASYMMETRY PARAMETER C

Describes the correlation between the neutron spin and the proton momentum. In the Standard Model, C is related to $\lambda \equiv g_A/g_V$ by $C = -x_c (A + B) = x_c 4\lambda/(1 + 3\lambda^2)$, where $x_c = 0.27484$ is a kinematic factor; this assumes that g_A and g_V are real.

VALUE	DOCUMENTID	TECN	COMMENT
$-0.2377 \pm 0.0010 \pm 0.0024$	SCHUMANN 0	8 CNTR	Cold <i>n</i> , polarized

$e-\overline{\nu}_e$ ANGULAR CORRELATION COEFFICIENT a

For a review of past experiments and plans for future measurements of the *a* parameter, see WIETFELDT 05. In the Standard Model, *a* is related to $\lambda \equiv g_A/g_V$ by $a = (1 - \lambda^2)/(1 + 3\lambda^2)$; this assumes that g_A and g_V are real

$- \chi$) / (1 + 3χ), this assumes that g_A and g_V are real.							
VALUE	DOCUMENT ID		TECN	COMMENT			
-0.1059 ± 0.0028 OUR AVERAGE							
$-0.1090 \pm 0.0030 \pm 0.0028$	¹ DARIUS	17	SPEC	Cold <i>n</i> , unpolarized			
-0.1054 ± 0.0055	BYRNE	02	SPEC	Proton recoil spectrum			
-0.1017 ± 0.0051	STRATOWA	78	CNTR	Proton recoil spectrum			
-0.091 ± 0.039	GRIGOREV	68	SPEC	Proton recoil spectrum			
\bullet \bullet \bullet We do not use the following	data for averages	s, fits,	limits, e	etc. • • •			
	2						

 -0.1045 ± 0.0014 ² MOSTOVOI 01 CNTR Inferred

¹DARIUS 17 exploits a "wishbone" correlation, where the p time of flight is correlated with the momentum of the electron in delayed coincidence.

 $^2\,{\rm MOSTOVOI}$ 01 calculates this from its measurement of $\lambda{=}g_A/g_V$ above.

ϕ_{AV} , PHASE OF g_A RELATIVE TO g_V

Time reversal invariance requires this to be 0 or 180° . This is related to D given in the next data block and $\lambda \equiv g_A/g_V$ by $\sin(\phi_{AV}) \equiv D(1+3\lambda^2)/2|\lambda|$; this assumes that g_A and g_V are real.

	11 ,					
VALUE (^c	°)	CL%	DOCUMENT ID		TECN	COMMENT
180.017	\pm 0.026 OUR A	VERAGE				
180.012	± 0.028	68	CHUPP	12	CNTR	Cold n, polarized $> 91\%$
180.04	± 0.09		SOLDNER	04	CNTR	Cold n, polarized
180.08	± 0.13		LISING	00	CNTR	Polarized $> 93\%$
• • • V	Ve do not use th	e following	data for average	es, fits	s, limits,	etc. • • •
180.013	± 0.028		MUMM	11	CNTR	See CHUPP 12
179.71	± 0.39		EROZOLIM	78	CNTR	Cold n, polarized
180.35	± 0.43		EROZOLIM	74	CNTR	Cold n, polarized
181.1	± 1.3]	KROPF	74	RVUE	n decay
180.14	± 0.22		STEINBERG	74	CNTR	Cold n, polarized
-						

¹ KROPF 74 reviews all data through 1972.

TRIPLE CORRELATION COEFFICIENT D

These are measurements of the component of *n* spin perpendicular to the decay plane in β decay. Should be zero if *T* invariance is not violated.

VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT
$-$ 1.2 \pm 2.0 OUR AVERAGE				
$-$ 0.94 \pm 1.89 \pm 0.97	CHUPP	12	CNTR	Cold <i>n</i> , polarized $> 91\%$
$-$ 2.8 \pm 6.4 \pm 3.0	SOLDNER	04	CNTR	Cold <i>n</i> , polarized
-6 ± 12 ± 5	LISING	00	CNTR	Polarized > 93%

• • We do not use the following data for averages, fits, limits, etc. • • •

$- \ 0.96 \pm \ 1.89 \pm 1.01$	MUMM	11	CNTR	See CHUPP 12
+22 ±30	EROZOLIM	78	CNTR	Cold n, polarized
-27 ± 50	¹ EROZOLIM	74	CNTR	Cold n, polarized
-11 ± 17	STEINBERG	74	CNTR	Cold n, polarized

¹ EROZOLIMSKII 78 says asymmetric proton losses and nonuniform beam polarization may give a systematic error up to 30×10^{-4} , thus increasing the EROZOLIMSKII 74 error to 50×10^{-4} . STEINBERG 74 and STEINBERG 76 estimate these systematic errors to be insignificant in their experiment.

TRIPLE CORRELATION COEFFICIENT R

Another test of time-reversal invariance. R measures the polarization of the electron in the direction perpendicular to the plane defined by the neutron spin and the electron momentum. R = 0 for T invariance.

VALUE	DOCUMENT ID		TECN	COMMENT
$+0.004\pm0.012\pm0.005$	¹ KOZELA	12	CNTR	Mott polarimeter
$\bullet~\bullet~$ We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
$+0.008\!\pm\!0.015\!\pm\!0.005$	KOZELA	09	CNTR	See KOZELA 12

¹ KOZELA 12 also measures the polarization of the electron along the direction of the neutron spin. This is nonzero in the Standard Model; the correlation coefficient is $N = +0.067 \pm 0.011 \pm 0.004$.

n REFERENCES

We have omitted some papers that have been superseded by later experiments. See our earlier editions.

ABEL	20	PRL 124 081803	C. Abel <i>et al.</i>	(nEDM Collab.)
KLOPF	19	PRL 122 222503	M. Klopf <i>et al.</i>	(PERKEO II Collab.)
MAERKISCH	19	PRL 122 242501	B. Maerkisch <i>et al.</i>	(TUM, ILL, +)
BEREZHIANI	18	EPJ C78 717	Z. Berezhiani <i>et al.</i>	(AQUI, INFN, ILLG+)
BROWN	18	PR C97 035505	M.AP. Brown <i>et al.</i>	(UCNA Collab.)
CZARNECKI	18	PRL 120 202002	A. Czarnecki, W.J. Marcian	io, A. Sirlin ` (ALBE+)́
EZHOV	18	JETPL 107 671	V.F. Ezhov <i>et al.</i>	(PNPI, LENSU, CAEN+)
PATTIE	18	SCI 360 627	R.W. Pattie Jr. et al.	(LASL, IND, NCSU+)
SEREBROV	18	PR C97 055503	A.P. Serebrov et al.	(PNPI, ILLG, RAL)
Also		JETPL 106 623	A.P. Serebrov <i>et al.</i>	(PNPI, ILLG, RAL)
SUN	18	PR C97 052501	X. Sun <i>et al.</i>	UCNA Collab.)
AHARMIM	17	PR D96 092005	B. Aharmin <i>et al.</i>	(SNO Collab.)
DARIUS	17	PRL 119 042502	G. Darius <i>et al.</i>	(aCORN at NIST)
SAHOO	17	PR D95 013002	B.K. Sahoo	(AHMEB)
BALES	16	PRL 116 242501	M.J. Bales <i>et al.</i>	(RDK II Collab.)
GRANER	16	PRL 116 161601	B. Graner <i>et al.</i>	(WASH)
Also		PRL 119 119901 (errat.)	B. Graner <i>et al.</i>	(WASH)
MOHR	16	RMP 88 035009	P.J. Mohr, D.B. Newell, B.	N. Taylor (NIST)
PHILLIPS	16	PRPL 612 1	D.G. Phillips II et al.	· · · · ·
ABE	15C	PR D91 072006	K. Abe <i>et al.</i>	(Super-Kamiokande Collab.)
ARZUMANOV	15	PL B745 79	S. Arzumanov <i>et al.</i>	(ILLG, KIAE)
PENDLEBURY	15	PR D92 092003	J.M. Pendlebury et al.	(ETHZ, PSI, SUSS)
SEREBROV	15	PR C92 055501	A.P. Serebrov et al.	(PNPI, ILLG, IOFF)
EPSTEIN	14	PR D90 074027	Z. Epstein, G. Paz, J. Roy	(UMD, WAYN)
MYERS	14	PRL 113 262506	L.S. Myers et al.	(COMPTON/MÀX-lab Collab.)
SEREBROV	14	JETPL 99 4	A.P. Serebrov et al.	(PNPI, ILL, IOFF)
MENDENHALL	13	PR C87 032501	M.P. Mendenhall et al.	(UCNA Collab.)
MUND	13	PRL 110 172502	D. Mund <i>et al.</i>	(HEID, ILLG)
YUE	13	PRL 111 222501	A.T. Yue <i>et al.</i>	(UMD, NIST, TENN, ORNL+)
ARZUMANOV	12	JETPL 95 224	S.S. Arzumanov et al.	(KIAE)
		Translated from ZETFP 95	5 248.	· · · · · ·

CHUPP GRIESSHAM	12 12	PR C86 035505 PPNP 67 841	T.E. Chupp <i>et al.</i> H.W. Griesshammer <i>et al.</i>	(MICH, UCB, WASH+) (GWU, MCHS+)
KOZELA	12	PR C85 045501	A. Kozela <i>et al.</i>	(nTRV Collab.)
MOHR	12	RMP 84 1527	P.J. Mohr, B.N. Taylor, D.B.	Newell (NIST)
PLASTER	12	PR C86 055501	B. Plaster et al.	(UCNA Collab.)
STEYERL	12	PR C85 065503	A. Steyerl et al.	(URI, SUSS)
BRESSI	11	PR A83 052101	G. Bressi <i>et al.</i> (I	_EGN, PAVII, PADO, TRST+)
DUBBERS	11	RMP 83 1111 DDI 107 100201	D. Dubbers, M.G. Schmidt	
	11	RMP 83 1173	FF Wietfeldt GI Greene	(NIST, WASH, MICH, EBL+) (THEA TENN)
COOPER	10	PR C81 035503	R.L. Cooper <i>et al.</i>	(MICH, NIST, TULA+)
LIU	10	PRL 105 181803	J. Liu <i>et al.</i>	(UCNA Collab.)
Also		PRL 105 219903 (errat.)	J. Liu <i>et al.</i>	(UCNA Collab.)
PICHLMAIER	10	PL B693 221	A. Pichlmaier et al.	(MUNT, PNPI, ILLG)
ALIAREV	09A	PR D80 032003	I. Altarev <i>et al.</i>	(MUNI, RAL, CAEN+)
	09	PRL 102 172301	A. Kozela <i>et al.</i>	(JAGL, CRAC, PSI, CAEN+)
MOHAPATRA	09	IP G36 104002	R N Mohanatra	(TALL, NESO)
PATTIE	09	PRL 102 012301	R.W. Pattie Jr. <i>et al.</i>	(Los Alamos UCNA Collab.)
SEREBROV	09A	NIM A611 137	A.P. Serebrov <i>et al.</i>	(PNPI, IOFF, ILLG+)
ABELE	08	PPNP 60 1	H. Abele	`(HEID)́
MOHR	08	RMP 80 633	P.J. Mohr, B.N. Taylor, D.B.	Newell (NIST)
SCHUMANN	08	PRL 100 151801	M. Schumann <i>et al.</i>	(HEID, ILLG, KARL+)
SEREBROV	08	PL 8003 181	A.P. Serebrov <i>et al.</i>	(PNPI, IUFF, ILLG+)
BANLK	07	PRI 90 161603	G Ban et al	(CAEN AGL PSL INR+)
BELUSHKIN	07	PR C75 035202	M.A. Belushkin, H.W. Hamm	er, UG. Meissner (BONN+)
LAMOREAUX	07	PRL 98 149101	S.K. Lamoreaux, R. Golub	(YALE, NCSU)
SCHUMANN	07	PRL 99 191803	M. Schumann et al.	(HEID, ÌLLG, KARL $+$)
SILENKO	07	PPNL 4 468	A.Ya. Silenko	(Belarussian U.)
	06	Iranslated from PFECAY 6	(84. C.A. Bakar at al	
	00	NAT 444 1050	LS Nico et al	(RAL, 5055, ILLG)
SEVERIJNS	06	RMP 78 991	N. Severiins, M. Beck, O. Na	viliat-Cuncic (LEUV+)
KREUZ	05	PL B619 263	M. Kreuz <i>et al.</i> (HEID, ILLG, MANZ, KARL+)
MOHR	05	RMP 77 1	P.J. Mohr, B.N. Taylor	(NIST)
NICO	05	PR C71 055502	J.S. Nico <i>et al.</i>	(NIST, TULN, IND, TENN+)
SCHUMACHER	05	PPNP 55 567	M. Schumacher	(GOET)
SEREBROV	05	PL B005 72	A.P. Serebrov et al.	(PNPI, JINR, ILLG)
AISO		Translated from UFN 175 9	A.P. Serebrov <i>et al.</i> 05.	(PPINI, JINK, ILLG)
WIETFELDT	05	MPL A20 1783	F.E. Wietfeldt	(TULN)
SOLDNER	04	PL B581 49	T. Soldner <i>et al.</i>	(ILLG, MUNT)
DEWEY	03	PRL 91 152302	M.S. Dewey <i>et al.</i>	(NIST, TULN, IND+)
KOSSERT	03	EPJ A16 259	K. Kossert <i>et al.</i>	(Mainz MAMI Collab.)
	03	PRL 88 102301 PRI 00 102501	N. Nossert <i>et al.</i> M. Lundin <i>et al.</i>	(Wainz WAWI Collab.)
ABELE	02	PRI 88 211801	H Abele et al	(PERKEO-II Collab.)
BECK	02	JETPL 76 332	M. Beck <i>et al.</i>	(LEUV, SUSS, KIAE, PNPI)
		Translated from ZETFP 76	392.	(· · · ·)
BYRNE	02	JP G28 1325	J. Byrne <i>et al.</i>	
	02B	PR D60 032004	J. Chung <i>et al.</i>	(SOUDAN-2 Collab.)
100310001	01	Translated from YAF 64 20	40.	
ARZUMANOV	00	PL B483 15	S. Arzumanov <i>et al.</i>	
GAL	00	PR C61 028201	A. Gal	
KOLB	00	PRL 85 1388	N.R. Kolb et al.	
LAMOREAUX	00	PR D61 051301	S.K. Lamoreaux, R. Golub	
	00	NP A674 449 DD C62 055501	M.I. Levchuk, A.I. L vov	(BELA, LEBD)
HARRIS	99	PRI 82 904	PG Harris et al	(NIST emit Collab.)
KESSLER	99	PL A255 221	E.G. Kessler Jr <i>et al.</i>	
MOHR	99	JPCRD 28 1713	P.J. Mohr, B.N. Taylor	(NIST)
Also		RMP 72 351	P.J. Mohr, B.N. Taylor	(NIST)
SEREBROV	98	JETP 86 1074	A.P. Serebrov <i>et al.</i>	
ABELE	97D	PL R407 212	1903. H Abele et al	
KOPECKY	97	PR C56 2229	S. Kopecky et al.	
LIAUD	97	NP A612 53	P. Liaud et al.	(ILLG, LAPP)
YEROZLIM	97	PL B412 240	B.G. Erozolimsky <i>et al.</i>	(HARV, PNPI, KIAE)
ALTAREV	96	PAN 59 1152	I.S. Altarev <i>et al.</i>	(PNPI)
		Translated from YAF 59 12	U4.	

HTTP://PDG.LBL.GOV

Page 16

Created: 9/11/2020 15:16

BONDAREN	96	JETPL 64 416 Translated from ZETEP 64	L.N. Bondarenko <i>et al.</i> 382	(KIAE)
BYRNE MOSTOVOI	96 96	EPL 33 187 PAN 59 968	J. Byrne <i>et al.</i> Y.A. Mostovoy	(SUSS, ILLG) (KIAE)
NORMAN	96	Translated from YAF 59 10 PR D53 4086	13. F.B. Norman, I.N. Bahcall, M. G	Goldhaber (I BI +)
IGNATOVICH	95	JETPL 62 1	V.K. Ignatovich	(JINR)
KOESTER	95	PR C51 3363	3. L. Koester <i>et al.</i>	(MUNT, JINR, LATV)
KOPECKY	95	PRL 74 2427	S. Kopecky et al.	· · · · · · · · · · · · · · · · · · ·
KUZNETSOV	95	PRL 75 794	I.A. Kuznetsov et al.	(PNPI, KIAE, HARV+)
SCHRECK	95	PL B349 427	K. Schreckenbach <i>et al.</i>	(MUNT, ILLG, LAPP)
BALDO	94	ZPHY C63 409	M. Baldo-Ceolin <i>et al.</i>	(HEID, ILLG, PADO+)
DIFILIPPO	94	PRL 73 1481	F. DiFilippo <i>et al.</i>	(MIT)
Also	~ 1	PRL 71 1998	V. Natarajan <i>et al.</i>	(MIT)
GOLUB	94	PRPL 237C 1	R. Golub, K. Lamoreaux	(HAHN, WASH)
MAMPE	93	JEIPL 5/ 82 Translated from 7ETED 57	B. Mampe <i>et al.</i>	(KIAE)
ΔΙΤΔΡΕΥ	92	PI B276 242	IS Altarev et al	(PNPI)
NESVIZHEV	92	IFTP 75 405	V V Nesvizhevsky et al	(PNPI IINR)
	52	Translated from ZETF 102	740.	(,
ALBERICO	91	NP A523 488	W.M. Alberico, A. de Pace, M. F	Pignone (TORI)
DUBBERS	91	NP A527 239c	D. Dubbers	(ILLG)
Also		EPL 11 195	D. Dubbers, W. Mampe, J. Dohr	ner (ILLG, HEID)
EROZOLIM	91	PL B263 33	B.G. Erozolimsky et al.	(PNPI, KIAE)
Also		SJNP 52 999	B.G. Erozolimsky et al.	(PNPI, KIAE)
		Translated from YAF 52 15	83.	· · · · · ·
EROZOLIM	91B	SJNP 53 260	B.G. Erozolimsky, Y.A. Mostovoy	/ (KIAE)
	01	Iranslated from YAF 53 41	8. I Calina induces and a f	
	91	PRL 00 1015	J. Schmiedmayer <i>et al.</i>	(TUVV, ORNL)
	91	MPL A0 2579	VV.S. VVOOICOCK	
ALFINEINKOV	90	Translated from 7FTFP 52	984	(PNPI, JINK)
BALDO-	90	PL R236 95	M Baldo-Ceolin <i>et al</i>	(PADO PAVI HEIDP+)
BERGER	90	PL B240 237	C Berger <i>et al</i>	(FRE IUS Collab.)
BRESSI	90	NC 103A 731	G Bressi et al	(PAVI ROMA MILA)
BYRNE	90	PRI 65 289	I Byrne et al (S	USS NBS SCOT CBNM)
GREEN	90	JP G16 L75	K. Green. D. Thompson	(RAL)
RAMSEY	90	ARNPS 40 1	N.F. Ramsev	(HARV)
ROSE	90	PL B234 460	K.W. Rose <i>et al.</i>	(GOET. MPCM. MANZ)
ROSE	90B	NP A514 621	K.W. Rose et al.	(GOET, MPCM)
SMITH	90	PL B234 191	K.F. Smith <i>et al.</i>	(SUSS, RAL, HARV+)
BRESSI	89	ZPHY C43 175	G. Bressi et al. (II	NFN, MILA, PAVI, ROMA)
DOVER	89	NIM A284 13	C.B. Dover, A. Gal, J.M. Richard	(BNL, HEBR+)
KOSSAKOW	89	NP A503 473	R. Kossakowski <i>et al.</i>	(LAPP, SAVO, ISNG+)
MAMPE	89	PRL 63 593	W. Mampe <i>et al.</i>	(ILLG, RISL, SUSS, URI)
MOHAPATRA	89	NIM A284 1	R.N. Mohapatra	(UMD)
PAUL	89	ZPHY C45 25	W. Paul et al. (BC	ONN, WUPP, MPIH, ILLG)
SCHMIEDM	89	NIM A284 137	J. Schmiedmayer, H. Rauch, P. F	Riehs (WIEN)
BAUMANN	88	PR D37 3107	J. Baumann <i>et al.</i>	(BAYR, MUNI, ILLG)
KOESTER	88	ZPHY A329 229	L. Koester, W. Waschkowski, J.	Meier (MUNI, MUNI)
LAST	88	PRL 60 995	I. Last <i>et al.</i>	(HEIDP, ILLG, ANL)
SCHMIEDM	88	PRL 61 1065	J. Schmiedmayer, H. Rauch, P. H	Riehs (TUW)
Also	00	PRL 61 2509 (erratum)	J. Schmiedmayer, H. Rauch, P. F	Riehs (TUVV)
SPIVAK	88	JETP 0/ 1/35 Translated from ZETE 0/ 1	P.E. Spivak	(KIAE)
COHEN	87	RMP 50 1121	 FR Cohen BN Taylor	(RISC NBS)
ALEKSANDR	86	S INP 44 900	Yu A Aleksandrov <i>et al</i>	(1000, 1000)
	00	Translated from YAE 44 13	84.	
ALTAREV	86	JETPL 44 460	I.S. Altarev et al.	(PNPI)
		Translated from ZETFP 44	360.	()
BOPP	86	PRL 56 919	P. Bopp et al.	(HEIDP, ANL, ILLG)
Also		ZPHY C37 179	E. Klempt <i>et al.</i>	(HEIDP, ANL, ILLG)
CRESTI	86	PL B177 206	M. Cresti <i>et al.</i>	(PADO)
Also	00	PL B200 587 (erratum)	M. Cresti <i>et al.</i>	(PADO)
GREENE	80	PKL 50 819	G.L. Greene <i>et al.</i>	(NBS, ILLG)
KUESTER	80 06	Physica B137 282	L. Koester <i>et al.</i>	
NUSVINISEV	00	Translated from 7FTFP 44	444.	a.i. iereknov (KIAE)

TAKITA DOVER	86 85	PR D34 902 PR C31 1423	M. Takita <i>et al.</i> C.B. Dover, A. Gal, I.M. Richard	(KEK, TOKY+) (BNL)
FIDECARO	85	PL 156B 122	G Fidecaro <i>et al</i>	(CERN III G PADO+)
PARK	85B	NP B252 261	H.S. Park <i>et al.</i>	(IMB Collab.)
BATTISTONI	84	PL 133B 454	G. Battistoni <i>et al.</i>	(NUSEX Collab.)
JONES	84	PRL 52 720	T.W. Jones et al.	(IMB Collab.)
PENDLEBURY	84	PL 136B 327	J.M. Pendlebury <i>et al.</i>	(SUSS, HARV, RAL+)
CHERRY	83	PRL 50 1354	M.L. Cherry et al.	(PENN, BNL)
DOVER	83	PR D27 1090	C.B. Dover, A. Gal, J.M. Richard	(BNL)
KABIR	83	PRL 51 231	P.K. Kabir	(HARV)
MOSTOVOY	83	JETPL 37 196	Y.A. Mostovoy	(KIAE)
		Translated from ZETFP 37	162.	
ROY	83	PR D28 1770	A. Roy <i>et al.</i>	(TATA)
VAIDYA	83	PR D27 486	S.C. Vaidya <i>et al.</i>	(TATA)
GAEHLER	82	PR D25 2887	R. Gahler, J. Kalus, W. Mampe	(BAYR, ILLG)
GREENE	82	Metrologia 18 93	G.L. Greene et al.	(YALE, HARV, ILLG+)
ALTAREV	81	PL 102B 13	I.S. Altarev <i>et al.</i>	(PNPI)
BARABANOV	80	JETPL 32 359	I.R. Barabanov <i>et al.</i>	(PNPI)
		Translated from ZETFP 32	384.	(
BYRNE	80	PL 92B 274	J. Byrne <i>et al.</i>	(SUSS, RL)
KOSVINTSEV	80	JETPL 31 236	Y.Y. Kosvintsev <i>et al.</i>	(JINR)
	00	Iranslated from ZETFP 31		
	80	PRL 44 1310	R.N. Monapatra, R.E. Marshak	(CUNY, VPI)
ALIAREV	79	JETPL 29 730 Translated from ZETED 20	I.S. Altarev <i>et al.</i>	(PNPI)
	70	S IND 30 356	194. B.C. Erozolimsky at al	(KIVE)
	19	Translated from VAE 30.69	2	(RIAE)
NORMAN	79	PRI 43 1226	F.B. Norman, A.G. Seamster	(WASH)
BONDAREN	78	IETPI 28 303	I N Bondarenko <i>et al</i>	(KIAE)
BOND/ INCLINE.	10	Translated from ZETFP 28	328.	(((()(E))
Also		Smolenice Conf.	P.G. Bondarenko	(KIAE)
EROZOLIM	78	SJNP 28 48	B.G. Erozolimsky <i>et al.</i>	(KIAE)
		Translated from YAF 28 98		
STRATOWA	78	PR D18 3970	C. Stratowa, R. Dobrozemsky, P. W	/einzierl (SEIB)
EROZOLIM	77	JETPL 23 663	B.G. Erozolimsky et al.	(KIAE)
		Translated from ZETFP 23	720.	
KOESTER	76	PRL 36 1021	L. Koester <i>et al.</i>	
STEINBERG	76	PR D13 2469	R.I. Steinberg <i>et al.</i>	(YALE, ISNG)
DOBROZE	75	PR D11 510	R. Dobrozemsky <i>et al.</i>	(SEIB)
KROHN	75	PL 55B 175	V.E. Krohn, G.R. Ringo	(ANL)
EROZOLIM	74	JETPL 20 345	B.G. Erozolimsky <i>et al.</i>	
KDODE	74	Translated from ZETFP 20		(1117)
KRUPF	74	ZPHY 207 129	H. Kropt, E. Paul	
	74	NP A154 100	H. Paul	(VIEN)
STEINBERG	74	PRL 33 41	R.I. Steinberg <i>et al.</i>	(YALE, ISNG)
COHEN	73 72	JPCRD 2 664	E.R. Cohen, B.N. Taylor	(RISC, NBS)
KRUHN	73	PR D8 1305	V.E. Kronn, G.R. Ringo	
	12	PR U5 1028	C.J. Christensen <i>et al.</i>	(KISU)
CHRISTENSEN	70	PR CI 1693	C.J. Christensen, V.E. Krohn, G.R.	Ringo (ANL)
EKUZULIM	70C	PL 33B 351	B.G. Erozolimsky <i>et al.</i>	(KIAE)
GRIGOREV	68	SJNP 6 239 Translated from VAE 6 200	V.K. Grigoriev <i>et al.</i>	(TEP)
KBUHN	66	DR 1/8 1203	VE Krohn C. P. Dingo	
	56	DD 104 254	T D Loo C N Vange	
	50	1 11 107 207	I.D. Lee, C.N. Idlig	(COLO, DNL)

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$