Other Particle Searches

OMITTED FROM SUMMARY TABLE OTHER PARTICLE SEARCHES

Revised February 2018 by K. Hikasa (Tohoku University).

We collect here those searches which do not appear in any other search categories. These are listed in the following order:

- Concentration of stable particles in matter
- General new physics searches
- Limits on jet-jet resonance in hadron collisions
- Limits on neutral particle production at accelerators
- Limits on charged particles in e^+e^- collisions
- Limits on charged particles in hadron reactions
- Limits on charged particles in cosmic rays
- Searches for quantum black hole production

Note that searches appear in separate sections elsewhere for Higgs bosons (and technipions), other heavy bosons (including W_R , W', Z', leptoquarks, axigluons), axions (including pseudo-Goldstone bosons, Majorons, familons), WIMPs, heavy leptons, heavy neutrinos, free quarks, monopoles, supersymmetric particles, and compositeness.

We no longer list for limits on tachyons and centauros. See our 1994 edition for these limits.

CONCENTRATION OF STABLE PARTICLES IN MATTER

Concentration of Heavy (Charge +1) Stable Particles in Matter

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	data for averages	, fits,	limits, e	etc. • • •
$<4 \times 10^{-17}$	95				Deep sea water, $M=5-1600m_p$
$< 6 \times 10^{-15}$	95	² VERKERK	92	SPEC	Water, $M=10^5$ to 3 \times
$< 7 \times 10^{-15}$	95	² VERKERK	92	SPEC	10^{7} GeV Water, $M = 10^{4}$, 6 ×
$<9 \times 10^{-15} $ $<3 \times 10^{-23}$	95	² VERKERK			10^7 GeV Water, $M=10^8$ GeV
$< 3 \times 10^{-23}$	90	³ HEMMICK	90	SPEC	Water, $M = 1000 m_p$

HTTP://PDG.LBL.GOV

Page 1

$< 2 \times 10^{-21}$	90	³ HEMMICK	90	SPEC	Water, $M = 5000 m_p$
$< 3 \times 10^{-20}$	90	³ HEMMICK	90	SPEC	Water, $M = 10000 m_p$
$< 1. \times 10^{-29}$		SMITH	82 B	SPEC	Water, $M=30-400m_p$
$< 2. \times 10^{-28}$		SMITH	82 B	SPEC	Water, $M=12-1000m_p$
$< 1. \times 10^{-14}$		SMITH	82 B	SPEC	Water, $M > 1000 m_p$
$<$ (0.2–1.) \times 10 ⁻²¹		SMITH	79	SPEC	Water, $M=6-350 m_{p}$

¹YAMAGATA 93 used deep sea water at 4000 m since the concentration is enhanced in deep sea due to gravity.

Concentration of Heavy Stable Particles Bound to Nuclei

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use the foll	owing dat	a for averages, fits,	limits	, etc. •	• •
$< 1.2 \times 10^{-11}$	95	¹ JAVORSEK	01	SPEC	Au, <i>M</i> = 3 GeV
$< 6.9 \times 10^{-10}$	95	$^{ m 1}$ JAVORSEK	01	SPEC	Au, <i>M</i> = 144 GeV
$< 1 \times 10^{-11}$	95	² JAVORSEK	01 B	SPEC	Au, <i>M</i> = 188 GeV
$<1 \times 10^{-8}$	95	² JAVORSEK	01 B	SPEC	Au, <i>M</i> = 1669
$< 6 \times 10^{-9}$	95	² JAVORSEK	01 B	SPEC	GeV Fe, <i>M</i> = 188 GeV
$< 1 \times 10^{-8}$	95	² JAVORSEK	01 B	SPEC	Fe, <i>M</i> = 647 GeV
$< 4 \times 10^{-20}$	90	³ HEMMICK	90	SPEC	C, $M = 100 m_p$
$< 8 \times 10^{-20}$	90	³ HEMMICK	90		C, $M = 1000 m_p$
$< 2 \times 10^{-16}$	90	³ HEMMICK	90	SPEC	C, $M = 10000 m_p$
$< 6 \times 10^{-13}$	90	³ HEMMICK	90	SPEC	Li, $M = 1000 m_{p}$
$< 1 \times 10^{-11}$	90	³ HEMMICK	90	SPEC	Be, $M = 1000 m_p$
$< 6 \times 10^{-14}$	90	³ HEMMICK	90	SPEC	B, $M = 1000 m_p^{r}$
$< 4 \times 10^{-17}$	90	³ HEMMICK	90	SPEC	O, $M = 1000 m_{p}$
$<$ 4 \times 10 ⁻¹⁵	90	³ HEMMICK	90	SPEC	F, $M = 1000 m_p^{P}$
$< 1.5 imes 10^{-13} / nucleon$	68	⁴ NORMAN	89	SPEC	206 _{Pb} <i>X</i> -
$< 1.2 imes 10^{-12} / nucleon$	68	⁴ NORMAN	87	SPEC	56,58 _{Fe} χ^-

 $^{^{1}}$ JAVORSEK 01 search for (neutral) SIMPs (strongly interacting massive particles) bound to Au nuclei. Here $\it M$ is the effective SIMP mass. 2 JAVORSEK 01B search for (neutral) SIMPs (strongly interacting massive particles) bound

GENERAL NEW PHYSICS SEARCHES

This subsection lists some of the search experiments which look for general signatures characteristic of new physics, independent of the framework of a specific model.

² VERKERK 92 looked for heavy isotopes in sea water and put a bound on concentration of stable charged massive particle in sea water. The above bound can be translated into into a bound on charged dark matter particle (5 × 10⁶ GeV), assuming the local density, ρ =0.3 GeV/cm³, and the mean velocity $\langle v \rangle$ =300 km/s.

 $^{^3}$ See HEMMICK 90 Fig. 7 for other masses 100–10000 m_p .

² JAVORSEK 01B search for (neutral) SIMPs (strongly interacting massive particles) bound to Au and Fe nuclei from various origins with exposures on the earth's surface, in a satellite, heavy ion collisions, etc. Here *M* is the mass of the anomalous nucleus. See also JAVORSEK 02.

³ See HEMMICK 90 Fig. 7 for other masses $100-10000 m_p$.

 $^{^4\,\}mathrm{Bound}$ valid up to $m_{\chi^-}~\sim~100$ TeV.

The observed events are compatible with Standard Model expectation, unless noted otherwise.

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

• • • We do not use the following data for averages, fits, limits, etc. • • •

1 (1511)		C1 4C	CHC) / /LO L 1:1 To
¹ SIRUNYAN	20A	CMS	SUSY/LQ search with mT2 or long-lived charged particles
² ALCANTARA	19		Auger, superheavy DM
³ PORAYKO	18	PPTA	pulsar timing fuzzy DM search
⁴ AAD		ATLS	$t + \not\!\! E_T$
⁵ KHACHATRY	.15F	CMS	$t + \cancel{E}_T$
⁶ AALTONEN	14J	CDF	W+2 jets
⁷ AAD			$WW ightarrow \ell u \ell' u$
⁸ AAD	13 C	ATLS	$\gamma + E_T$
⁹ AALTONEN	13ı	CDF	Delayed $\gamma + \not\!\!E_T$
¹⁰ CHATRCHYAN			$\ell^+\ell^- + \mathrm{jets} + E_T$
¹¹ AAD	12 C	ATLS	
¹² AALTONEN	12M	CDF	$jet + \cancel{E}_T$
¹³ CHATRCHYAN	12 AP	CMS	$jet + \not\!\!E_T$
¹⁴ CHATRCHYAN	12Q	CMS	$Z + jets + \cancel{E}_T$
¹⁵ CHATRCHYAN	12T	CMS	$\gamma + E_T$
¹⁶ AAD	_		jet $+ar{\cancel{E}}_T$
¹⁷ AALTONEN	11 AF	CDF	$\ell^{\pm}\ell^{\pm}$
¹⁸ CHATRCHYAN	11 C	CMS	$\ell^+\ell^-$ + jets + $\not\!\!E_T$
¹⁹ CHATRCHYAN	11 U	CMS	$jet + ot \!$
²⁰ AALTONEN	10 AF	CDF	$\gamma \gamma + \bar{\ell}, E_T$
²¹ AALTONEN	09AF	CDF	$\ell \gamma$ b $ ot \!$
²² AALTONEN	09 G	CDF	$\ell\ell\ell\not\!\!\!E_T$
			=

¹ SIRUNYAN 20A search for SUSY and LQ production using mT2 or presence of long-lived charged particle; no signal, limits placed in various mass planes for different BSM scenarios and various assumed lifetimes.

² ALCANTARA 19 place limits on m(WIMPzilla=X) vs lifetime from upper bound on ultra high energy cosmic rays at Auger experiment: e.g. $\tau(X) < 4 \times 10^{22}$ yr for m(X) = 10^{16} GeV.

 $^{^3}$ PORAYKO 18 search for deviations in the residuals of pulsar timing data using PPTA. No signal observed. Limits set on fuzzy DM with $3\times10^{-24}~< m(DM) < 2\times10^{-22}$ eV.

eV. 4 AAD 15AT search for events with a top quark and mssing E_T in pp collisions at $E_{\rm cm}$ $_{-}$ 8 TeV with L= 20.3 fb $^{-1}$.

⁵ KHACHATRYAN 15F search for events with a top quark and mssing E_T in pp collisions at $E_{\rm cm}=8$ TeV with L=19.7 fb⁻¹.

⁶ AALTONEN 14J examine events with a W and two jets in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with $L=8.9~{\rm fb}^{-1}$. Invariant mass distributions of the two jets are consistent with the Standard Model expectation.

⁷ AAD 13A search for resonant WW production in pp collisions at $E_{\rm cm}=7$ TeV with L=4.7 fb⁻¹.

⁸ AAD 13C search for events with a photon and missing $\not\!\!E_T$ in pp collisions at $E_{\rm cm}=7$ TeV with L=4.6 fb⁻¹.

⁹ AALTONEN 13I search for events with a photon and missing E_T , where the photon is detected after the expected timing, in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=6.3 fb⁻¹. The data are consistent with the Standard Model expectation.

- ¹⁰ CHATRCHYAN 13 search for events with an opposite-sign lepton pair, jets, and missing E_T in pp collisions at $E_{cm} = 7$ TeV with L = 4.98 fb⁻¹.
- 11 AAD 12C search for events with a $t\bar{t}$ pair and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with L=1.04 fb $^{-1}$.
- 12 AALTONEN 12M search for events with a jet and missing E_T in $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV with L=6.7 fb⁻¹.
- 13 CHATRCHYAN 12AP search for events with a jet and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with $L=5.0~{\rm fb}^{-1}$.
- ¹⁴ CHATRCHYAN 12Q search for events with a Z, jets, and missing $\not \!\! E_T$ in pp collisions at $E_{\rm cm}=7$ TeV with L=4.98 fb⁻¹.
- 15 CHATRCHYAN 12T search for events with a photon and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with $L=5.0~{\rm fb}^{-1}.$
- ¹⁶ AAD 11s search for events with one jet and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with $L=33\,{\rm pb}^{-1}$.
- ¹⁷ AALTONEN 11AF search for high- p_T like-sign dileptons in $p_{\overline{p}}$ collisions at $E_{\rm cm} = 1.96$ TeV with L = 6.1 fb⁻¹.
- 18 CHATRCHYAN 11C search for events with an opposite-sign lepton pair, jets, and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with L=34 pb $^{-1}$.
- 19 CHATRCHYAN 11U search for events with one jet and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with $L=36\,{\rm pb}^{-1}$.
- ²⁰ AALTONEN 10AF search for $\gamma\gamma$ events with e, μ, τ , or missing E_T in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=1.1–2.0 fb $^{-1}$.
- ²¹ AALTONEN 09AF search for $\ell \gamma b$ events with missing E_T in $p \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV with L=1.9 fb $^{-1}$. The observed events are compatible with Standard Model expectation including $t \overline{t} \gamma$ production.
- ²² AALTONEN 09G search for $\mu\mu\mu$ and $\mu\mu e$ events with missing E_T in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=976 pb $^{-1}$.

LIMITS ON JET-JET RESONANCES

Heavy Particle Production Cross Section

Limits are for a particle decaying to two hadronic jets.

Units(pb) CL% Mass(GeV) DOCUMENT ID TECN COMMEN

• • We do not use the following data for averages, fits, limits, etc.

```
<sup>1</sup> AABOUD
                        19AJ ATLS pp 
ightarrow \gamma X, X 
ightarrow jj
 <sup>2</sup> SIRUNYAN
                        19B CMS
                                          pp \rightarrow jA, A \rightarrow b\overline{b}
 <sup>3</sup> SIRUNYAN
                                          pp \rightarrow Z'\gamma, Z' \rightarrow jj
                        19CD CMS
 <sup>4</sup> AABOUD
                        18AD ATLS
                                          pp \rightarrow Y \rightarrow HX \rightarrow (bb) +
                                              (qq)
 <sup>5</sup> AABOUD
                        <sup>6</sup> AABOUD
                        18CL ATLS pp 	o \text{vector-like quarks}
 <sup>7</sup> AABOUD
                        18N ATLS pp \rightarrow jj resonance
 <sup>8</sup> SIRUNYAN
                                         pp 
ightarrow \ ZZ 	ext{ or } WZ 
ightarrow \ell \overline{\ell} jj
                        18DJ CMS
 <sup>9</sup> SIRUNYAN
                        18DY CMS
                                         pp \rightarrow RR; R \rightarrow jj
<sup>10</sup> KHACHATRY...17W CMS
                                          pp \rightarrow jj resonance
<sup>11</sup> KHACHATRY...17Y CMS
                                          pp \rightarrow (8-10) j + \cancel{E}_T
<sup>12</sup> SIRUNYAN
                        17F CMS
                                          pp \rightarrow jj angular distribution
<sup>13</sup> AABOUD
                        16
                               ATLS pp \rightarrow b + jet
<sup>14</sup> AAD
                        16N ATLS pp 	o 3 \text{ high } E_T \text{ jets}
<sup>15</sup> AAD
                        16S ATLS pp 	o jj resonance
```

```
<sup>16</sup> KHACHATRY...16K CMS
                                                                                    pp \rightarrow jj resonance
                                      <sup>17</sup> KHACHATRY...16L
                                                                                    pp \rightarrow jj resonance
                                     ^{18}\,\mathrm{AAD}
                                                                13D ATLS
                                                                                    7 TeV pp \rightarrow 2 jets
                                     <sup>19</sup> AALTONEN
                                                                13R CDF
                                                                                    1.96 TeV p\overline{p} \rightarrow 4 jets
                                     <sup>20</sup> CHATRCHYAN 13A CMS
                                                                                    7 TeV pp \rightarrow 2 jets
                                      <sup>21</sup> CHATRCHYAN 13A CMS
                                                                                    7 TeV pp \rightarrow b\overline{b}X
                                      <sup>22</sup> AAD
                                                                12S ATLS
                                                                                    7 TeV pp \rightarrow 2 jets
                                     <sup>23</sup> CHATRCHYAN 12BL CMS
                                                                                    7 TeV pp \rightarrow t\overline{t}X
                                      <sup>24</sup> AAD
                                                                11AG ATLS
                                                                                    7 TeV pp \rightarrow 2 jets
                                     <sup>25</sup> AALTONEN
                                                                                    1.96 TeV p\overline{p} \rightarrow W+ 2 jets
                                                                11M CDF
                                     <sup>26</sup> ABAZOV
                                                                                    1.96 TeV p\overline{p} \rightarrow W+ 2 jets
                                                                111
                                                                       D0
                                     <sup>27</sup> AAD
                                                                10
                                                                        ATLS
                                                                                    7 TeV pp \rightarrow 2 jets
                                      <sup>28</sup> KHACHATRY...10
                                                                        CMS
                                                                                    7 TeV pp \rightarrow 2 jets
                                     <sup>29</sup> ABE
                                                                99F
                                                                       CDF
                                                                                    1.8 TeV p\overline{p} \rightarrow b\overline{b}+ anything
                                     <sup>30</sup> ABE
                                                                97G
                                                                       CDF
                                                                                    1.8 TeV p\overline{p} \rightarrow 2 jets
                                      <sup>31</sup> ABE
< 2603
              95 200
                                                                93G
                                                                       CDF
                                                                                    1.8 TeV p\overline{p} \rightarrow 2 jets
                                     31 ABE
                                                                                    1.8 TeV p\overline{p} \rightarrow 2 jets
              95 400
                                                                93G CDF
                                     <sup>31</sup> ABE
                                                                93G CDF
                                                                                    1.8 TeV p\overline{p} \rightarrow 2 jets
                   600
```

- ¹ AABOUD 19AJ search for low mass dijet resonance in $pp \to \gamma X$, $X \to jj$ at 13 TeV with 79.8 fb⁻¹ of data; no signal found; limits placed on Z' model in coupling vs. m(Z') plane.
- ² SIRUNYAN 19B search for low mass resonance $pp \rightarrow jA$, $A \rightarrow b\overline{b}$ at 13 TeV using 35.9 fb⁻¹; no signal; exclude resonances 50–350 GeV depending on production and decay.
- ³ SIRUNYAN 19CD search for $pp \to Z'\gamma$, $Z' \to jj$ with fat jet (jj); no signal, limits placed in m(Z') vs. coupling plane for Z' masses from 10 to 125 GeV.
- ⁴AABOUD 18AD search for new heavy particle $Y \to HX \to (bb) + (qq)$. No signal observed. Limits set on m(Y) vs. m(X) in the ranges of m(Y) in 1–4 TeV and m(X) in 50–1000 GeV.
- ⁵ AABOUD 18CK search for SUSY Higgsinos in gauge-mediation via $pp \to bbb + \not\!\!E_T$ at 13 TeV using two complementary analyses with 24.3/36.1 fb⁻¹; no signal is found and Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95% confidence level.
- ⁶ AABOUD 18CL search for $pp \to \text{vector-like quarks} \to \text{jets at } 13 \text{ TeV with } 36 \text{ fb}^{-1};$ no signal seen; limits set on various VLQ scenarios. For pure $B \to Hb$ or $T \to Ht$, set the mass limit m > 1010 GeV.
- ⁷ AABOUD 18N search for dijet resonance at Atlas with 13 TeV and 29.3 fb⁻¹; limits set on m(Z') in the mass range of 450–1800 GeV.
- ⁸ SIRUNYAN 18DJ search for $pp \to ZZ$ or $WZ \to \ell \bar{\ell} jj$ resonance at 13 TeV, 35.9 fb⁻¹; no signal; limits set in the 400–4500 GeV mass range, exclusion of W' up to 2270 GeV in the HVT model A, and up to 2330 GeV for HVT model B. WED bulk graviton exclusion up to 925 GeV.
- ⁹ SIRUNYAN 18DY search for $pp \to RR$; $R \to jj$ two dijet resonances at 13 TeV 35.9 fb⁻¹; no signal; limits placed on RPV top-squark pair production.
- 10 KHACHATRYAN 17W search for dijet resonance in 12.9 fb $^{-1}$ data at 13 TeV; see Fig. 2 for limits on axigluons, diquarks, dark matter mediators etc.
- ¹¹ KHACHATRYAN 17Y search for $pp \to (8-10)j$ in 19.7 fb⁻¹ at 8 TeV. No signal seen. Limits set on colorons, axigluons, RPV, and SUSY.
- ¹² SIRUNYAN 17F measure $pp \rightarrow jj$ angular distribution in 2.6 fb⁻¹ at 13 TeV; limits set on LEDs and quantum black holes.
- 13 AABOUD 16 search for resonant dijets including one or two b-jets with 3.2 fb $^{-1}$ at 13 TeV; exclude excited b^* quark from 1.1–2.1 TeV; exclude leptophilic Z' with SM couplings from 1.1–1.5 TeV.

- 14 AAD 16N search for \geq 3 jets with 3.6 fb $^{-1}$ at 13 TeV; limits placed on micro black holes (Fig. 10) and string balls (Fig. 11).
- 15 AAD 16S search for high mass jet-jet resonance with 3.6 fb $^{-1}$ at 13 TeV; exclude portions of excited quarks, W', Z' and contact interaction parameter space.
- 16 KHACHATRYAN 16K search for dijet resonance in 2.4 fb $^{-1}$ data at 13 TeV; see Fig. 3 for limits on axigluons, diquarks etc.
- 17 KHACHATRYAN 16L use data scouting technique to search for jj resonance on 18.8 fb $^{-1}$ of data at 8 TeV. Limits on the coupling of a leptophobic Z' to quarks are set, improving on the results by other experiments in the mass range between 500–800 GeV.
- ¹⁸ AAD 13D search for dijet resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=4.8 fb⁻¹. The observed events are compatible with Standard Model expectation. See their Fig. 6 and Table 2 for limits on resonance cross section in the range m=1.0–4.0 TeV.
- 19 AALTONEN 13R search for production of a pair of jet-jet resonances in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with $L=6.6~{\rm fb}^{-1}.$ See their Fig. 5 and Tables I, II for cross section limits.
- ²⁰ CHATRCHYAN 13A search for qq, qg, and gg resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=4.8 fb⁻¹. See their Fig. 3 and Table 1 for limits on resonance cross section in the range m=1.0–4.3 TeV.
- ²¹ CHATRCHYAN 13A search for $b\overline{b}$ resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=4.8 fb $^{-1}$. See their Fig. 8 and Table 4 for limits on resonance cross section in the range m=1.0–4.0 TeV.
- ²² AAD 12S search for dijet resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=1.0 fb⁻¹. See their Fig. 3 and Table 2 for limits on resonance cross section in the range m=0.9–4.0 TeV.
- ²³ CHATRCHYAN 12BL search for $t\bar{t}$ resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=4.4 fb⁻¹. See their Fig. 4 for limits on resonance cross section in the range m=0.5-3.0 TeV.
- 24 AAD 11AG search for dijet resonances in pp collisions at $E_{\rm cm}=7$ TeV with L = 36 pb⁻¹. Limits on number of events for m=0.6–4 TeV are given in their Table 3.
- ²⁵ AALTONEN 11M find a peak in two jet invariant mass distribution around 140 GeV in W+2 jet events in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L = 4.3 fb⁻¹.
- ²⁶ ABAZOV 11I search for two-jet resonances in W+2 jet events in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L = 4.3 fb⁻¹ and give limits $\sigma<(2.6-1.3)$ pb (95% CL) for m=110-170 GeV. The result is incompatible with AALTONEN 11M.
- ²⁷ AAD 10 search for narrow dijet resonances in pp collisions at $E_{\rm cm}=7$ TeV with L = 315 nb⁻¹. Limits on the cross section in the range 10–10³ pb is given for m=0.3-1.7 TeV.
- ²⁸ KHACHATRYAN 10 search for narrow dijet resonances in pp collisions at $E_{\rm cm}=7\,{\rm TeV}$ with L = 2.9 pb⁻¹. Limits on the cross section in the range 1–300 pb is given for $m=0.5-2.6\,{\rm TeV}$ separately in the final states qq, qg, and gg.
- ²⁹ ABE 99F search for narrow $b\overline{b}$ resonances in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. Limits on $\sigma(p\overline{p}\to X+{\rm anything})\times {\rm B}(X\to b\overline{b})$ in the range 3–10³ pb (95%CL) are given for $m_X=200$ –750 GeV. See their Table I.
- ABE 97G search for narrow dijet resonances in $p\overline{p}$ collisions with $106 \, \mathrm{pb}^{-1}$ of data at $E_{\mathrm{cm}} = 1.8 \, \mathrm{TeV}$. Limits on $\sigma(p\overline{p} \to X + \mathrm{anything}) \cdot \mathrm{B}(X \to jj)$ in the range $10^4 10^{-1} \, \mathrm{pb}$ (95%CL) are given for dijet mass $m = 200 1150 \, \mathrm{GeV}$ with both jets having $|\eta| < 2.0$ and the dijet system having $|\cos\theta^*| < 0.67$. See their Table I for the list of limits. Supersedes ABE 93G.
- ³¹ ABE 93G give cross section times branching ratio into light (d, u, s, c, b) quarks for $\Gamma = 0.02 \, M$. Their Table II gives limits for M = 200–900 GeV and $\Gamma = (0.02$ –0.2) M.

LIMITS ON NEUTRAL PARTICLE PRODUCTION

Production Cross Section of Radiatively-Decaying Neutral Particle

VALUE (pb)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	e following	data for averages, fits	, limits, e	etc. • • •
		¹ ALBERT 18C ² KHACHATRY17D	HAWC CMS	γ from Sun $Z\gamma$ resonance
< 0.0008	95	³ AAD 16A	ATLS	$p p \rightarrow \gamma + \text{jet}$
		⁴ KHACHATRY16M	CMS	$pp ightarrow \ \gamma\gamma$ resonance
<(0.043–0.17)	95	⁵ ABBIENDI 00D	OPAL	$e^+e^- ightarrow~X^0Y^0, \ X^0 ightarrow~Y^0\gamma$
<(0.05-0.8)	95	⁶ ABBIENDI 00D	OPAL	$e^{+}e^{-} \rightarrow X^{0}X^{0},$ $X^{0} \rightarrow Y^{0}\gamma$
<(2.5–0.5)	95	⁷ ACKERSTAFF 97B	OPAL	
<(1.6-0.9)	95	⁸ ACKERSTAFF 97B	OPAL	$e^+e^- \rightarrow X^0X^0,$ $X^0 \rightarrow Y^0\gamma$

¹ ALBERT 18C search for WIMP annihilation in Sun to long-lived, radiatively decaying mediator; no signal; limits set on $\sigma^{SD}(\chi p)$ assuming long-lived mediator.

Heavy Particle Production Cross Section

<i>VALUE</i> (cm ² /N)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not ι	use the follow	wing data for avera	ages, f	its, limit	ts, etc. • • •
		$^{ m 1}$ AABOUD	19H	ATLS	di-photon-jet resonance
		² AABOUD	19V	ATLS	ATLAS review, mediator-
		³ SIRUNYAN	190	CMS	based DM $pp ightarrow \gamma ot\!\!\!E_T$
		⁴ AABOUD	18 CJ	ATLS	$pp \rightarrow VV/\ell\ell/\ell\nu, V =$
		⁵ AABOUD	1 8CM	1ATLS	W , Z , h pp $ ightarrow$ e $\mu/$ e $ au/\mu au$
		⁶ AAIJ	18AJ		$pp \rightarrow A' \rightarrow \mu^{+}\mu^{-};$
		7 DANEDIEE	10	NIACA	dark photon
		⁷ BANERJEE ⁸ BANERJEE			$eZ \rightarrow eZX(A')$ $eZ \rightarrow eZA', A' \rightarrow \chi\chi$

 $^{^2}$ KHACHATRYAN 17D search for new scalar resonance decaying to $Z\gamma$ with $Z\to e^+e^-$, $\mu^+\mu^-$ in pp collisions at 8 and 13 TeV; no signal seen.

 $^{^3}$ AAD 16AI search for excited quarks (EQ) and quantum black holes (QBH) in 3.2 fb $^{-1}$ at 13 TeV of data; exclude EQ below 4.4 TeV and QBH below 3.8 (6.2) TeV for RS1 (ADD) models. The visible cross section limit was obtained for 5 TeV resonance with $\sigma_G/M_G=2\%$.

 $^{^4}$ KHACHATRYAN 16M search for $\gamma\gamma$ resonance using 19.7 fb $^{-1}$ at 8 TeV and 3.3 fb $^{-1}$ at 13 TeV; slight excess at 750 GeV noted; limit set on RS graviton.

⁵ ABBIENDI 00D associated production limit is for $m_{\chi 0}=$ 90–188 GeV, $m_{\gamma 0}=$ 0 at $E_{\rm cm}=$ 189 GeV. See also their Fig. 9.

 $^{^6}$ ABBIENDI 00D pair production limit is for $m_{\chi^0}=$ 45–94 GeV, $m_{\gamma^0}{=}0$ at $E_{\rm cm}{=}189$ GeV. See also their Fig. 12.

 $^{^7}$ ACKERSTAFF 97B associated production limit is for $m_{\chi 0}=$ 80–160 GeV, $m_{\gamma 0}=$ 0 from 10.0 pb $^{-1}$ at $E_{\rm cm}=$ 161 GeV. See their Fig. 3(a).

⁸ ACKERSTAFF 97B pair production limit is for $m_{\chi^0}=40$ –80 GeV, $m_{\gamma^0}=0$ from $10.0\,\mathrm{pb}^{-1}$ at $E_\mathrm{cm}=161$ GeV. See their Fig. 3(b).

```
<sup>9</sup> MARSICANO
                                                                                              e^+e^- \rightarrow A'(\gamma) visible
                                                                         18
                                                                                 E137
                                                                                              \begin{array}{ccc} pp \to Z' \to \ell^+\ell^- \text{ at } 13 \\ \text{TeV} \end{array}
                                             <sup>10</sup> SIRUNYAN
                                                                          18BB CMS
                                              <sup>11</sup> SIRUNYAN
                                                                          18DA CMS
                                                                                              pp \rightarrow \mathsf{Black}\;\mathsf{Hole},\;\mathsf{string}
                                                                                                  ball, sphaleron
                                             <sup>12</sup> SIRUNYAN
                                                                          18DD CMS
                                                                                              pp \rightarrow jj
                                             <sup>13</sup> SIRUNYAN
                                                                          18DR CMS
                                                                                              pp \rightarrow b\mu \overline{\mu}
                                             <sup>14</sup> SIRUNYAN
                                                                          18DU CMS
                                              <sup>15</sup> SIRUNYAN
                                                                          18ED CMS
                                                                                              pp \rightarrow V \rightarrow Wh; h \rightarrow
                                                                                                  b\overline{b}; W \rightarrow \ell \nu
                                              <sup>16</sup> AABOUD
                                                                          17B ATLS
                                                                                              WH, ZH resonance
                                              17 AAIJ
                                                                          17BR LHCB
                                                                                              pp \rightarrow \pi_V \pi_V, \pi_V \rightarrow jj
                                              <sup>18</sup> AAD
                                                                                              \ell + (\ell s \text{ or jets})
                                                                          160 ATLS
                                              <sup>19</sup> AAD
                                                                          16R ATLS
                                                                                              WW, WZ, ZZ resonance
                                              <sup>20</sup> KRASZNAHO..16
                                                                                              p^7 \text{Li} \rightarrow {}^8 \text{Be} \rightarrow X(17) N.
                                                                                                  X(17) \rightarrow e^+e^-
                                              <sup>21</sup> LEES
                                                                                 BABR e^+e^- collisions
                                                                          15E
                                             <sup>22</sup> ADAMS
                                                                          97B KTEV
                                                                                              m = 1.2 - 5 \text{ GeV}
< 10^{-36} - 10^{-33}
                                             <sup>23</sup> GALLAS
                                                                                  TOF
                                                                                              m = 0.5 - 20 \text{ GeV}
<(4–0.3) \times 10<sup>-31</sup>
                                              <sup>24</sup> AKESSON
                                                                          91
                                                                                  CNTR m = 0-5 \text{ GeV}
< 2 \times 10^{-36}
                                              <sup>25</sup> BADIER
                                                                                  BDMP \tau = (0.05-1.) \times 10^{-8} s
                                                                          86
                                 90
                                                                                 CNTR \tau > 10^{-7} \text{ s}
< 2.5 \times 10^{-35}
                                              <sup>26</sup> GUSTAFSON
```

- ¹ AABOUD 19H searches for di-photon-jet resonance at 13 TeV and 36.7 fb⁻¹ of data; no signal found and limits placed on $\sigma \cdot \text{BR}$ vs. mass plane for various simplified models.
- 2 AABOUD 19V review ATLAS searches for mediator-based DM at 7, 8, and 13 TeV with up to 37 fb $^{-1}$ of data; no signal found and limits set for wide variety of simplified models of dark matter.
- 3 SIRUNYAN 190 search for $pp\to \gamma \, E_T$ at 13 TeV with 36.1 fb $^{-1}$; no signal found and limits set for various simplified models.
- ⁴ AABOUD 18CJ make multichannel search for $pp \to VV/\ell\ell/\ell\nu$, V=W,Z,h at 13 TeV, 36.1 fb⁻¹; no signal found; limits placed for several BSM models.
- ⁵ AABOUD 18CM search for lepton-flavor violating resonance in $pp \to e\mu/e\tau/\mu\tau$ at 13 TeV, 36.1 fb⁻¹; no signal is found and limits placed for various BSM models.
- ⁶ AAIJ 18AJ search for prompt and delayed dark photon decay $A' \to \mu^+\mu^-$ at LHCb detector using 1.6 fb⁻¹ of pp collisions at 13 TeV; limits on m(A') vs. kinetic mixing are set.
- ⁷BANERJEE 18 search for dark photon A'/16.7 MeV boson X at NA64 via $eZ \rightarrow eZX(A')$; no signal found and limits set on the $X-e^-$ coupling ϵ_e in the range $1.3 \times 10^{-4} \le \epsilon_e \le 4.2 \times 10^{-4}$ excluding part of the allowed parameter space.
- ⁸ BANERJEE 18A search for invisibly decaying dark photons in $eZ \rightarrow eZA'$, $A' \rightarrow$ invisible; no signal found and limits set on mixing for m(A') < 1 GeV.
- ⁹ MARSICANO 18 search for dark photon $e^+e^- \rightarrow A'(\gamma)$ visible decay in SLAC E137 e beam dump data. No signal observed and limits set in ϵ coupling vs m(A') plane, see their figure 7.
- 10 SIRUNYAN 18BB search for high mass dilepton resonance; no signal found and exclude portions of p-space of Z', KK graviton models.
- ¹¹ SIRUNYAN 18DA search for $pp \to \text{Black Hole}$, string ball, sphaleron via high multiplicity events at 13 TeV, 35.9 fb⁻¹; no signal, require e.g. m(BH) > 10.1 TeV.
- ¹² SIRUNYAN 18DD search for $pp \to jj$ deviations in dijet angular distribution. No signal observed. Set limits on large extra dimensions, black holes and DM mediators e.g. m(BH) > 5.9–8.2 TeV.

- ¹³ SIRUNYAN 18DR search for dimuon resonance in $pp \to b\mu\overline{\mu}$ at 8 and 13 TeV. Slight excess seen at m($\mu\overline{\mu}$) \sim 28 GeV in some channels.
- ¹⁴ SIRUNYAN 18DU search for high mass diphoton resonance in $pp \to \gamma \gamma$ at 13 TeV using 35.9 fb⁻¹; no signal; limits placed on RS Graviton, LED, and clockwork.
- ¹⁵ SIRUNYAN 18ED search for $pp \to V \to Wh$; $h \to b\overline{b}$; $W \to \ell \nu$ at 13 TeV with 35.9 fb⁻¹; no signal; limits set on m(W') > 2.9 TeV.
- 16 AABOUD 17B exclude m(W', Z') < 1.49–2.31 TeV depending on the couplings and W'/Z' degeneracy assumptions via WH, ZH search in pp collisions at 13 TeV with 3.2 fb $^{-1}$ of data.
- 17 AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4.
- 18 AAD 160 search for high E_T ℓ + (ℓ s or jets) with 3.2 fb $^{-1}$ at 13 TeV; exclude micro black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions.
- 19 AAD 16R search for WW, WZ, ZZ resonance in 20.3 fb $^{-1}$ at 8 TeV data; limits placed on massive RS graviton (Fig. 4).
- ²⁰ KRASZNAHORKAY 16 report $p \text{Li} \rightarrow \text{Be} \rightarrow e \overline{e} N 5 \sigma$ resonance at 16.7 MeV– possible evidence for nuclear interference or new light boson . However, such nuclear interference was ruled out already by ZANG 17.
- ²¹ LEES 15E search for long-lived neutral particles produced in e^+e^- collisions in the Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Fig. 2 for cross section limits.
- ²² ADAMS 97B search for a hadron-like neutral particle produced in pN interactions, which decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K_L production for the mass range 1.2–5 GeV and lifetime 10^{-9} – 10^{-4} s. See also our Light Gluino Section.
- 23 GALLAS 95 limit is for a weakly interacting neutral particle produced in 800 GeV/c p N interactions decaying with a lifetime of 10^{-4} – 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm². See Fig. 10.
- 24 AKESSON 91 limit is from weakly interacting neutral long-lived particles produced in $_{p}$ N reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $\tau > 10^{-7}$ s. For $\tau > 10^{-9}$ s, $\sigma < 10^{-30}$ cm $^{-2}$ /nucleon is obtained.
- ²⁵ BADIER 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-$ X, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode.
- 26 GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m>2 GeV) long-lived neutral hadrons in the M4 neutral beam. The above typical value is for m=3 GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and interaction cross section are given in figure 2.

Production of New Penetrating Non- ν Like States in Beam Dump

VALUE DOCUMENT ID TECN COMMENT

• • We do not use the following data for averages, fits, limits, etc.

¹ LOSECCO 81 CALO 28 GeV protons

Created: 6/1/2020 08:33

 1 No excess neutral-current events leads to $\sigma(\text{production}) \times \sigma(\text{interaction}) \times \text{acceptance}$ $< 2.26 \times 10^{-71} \text{ cm}^4/\text{nucleon}^2$ (CL = 90%) for light neutrals. Acceptance depends on models (0.1 to 4. \times 10 $^{-4}$).

LIMITS ON CHARGED PARTICLES IN e+e-

Heavy Particle Production Cross Section in e⁺e⁻

Ratio to $\sigma(e^+e^- \to \mu^+\mu^-)$ unless noted. See also entries in Free Quark Search and Magnetic Monopole Searches.

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use	e the follo	wing data for avera	ges, fits, limit	ts, etc. ● ●
		$^{ m 1}$ KILE	18 ALEP	$e^+e^- ightarrow$ 4 jets
$< 1 \times 10^{-3}$	90	² ABLIKIM		$e^+e^- ightarrow\ell\overline{\ell}\gamma$
		³ ACKERSTAFF	98P OPAL	Q=1,2/3, m=45-89.5 GeV
		⁴ ABREU	97D DLPH	Q=1,2/3, m=45-84 GeV
		⁵ BARATE	97K ALEP	<i>Q</i> =1, <i>m</i> =45–85 GeV
$< 2 \times 10^{-5}$	95	⁶ AKERS	95R OPAL	Q=1, $m=5-45$ GeV
$< 1 \times 10^{-5}$	95	⁶ AKERS	95R OPAL	<i>Q</i> =2, <i>m</i> = 5–45 GeV
$< 2 \times 10^{-3}$	90	⁷ BUSKULIC	93c ALEP	<i>Q</i> =1, <i>m</i> =32–72 GeV
$<(10^{-2}-1)$	95	⁸ ADACHI	90c TOPZ	<i>Q</i> =1, <i>m</i> =1–16, 18–27 GeV
$< 7 \times 10^{-2}$	90	⁹ ADACHI	90E TOPZ	Q=1, $m=5$ –25 GeV
$< 1.6 \times 10^{-2}$	95	¹⁰ KINOSHITA	82 PLAS	Q=3-180, m<14.5 GeV
$<$ 5.0 \times 10 ⁻²	90	¹¹ BARTEL	80 JADE	Q=(3,4,5)/3 2-12 GeV

 $^{^{1}}$ KILE 18 investigate archived ALEPH $e^{+}\,e^{-} \rightarrow \,$ 4 jets data and see 4–5 σ excess at 110 GeV.

GeV. 2 ABLIKIM 17AA search for dark photon $A\to\ell\bar\ell$ at 3.773 GeV with 2.93 fb $^{-1}.$ Limits are set in ϵ vs m(A) plane.

 $^{^3}$ ACKERSTAFF 98P search for pair production of long-lived charged particles at $E_{\rm cm}$ between 130 and 183 GeV and give limits $\sigma < (0.05-0.2)\,{\rm pb}$ (95%CL) for spin-0 and spin-1/2 particles with $m{=}45{-}89.5$ GeV, charge 1 and 2/3. The limit is translated to the cross section at $E_{\rm cm}{=}183$ GeV with the s dependence described in the paper. See their Figs. 2–4.

⁴ ABREU 97D search for pair production of long-lived particles and give limits $\sigma < (0.4-2.3)$ pb (95%CL) for various center-of-mass energies $E_{\rm cm} = 130-136$, 161, and 172 GeV, assuming an almost flat production distribution in $\cos\theta$.

 $^{^5}$ BARATE 97K search for pair production of long-lived charged particles at $E_{\rm cm}=130,\,136,\,161,\,{\rm and}\,172$ GeV and give limits $\sigma<(0.2-0.4)$ pb (95%CL) for spin-0 and spin-1/2 particles with $m{=}45{-}85$ GeV. The limit is translated to the cross section at $E_{\rm cm}{=}172$ GeV with the $E_{\rm cm}$ dependence described in the paper. See their Figs. 2 and 3 for limits on J=1/2 and J=0 cases.

⁶ AKERS 95R is a CERN-LEP experiment with W_{cm} $\sim m_Z$. The limit is for the production of a stable particle in multihadron events normalized to $\sigma(e^+e^- \to \text{hadrons})$. Constant phase space distribution is assumed. See their Fig. 3 for bounds for $Q=\pm 2/3$, $\pm 4/3$.

⁷ BUSKULIC 93C is a CERN-LEP experiment with $W_{cm} = m_Z$. The limit is for a pair or single production of heavy particles with unusual ionization loss in TPC. See their Fig. 5 and Table 1.

and Table 1. 8 ADACHI 90C is a KEK-TRISTAN experiment with $W_{\rm cm}=52\text{--}60$ GeV. The limit is for pair production of a scalar or spin-1/2 particle. See Figs. 3 and 4.

⁹ ADACHI 90E is KEK-TRISTAN experiment with W_{cm} = 52–61.4 GeV. The above limit is for inclusive production cross section normalized to $\sigma(e^+e^-\to \mu^+\mu^-)\cdot\beta(3-\beta^2)/2$, where $\beta=(1-4m^2/W_{cm}^2)^{1/2}$. See the paper for the assumption about the production mechanism.

mechanism. $^{10}\,\text{KINOSHITA}$ 82 is SLAC PEP experiment at $\text{W}_{\text{cm}}=29\,\text{GeV}$ using lexan and ^{39}Cr plastic sheets sensitive to highly ionizing particles.

¹¹ BARTEL 80 is DESY-PETRA experiment with $W_{cm}=27$ -35 GeV. Above limit is for inclusive pair production and ranges between $1.\times10^{-1}$ and $1.\times10^{-2}$ depending on mass and production momentum distributions. (See their figures 9, 10, 11).

Branching Fraction of Z^0 to a Pair of Stable Charged Heavy Fermions

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following o	data for averages	, fits,	limits, e	tc. • • •
	95	¹ AKERS	95 R	OPAL	<i>m</i> = 40.4–45.6 GeV
$< 1 \times 10^{-3}$	95	AKRAWY	900	OPAL	m = 29-40 GeV

 $^{^1}$ AKERS 95R give the 95% CL limit $\sigma(X\overline{X})/\sigma(\mu\mu)<1.8\times10^{-4}$ for the pair production of singly- or doubly-charged stable particles. The limit applies for the mass range 40.4–45.6 GeV for X^\pm and < 45.6 GeV for $X^{\pm\pm}$. See the paper for bounds for $Q=\pm2/3,\,\pm4/3.$

LIMITS ON CHARGED PARTICLES IN HADRONIC REACTIONS

MASS LIMITS for Long-Lived Charged Heavy Fermions

Limits are for spin 1/2 particles with no color and $SU(2)_L$ charge. The electric charge Q of the particle (in the unit of e) is therefore equal to its weak hypercharge. Pair production by Drell-Yan like γ and Z exchange is assumed to derive the limits.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT	
• • • We do not us	e the followin	g data for averages, fit	s, limits,	etc. • • •	
>660	95	_	BJ ATLS	Q =2	
>200	95	² CHATRCHYAN 13.	AB CMS	Q = 1/3	
>480	95	² CHATRCHYAN 13.		Q = 2/3	
>574	95	² CHATRCHYAN 13.		Q =1	
>685	95	² CHATRCHYAN 13.	AB CMS	Q =2	
>140	95	³ CHATRCHYAN 13.	AR CMS	Q = 1/3	
>310	95	³ CHATRCHYAN 13.	AR CMS	Q = 2/3	

 $^{^1}$ AAD 15BJ use 20.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. See paper for limits for $|Q|=3,\,4,\,5,\,6.$

Heavy Particle Production Cross Section

VALUE (nb)	CL% DOCUMENT ID	TECN COM	IMENT
• • • We do not use	the following data for ave	rages, fits, limits, et	.c. • • •
	1 AABOUD 2 AABOUD 3 AABOUD 4 AABOUD 5 SIRUNYAN 6 SIRUNYAN 7 SIRUNYAN	19Q ATLS sing 17D ATLS anoi 17L ATLS m> 17B CMS tH 17C CMS Z +	M search le top $+$ MET malous $WWjj$, $WZjj$ 870 GeV, $Z(\rightarrow \nu\nu)tX$ $(t \text{ or } b)$ $a \rightarrow tW$
$<1.2 \times 10^{-3}$ $<1.0 \times 10^{-5}$ $<4.8 \times 10^{-5}$ $<0.31-0.04 \times 10^{-3}$ <0.19 <0.05	8 AAIJ 9 AAD 95 10 AAD 95 11,12 AALTONEN 95 11,13 AALTONEN 95 14 ABAZOV 95 15 AKTAS 95 16 ABE	15BD LHCB	3 → tW 124–309 GeV =(2–6)e, m=50–600 GeV =10e, m=0.2–1 TeV 100 GeV, noncolored 100 GeV, colored production 3–10 GeV 50–200 GeV

 $^{^2}$ CHATRCHYAN 13AB use 5.0 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 18.8 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. See paper for limits for $|Q|=3,\,4,\ldots,\,8.$

 $^{^3\,\}mathrm{CHATRCHYAN}$ 13AR use 5.0 fb $^{-1}$ of pp collisions at $E_\mathrm{cm}=$ 7 TeV.

<30-130 17 CARROLL 78 SPEC m=2-2.5 GeV <100 18 LEIPUNER 73 CNTR m=3-11 GeV

- 1 AABOUD 19AA search for BSM physics at 13 TeV with 3.2 fb $^{-1}$ in $>10^5$ regions of > 700 event classes; no significant signal found.
- ² AABOUD 19Q search for single top+MET events at 13 TeV with 36.1 fb⁻¹ of data; no signal found and limits set in σ or coupling vs. mass plane for variety of simplified models including DM and vector-like top quark T.
- ³ AABOUD 17D search for WWjj, WZjj in pp collisions at 8 TeV with 3.2 fb⁻¹; set limits on anomalous couplings.
- ⁴AABOUD 17L search for the pair production of heavy vector-like T quarks in the $Z(\rightarrow \nu\nu)tX$ final state.
- ⁵ SIRUNYAN 17B search for vector-like quark $pp \to TX \to tHX$ in 2.3 fb⁻¹ at 13 TeV; no signal seen; limits placed.
- ⁶ SIRUNYAN 17C search for vector-like quark $pp \to TX \to Z + (t \text{ or } b)$ in 2.3 fb⁻¹ at 13 TeV; no signal seen; limits placed.
- ⁷ SIRUNYAN 17J search for $pp \to X_{5/3}X_{5/3} \to tWtW$ with 2.3 fb⁻¹ at 13 TeV. No signal seen: m(X) > 1020 (990) GeV for RH (LH) new charge 5/3 quark.
- ⁸ AAIJ 15BD search for production of long-lived particles in pp collisions at $E_{\rm cm}=7$ and 8 TeV. See their Table 6 for cross section limits.
- ⁹ AAD 13AH search for production of long-lived particles with |q|=(2-6)e in pp collisions at $E_{\rm CM}=7$ TeV with 4.4 fb⁻¹. See their Fig. 8 for cross section limits.
- 10 AAD 11 I search for production of highly ionizing massive particles in pp collisions at $E_{\rm cm}=7$ TeV with L $=3.1~{\rm pb}^{-1}$. See their Table 5 for similar limits for $|{\bf q}|=6e$ and 17e, Table 6 for limits on pair production cross section.
- ¹¹ AALTONEN 09Z search for long-lived charged particles in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with $L=1.0~{\rm fb}^{-1}$. The limits are on production cross section for a particle of mass above 100 GeV in the region $|\eta|\lesssim 0.7, p_T>40$ GeV, and $0.4<\beta<1.0$.
- ¹²Limit for weakly interacting charge-1 particle.
- ¹³ Limit for up-quark like particle.
- 14 ABAZOV 09M search for pair production of long-lived charged particles in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=1.1 fb $^{-1}$. Limit on the cross section of (0.31–0.04) pb (95% CL) is given for the mass range of 60–300 GeV, assuming the kinematics of stau pair production.
- ¹⁵ AKTAS 04C look for charged particle photoproduction at HERA with mean c.m. energy of 200 GeV.
- 16 ABE 92J look for pair production of unit-charged particles which leave detector before decaying. Limit shown here is for m=50 GeV. See their Fig. 5 for different charges and stronger limits for higher mass.
- ¹⁷ CARROLL 78 look for neutral, S=-2 dihyperon resonance in $pp \to 2K^+X$. Cross section varies within above limits over mass range and $p_{\mathsf{lab}}=5.1$ –5.9 GeV/c.
- ¹⁸ LEIPUNER 73 is an NAL 300 GeV *p* experiment. Would have detected particles with lifetime greater than 200 ns.

Heavy Particle Production Differential Cross Section

$\frac{\text{VALUE}}{(\text{cm}^2\text{sr}^{-1}\text{GeV}^{-1})}$	CL%	DOCUMENT ID		TECN C	CHG	COMMENT
• • • We do not	use the	following data for a	verag	es, fits, lin	nits,	etc. • • •
$< 2.6 \times 10^{-36}$	90	¹ BALDIN	76	CNTR -	_	Q=1, m=2.1-9.4 GeV
$< 2.2 \times 10^{-33}$	90	² ALBROW	75	SPEC :	±	$Q=\pm1$, $m=4-15$ GeV
$< 1.1 \times 10^{-33}$	90	² ALBROW	75	SPEC :	±	$Q=\pm 2$, $m=6-27$ GeV
$< 8. \times 10^{-35}$	90	³ JOVANOV	75	CNTR =	±	m=15-26 GeV
$< 1.5 \times 10^{-34}$	90	³ JOVANOV	75	CNTR =	±	$Q=\pm 2$, $m=3-10$ GeV
$< 6. \times 10^{-35}$	90	³ JOVANOV	75	CNTR =	±	$Q=\pm 2$, $m=10-26$ GeV

$< 1. \times 10^{-31}$	90	⁴ APPEL	74	CNTR \pm	m=3.2-7.2 GeV
$< 5.8 \times 10^{-34}$	90	⁵ ALPER	73	SPEC \pm	<i>m</i> =1.5–24 GeV
$< 1.2 \times 10^{-35}$	90	⁶ ANTIPOV	71 B	CNTR -	Q=-, m=2.2-2.8
$< 2.4 \times 10^{-35}$	90	⁷ ANTIPOV	71 C	CNTR -	Q=-, m=1.2-1.7,
$< 2.4 \times 10^{-35}$	90	BINON	69	CNTR -	2.1–4 <i>Q</i> =-, <i>m</i> =1–1.8 GeV
$< 1.5 \times 10^{-36}$		⁸ DORFAN	65	CNTR	Be target $m=3-7$ GeV
$< 3.0 \times 10^{-36}$		⁸ DORFAN	65	CNTR	Fe target $m=3-7$ GeV

 $^{^1}$ BALDIN 76 is a 70 GeV Serpukhov experiment. Value is per Al nucleus at $\theta=0.$ For other charges in range -0.5 to -3.0, CL =90% limit is $(2.6\times 10^{-36})/|(\text{charge})|$ for mass range $(2.1\text{--}9.4~\text{GeV})\times|(\text{charge})|$. Assumes stable particle interacting with matter as do antiprotons.

Long-Lived Heavy Particle Invariant Cross Section

<i>VALUE</i> (cm ² /GeV ² / <i>N</i>)	CL%	DOCUMENT ID		TECN CHG	COMMENT
• • • We do not us	se the follo	owing data for ave	erages	, fits, limits, et	C. • • •
$< 5-700 \times 10^{-35}$	90	$^{ m 1}$ BERNSTEIN	88	CNTR	
$< 5-700 \times 10^{-37}$	90	$^{ m 1}$ BERNSTEIN	88	CNTR	
$< 2.5 \times 10^{-36}$	90	² THRON	85	CNTR -	Q=1, m=4-12 GeV
$< 1. \times 10^{-35}$	90	² THRON	85	CNTR +	Q=1, m=4-12 GeV
$< 6. \times 10^{-33}$	90	³ ARMITAGE	79	SPEC	<i>m</i> =1.87 GeV
$< 1.5 \times 10^{-33}$	90	³ ARMITAGE	79	SPEC	m=1.5-3.0 GeV
		⁴ BOZZOLI	79	CNTR \pm	Q = (2/3, 1, 4/3, 2)
$< 1.1 \times 10^{-37}$	90	⁵ CUTTS	78	CNTR	<i>m</i> =4–10 GeV
$< 3.0 \times 10^{-37}$	90	⁶ VIDAL	78	CNTR	<i>m</i> =4.5–6 GeV

¹ BERNSTEIN 88 limits apply at x=0.2 and $p_T=0$. Mass and lifetime dependence of limits are shown in the regions: m=1.5-7.5 GeV and $\tau=10^{-8}-2\times10^{-6}$ s. First number is for hadrons; second is for weakly interacting particles.

 $^{^2}$ ALBROW 75 is a CERN ISR experiment with $E_{\rm cm}=53$ GeV. $\theta=40$ mr. See figure 5 for mass ranges up to 35 GeV.

³ JOVANOVICH 75 is a CERN ISR 26+26 and 15+15 GeV pp experiment. Figure 4 covers ranges Q = 1/3 to 2 and m = 3 to 26 GeV. Value is per GeV momentum.

⁴APPEL 74 is NAL 300 GeV *pW* experiment. Studies forward production of heavy (up to 24 GeV) charged particles with momenta 24–200 GeV (–charge) and 40–150 GeV (+charge). Above typical value is for 75 GeV and is per GeV momentum per nucleon.

⁵ ALPER 73 is CERN ISR 26+26 GeV pp experiment. p>0.9 GeV, 0.2 $<\beta$ <0.65.

 $^{^6}$ ANTIPOV 71B is from same 70 GeV p experiment as ANTIPOV 71C and BINON 69.

 $^{^7}$ ANTIPOV 71C limit inferred from flux ratio. 70 GeV p experiment.

 $^{^{8}}$ DORFAN 65 is a 30 GeV/c p experiment at BNL. Units are per GeV momentum per nucleus.

 $^{^2}$ THRON 85 is FNAL 400 GeV proton experiment. Mass determined from measured velocity and momentum. Limits are for $\tau > 3 \times 10^{-9}$ s.

 $^{^3}$ ARMITAGE 79 is CERN-ISR experiment at $E_{\rm cm}=53$ GeV. Value is for x=0.1 and $p_T=0.15$. Observed particles at m=1.87 GeV are found all consistent with being antideuterons.

⁴ BOZZOLI 79 is CERN-SPS 200 GeV pN experiment. Looks for particle with τ larger than 10^{-8} s. See their figure 11–18 for production cross-section upper limits vs mass.

 $^{^5}$ CUTTS 78 is p Be experiment at FNAL sensitive to particles of $\tau > 5 \times 10^{-8}$ s. Value is for $-0.3~<\!x<0$ and $p_T=0.175$.

⁶ VIDAL 78 is FNAL 400 GeV proton experiment. Value is for x=0 and $p_T=0$. Puts lifetime limit of $< 5 \times 10^{-8}$ s on particle in this mass range.

Long-Lived Heavy Particle Production $(\sigma(\text{Heavy Particle}) / \sigma(\pi))$

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not use t	he following	g data for average	s, fits	, limits, e	etc. •	• •
$< 10^{-8}$						$Q = (-5/3, \pm 2)$
	0	² BUSSIERE	80	CNTR	\pm	Q=(2/3,1,4/3,2)

 $^{^1}$ NAKAMURA 89 is KEK experiment with 12 GeV protons on Pt target. The limit applies for mass \lesssim 1.6 GeV and lifetime \gtrsim $10^{-7}\,\rm s.$

Production and Capture of Long-Lived Massive Particles

$VALUE (10^{-36} \text{ cm}^2)$	DOCUMENT ID		TECN	COMMENT
• • • We do not use the followi	ng data for average	s, fits,	limits, e	etc. • • •
<20 to 800				$ au{=}5$ ms to 1 day
<200 to 2000		76 B	ELEC	$ au{=}100$ ms to 1 day
<1.4 to 9	² FRANKEL	75	CNTR	$ au{=}50$ ms to 10 hours
<0.1 to 9	³ FRANKEL	74	CNTR	$ au{=}1$ to 1000 hours

 $^{^1}$ ALEKSEEV 76 and ALEKSEEV 76B are 61–70 GeV p Serpukhov experiment. Cross section is per Pb nucleus.

Long-Lived Particle (LLP) Search at Hadron Collisions

Limits are for cross section times branching ratio.

Lillits are i	or cross section time	s brancing ra	LIO.
VALUE (pb/nucleon)	DOCUMENT ID	TECN	COMMENT
ullet $ullet$ We do not	use the following dat	ta for averages	, fits, limits, etc. • • •
	¹ AAD	20D ATLS	pp o LLPs at 13 TeV
	² AABOUD	19AE ATLS	pp at 13 TeV
	³ AABOUD	19AK ATLS	$pp \rightarrow \Phi \rightarrow ZZ_d$
	⁴ AABOUD	19AM ATLS	DY multi-charged LLP production
	⁵ AABOUD	19AO ATLS	LLP via displaced jets
	⁶ AABOUD	19AT ATLS	heavy, charged long-lived particles
	⁷ AABOUD	19G ATLS	LLP decay to $\mu^+\mu^-$
	⁸ SIRUNYAN	19BH CMS	LLP via displaced jets
	⁹ SIRUNYAN	19BT CMS	LLP via displaced jets+MET
	¹⁰ SIRUNYAN	19CA CMS	$LLP o \gamma$ search
	¹¹ SIRUNYAN	19Q CMS	$pp \rightarrow j + \text{displaced dark quark jet}$
	¹² SIRUNYAN	18AW CMS	Long-lived particle search
	¹³ AAIJ	16AR LHCB	$H \rightarrow XX$ long-lived particles
	¹⁴ KHACHATRY	16BWCMS	
< 2 at 90%CL	¹⁵ BADIER		$\tau = (0.05-1.) \times 10^{-8}$ s

¹ AAD 20D search for opposite-sign dileptons originating from long-lived particles in pp collisions at 13 Tev with 32.8 fb⁻¹; limits placed in squark cross section vs. $c\tau$ plane for RPV SUSY.

² BUSSIERE 80 is CERN-SPS experiment with 200–240 GeV protons on Be and Al target. See their figures 6 and 7 for cross-section ratio vs mass.

² FRANKEL 75 is extension of FRANKEL 74.

 $^{^3}$ FRANKEL 74 looks for particles produced in thick AI targets by 300–400 GeV/c protons.

²AABOUD 19AE search for long-lived particles via displaced jets using $10.8~\rm{fb^{-1}}$ or $33.0~\rm{fb^{-1}}$ data (depending on a trigger) at 13 TeV; no signal found and limits set in branching ratio vs. decay length plane.

- ³ AABOUD 19AK searches for long-lived particle Z_d via $pp \to \Phi \to ZZ_d$ at 13 TeV with 36.1 fb⁻¹; no signal found and limits set in $\sigma \times$ BR vs. lifetime plane for simplified model.
- ⁴ AABOUD 19AM search for Drell-Yan (DY) production of long-lived multi-charge particles at 13 TeV with 36.1 fb⁻¹ of data; no signal found and exclude 50 GeV < m(LLMCP) < 980–1220 GeV for electric charge |q|=(2-7)e.
- ⁵ AABOUD 19AO search for neutral long-lived particles producing displaced jets at 13 TeV with 36.1 fb⁻¹ of data; no signal found and exclude regions of $\sigma \cdot BR$ vs. lifetime plane for various models.
- 6 AABOUD 19AT search for heavy, charged long-lived particles at 13 TeV with 36.1 fb $^{-1}$; no signal found and upper limits set on masses of various hypothetical particles.
- ⁷ AABOUD 19G search for long-lived particle with decay to $\mu^+\mu^-$ at 13 TeV with 32.9 fb⁻¹; no signal found and limits set in combinations of lifetime, mass and coupling planes for various simplified models.
- 8 SIRUNYAN 19BH search for long-lived SUSY particles via displaced jets at 13 TeV with 35.9 fb $^{-1}$; no signal found and limits placed in mass vs lifetime plane for various hypothetical models.
- 9 SIRUNYAN 19BT search for displaced jet(s)+ $\not\!\!E_T$ at 13 TeV with 137 fb $^{-1}$; no signal found and limits placed in mass vs lifetime plane for gauge mediated SUSY breaking models.
- 10 SIRUNYAN 19CA search for gluino/squark decay to long-lived neutralino, decay to γ in GMSB; no signal, limits placed in m(χ) vs. lifetime plane for SPS8 GMSB benchmark point .
- ¹¹ SIRUNYAN 19Q search for $pp \to j$ + displaced jet via dark quark with 13 TeV at 16.1 fb⁻¹; no signal found and limits set in mass vs lifetime plane for dark quark/dark pion model
- ¹² SIRUNYAN 18AW search for very long lived particles (LLPs) decaying hadronically or to $\mu \overline{\mu}$ in CMS detector; none seen/limits set on lifetime vs. cross section.
- ¹³ AAIJ 16AR search for long lived particles from $H \to XX$ with displaced X decay vertex using 0.62 fb⁻¹ at 7 TeV; limits set in Fig. 7.
- 14 KHACHATRYAN 16BW search for heavy stable charged particles via ToF with 2.5 fb $^{-1}$ at 13 TeV; require stable m(gluinoball) > 1610 GeV.
- ¹⁵ BADIER 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-$ X, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode.

Long-Lived Heavy Particle Cross Section

VALUE (pb/sr)	CL%	DOCUMENT	Γ ID	TECN	COMMENT			
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$								
<34	95	1 RAM	94	SPEC	1015< $m_{\chi^{++}}$ <1085 MeV			
<75	95	1 RAM	94	SPEC	920 $< m_{\chi^{++}} < 1025 \text{ MeV}$			

¹ RAM 94 search for a long-lived doubly-charged fermion X^{++} with mass between m_N and $m_N + m_\pi$ and baryon number +1 in the reaction $pp \to X^{++}n$. No candidate is found. The limit is for the cross section at 15° scattering angle at 460 MeV incident energy and applies for $\tau(X^{++}) \gg 0.1 \, \mu s$.

LIMITS ON CHARGED PARTICLES IN COSMIC RAYS

Heavy Particle Flux in Cosmic Rays

VALUE (cm	$^{-2}sr^{-1}s^{-1}$	CL% EV	TS.	DOCUMENT ID		TECN	COMMENT
• • • We	do not use	the follow	wing o	data for averages, f	its, lin	nits, etc.	• • •
				¹ ALVIS	18	MAJD	Fractionally charged
< 1	$\times 10^{-8}$	90	0	² AGNESE	15	CDM2	Q = 1/6
~ 6	× 10 ⁻⁹		2	³ SAITO	90		$Q \simeq 14, m \simeq 370 m_p$
< 1.4	$\times 10^{-12}$	90	0	⁴ MINCER	85	CALO	$m \geq 1 {\sf TeV}$
				⁵ SAKUYAMA	83 B	PLAS	$m\sim~1~{\sf TeV}$
< 1.7	$\times 10^{-11}$	99	0	⁶ BHAT	82	CC	
< 1.	$\times 10^{-9}$	90	0	⁷ MARINI	82	CNTR	$Q=1$, $m\sim 4.5m_p$
2.	$\times 10^{-9}$		3	⁸ YOCK	81		$Q=1$, $m\sim 4.5 m_p$
			3	⁸ YOCK	81	SPRK	Fractionally charged
3.0	$\times 10^{-9}$		3	⁹ YOCK	80	SPRK	$m \sim 4.5 m_{\rm p}$
(4 ± 1)	$) \times 10^{-11}$		3	GOODMAN	79	ELEC	$m \geq 5 \text{ GeV}$
< 1.3	$\times 10^{-9}$	90		¹⁰ внат	78	CNTR	m>1 GeV
< 1.0	$\times 10^{-9}$		0	BRIATORE	76	ELEC	
< 7.	$\times 10^{-10}$	90	0	YOCK	75	ELEC	Q > 7e or $< -7e$
> 6.	$\times 10^{-9}$		5	¹¹ YOCK	74	CNTR	m >6 GeV
< 3.0	$\times 10^{-8}$		0	DARDO	72	CNTR	
< 1.5	$\times 10^{-9}$		0	TONWAR	72		m >10 GeV
< 3.0	$\times 10^{-10}$		0	BJORNBOE	68	CNTR	m > 5 GeV
< 5.0	\times 10 ⁻¹¹	90	0	JONES	67	ELEC	m=5-15 GeV

 $^{^1}$ ALVIS 18 search for fractional charged flux of cosmic matter at Majorana demonstrator; no signal observed and limits are set on the flux of lightly ionizing particles for charge as low as e/1000.

² See AGNESE 15 Fig. 6 for limits extending down to Q = 1/200.

³SAITO 90 candidates carry about 450 MeV/nucleon. Cannot be accounted for by conventional backgrounds. Consistent with strange quark matter hypothesis.

⁴ MINCER 85 is high statistics study of calorimeter signals delayed by 20–200 ns. Calibration with AGS beam shows they can be accounted for by rare fluctuations in signals from low-energy hadrons in the shower. Claim that previous delayed signals including BJORNBOE 68, DARDO 72, BHAT 82, SAKUYAMA 83B below may be due to this fake effect

 $^{^5}$ SAKUYAMA 83B analyzed 6000 extended air shower events. Increase of delayed particles and change of lateral distribution above 10^{17} eV may indicate production of very heavy parent at top of atmosphere.

 $^{^6}$ BHAT 82 observed 12 events with delay $> 2. \times 10^{-8}$ s and with more than 40 particles. 1 eV has good hadron shower. However all events are delayed in only one of two detectors in cloud chamber, and could not be due to strongly interacting massive particle.

⁷ MARINI 82 applied PEP-counter for TOF. Above limit is for velocity = 0.54 of light. Limit is inconsistent with YOCK 80 YOCK 81 events if isotropic dependence on zenith angle is assumed.

⁸ YOCK 81 saw another 3 events with $Q=\pm 1$ and m about $4.5m_p$ as well as 2 events with $m>5.3m_p$, $Q=\pm 0.75\pm 0.05$ and $m>2.8m_p$, $Q=\pm 0.70\pm 0.05$ and 1 event with $m=(9.3\pm3.)m_p$, $Q=\pm 0.89\pm 0.06$ as possible heavy candidates.

⁹YOCK 80 events are with charge exactly or approximately equal to unity.

 $^{^{10}}$ BHAT 78 is at Kolar gold fields. Limit is for $au > 10^{-6}$ s.

¹¹ YOCK 74 events could be tritons.

Superheavy Particle (Quark Matter) Flux in Cosmic Rays

VALUE

$(cm^{-2}sr^{-1}s^{-1})$	CL%	DOCUMENT ID		TECN	COMMENT
ullet $ullet$ We do not	use the f	following data for a	verage	es, fits, li	mits, etc. • • •
		¹ ADRIANI	15	PMLA	$4 < m < 1.2 \times 10^5 m_p$
$< 5 \times 10^{-16}$	90	² AMBROSIO			$m > 5 \times 10^{14} \text{ GeV}$
$< 1.8 \times 10^{-12}$	90	³ ASTONE	93	CNTR	$m \ge 1.5 \times 10^{-13}$ gram
$< 1.1 \times 10^{-14}$	90	⁴ AHLEN	92	MCRO	$10^{-10} < m < 0.1 \text{ gram}$
$< 2.2 \times 10^{-14}$	90	⁵ NAKAMURA	91	PLAS	$m>10^{11}~{\rm GeV}$
$<$ 6.4 \times 10 ⁻¹⁶	90	⁶ ORITO	91	PLAS	$m > 10^{12} \text{ GeV}$
$<$ 2.0 \times 10 ⁻¹¹	90	⁷ LIU	88	BOLO	$m > 1.5 \times 10^{-13} \text{ gram}$
$<$ 4.7 \times 10 ⁻¹²	90	⁸ BARISH	87	CNTR	$1.4 \times 10^8 < m < 10^{12} \text{ GeV}$
$< 3.2 \times 10^{-11}$	90	⁹ NAKAMURA	85	CNTR	$m > 1.5 \times 10^{-13}$ gram
$< 3.5 \times 10^{-11}$	90	¹⁰ ULLMAN	81	CNTR	Planck-mass 10 ¹⁹ GeV
$< 7. \times 10^{-11}$	90	¹⁰ ULLMAN	81	CNTR	$\mathit{m} \leq 10^{16} \; GeV$
1					

- ¹ ADRIANI 15 search for relatively light quark matter with charge Z = 1–8. See their Figs. 2 and 3 for flux upper limits.
- ² AMBROSIO 00B searched for quark matter ("nuclearites") in the velocity range $(10^{-5}-1)$ c. The listed limit is for 2×10^{-3} c.
- 3 ASTONE 93 searched for quark matter ("nuclearites") in the velocity range (10^{-3} –1) c. Their Table 1 gives a compilation of searches for nuclearites.
- ⁴ AHLEN 92 searched for quark matter ("nuclearites"). The bound applies to velocity $< 2.5 \times 10^{-3} c$. See their Fig. 3 for other velocity/c and heavier mass range.
- ⁵ NAKAMURA 91 searched for quark matter in the velocity range $(4 \times 10^{-5} 1) c$.
- ⁶ ORITO 91 searched for quark matter. The limit is for the velocity range $(10^{-4}-10^{-3})$ c.
- ⁷ LIU 88 searched for quark matter ("nuclearites") in the velocity range $(2.5 \times 10^{-3} 1)c$. A less stringent limit of 5.8×10^{-11} applies for $(1-2.5) \times 10^{-3}c$.
- ⁸ BARISH 87 searched for quark matter ("nuclearites") in the velocity range $(2.7 \times 10^{-4} 5 \times 10^{-3})c$.
- ⁹ NAKAMURA 85 at KEK searched for quark-matter. These might be lumps of strange quark matter with roughly equal numbers of u, d, s quarks. These lumps or nuclearites were assumed to have velocity of $(10^{-4}-10^{-3}) c$.
- 10 ULLMAN 81 is sensitive for heavy slow singly charge particle reaching earth with vertical velocity $^{100-350}$ km/s.

Highly Ionizing Particle Flux

$\frac{VALUE}{(m^{-2}yr^{-1})}$	CL% E	EVTS	DOCUMENT ID	TECN	COMMENT
ullet $ullet$ We do not use	the follo	wing dat	a for averages, fit	s, limits, etc.	• • •
< 0.4	95	0	KINOSHITA	81B PLAS	Z/eta 30–100

SEARCHES FOR BLACK HOLE PRODUCTION

VALUE	DOCUMENT ID	TECN	COMMENT
• • • We do not use the fo	ollowing data for a	verages, fits, li	imits, etc. • • •
not seen	¹ AABOUD	16P ATLS	13 TeV $pp ightarrow \ e\mu$, $e au$, μau
	² AAD	15AN ATLS	8 TeV $pp \rightarrow \text{multijets}$
	³ AAD	14A ATLS	8 TeV $pp \rightarrow \gamma + \text{jet}$
	⁴ AAD	14AL ATLS	8 TeV $pp \rightarrow \ell + \text{jet}$
	⁵ AAD	14C ATLS	8 TeV $pp \rightarrow \ell + (\ell \text{ or jets})$

HTTP://PDG.LBL.GOV

Page 17

- 1 AABOUD 16P set limits on quantum BH production in n=6 ADD or n=1 RS models.
- 2 AAD 15AN search for black hole or string ball formation followed by its decay to multijet final states, in pp collisions at $E_{\rm cm}=8$ TeV with L=20.3 fb $^{-1}$. See their Figs. 6–8 for limits.
- AAD 14A search for quantum black hole formation followed by its decay to a γ and a jet, in pp collisions at $E_{\rm cm}=8$ TeV with L=20 fb $^{-1}$. See their Fig. 3 for limits.
- ⁴ AAD 14AL search for quantum black hole formation followed by its decay to a lepton and a jet, in pp collisions at $E_{cm}=8$ TeV with L=20.3 fb⁻¹. See their Fig. 2 for limits.
- ⁵ AAD 14C search for microscopic (semiclassical) black hole formation followed by its decay to final states with a lepton and ≥ 2 (leptons or jets), in pp collisions at $E_{\rm cm}=8$ TeV with L=20.3 fb⁻¹. See their Figures 8–11, Tables 7, 8 for limits.
- 6 AAD 13D search for quantum black hole formation followed by its decay to two jets, in pp collisions at $E_{\rm cm}=7$ TeV with L=4.8 fb $^{-1}$. See their Fig. 8 and Table 3 for limits.
- ⁷ CHATRCHYAN 13A search for quantum black hole formation followed by its decay to two jets, in pp collisions at $E_{\rm cm}=7$ TeV with L=5 fb $^{-1}$. See their Figs. 5 and 6 for limits.
- CHATRCHYAN 13AD search for microscopic (semiclassical) black hole formation followed by its evapolation to multiparticle final states, in multijet (including γ , ℓ) events in pp collisions at $E_{\rm cm}=8$ TeV with L=12 fb $^{-1}$. See their Figs. 5–7 for limits.
- ⁹AAD 12AK search for microscopic (semiclassical) black hole formation followed by its decay to final states with a lepton and ≥ 2 (leptons or jets), in pp collisions at $E_{\rm cm}=7$ TeV with L=1.04 fb⁻¹. See their Fig. 4 and 5 for limits.
- 10 CHATRCHYAN 12W search for microscopic (semiclassical) black hole formation followed by its evapolation to multiparticle final states, in multijet (including γ , ℓ) events in pp collisions at $E_{\rm cm}=7$ TeV with L=4.7 fb $^{-1}$. See their Figs. 5–8 for limits.
- 11 AAD 11AG search for quantum black hole formation followed by its decay to two jets, in pp collisions at $E_{\rm cm}=7$ TeV with L =36 pb $^{-1}$. See their Fig. 11 and Table 4 for limits.

REFERENCES FOR Other Particle Searches

AAD	20D	PL B801 135114	G. Aad et al.		Collab.)
SIRUNYAN	20A	EPJ C80 3	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
AABOUD	19AA	EPJ C79 120	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
AABOUD	19AE	EPJ C79 481	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
AABOUD	19AJ	PL B795 56	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
AABOUD	19AK	PRL 122 151801	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
AABOUD	19AM	PR D99 052003	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
AABOUD	19AO	PR D99 052005	M. Aaboud et al.	(ATLAS	Collab.)
AABOUD	19AT	PR D99 092007	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
AABOUD	19G	PR D99 012001	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
AABOUD	19H	PR D99 012008	M. Aaboud et al.	(ATLAS	Collab.)
AABOUD	19Q	JHEP 1905 041	M. Aaboud et al.	(ATLAS	Collab.)
AABOUD	19V	JHEP 1905 142	M. Aaboud et al.	(ATLAS	Collab.)
ALCANTARA	19	PR D99 103016	E. Alcantara, L.A. Anchordoqui, J.F. So	riano	,
SIRUNYAN	19B	PR D99 012005	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
SIRUNYAN	19BH	PR D99 032011	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	19BT	PL B797 134876	A.M. Sirunyan et al.		Collab.)
SIRUNYAN	19CA	PR D100 112003	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	19CD	PRL 123 231803	A.M. Sirunyan <i>et al.</i>		Collab.)
			-	`	,

AABOUUD 18CL PR D98 092002 M. Aaboud et al. (ATLAS Collab.) AABOUUD 18CL PR D98 092008 M. Aaboud et al. (ATLAS Collab.) AABOUUD 18N PR L12 0 681601 M. Aaboud et al. (ATLAS Collab.) AABOUUD 18N PR L12 0 681601 M. Aaboud et al. (ATLAS Collab.) AAUI 18N PR L12 0 681601 R. Aaij et al. (LIHCL Collab.) AAUI 18A J PR L120 211804 S. A. Albert et al. (HAWC Collab.) ALUS 18 PR L120 211804 S. Alvis et al. (MAJORANA Collab.) BANERIEE 18 PR L120 211805 S. A. Albert et al. (MAJORANA Collab.) BANERIEE 18A PR D97 072002 D. Banerjee et al. (NA66 Collab.) BANERIEE 18A PR D98 015031 PR D9	SIRUNYAN SIRUNYAN AABOUD AABOUD		JHEP 1902 074 JHEP 1902 179 PL B779 24 PR D98 052008	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i> M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i>	(CMS C (CMS C (ATLAS C (ATLAS C	Collab.)
AABOUD 18CM PR D98 092008 AABOUD 18D PR 1210 18B0 PR 1210 18B0 PR 1210 18D PR 1210 1						
AABOUUD 18N PRL 121 081801 M. Aaboud et al. (ATLAS Collab.) ALBERT 18C PR D98 123012 A. Albert et al. (HACW Collab.) ALBERT 18C PR D98 123012 A. Albert et al. (MAJORANA Collab.) BANERIEE 18 PRL 120 231802 D. Banerige et al. (NA64 Collab.) BANERIEE 18A PR D97 072002 D. Banerige et al. (NA64 Collab.) Collab. KILE 18 JHEP 1310 116 J. Kile, J. von Wimmersperg-Toeller (LISBT) KILE 18 JHEP 1310 116 J. Kile, J. von Wimmersperg-Toeller (LISBT) SIRUNYAN 18B PR D98 102002 NK. Porayako et al. (PPTA Collab.) SIRUNYAN 18BB JHEP 1806 120 A. M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18BB JHEP 1806 120 A. M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DD JHEP 1810 102 A. M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DD JHEP 1809 110: A. M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DD JHEP 1809 110: A. M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DD JHEP 1809 110: A. M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DD JHEP 1809 110: A. M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DD JHEP 1811 161 A. M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DD JHEP 1811 161 A. M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DD JHEP 1811 161 A. M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DD JHEP 1811 170: A. M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DD JHEP 1811 170: A. M. Sirunyan et al. (CMS Collab.) ABOUUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) ABINDUN AND ARCHAN A						
ALBERT 18C PR D98 122012 ANUS 18 PR L120 231804 BANERIEE 18 PR L120 231802 BANERIEE 18A PR D97 072002 LILE 18 JHEP 1810 116 MARSICAND 18 PR D98 015031 PORAYKO 18 PR D98 102002 SIRUIYAN 18AW JHEP 1805 127 SIRUIYAN 18BD JHEP 1810 162 SIRUIYAN 18DD EPJ C78 789 SIRUIYAN 18DD EPJ C78 789 SIRUIYAN 18DD HIP 1810 1042 AM. Siruiyan et al. (CMS Collab.) SIRUIYAN 18DD EPJ C78 789 SIRUIYAN 18DD HIP 1811 161 SIRUIYAN 18DD EPJ C78 789 AM. Siruiyan et al. (CMS Collab.) SIRUIYAN 18DD HIP 1811 161 AM. Siruiyan et al. (CMS Collab.) SIRUIYAN 18DV PR D98 092001 AM. Siruiyan et al. (CMS Collab.) SIRUIYAN 18DV PR D98 092001 AM. Siruiyan et al. (CMS Collab.) SIRUIYAN 18DV PR D98 092001 AM. Siruiyan et al. (CMS Collab.) SIRUIYAN 18DV PR D98 092001 AM. Siruiyan et al. (CMS Collab.) SIRUIYAN 18DV PR D98 112014 AMBOUD 17D PR D95 032001 AM. Siruiyan et al. (CMS Collab.) SIRUIYAN 18ED JHEP 1811 172 AM. Siruiyan et al. (CMS Collab.) AABOUD 17D PR D95 032001 AM. Aboud et al. (ATLAS Collab.) AABOUD 17D PR D95 032001 AM. Aboud et al. (ATLAS Collab.) AABOUD 17D JHEP 1701 076 KHACHATEY. 17D JHEP 1701 076 KHACHATEY. 17D JHEP 1701 1076 KHACHATEY. 17P PL B770 257 V. Khachatryan et al. (CMS Collab.) SIRUIYAN 17B JHEP 1704 136 SIRUIYAN 17B JHEP 1705 029 AM. Siruiyan et al. (CMS Collab.) KHACHATEY. 17P PL B773 59 V. Khachatryan et al. (CMS Collab.) AAD 16P PL B758 289 AAD 16P PL B758 285 G. Aad et al. (ATLAS Collab.) AAD 16P PL B759 50 V. Khachatryan et al. (CMS Collab.) AAD 16P PL B759 50 V. Khachatryan et al. (CMS Collab.) AAD 16P PL B759 50 V. Khachatryan et al. (CMS Collab.) AAD 16P PL B759 50 V. Khachatryan et al. (CMS Collab.) AAD 16P PL B759 50 V. Khachatryan et al. (CMS Collab.) AAD 16P PL B759 50 V. Khachatryan et al. (CMS Collab.) AAD 16P PL B759 50 V. Khachatryan et al. (CMS Collab.) AAD 16P PL B						
ALVIS 18				3		
BANBERJEE 18						
BANERJEE 18A PR D97 072002 N. Banerjee et al. MARSICANO 18 PR D98 015031 L. Marsicano et al. PR D98 015031 L. Marsicano et al. PR D98 102002 N.K. Porsyako et al. (PPTA Collab.) SIRUNYAN 18AW JHEP 1805 127 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18BB JHEP 1806 120 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18BD JHEP 1801 102 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DD JHEP 1809 101 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DD JHEP 1809 101 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DD JHEP 1809 101 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DD JHEP 1809 110 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DV JHEP 1811 161 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DV PR D98 112014 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DV PR D98 112014 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DV PR D98 112014 A.M. Sirunyan et al. (CMS Collab.) AABOUD 17D PR D95 032001 A.M. Sirunyan et al. (CMS Collab.) AABOUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) ABILIM 17AA PL B774 522 M. Aaboud et al. (ATLAS Collab.) ABILIM 17AA PL B774 522 M. Aaboud et al. (ATLAS Collab.) ABILIM 17AA PL B774 522 M. Aaboud et al. (ATLAS Collab.) ABILIM 17AA PL B774 522 M. Aaboud et al. (ATLAS Collab.) ABILIM 17AA PL B776 520 V. Khachatryan et al. (CMS Collab.) SIRUNYAN 17B JHEP 1704 136 V. Khachatryan et al. (CMS Collab.) SIRUNYAN 17B JHEP 1706 136 V. Khachatryan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 079 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 079 A.M. Sirunyan et al. (CMS Collab.) ABILIM 17AA PL B775 199 A.M. Sirunyan et al. (CMS Collab.) ABILIM 17AA PL B775 199 A.M. Sirunyan et al. (CMS Collab.) ABILIM 17AA PL B775 199 A.M. Sirunyan et al. (CMS Collab.) ABILIM 17AA PL B775 199 A.M. Siruny					` .	
MARSICANO 18	_			D. Banerjee <i>et al.</i>	(NA64 C	
PORAYKO 18					er (l	LISBT)
SIRUINYAN 18AW JHEP 1805 127 A.M. Sirunyan et al. (CMS Collab.) SIRUINYAN 18BB JHEP 1805 120 A.M. Sirunyan et al. (CMS Collab.) SIRUINYAN 18DD JHEP 1811 1042 A.M. Sirunyan et al. (CMS Collab.) SIRUINYAN 18DD JHEP 1819 101 A.M. Sirunyan et al. (CMS Collab.) SIRUINYAN 18DD JHEP 1819 101 A.M. Sirunyan et al. (CMS Collab.) SIRUINYAN 18DD JHEP 1819 101 A.M. Sirunyan et al. (CMS Collab.) SIRUINYAN 18DD JHEP 1811 161 A.M. Sirunyan et al. (CMS Collab.) SIRUINYAN 18DD JHEP 1811 1172 A.M. Sirunyan et al. (CMS Collab.) SIRUINYAN 18DD JP D98 092001 A.M. Sirunyan et al. (CMS Collab.) SIRUINYAN 18DD JP D98 092001 A.M. Sirunyan et al. (CMS Collab.) ARBOUD 17D JP D95 032001 A.M. Aboud et al. (CMS Collab.) ARBOUD 17D JP D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D JP D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D JP D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D JP D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D JP D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D JP D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D JP D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D JP D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D JP D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D JP D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 18D JP D97 03201 M. Aaboud et al. (CMS Collab.) AABOUD 18D JP D97 03201 M. Aaboud et al. (CMS Collab.) AABOUD 18D JP D97 03201 M. Aaboud et al. (CMS Collab.) AABOUD 18D JP D97 03201 M. Aaboud et al. (CMS Collab.) SIRUINYAN 17D JHEP 1707 013 A.M. Sirunyan et al. (CMS Collab.) SIRUINYAN 17D JHEP 1707 013 A.M. Sirunyan et al. (CMS Collab.) SIRUINYAN 17D JP D97 03201 M. Aaboud et al. (ATLAS Collab.) AAD 16D JP D97 03201 M. Aaboud et al. (ATLAS Collab.) AAD 16D JP D97 03201 M. Aaboud et al. (ATLAS Collab.) AAD 16D JP D97 03201 M. Aaboud et al. (ATLAS Collab.) AAD 16D JP D97 03201 M. Aaboud et al. (ATLAS Collab.) AAD 16D JP D9					(PPTA C	Collab)
SIRUNYAN 18DA JHEP 1811 042 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DD JHEP 1809 101 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DJ JHEP 1810 161 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DV PR D98 092001 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DV PR D98 092001 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DV PR D98 112014 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DV PR D98 112014 A.M. Sirunyan et al. (CMS Collab.) ARBOUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) AABUM 17BR EPJ C77 812 R. Aaji et al. (LHC6 Collab.) ABILIKIM 17AA PL B774 252 M. Ablikim et al. (EMS Collab.) ABILIKIM 17AA PL B774 252 M. Ablikim et al. (CMS Collab.) KHACHATRY 17V PL B770 257 V. Khachatryan et al. (CMS Collab.) KHACHATRY 17V PL B770 257 V. Khachatryan et al. (CMS Collab.) SIRUNYAN 17B JHEP 1704 136 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17F JHEP 1707 013 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17F JHEP 1707 013 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17F JHEP 1707 013 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17F JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) ABOUD 16P PL B773 159 X. Zang. G.A. Miller (ASCOLLAB AND 16A) JHEP 1603 041 G. Aad et al. (ATLAS Collab.) AAD 16A JHEP 1603 041 G. Aad et al. (ATLAS Collab.) AAD 16A JHEP 1603 041 G. Aad et al. (ATLAS Collab.) AAD 16A JHEP 1603 042 G. Aad et al. (ATLAS Collab.) AAD 16A JHEP 1603 043 G. Aad et al. (ATLAS Collab.) AAD 16A JHEP 1603 045 G. Aad et al. (ATLAS Collab.) AAD 16A JHEP 1607 032 G. Aad et al. (ATLAS Collab.) AAD 16A JHEP 1607 032 G. Aad et al. (ATLAS Collab.) AAD 15AT EPJ C75 595 G. Aad et al. (ATLAS						
SIRUNYAN 18DD EPJ C78 789 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DJ JHEP 1801 101 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DJ PR D98 092001 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DJ PR D98 092001 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DJ PR D98 112014 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DJ PR D98 112014 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18ED JHEP 1811 172 A.M. Sirunyan et al. (CMS Collab.) ABBOUD 17D PR D99 0322001 A.M. Sirunyan et al. (ATLAS Collab.) AABOUD 17L JHEP 1708 052 M. Aaboud et al. (ATLAS Collab.) AABOUD 17L JHEP 1708 052 M. Aaboud et al. (ATLAS Collab.) AABOUD 17L JHEP 1708 052 M. Aaboud et al. (ATLAS Collab.) ABLIKIM 17AA PL B774 252 R. Aaij et al. (LHCb Collab.) ABLIKIM 17AA PL B774 252 M. Ablikim et al. (EMS Collab.) ABLIKIM 17AA PL B774 252 M. Ablikim et al. (CMS Collab.) AHACHATRY 17D JHEP 1701 076 V. Khachatryan et al. (CMS Collab.) SIRUNYAN 17B JHEP 1704 136 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17C JHEP 1705 029 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17C JHEP 1705 029 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) AABOUD 16P PJ C76 541 M. Aaboud et al. (ATLAS Collab.) AABOUD 16P PJ C76 541 M. Aaboud et al. (ATLAS Collab.) AABOUD 16P PJ C76 541 M. Aaboud et al. (ATLAS Collab.) AAD 16A JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16A JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16A JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16A JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16A PL B755 255 G. Aad et al. (ATLAS Collab.) AAD 16A PL B755 255 G. Aad et al. (ATLAS Collab.) AAD 16A PL B755 255 G. Aad et al. (ATLAS Collab.) AAD 15AT EP				,		
SIRUNYAN 18DJ JHEP 1809 101 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DV PR D98 092001 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DV PR D98 192014 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DV PR D98 192014 A.M. Sirunyan et al. (CMS Collab.) ARBOUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17L JHEP 1708 052 M. Aaboud et al. (ATLAS Collab.) AABOUD 17L JHEP 1708 052 M. Aaboud et al. (ATLAS Collab.) AABUT ALL STATE ALL STAT						
SIRUNYAN 18DR JHEP 1811 161 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DP RD 96 902001 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DP RD 96 902001 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DP RD 98 112014 A.M. Sirunyan et al. (CMS Collab.) ARBOUD 17B PL B765 32 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D RD 95 932001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17L JHEP 1708 052 M. Aaboud et al. (ATLAS Collab.) AABOUD 17L JHEP 1708 052 M. Aaboud et al. (ATLAS Collab.) AABOUD 17L JHEP 1708 052 M. Aaboud et al. (ATLAS Collab.) AABUL TRB EPJ C77 812 M. Aaboud et al. (ELTA COLLAD.) ABULKIM TAA PL B774 252 M. Ablikim et al. (ESIII Collab.) (ELTA COLLAD.) ABULKIM TAA PL B774 252 M. Ablikim et al. (ESIII Collab.) (ELTA COLLAD.) ACCORDINATION						
SIRUNYAN 18ED PR D98 112014 A.M. Sirunyan et al. (CMS Collab.) AABOUD 17B PL B765 32 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17L HEPP 1708 052 M. Aaboud et al. (ATLAS Collab.) AABOUD 17L HEPP 1708 052 M. Aaboud et al. (ATLAS Collab.) AABULMIN 17BR EPJ C77 812 R. Aaij et al. (LHCb Collab.) AABULMIN 17BR EPJ C77 812 R. Aaij et al. (LHCb Collab.) AABULMIN 17AA PL B774 252 M. Ablikim et al. (BESIII Collab.) KHACHATRY 17D JHEP 1701 076 V. Khachatryan et al. (CMS Collab.) KHACHATRY 17P B770 257 V. Khachatryan et al. (CMS Collab.) SIRUNYAN 17C JHEP 1704 136 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17C JHEP 1707 013 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17F JHEP 1707 013 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17F JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17F JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17F JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) AAD				A.M. Sirunyan et al.	(CMS C	Collab.)
SIRUINYAN 18ED JHEP 1811 172	-					
AABOUD 17B PL B765 32 M. Aaboud et al. (ATLAS Collab.) AABOUD 17D PR D95 032001 M. Aaboud et al. (ATLAS Collab.) AABOUD 17L JHEP 1708 052 M. Aaboud et al. (ATLAS Collab.) AAIJ 17BR EPJ C77 812 R. Aaij et al. (BESIII Collab.) AAIJ 17BR EPJ C77 812 R. Aaij et al. (BESIII Collab.) AAIJ 17BR EPJ C77 812 R. Aaij et al. (BESIII Collab.) KHACHATRY 17D JHEP 1701 076 V. Khachatryan et al. (CMS Collab.) KHACHATRY 17Y PL B770 257 V. Khachatryan et al. (CMS Collab.) KHACHATRY 17Y PL B770 257 V. Khachatryan et al. (CMS Collab.) SIRUNYAN 17B JHEP 1704 136 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17C JHEP 1705 029 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17C JHEP 1707 013 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) ZANG 17 PL B773 159 X. Zang, G.A. Miller (WASH) AABOUD 16P PD 765 541 M. Aaboud et al. (ATLAS Collab.) AAD 16AI JHEP 1603 041 G. Aad et al. (ATLAS Collab.) AAD 16AI JHEP 1603 041 G. Aad et al. (ATLAS Collab.) AAD 16AI JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16AI JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16A PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16A PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16A PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16A PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16A PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16A PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16A PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16A PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16A PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16A PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16A PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16A PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 15BA PJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15BA PJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15BA PJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15BA PJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15AN PRE 111 031802 V. Khachatryan et al. (CMS Collab.) AAD 15AN PRE 111 031802 V. Khachatr				,	` ·	,
AABOUD 17L JHEP 1708 052 M. Aaboud et al. (ATLAS Collab) AAIJ 17BR EPJ C77 812 R. Aaij et al. (LHCb Collab.) ABLIKIM 17AA PL B774 252 M. Ablikim et al. (EBSIII Collab.) KHACHATRY 17D JHEP 1701 076 V. Khachatryan et al. (CMS Collab.) KHACHATRY 17Y PL B769 520 V. Khachatryan et al. (CMS Collab.) KHACHATRY 17Y PL B709 257 V. Khachatryan et al. (CMS Collab.) SIRUNYAN 17E JHEP 1704 136 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17F JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) AABOUD 16P PL B759 229 M. Aaboud et al. (ATLAS Collab.) AABOUD 16P PL B765 265 A.A. Sirunyan et al.				•		
AALI 17BR EPJ C77 812 R. Aaij et al. (LHCb Collab.) KHACHATRY 17D JHEP 1701 076 V. Khachatryan et al. (CMS Collab.) KHACHATRY 17V PL B769 520 V. Khachatryan et al. (CMS Collab.) KHACHATRY 17V PL B769 520 V. Khachatryan et al. (CMS Collab.) KHACHATRY 17V PL B769 520 V. Khachatryan et al. (CMS Collab.) SIRUNYAN 17B JHEP 1704 136 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17C JHEP 1705 029 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) AABOUD 16 PL B759 229 M. Aaboud et al. (ATLAS Collab.) AABOUD 16 PL B759 229 M. Aaboud et al. (ATLAS Collab.) AAD 16N JHEP 1603 041 G. Aad et al. (ATLAS Collab.) AAD 16N JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16N JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16R PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16R PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16R PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16R PL B756 520 G. Aad et al. (ATLAS Collab.) AAD 16R PL B756 520 G. Aad et al. (ATLAS Collab.) AAD 16R PL B756 664 R. Aaij et al. (LHCb Collab.) KHACHATRY 16BW PR D94 112004 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16M PRL 117 031802 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16M PRL 117 051802 V. Khachatryan et al. (CMS Collab.) AAD 15AT EPJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15AT EPJ C75 595 R. Aaij et al. (LHCb Collab.) AAD 15AT EPJ C75 595 R. Aaij et al. (LHCb Collab.) AAD 15AT EPJ C75 595 R. Aaij et al. (LHCb Collab.) AAD 15AT EPJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15AT EPJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15AT EPJ C75 595 R. Aaij et al. (LHCb Collab.) AAD 15AT EPJ C75 595 R. Aaij et al. (LHCb Collab.) AAD 15AT EPJ C75 595 R. Aaij et al. (LHCb Collab.) AAD 15AT EPJ C75 595 R. Aaij et al. (ATLAS Collab.) AAD 15AT EPJ C75 595						
ABLIKIM 17AA PL B774 252 M. Ablikim et al. (BESIII Collab.) KHACHATRY 17D JHEP 1701 076 V. Khachatryan et al. (CMS Collab.) KHACHATRY 17Y PL B769 520 V. Khachatryan et al. (CMS Collab.) KHACHATRY 17Y PL B770 257 V. Khachatryan et al. (CMS Collab.) SIRUNYAN 17B JHEP 1704 136 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17C JHEP 1705 029 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17F JHEP 1707 013 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) ZANG 17 PL B773 159 X. Zang, G.A. Miller (WASH) AABOUD 16 PE JC 76 541 M. Aaboud et al. (ATLAS Collab.) AAD 16A1 JHEP 1603 041 G. Aad et al. (ATLAS Collab.) AAD 16A1 JHEP 1603 041 G. Aad et al. (ATLAS Collab.) AAD 16A1 JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16B PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16B PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16B PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16B PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16B PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16B PL B756 664 R. Aaij et al. (LHCb Collab.) KHACHATRY 16B PR L 116 071801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16B PR L 116 071801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16M PRL 117 031802 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16M PRL 117 031802 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16B PRL 116 042501 A.J. Krasznahorkay et al. (ATLAS Collab.) AAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15BJ EPJ C75 362 G. Aad et al. (ATLAS Collab.) AAD 15BJ EPJ C75 362 G. Aad et al. (ATLAS Collab.) AAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AN JHEP 1507 032 G. Aad et al. (ATLA						
KHACHATRY 17D JHEP 1701 076 V. Khachatryan et al. (CMS Collab.) KHACHATRY 17V PL B769 520 V. Khachatryan et al. (CMS Collab.) KHACHATRY 17V PL B770 257 V. Khachatryan et al. (CMS Collab.) SIRUNYAN 17B JHEP 1704 136 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17C JHEP 1705 029 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1708 073 A.M. Sirunyan et al. (CMS Collab.) AABOUD 16 PL B759 229 M. Aaboud et al. (ATLAS Collab.) AABOUD 16P PL B759 229 M. Aaboud et al. (ATLAS Collab.) AAD 16O JHEP 1603 041 G. Ad et al. (ATLAS Collab.) AAD 16O PL B766 520 G. Aad et al. (ATLAS Collab.) AAD 16C PL B754 302 G. Aad et al. (ATLAS Collab.) AAD 16S PL B754 302 G. Aad et al. (ATLAS Collab.) AHACHATRY 16EW PW PD 194 112004 V. Khachatryan et al. (CMS Collab.)	-			3		
KHACHATRY 17Y	KHACHATRY	17D	JHEP 1701 076	V. Khachatryan et al.		
SIRUNYAN 17B				•	` ·	
SIRUNYAN 17C JHEP 1705 029 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17J JHEP 1707 013 A.M. Sirunyan et al. (CMS Collab.) ZANG 17 PL B773 159 X. Zang, G.A. Miller (WASH) AABOUD 16 PL B759 229 M. Aaboud et al. (ATLAS Collab.) AAD 16AI JHEP 1603 041 G. Aad et al. (ATLAS Collab.) AAD 16AI JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16N JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16C PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16S PL B754 302 G. Aad et al. (ATLAS Collab.) AAD 16S PL B754 302 G. Aad et al. (ATLAS Collab.) KHACHATRY 16BW PR D94 112004 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16BW PRL 117 031802 V. Khachatryan et al. (CMS Collab.) KRASZNAHO 16 PRL 117 051802 V. Khachatryan et al. (CMS Collab.)						
SIRUNYAN			JHEP 1705 029			
ZANG 17 PL B759 X. Zang, Ğ.A. Miller (WASH) AABOUD 16 PL B759 229 M. Aaboud et al. (ATLAS Collab.) AAD 16AI JHEP 1603 041 G. Aad et al. (ATLAS Collab.) AAD 16N JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16N JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16N JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16R PL B754 302 G. Aad et al. (ATLAS Collab.) AAD 16S PL B754 302 G. Aad et al. (ATLAS Collab.) AAD 16S PL B754 302 G. Aad et al. (ATLAS Collab.) AAD 16S PL B754 302 G. Aad et al. (ATLAS Collab.) KHACHATRY 16BW PRL 116 071801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16H PRL 117 031802 V. Khachatryan et al. (CMS Collab.) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
AABOUD 16 PL B759 229 M. Aaboud et al. (ATLAS Collab.) AABOUD 16P EPJ C76 541 M. Aaboud et al. (ATLAS Collab.) AAD 16AI JHEP 1603 041 G. Aad et al. (ATLAS Collab.) AAD 16N JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16O PL B760 520 G. Aad et al. (ATLAS Collab.) AAD 16R PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16R PL B754 302 G. Aad et al. (ATLAS Collab.) AAIJ 16AR EPJ C76 664 R. Aaij et al. (LHCb Collab.) KHACHATRY 16BW PR D94 112004 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16K PRL 116 071801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16K PRL 117 031802 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16W PRL 117 031802 V. Khachatryan et al. (CMS Collab.) KRASZNAHO 16 PRL 116 042501 A.J. Krasznahorkay et al. (HINR, ANIK+) AAD 15AI EPJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15BJ EPJ C75 595					`	
AABOUD 16P EPJ C76 541 M. Aaboud et al. (ATLAS Collab.) AAD 16AI JHEP 1603 041 G. Aad et al. (ATLAS Collab.) AAD 16N JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16O PL B760 520 G. Aad et al. (ATLAS Collab.) AAD 16R PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16S PL B754 302 G. Aad et al. (ATLAS Collab.) AAD 16R PL B754 302 G. Aad et al. (ATLAS Collab.) KHACHATRY 16BW PR D94 112004 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16K PRL 116 071801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16M PRL 117 051802 V. Khachatryan et al. (CMS Collab.) KRASZNAHO 16 PRL 116 042501 A.J. Krasznahorkay et al. (HINR, ANIK+) AAD 15AT EPJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15AT EPJ C75 595 R. Aaij et al. (LHCb Collab.) AA						
AAD 16N JHEP 1603 026 G. Aad et al. (ATLAS Collab.) AAD 16O PL B760 520 G. Aad et al. (ATLAS Collab.) AAD 16R PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16S PL B754 302 G. Aad et al. (ATLAS Collab.) AAIJ 16AR EPJ C76 664 R. Aaij et al. (LHCb Collab.) KHACHATRY 16BW PR D94 112004 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16K PRL 116 071801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16M PRL 117 031802 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16M PRL 116 042501 A.J. Krasznahorkay et al. (HINR. ANIK+) KAAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AT EPJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15BJ EPJ C75 595 R. Aaij et al. (LHCb Collab.) AAD 15BJ EPJ C75 595 R. Aaij et al. (LHCb Collab.) ABO 15B PRL 114 1113					(ATLAS C	Collab.)
AAD 160 PL B760 520 G. Aad et al. (ATLAS Collab.) AAD 16R PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16S PL B754 302 G. Aad et al. (ATLAS Collab.) AAIJ 16AR EPJ C76 664 R. Aaij et al. (LHCb Collab.) KHACHATRY 16BW PR D94 112004 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16K PRL 117 031802 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16D PRL 117 051802 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16M PRL 116 042501 A.J. Krasznahorkay et al. (CMS Collab.) KRASZNAHO 16 PRL 116 042501 A.J. Krasznahorkay et al. (ATLAS Collab.) KAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AT EPJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15BJ EPJ C75 562 G. Aad et al. (ATLAS Collab.) AAD 15BJ EPRL 115 111101 O. Adriani et al. (PAMELA Collab.)						
AAD 16R PL B755 285 G. Aad et al. (ATLAS Collab.) AAD 16S PL B754 302 G. Aad et al. (ATLAS Collab.) AAIJ 16AR EPJ C76 664 R. Aaij et al. (LHCb Collab.) KHACHATRY 16BW PR D94 112004 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16K PRL 116 071801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16L PRL 117 031802 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16D PRL 117 051802 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16D PRL 117 051802 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16D PRL 116 042501 A.J. Krasznahorkay et al. (HINR, ANIK+) AAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AT EPJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15BJ EPJ C75 362 G. Aad et al. (ATLAS Collab.) AAIJ 15BD EPJ C75 362 G. Aad et al. (ATLAS Collab.) AAIJ 15BD EPJ C75 595 R. Aaij et al. (LHCb Collab.) AGNESE 15 PRL 114 111302 R. Agnese et al. (CDMS Collab.) KHACHATRY 15F PRL 114 101801 V. Khachatryan et al. (CMS Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 15A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 15A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 60 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 70 C. Aad et al. (ATLAS Collab.) AAD 13A PL B718 800 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 800 G. Aad et al. (ATLAS Collab.) AALTONEN 13I PR D88 031103 T. Aaltonen et al. (CDF Collab.) CHATRCHYAN 13 PL B718 815 S. Chatrchyan et al.						
AAIJ 16AR EPJ C76 664 R. Aaij et al. (LHCb Collab.) KHACHATRY 16BW PR D94 112004 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16K PRL 116 071801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16L PRL 117 031802 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16M PRL 117 051802 V. Khachatryan et al. (CMS Collab.) KRASZNAHO 16 PRL 116 042501 A.J. Krasznahorkay et al. (HINR, ANIK+) AAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AT EPJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15BJ EPJ C75 362 G. Aad et al. (ATLAS Collab.) AAIJ 15BD EPJ C75 595 R. Aaij et al. (LHCb Collab.) ADRIANI 15 PRL 115 111101 O. Adriani et al. (PAMELA Collab.) AGNESE 15 PRL 114 111302 R. Agnese et al. (CDMS Collab.) KHACHATRY 15F PRL 114 101801 V. Khachatryan et al. (CMS Collab.) AAD 14A PL B728 562 G. Aad et al. (BABAR Collab.) AAD 14A PRL 112 091804 G. Aad et al. (ATLAS Collab.) AAD 14AL PRL 112 091804 G. Aad et al. (ATLAS Collab.) AAD 14AL PRL 112 091804 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13B PR B80 831103 T. Aaltonen et al. (CDF Collab.) CHATRCHYAN 13 PL B718 815 S. Chatrchyan et		16R	PL B755 285	G. Aad <i>et al.</i>	(ATLAS C	Collab.)
KHACHATRY 16BW PR D94 112004 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16K PRL 116 071801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16L PRL 117 031802 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16M PRL 117 051802 V. Khachatryan et al. (CMS Collab.) KRASZNAHO 16 PRL 116 042501 A.J. Krasznahorkay et al. (HINR, ANIK+) AAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AT EPJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15BJ EPJ C75 362 G. Aad et al. (ATLAS Collab.) AAIJ 15BD EPJ C75 595 R. Aaij et al. (LHCb Collab.) AGNESE 15 PRL 115 111101 O. Adriani et al. (PAMELA Collab.) AGNESE 15 PRL 114 111302 R. Agnese et al. (CDMS Collab.) KHACHATRY 15F PRL 114 101801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15F PRL 114 171801 J.P. Lees et al. (BABAR Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14C JHEP 1408 103 G. Aad et al.					(ATLAS C	Collab.)
KHACHATRY 16K PRL 116 071801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16L PRL 117 031802 V. Khachatryan et al. (CMS Collab.) KHACHATRY 16M PRL 117 051802 V. Khachatryan et al. (CMS Collab.) KRASZNAHO 16 PRL 116 042501 A.J. Krasznahorkay et al. (HINR, ANIK+) AAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AT EPJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15BJ EPJ C75 362 G. Aad et al. (ATLAS Collab.) AAIJ 15BD EPJ C75 595 R. Aaij et al. (LHCb Collab.) ABRIANI 15 PRL 115 111101 O. Adriani et al. (PAMELA Collab.) KHACHATRY 15F PRL 114 11302 R. Agnese et al. (CDMS Collab.) KHACHATRY 15F				,	(LHCb C	collab.)
KHACHATRY 16M PRL 117 051802 V. Khachatryan et al. (CMS Collab.) KRASZNAHO 16 PRL 116 042501 A.J. Krasznahorkay et al. (HINR, ANIK+) AAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AT EPJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15BJ EPJ C75 362 G. Aad et al. (ATLAS Collab.) AAIJ 15BD EPJ C75 595 R. Aaij et al. (LHCb Collab.) ADRIANI 15 PRL 115 111101 O. Adriani et al. (PAMELA Collab.) AGNESE 15 PRL 114 111302 R. Agnese et al. (CDMS Collab.) KHACHATRY 15F PRL 114 171801 J.P. Lees et al. (BABAR Collab.) KHACHATRY 15F PRL 114 171801 J.P. Lees et al. (ATLAS Collab.) LEES 15E PRL <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
KRASZNAHO 16 PRL 116 042501 A.J. Krasznahorkay et al. (HİNR, ANIK+) AAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AT EPJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15BJ EPJ C75 362 G. Aad et al. (ATLAS Collab.) AAIJ 15BD EPJ C75 595 R. Aaij et al. (LHCb Collab.) ADRIANI 15 PRL 115 111101 O. Adriani et al. (PAMELA Collab.) AGNESE 15 PRL 114 111302 R. Agnese et al. (CDMS Collab.) KHACHATRY 15F PRL 114 101801 V. Khachatryan et al. (CMS Collab.) LEES 15E PRL 114 171801 J.P. Lees et al. (BABAR Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14AL PRL 112 091804 G. Aad et al. (ATLAS Collab.) AAD 14C JHEP 1408 103 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13A PL B722 305 G. Aad et al. (ATLAS Collab.)						
AAD 15AN JHEP 1507 032 G. Aad et al. (ATLAS Collab.) AAD 15AT EPJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15BJ EPJ C75 362 G. Aad et al. (ATLAS Collab.) AAIJ 15BD EPJ C75 595 R. Aaij et al. (LHCb Collab.) ADRIANI 15 PRL 115 111101 O. Adriani et al. (PAMELA Collab.) AGNESE 15 PRL 114 111302 R. Agnese et al. (CDMS Collab.) KHACHATRY 15F PRL 114 171801 V. Khachatryan et al. (BABAR Collab.) LEES 15E PRL 114 171801 J.P. Lees et al. (BABAR Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14AL PRL 112 091804 G. Aad et al. (ATLAS Collab.) AAD 14C JHEP 1408 103 G. Aad et al. (ATLAS Collab.) AALTONEN 14J PR D89 092001 T. Aaltonen et al. (CDF Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13D JHEP 1301 029 G. Aad et al. (ATLAS Collab.) <td></td> <td></td> <td></td> <td></td> <td>(</td> <td> ,</td>					(,
AAD 15AT EPJ C75 79 G. Aad et al. (ATLAS Collab.) AAD 15BJ EPJ C75 362 G. Aad et al. (ATLAS Collab.) AAIJ 15BD EPJ C75 595 R. Aaij et al. (LHCb Collab.) ADRIANI 15 PRL 115 111101 O. Adriani et al. (PAMELA Collab.) AGNESE 15 PRL 114 111302 R. Agnese et al. (CDMS Collab.) KHACHATRY 15F PRL 114 101801 V. Khachatryan et al. (CMS Collab.) LEES 15E PRL 114 171801 J.P. Lees et al. (BABAR Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14AL PRL 112 091804 G. Aad et al. (ATLAS Collab.) AALTONEN 14J PR D89 092001 T. Aaltonen et al. (CDF Collab.) AAD 13AH PL B722 305 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad						
AAIJ 15BD EPJ C75 595 R. Aaij et al. (LHCb Collab.) ADRIANI 15 PRL 115 111101 O. Adriani et al. (PAMELA Collab.) AGNESE 15 PRL 114 111302 R. Agnese et al. (CDMS Collab.) KHACHATRY 15F PRL 114 101801 V. Khachatryan et al. (CMS Collab.) LEES 15E PRL 114 171801 J.P. Lees et al. (BABAR Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14AL PRL 112 091804 G. Aad et al. (ATLAS Collab.) AAD 14C JHEP 1408 103 G. Aad et al. (ATLAS Collab.) AALTONEN 14J PR D89 092001 T. Aaltonen et al. (CDF Collab.) AAD 13AH PL B722 305 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.) AALTONEN 13I PR D88 031103 T. Aaltonen et al. (CDF Collab.) AALTONEN 131 PR D88 031103 T. Aaltonen et al. (CDF Collab.) AALTONEN 13R PRL 111 031802 T. Aaltonen et al. (CDF Collab.) CHATRCHYAN 13 PL B718 815 S. Chatrchyan et al. (CMS Collab.)						
ADRIANI 15 PRL 115 111101 O. Adriani et al. (PAMELA Collab.) AGNESE 15 PRL 114 111302 R. Agnese et al. (CDMS Collab.) KHACHATRY 15F PRL 114 101801 V. Khachatryan et al. (CMS Collab.) LEES 15E PRL 114 171801 J.P. Lees et al. (BABAR Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14L PRL 112 091804 G. Aad et al. (ATLAS Collab.) AAD 14C JHEP 1408 103 G. Aad et al. (ATLAS Collab.) AALTONEN 14J PR D89 092001 T. Aaltonen et al. (CDF Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 0129 G. Aad et al. (ATLAS Collab.) AAD 13D JHEP 1301 029 G. Aad et al. (ATLAS Collab.) AALTONEN 13I PR D88 031103 T. Aaltonen et al. (CDF Collab.)<						
AGNESE 15 PRL 114 111302 R. Agnese et al. (CDMS Collab.) KHACHATRY 15F PRL 114 101801 V. Khachatryan et al. (CMS Collab.) LEES 15E PRL 114 171801 J.P. Lees et al. (BABAR Collab.) AAD 14A PR 122 991804 G. Aad et al. (ATLAS Collab.) AAD 14C JHEP 1408 103 G. Aad et al. (ATLAS Collab.) AALTONEN 14J PR D89 092001 T. Aaltonen et al. (CDF Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13AH PL B722 305 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13D JHEP 1301 029 G. Aad et al. (ATLAS Collab.) AALTONEN 13I PR D88 031103 T. Aaltonen et al. (CDF Collab.) AALTONEN 13R PRL 111 031802 T. Aaltonen et al. (CDF Collab.) CHATRCHYAN 13 PL B718 815 S. Chatrchyan et al. (CMS Collab.)						
LEES 15E PRL 114 171801 J.P. Lees et al. (BÀBAR Collab.) AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14AL PRL 112 091804 G. Aad et al. (ATLAS Collab.) AAD 14C JHEP 1408 103 G. Aad et al. (ATLAS Collab.) AALTONEN 14J PR D89 092001 T. Aaltonen et al. (CDF Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13AH PL B722 305 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13D JHEP 1301 029 G. Aad et al. (ATLAS Collab.) AALTONEN 13I PR D88 031103 T. Aaltonen et al. (CDF Collab.) AALTONEN 13R PRL 111 031802 T. Aaltonen et al. (CDF Collab.) CHATRCHYAN 13 PL B718 815 S. Chatrchyan et al. (CMS Collab.)			PRL 114 111302		(CDMS C	Collab.)
AAD 14A PL B728 562 G. Aad et al. (ATLAS Collab.) AAD 14AL PRL 112 091804 G. Aad et al. (ATLAS Collab.) AAD 14C JHEP 1408 103 G. Aad et al. (ATLAS Collab.) AALTONEN 14J PR D89 092001 T. Aaltonen et al. (CDF Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13AH PL B722 305 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13D JHEP 1301 029 G. Aad et al. (ATLAS Collab.) AALTONEN 13I PR D88 031103 T. Aaltonen et al. (CDF Collab.) AALTONEN 13R PRL 111 031802 T. Aaltonen et al. (CDF Collab.) CHATRCHYAN 13 PL B718 815 S. Chatrchyan et al. (CMS Collab.)						
AAD 14AL PRL 112 091804 G. Aad et al. (ATLAS Collab.) AAD 14C JHEP 1408 103 G. Aad et al. (ATLAS Collab.) AALTONEN 14J PR D89 092001 T. Aaltonen et al. (CDF Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13AH PL B722 305 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13D JHEP 1301 029 G. Aad et al. (ATLAS Collab.) AALTONEN 13I PR D88 031103 T. Aaltonen et al. (CDF Collab.) AALTONEN 13R PRL 111 031802 T. Aaltonen et al. (CDF Collab.) CHATRCHYAN 13 PL B718 815 S. Chatrchyan et al. (CMS Collab.)						
AALTONEN 14J PR D89 092001 T. Aaltonen et al. (CDF Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13AH PRL 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13D JHEP 1301 029 G. Aad et al. (ATLAS Collab.) AALTONEN 13I PR D88 031103 T. Aaltonen et al. (CDF Collab.) AALTONEN 13R PRL 111 031802 T. Aaltonen et al. (CDF Collab.) CHATRCHYAN 13 PL B718 815 S. Chatrchyan et al. (CMS Collab.)						
AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13AH PL B722 305 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13D JHEP 1301 029 G. Aad et al. (ATLAS Collab.) AALTONEN 13I PR D88 031103 T. Aaltonen et al. (CDF Collab.) AALTONEN 13R PRL 111 031802 T. Aaltonen et al. (CDF Collab.) CHATRCHYAN 13 PL B718 815 S. Chatrchyan et al. (CMS Collab.)						
AAD 13AH PL B722 305 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13D JHEP 1301 029 G. Aad et al. (ATLAS Collab.) AALTONEN 13I PR D88 031103 T. Aaltonen et al. (CDF Collab.) AALTONEN 13R PRL 111 031802 T. Aaltonen et al. (CDF Collab.) CHATRCHYAN 13 PL B718 815 S. Chatrchyan et al. (CMS Collab.)						
AAD 13D JHEP 1301 029 G. Aad et al. (ATLAS Collab.) AALTONEN 13I PR D88 031103 T. Aaltonen et al. (CDF Collab.) AALTONEN 13R PRL 111 031802 T. Aaltonen et al. (CDF Collab.) CHATRCHYAN 13 PL B718 815 S. Chatrchyan et al. (CMS Collab.)						
AALTONEN 13I PR D88 031103 T. Aaltonen et al. (CDF Collab.) AALTONEN 13R PRL 111 031802 T. Aaltonen et al. (CDF Collab.) CHATRCHYAN 13 PL B718 815 S. Chatrchyan et al. (CMS Collab.)					(ATLAS C	Collab.)
AALTONEN 13R PRL 111 031802 T. Aaltonen <i>et al.</i> (CDF Collab.) CHATRCHYAN 13 PL B718 815 S. Chatrchyan <i>et al.</i> (CMS Collab.)					`	(
CHATRCHYAN 13 PL B718 815 S. Chatrchyan <i>et al.</i> (CMS Collab.)						
CHATRCHYAN 13A JHEP 1301 013 S. Chatrchyan et al. (CMS Collab.)	CHATRCHYAN		PL B718 815		(CMS C	Collab.)
	CHAIRCHYAN	13A	JHER 1301 013	5. Chatronyan et al.	(CMS C	Lollab.)

CHATRCHYAN	13AB	JHEP 1307 122	S. Chatrchyan et al.	(CMS Collab.)
			-	
		JHEP 1307 178	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	13AR	PR D87 092008	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
AAD	121K	PL B716 122	G. Aad et al.	(ATLAS Collab.)
				· · · · · · · · · · · · · · · · · · ·
AAD	12C	PRL 108 041805	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	12S	PL B708 37	G. Aad et al.	(ATLAS Collab.)
AALTONEN	12M	PRL 108 211804	T. Aaltonen et al.	` (CDF Collab.)
CHAIRCHYAN	12AP	JHEP 1209 094	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	12BL	JHEP 1212 015	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN		PL B716 260	S. Chatrchyan et al.	(CMS Collab.)
	•			
CHATRCHYAN	12 I	PRL 108 261803	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	12W	JHEP 1204 061	S. Chatrchyan et al.	(CMS Collab.)
AAD			G. Aad et al.	
		NJP 13 053044		(ATLAS Collab.)
AAD	111	PL B698 353	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	11S	PL B705 294	G. Aad et al.	(ATLAS Collab.)
AALTONEN		PRL 107 181801	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	11M	PRL 106 171801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	111	PRL 107 011804	V.M. Abazov et al.	(D0 Collab.)
CHATRCHYAN	110	JHEP 1106 026		(CMS Collab.)
			S. Chatychyan <i>et al.</i>	}
CHATRCHYAN	110	PRL 107 201804	S. Chatychyan <i>et al.</i>	(CMS Collab.)
AAD	10	PRL 105 161801	G. Aad et al.	(ATLAS Collab.)
AALTONEN	10AF	PR D82 052005	T. Aaltonen et al.	` (CDF Collab.)
KHACHATRY	10	PRL 105 211801	V. Khachatryan <i>et al.</i>	(CMS Collab.)
Also		PRL 106 029902	V. Khachatryan <i>et al.</i>	(CMS Collab.)
AALTONEN	NQΔF	PR D80 011102	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	09G	PR D79 052004	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09Z	PRL 103 021802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	09M	PRL 102 161802	V.M. Abazov et al.	(D0 Collab.)
AKTAS	04C	EPJ C36 413	A. Atkas <i>et al.</i>	(H1 Collab.)
				(TIT Collab.)
JAVORSEK	02	PR D65 072003	D. Javorsek II <i>et al.</i>	
JAVORSEK	01	PR D64 012005	D. Javorsek II <i>et al.</i>	
JAVORSEK	01B	PRL 87 231804	D. Javorsek II et al.	
ABBIENDI	00D	EPJ C13 197	G. Abbiendi et al.	(OPAL Collab.)
	00B			
AMBROSIO		EPJ C13 453	M. Ambrosio <i>et al.</i>	(MACRO Collab.)
ABE	99F	PRL 82 2038	F. Abe <i>et al.</i>	(CDF Collab.)
ACKERSTAFF	98P	PL B433 195	K. Ackerstaff et al.	(OPAL Collab.)
ABE	97G	PR D55 5263	F. Abe <i>et al.</i>	`(CDF Collab.)
ABREU	97D	PL B396 315	P. Abreu <i>et al.</i>	
				(DELPHI Collab.)
ACKERSTAFF	97B	PL B391 210	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ADAMS	97B	PRL 79 4083	J. Adams <i>et al.</i>	(FNAL KTeV Collab.)
BARATE	97K	PL B405 379	R. Barate et al.	` (ALEPH Collab.)
AKERS	95R	ZPHY C67 203	R. Akers <i>et al.</i>	(OPAL Collab.)
GALLAS	95	PR D52 6	E. Gallas <i>et al.</i>	(MSU, FNAL, MIT, FLOR)
RAM	94	PR D49 3120	S. Ram <i>et al.</i>	(TELA, TRIU)
ABE	93G	PRL 71 2542	F. Abe <i>et al.</i>	(CDF Collab.)
ASTONE	93	PR D47 4770	P. Astone <i>et al.</i>	(ROMA, ROMAI, CATA, FRAS)
BUSKULIC	93C	PL B303 198	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
YAMAGATA	93	PR D47 1231	T. Yamagata, Y. Takamo	ori, H. Utsunomiya (KONAN)
ABE	92J	PR D46 1889	F. Abe <i>et al.</i>	(CDF Collab.)
AHLEN	92	PRL 69 1860	S.P. Ahlen et al.	(MACRO Collab.)
				(
VERKERK	92	PRL 68 1116	P. Verkerk et al.	(ENSP, SACL, PAST)
AKESSON	91	ZPHY C52 219	T. Akesson <i>et al.</i>	(HELIOS Collab.)
NAKAMURA	91	PL B263 529	S. Nakamura et al.	` ,
ORITO	91	PRL 66 1951	S. Orito et al.	(ICEPP, WASCR, NIHO, ICRR)
ADACHI	90C	PL B244 352	I. Adachi <i>et al.</i>	(TOPAZ Collab.)
ADACHI	90E	PL B249 336	I. Adachi <i>et al.</i>	(TOPAZ Collab.)
AKRAWY	900	PL B252 290	M.Z. Akrawy et al.	`(OPAL Collab.)
HEMMICK	90	PR D41 2074	T.K. Hemmick <i>et al.</i>	(ROCH, MICH, OHIO+)
				(KOCH, MICH, OHIO+)
SAITO	90	PRL 65 2094	T. Saito <i>et al.</i>	(ICRR, KOBE)
NAKAMURA	89	PR D39 1261	T.T. Nakamura <i>et al.</i>	(KYOT, TMTC)
NORMAN	89	PR D39 2499	E.B. Norman et al.	(LBL)
BERNSTEIN	88	PR D37 3103	R.M. Bernstein et al.	(STAN, WISC)
				(STAN, VVISC)
LIU	88	PRL 61 271	G. Liu, B. Barish	(617)
BARISH	87	PR D36 2641	B.C. Barish, G. Liu, C.	
NORMAN	87	PRL 58 1403	E.B. Norman, S.B. Gazes	s, D.A. Bennett (LBL)
BADIER	86	ZPHY C31 21	J. Badier et al.	(NA3 Collab.)
MINCER				
IVIII V CLIV	85	PR 1137 541		
	85 or	PR D32 541	A. Mincer et al.	(UMD, GMAS, NSF)
NAKAMURA	85	PL 161B 417	K. Nakamura et al.	(KEK, INUS)
				`

Also NC 6C 371 H. Sakuyama, K. Watanabe (BHAT 82 PR D25 2820 P.N. Bhat et al. (KINOSHITA 82 PRL 48 77 K. Kinoshita, P.B. Price, D. Fryberger (U MARINI 82 PR D26 1777 A. Marini et al. (FRAS, LBL, NWES, ST SMITH 82B NP B206 333 P.F. Smith et al. KINOSHITA 81B PR D24 1707 K. Kinoshita, P.B. Price LOSECCO 81 PL 102B 209 J.M. LoSecco et al. (MICH, PENN, ULLMAN 81 PRL 47 289 J.D. Ullman (LEHM,	(RAL) (UCB) BNL)
BARTEL 80 ZPHY C6 295 W. Bartel et al. (JADE C	,
BUSSIERE 80 NP B174 1 A. Bussiere et al. (BGNA, SACL, I	
YOCK 80 PR D22 61 P.C.M. Yock (A ARMITAGE 79 NP B150 87 J.C.M. Armitage <i>et al.</i> (CERN, DARE, FO	(UCK)
BOZZOLI 79 NP B159 363 W. Bozzoli et al. (CERN, DARC, N	
	UMD)
,	RHEL)
BHAT 78 PRAM 10 115 P.N. Bhat, P.V. Ramana Murthy	ΓΑΤΑ)
CARROLL 78 PRL 41 777 A.S. Carroll et al. (BNL,	,
CUTTS 78 PRL 41 363 D. Cutts et al. (BROW, FNAL, ILL, B.	
VIDAL 78 PL 77B 344 R.A. Vidal et al. (COLU, FNAL, ST	
ALEKSEEV 76 SJNP 22 531 G.D. Alekseev <i>et al.</i> (Translated from YAF 22 1021.	JINR)
	JINR)
Translated from YAF 23 1190.	JINR)
BRIATORE 76 NC 31A 553 L. Briatore <i>et al.</i> (LCGT, FRAS, F	RFIR)
(1)	MICH)
ALBROW 75 NP B97 189 M.G. Albrow et al. (CERN, DARE, FI	,
FRANKEL 75 PR D12 2561 S. Frankel et al. (PENN, F	-NAL)
JOVANOV 75 PL 56B 105 J.V. Jovanovich et al. (MANI, AACH, CE	(RN+)
YOCK 75 NP B86 216 P.C.M. Yock (AUCK, S	SLAC)
APPEL 74 PRL 32 428 J.A. Appel <i>et al.</i> (COLU, F	
FRANKEL 74 PR D9 1932 S. Frankel <i>et al.</i> (PENN, F	
	(UCK)
ALPER 73 PL 46B 265 B. Alper <i>et al.</i> (CERN, LIVP, LUND, BO LEIPUNER 73 PRL 31 1226 L.B. Leipuner <i>et al.</i> (BNL, `	
	TORI)
	TATA)
	SERP)
·	SERP)
BINON 69 PL 30B 510 F.G. Binon <i>et al.</i>	SERP)
BJORNBOE 68 NC B53 241 J. Bjornboe et al. (BOHR, TATA, BE	
JONES 67 PR 164 1584 L.W. Jones (MICH, WISC, LBL, UCLA, MI	
DORFAN 65 PRL 14 999 D.E. Dorfan et al.	COLU)