$I^G(J^{PC}) = 0^-(2^{--})$ I, J, P need confirmation.

was $\psi(3823)$, X(3823)

Seen by BHARDWAJ 13 in $B o au_{c1} \gamma K$ and ABLIKIM 15S in $e^+e^-
ightarrow \ \pi^+\pi^-\gamma\chi_{c1}$ decays as a narrow peak in the invariant mass distribution of the $\chi_{c1}\gamma$ system. Properties consistent with the $\psi_2(1^3D_2)$ $c\overline{c}$ state.

ψ_2 (3823) MASS

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
3822.2±1.2 OUR A	WERAGE				
$3821.7\!\pm\!1.3\!\pm\!0.7$	19 ± 5	¹ ABLIKIM			$e^+e^- \rightarrow \pi^+\pi^-\chi_{c1}\gamma$
$3823.1 \pm 1.8 \pm 0.7$	33 ± 10	² BHARDWAJ	13	BELL	$B \rightarrow \chi_{c1} \gamma K$

¹ From a simultaneous unbinned maximum likelihood fit of $e^+e^-
ightarrow ~\pi^+\pi^-\chi_{c1}\gamma$ data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2S) \to \chi_{c1} \gamma$ and $\psi_2(3823) \to \chi_{c1} \gamma$ together, with floating mass scale offset for $\psi(2S)$, floating $\psi_2(3823)$ mass, and zero $\psi_2(3823)$ width, resulting in a significance of 5.9σ when including systematic uncertainties. ² From a simultaneous fit to $B^{\pm} \to (\chi_{c1} \gamma) K^{\pm}$ and $B^0 \to (\chi_{c1} \gamma) K^0_S$ with significance 4.0σ including systematics. Corrected for the measured $\psi(2S)$ mass using $B \to \psi(2S) K \to (\gamma_{c1} \gamma) K$ decays

$\psi_{2}(3823)$ WIDTH

VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT
<16	90	¹ ABLIKIM	15 S	BES3	$e^+e^- \rightarrow \pi^+\pi^-\chi_{c1}\gamma$
• • • We do not use	the follo	wing data for averag	ges, fit	ts, limits	s, etc. • • •
<24	90	² BHARDWAJ	13	BELL	$B \rightarrow \chi_{c1} \gamma K$

 $^{^1}$ From a fit of e $^+$ e $^-\to \pi^+\pi^-\chi_{c1}\gamma$ data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to a Breit-Wigner function with the mass fixed

$\psi_2(3823)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁ Γ ₂	$\chi_{c1}\gamma$ $\chi_{c2}\gamma$	seen not seen

$\psi_2(3823)$ BRANCHING RATIOS

$\Gamma(\chi_{c1}\gamma)/\Gamma_{total}$				Γ_1/Γ
<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
seen	33 ± 10	¹ BHARDWAJ 13	BELL	$B^+ \rightarrow \chi_{c1} \gamma K^+$
1 Reported B($B^\pm ightarrow$ with statistical signi		$(2^{\pm}) \times B(\psi_2(3823) \to \gamma)$	$\chi_{c1}) = (9$	$9.7 \pm 2.8 \pm 1.1) \times 10^{-6}$

HTTP://PDG.LBL.GOV

Page 1

Created: 6/1/2020 08:32

 $[\]psi(2S)K \rightarrow (\gamma \chi_{c1})K$ decays.

from the likelihood fit above, Gaussian resolution smearing, and floating width.
² From a simultaneous fit to $B^\pm \to (\chi_{c1} \gamma) K^\pm$ and $B^0 \to (\chi_{c1} \gamma) K^0_S$ with significance 4.0σ including systematics.

 $\Gamma(\chi_{c2}\gamma)/\Gamma_{\text{total}}$ Γ_2/Γ

 $\Gamma(\chi_{c2}\gamma)/\Gamma(\chi_{c1}\gamma)$ Γ_2/Γ_1

VALUE CL% DOCUMENT ID TECN COMMENT $B^+ \rightarrow \chi_{c1/c2} \gamma K^+$

• • • We do not use the following data for averages, fits, limits, etc. • •

<0.42 90 1 ABLIKIM 15S BES3 $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\chi_{c1}\gamma$

ψ_2 (3823) REFERENCES

ABLIKIM 15S PRL 115 011803 M. Ablikim *et al.* (BESIII Collab.)
BHARDWAJ 13 PRL 111 032001 V. Bhardwaj *et al.* (BELLE Collab.)

Created: 6/1/2020 08:32

¹ From a simultaneous unbinned maximum likelihood fit of $e^+e^- \to \pi^+\pi^-\chi_{c2}\gamma$ data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2S) \to \chi_{c2}\gamma$ and $\psi_2(3823) \to \chi_{c2}\gamma$ together, with floating mass scale offset for $\psi(2S)$, $\psi_2(3823)$ mass floating (fixed to that above), and zero $\psi_2(3823)$ width.

²Reported B($B^{\pm} \to \psi_2(3823) \, K^{\pm}$) \times B($\psi_2(3823) \to \gamma \chi_{c2}$) $< 3.6 \times 10^{-6}$ at 90% CL.

¹ From a simultaneous unbinned maximum likelihood fit of $e^+e^- \rightarrow \pi^+\pi^-\chi_{c1(2)}\gamma$ data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2S) \rightarrow \chi_{c1(2)}\gamma$ and $\psi_2(3823) \rightarrow \chi_{c1(2)}\gamma$ together, with floating mass scale offset for $\psi(2S)$, $\psi_2(3823)$ mass floating (fixed to that above), and zero $\psi_2(3823)$ width.