$$\omega(1650)$$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

See also the $\omega(1420)$ particle listing.

ω(1650) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
1670 \pm 30 OUR	1670 \pm 30 OUR ESTIMATE						
• • • We do not us	ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						
$1651 \pm 3^{+16}_{-6}$	183k	¹ ABLIKIM	19AQ	BES	$J/\psi \rightarrow K^+ K^- \pi^0$		
1673^{+}_{-} $^{6}_{7}$		ACHASOV	19	SND	$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$		
$1671 \pm 6 \pm 10$	824	² AKHMETSHIN	17A	CMD3	1.4–2.0 $e^+e^- ightarrow \omega \eta$		
$1660\pm~10$	898	³ ACHASOV	16 B	SND	1.34–2.00 $e^+e^- ightarrow \omega \eta$		
$1680\pm~10$	13.1k	⁴ AULCHENKO	15A	SND	$1.05-1.80\ e^+e^- ightarrow m^+\pi^-\pi^0$		
$1667\pm~13\pm~6$		AUBERT	07 AU	BABR	10.6 $e^+e^- \rightarrow \omega \pi^+\pi^-\gamma$		
$1645\pm$ 8	13	AUBERT	06 D	BABR	10.6 $e^+e^- \rightarrow \omega \eta \gamma$		
$1660\pm~10\pm~2$		AUBERT,B	04N	BABR	$10.6 e^+ e^- \rightarrow \pi^+ \pi^- \pi^0 \gamma$		
$1770\pm~50\pm60$	1.2M	⁵ ACHASOV	03 D	RVUE	0.44–2.00 $e^+_0 e^- \rightarrow$		
1619± 5		⁶ HENNER	02	RVUE	$\begin{array}{ccc} \pi^+ \pi^- \pi^0 \\ 1.2 - 2.0 \ e^+ e^- \rightarrow \ \rho \pi, \end{array}$		
$1700\pm~20$		EUGENIO	01	SPEC	$18 \pi^{-} p \rightarrow \omega \eta n$		
$1705\pm~26$	612	⁷ AKHMETSHIN	00 D	CMD2	$e^+e^- \rightarrow \omega \pi^+ \pi^-$		
1820^{+190}_{-150}		⁸ ACHASOV	98н	RVUE	$e^+e^- \rightarrow \pi^+\pi^-\pi^0$		
$1840 {+100 \atop -70}$		⁹ ACHASOV	98н	RVUE	$e^+e^- \rightarrow \omega \pi^+\pi^-$		
1780^{+170}_{-300}		¹⁰ ACHASOV	98н	RVUE	$e^+e^- \rightarrow K^+K^-$		
~ 2100		¹¹ ACHASOV	98H	RVUE	$e^+e^- \rightarrow \kappa^0_{S} \kappa^{\pm} \pi^{\mp}$		
$1606\pm$ 9		¹² CLEGG	94	RVUE	5		
$1662\pm~13$	750	¹³ ANTONELLI	92	DM2	$1.34-2.4e^+e^- \rightarrow \rho\pi,$		
$1670\pm~20$		ATKINSON	83 B	OMEG	$20-70 \gamma p \rightarrow 3\pi X$		
$1657\pm~13$		CORDIER	81	DM1	$e^+e^- \rightarrow \omega 2\pi$		
$1679\pm~34$	21	ESPOSITO	80	FRAM	$e^+e^- \rightarrow 3\pi$		
$1652\pm~17$		COSME	79	OSPK	$e^+e^- \rightarrow 3\pi$		
1 Could also be $ ho($	1700). Br	anching ratio J/ψ -	$\rightarrow X \pi$	$^{0} \rightarrow K$	$^{+}\kappa^{-}\pi^{0} = (5.3 \pm 0.3 \substack{+0.6 \\ -0.5}) \times$		

10⁻⁵.

² From a fit of the interfering $\omega(1420)$ and $\omega(1650)$ with a relative phase of π and other parameters floating. 3 From a fit with contributions from $\omega(1420),~\omega(1650),$ and $\phi(1680).$

⁴ From a fit with contributions from ω (782), ϕ (1020), ω (1420), and ω (1650).

⁵ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^+\pi^-\pi^0$ and ANTONELLI 92 on the $\omega\pi^+\pi^-$ final states. Supersedes ACHASOV 99E and ACHASOV 02E.

⁶Using results of CORDIER 81 and preliminary data of DOLINSKY 91 and AN-TONELLI 92.

⁷ Using the data of AKHMETSHIN 00D and ANTONELLI 92. The $\rho\pi$ dominance for the energy dependence of the $\omega(1420)$ and $\omega(1650)$ width assumed.

⁸ Using data from BARKOV 87, DOLINSKY 91, and ANTONELLI 92.

⁹Using the data from ANTONELLI 92.

- ¹⁰Using the data from IVANOV 81 and BISELLO 88B.
- 11 Using the data from BISELLO 91C.
- 12 From a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and ANTONELLI 92. If From the combined fit of the $\rho\pi$ and $\omega\pi\pi$ final states.

ω (1650) WIDTH							
VALUE	(MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
315±	35 OUR E		aution data fan au		- £ 1.		
•••	vve do not	use the foll	owing data for av	erage	s, nts, m	mits, etc. • • •	
$194\pm$	$^{8^+ 15}_{- 7}$	183k	¹ ABLIKIM	19aq	BES	$J/\psi \rightarrow K^+ K^- \pi^0$	
$95\pm$	11		ACHASOV	19	SND	$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$	
$113\pm$	$9\pm~10$	824	² AKHMETSHIN	17A	CMD3	1.4–2.0 $e^+e^- \rightarrow \omega \eta$	
$110\pm$	20	898	³ ACHASOV	16 B	SND	1.34–2.00 $e^+e^- \rightarrow \omega \eta$	
$310\pm$	30	13.1k	⁴ AULCHENKO	15A	SND	$1.05-1.80 \ e^+e^- \to \pi^+\pi^-\pi^0$	
$222\pm$	$25\pm~20$		AUBERT	07 AU	BABR	$10.6 e^+ e^- \to \omega \pi^+ \pi^- \gamma$	
$114\pm$	14	13	AUBERT	06 D	BABR	10.6 $e^+e^- \rightarrow \omega \eta \gamma$	
$230\pm$	$30\pm~20$		AUBERT,B	04N	BABR	10.6 $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma$	
490^{+2}_{-1}	200 ± 130	1.2M	⁵ ACHASOV	03 D	RVUE	$0.44-2.00 \ e^+ e^- \to \pi^+ \pi^- \pi^0$	
$250\pm$	14		⁶ HENNER	02	RVUE	1.2–2.0 $e^+e^- \rightarrow \rho\pi, \omega\pi\pi$	
$250\pm$	50		EUGENIO	01	SPEC	$18 \pi^- p \rightarrow \omega \eta n$	
$370\pm$	25	612	⁷ AKHMETSHIN	00 D	CMD2	$e^+e^- \rightarrow \omega \pi^+\pi^-$	
$113\pm$	20		⁸ CLEGG	94	RVUE		
$280\pm$	24	750	⁹ ANTONELLI	92	DM2	1.34–2.4 $e^+e^- ightarrow ho\pi$, $\omega\pi\pi$	
$160\pm$	20		ATKINSON	83 B	OMEG	20–70 $\gamma p \rightarrow 3\pi X$	
$136\pm$	46		CORDIER	81	DM1	$e^+e^- \rightarrow \omega 2\pi$	
$99\pm$	49	21	ESPOSITO	80	FRAM	$e^+e^- \rightarrow 3\pi$	
$42\pm$	17		COSME	79	OSPK	$e^+e^- \rightarrow 3\pi$	
10		(1700) D			 	u + u = 0 (5.2 + 0.2 + 0.6)	

¹ Could also be $\rho(1700)$. Branching ratio $J/\psi \rightarrow X \pi^0 \rightarrow K^+ K^- \pi^0 = (5.3 \pm 0.3 \pm 0.3 \pm 0.03 \pm$ 10^{-5} .

² From a fit of the interfering $\omega(1420)$ and $\omega(1650)$ with a relative phase of π and other parameters floating.

³ From a fit with contributions from $\omega(1420)$, $\omega(1650)$, and $\phi(1680)$.

⁴ From a fit with contributions from ω (782), ϕ (1020), ω (1420), and ω (1650).

⁵ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^+\pi^-\pi^0$ and ANTONELLI 92 on the $\omega\pi^+\pi^-$ final states. Supersedes ACHASOV 99E and ACHASOV 02E.

⁶Using results of CORDIER 81 and preliminary data of DOLINSKY 91 and AN-TONELLI 92.

⁷ Using the data of AKHMETSHIN 00D and ANTONELLI 92. The $\rho\pi$ dominance for the energy dependence of the $\omega(1420)$ and $\omega(1650)$ width assumed.

⁸ From a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and ANTONELLI 92.

⁹ From the combined fit of the $\rho\pi$ and $\omega\pi\pi$ final states.

ω (1650) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$ ho \pi$	seen
Γ2	$\omega \pi \pi$	seen
Γ ₃	$\omega \eta$	seen
Γ ₄	e^+e^-	seen
Г ₅	$\pi^{0}\gamma$	not seen

$\omega(1650) \Gamma(i)\Gamma(e^+e^-)/\Gamma^2(total)$

$\Gamma(\rho\pi)/\Gamma_{\rm total}$ ×	Г(е+е	⁻)/Γ _{total}			$\Gamma_1/\Gamma imes \Gamma_4/\Gamma$
VALUE (units 10^{-6})	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not us	se the fol	llowing data for ave	rages,	fits, lim	its, etc. • • •
$1.56\ \pm 0.23$	13.1k	¹ AULCHENKO	15A	SND	$1.05-1.80 \ e^+_0 \ e^- \rightarrow$
$1.3 \pm 0.1 \pm 0.1$		AUBERT,B	04N	BABR	$10.6 \stackrel{\pi^+\pi^-}{e^+e^-} \rightarrow \pi^+\pi^-\pi^0\gamma$
$1.2 \ \ \begin{array}{c} +0.4 \\ -0.1 \end{array} \ \ \pm 0.8$	1.2M	^{2,3} ACHASOV	03 D	RVUE	$0.44-2.00 \ e^+_0 e^- \rightarrow$
0.921±0.230		^{4,5} CLEGG	94	RVUE	$\pi^+\pi^-\pi^0$
0.479 ± 0.050	750	^{6,7} ANTONELLI	92	DM2	1.34–2.4 $e^+e^- ightarrow ho\pi$,
					$\omega \pi \pi$

¹ From a fit with contributions from ω (782), ϕ (1020), ω (1420), and ω (1650).

²Calculated by us from the cross section at the peak.

³From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^+\pi^-\pi^0$ and ANTONELLI 92 on the $\omega\pi^+\pi^-$ final states. Supersedes ACHASOV 99E and ACHASOV 02E.

 4 From a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and ANTONELLI 92. ⁵ From the partial and leptonic width given by the authors.

⁶ From the combined fit of the $\rho\pi$ and $\omega\pi\pi$ final states.

⁷ From the product of the leptonic width and partial branching ratio given by the authors.

$\Gamma(\omega \pi \pi)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_2/\Gamma \times \Gamma_4/\Gamma$ VALUE (units 10^{-7}) EVTS DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 07au BABR 10.6 $e^+e^- \rightarrow \omega \pi^+\pi^-\gamma$ AUBERT 7.0 ± 0.5 ^{1,2} ACHASOV 03D RVUE 0.44-2.00 $e^+e^- \rightarrow e^+e^-$ 4.1 ±0.9 ±1.3 1.2M ³ AKHMETSHIN 00D CMD2 1.2–1.38 $e^+e^- \rightarrow \omega \pi^+\pi^-$ 4,5 CLEGG 94 RVIIF 5.40 ± 0.95 3.18 ± 0.80 6,7 ANTONELLI 750 92 DM2 1.34-2.4 $e^+e^- \rightarrow \rho \pi, \omega \pi \pi$ 6.07 ± 0.61

¹Calculated by us from the cross section at the peak.

² From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^+\pi^-\pi^0$ and ANTONELLI 92 on the $\omega\pi^+\pi^-$ final states. Supersedes ACHASOV 99E and ACHASOV 02E.

³Using the data of AKHMETSHIN 00D and ANTONELLI 92. The $\rho\pi$ dominance for the energy dependence of the $\omega(1420)$ and $\omega(1650)$ width assumed.

 $^{4}\,\text{From}$ a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and ANTONELLI 92. ⁵ From the partial and leptonic width given by the authors.

- ⁶ From the combined fit of the $\rho\pi$ and $\omega\pi\pi$ final states.

 7 From the product of the leptonic width and partial branching ratio given by the authors.

$\Gamma(\omega \eta) / \Gamma_{\text{total}} \times \Gamma(e^+ e^-) / \Gamma_{\text{total}} \qquad \Gamma_3 / \Gamma \times \Gamma_4 / \Gamma$						
VALUE (units 10^{-7})	EVTS	DOCUMENT ID		TECN	COMMENT	
\bullet \bullet \bullet We do not	use the fo	ollowing data for av	erage	s, fits, li	mits, etc. • • •	
$5.62\substack{+0.45 \\ -0.42}$		ACHASOV	19	SND	$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$	
$4.5 \ \pm 0.3 \ \pm 0.3$	824	¹ AKHMETSHIN	17A	CMD3	1.4–2.0 $e^+e^- ightarrow \omega \eta$	
$4.4 \hspace{0.1in} \pm 0.5$	898	² ACHASOV	16 B	SND	1.34–2.00 $e^+e^- \rightarrow \omega \eta$	
$5.7 \hspace{0.1in} \pm 0.6$	13	AUBERT	06 D	BABR	10.6 $e^+e^- \rightarrow \omega \eta \gamma$	
< 60 at 90% CL		³ AKHMETSHIN	03 B	CMD2	$e^+e ightarrow \eta \pi^0 \gamma$	
¹ From a fit of t	the interf	ering $\omega(1420)$ and ω	$\omega(165)$	50) with	a relative phase of π and other	

parameters floating. From an alternative fit $\Gamma(\omega(1650) \rightarrow \omega \eta) / \Gamma_{total} \times \Gamma(\omega(1650) \rightarrow \omega \eta$ e^+e^-) = 51 ± 3 eV.

² From a fit with contributions from $\omega(1420)$, $\omega(1650)$, and $\phi(1680)$. ³ $\omega(1650)$ mass and width fixed at 1700 MeV and 250 MeV, respectively.

ω (1650) BRANCHING RATIOS

$\Gamma(\rho\pi)/\Gamma_{\text{total}}$					Г ₁ /Г
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not	use the fo	llowing data for av	erages	, fits, lin	nits, etc. • • •
~ 0.65	1.2M	¹ ACHASOV	03 D	RVUE	$0.44-2.00\ e^+e^- ightarrow c^+\pi^-\pi^0$
$0.380\!\pm\!0.014$		² HENNER	02	RVUE	$1.2-2.0 e^{+}e^{-} \rightarrow \rho\pi, \omega\pi\pi$
¹ From the co ACHASOV 0 Supersedes A ² Assuming the	The second seco	to f ANTONELLI the $\pi^+\pi^-\pi^0$ and 99E and ACHASOV 50) decays into $\rho\pi$	92, A ANTC / 02E. r and (ACHASC DNELLI $\omega\pi\pi$ on	DV 01E, ACHASOV 02E, and 92 on the $\omega \pi^+ \pi^-$ final states. ly.
$\Gamma(\omega\pi\pi)/\Gamma_{max}$					

$(\omega \pi \pi)/tot$	al				12/1
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do no	ot use the fo	llowing data for av	verages	s, fits, lin	nits, etc. • • •
~ 0.35	1.2M	¹ ACHASOV	03 D	RVUE	$0.44-2.00 \ e^+ e^- \rightarrow \pi^+ \pi^- \pi^0$
0.620 ± 0.014		² HENNER	02	RVUE	1.2–2.0 $e^+e^- \rightarrow \rho\pi, \omega\pi\pi$
1 From the $_{0}$	combined fit	of ANTONELLI	92.	ACHASC	OV 01E. ACHASOV 02E. and

From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^+\pi^-\pi^0$ and ANTONELLI 92 on the $\omega\pi^+\pi^-$ final states. Supersedes ACHASOV 99E and ACHASOV 02E.

²Assuming that the $\omega(1650)$ decays into $\rho\pi$ and $\omega\pi\pi$ only.

$\Gamma(e^+e^-)/\Gamma_{\rm tot}$	al				Γ4/	ſΓ
VALUE (units 10^{-7})	EVTS	DOCUMENT ID		TECN	COMMENT	
• • • We do not	use the f	ollowing data for av	erages	, fits, lir	nits, etc. • • •	
~ 18	1.2M	1,2 ACHASOV	03 D	RVUE	$0.44-2.00 \ e^+ e^- \rightarrow 0$	
32±1		² HENNER	02	RVUE	$1.2-2.0 e^+ e^- \rightarrow \rho \pi, \omega \pi \pi$	π
1 Calculated by 2 Assuming tha	us from $^{\cdot}$ t the $\omega(1$	the cross section at 650) decays into $ ho\pi$	the period	eak. $\omega\pi\pi$ on	ly.	
$\Gamma(\pi^0 \gamma) / \Gamma_{\text{total}}$					Г ₅ /	Γ
VALUE		<u>DOCUMENT ID</u>		TECN	COMMENT	

VALUE	DOCUMENT
not seen	¹ ACHASOV

¹ From a fit of a VMD model with two effective resonances with masses of 1450 MeV and 1700 MeV to describe the excited vector states $\omega(1420)$, $\rho(1450)$, $\omega(1650)$, and $\rho(1700)$. The width of the highest mass effective resonance is fixed at 315 MeV.

10D SND

ω (1650) REFERENCES

ABLIKIM	19AQ	PR D100 032004	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ACHASOV	19	PR D99 112004	M.N. Achasov <i>et al.</i>	(SND Collab.)
AKHMETSHIN	17A	PL B773 150	R.R. Akhmetshin et al.	(CMD-3 Collab.)
ACHASOV	16B	PR D94 092002	M.N. Achasov et al.	(SND Collab.)
AULCHENKO	15A	JETP 121 27	V.M. Aulchenko <i>et al.</i>	(SND Collab.)
		Translated from ZETF 14	8 34.	
ACHASOV	10D	PR D98 112001	M.N. Achasov <i>et al.</i>	(SND Collab.)
AUBERT	07AU	PR D76 092005	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	06D	PR D73 052003	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04N	PR D70 072004	B. Aubert <i>et al.</i>	(BABAR Collab.)
ACHASOV	03D	PR D68 052006	M.N. Achasov et al.	(Novosibirsk SND Collab.)
AKHMETSHIN	03B	PL B562 173	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
ACHASOV	02E	PR D66 032001	M.N. Achasov et al.	(Novosibirsk SND Collab.)
HENNER	02	EPJ C26 3	V.K. Henner <i>et al.</i>	
ACHASOV	01E	PR D63 072002	M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.)
EUGENIO	01	PL B497 190	P. Eugenio <i>et al.</i>	· · · · · · · · · · · · · · · · · · ·
AKHMETSHIN	00D	PL B489 125	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
ACHASOV	99E	PL B462 365	M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.)
ACHASOV	98H	PR D57 4334	N.N. Achasov, A.A. Kozhevr	nikov
CLEGG	94	ZPHY C62 455	A.B. Clegg, A. Donnachie	(LANC, MCHS)
ANTONELLI	92	ZPHY C56 15	A. Antonelli <i>et al.</i>	(DM2 Collab.)
BISELLO	91C	ZPHY C52 227	D. Bisello <i>et al.</i>	(DM2 Collab.)
DOLINSKY	91	PRPL 202 99	S.I. Dolinsky <i>et al.</i>	(NOVO)
BISELLO	88B	ZPHY C39 13	D. Bisello <i>et al.</i>	(PADO, CLER, FRAS+)
BARKOV	87	JETPL 46 164	L.M. Barkov <i>et al.</i>	(NOVO)
		Translated from ZETFP 4	6 132.	· · · · · ·
ATKINSON	83B	PL 127B 132	M. Atkinson <i>et al.</i>	(BONN, CERN, $GLAS+$)
CORDIER	81	PL 106B 155	A. Cordier <i>et al.</i>	(ORSAY)
IVANOV	81	PL 107B 297	P.M. Ivanov <i>et al.</i>	(NOVO)
ESPOSITO	80	LNC 28 195	B. Esposito <i>et al.</i>	(FRAS, NAPL, PADO+)
COSME	79	NP B152 215	G. Cosme <i>et al.</i>	(IPN)

HTTP://PDG.LBL.GOV

1.075–2.0 $e^+e^- \rightarrow \pi^{\overline{0}\gamma}$