$$\psi$$
(4260)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

OMITTED FROM SUMMARY TABLE also known as Y(4260); was X(4260)

The state $\psi(4260)$ received its mass label from a Breit-Wigner (BW) fit to the $J/\psi \pi \pi$ data listed below. The symmetric BW placed the mass unavoidably into the center of the distribution. The most recent measurement in the 4260 MeV mass range in the same channel (ABLIKIM 17B), however, revealed that the distribution is asymmetric and that the state has a much lower mass consistent with the entry for particle $\psi(4230)$. Thus, in this edition we merged the measurement of ABLIKIM 17B with the $\psi(4230)$ node and labeled the older measurements of this node as not used. For details see the review on "Spectroscopy of mesons containing two heavy quarks."

ψ (4260) MASS

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not	use the	following data fo	r aver	ages, fit	s, limits, etc. ● ● ●
$4209.1 \pm 6.8 \pm 7$	7.0	¹ ZHANG	17 B	RVUE	$e^+e^- \to \pi^+\pi^-\psi(2S)$
$4223.3 \pm 1.6 \pm 2$	2.5	² ZHANG	17C	RVUE	$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ or $\psi(2S)$
$4258.6 \pm 8.3 \pm 12$	2.1	³ LIU	13 B	BELL	$e^+e^- \rightarrow \gamma \pi^+\pi^- J/\psi$
4245 \pm 5 \pm 4	4	⁴ LEES	12AC	BABR	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^- J/\psi$
4247 $\pm 12 \begin{array}{c} +17\\ -32\end{array}$	7 3, 2	⁵ YUAN	07	BELL	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^- J/\psi$
4284 $^{+17}_{-16}$ \pm $^{\prime}$	413.6	HE	06 B	CLEO	9.4–10.6 $e^+e^- \to \gamma \pi^+\pi^- J/\psi$
4259 \pm 8 $+$ 2	2 ₆ 125	⁶ AUBERT,B	051	BABR	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^- J/\psi$
¹ From a three ² From a comb $\pi^+\pi^-\psi(2S)$ ³ From a two-r ⁴ From a single ⁵ Superseded b ⁶ From a single by LEES 12A	-resonand ined fit o) data. esonance e-resonan y LIU 13 e-resonan C.	ce fit. f BELLE, BABAR e fit. ce fit. Supersede B. nce fit. Two inter	and s AUI rferin	BES3 e⁻ 3ERT,B g resona	$+e^- \rightarrow \pi^+ \pi^- J/\psi$ and $e^+ e^- \rightarrow$ 051. nces are not excluded. Superseded
		ψ(426	0) W	/IDTH	

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do no	ot use the	following data fo	r aver	ages, fit	s, limits, etc. ● ● ●
$76.6 \pm 14.2 \pm 2$	2.4	¹ ZHANG	17 B	RVUE	$e^+e^- \to \pi^+\pi^-\psi(2S)$
54.2 \pm 2.6 \pm 3	1.0	² ZHANG	17C	RVUE	$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ or $\psi(2S)$
$134.1 \pm 16.4 \pm$!	5.5	³ LIU	13 B	BELL	$e^+e^- \rightarrow \gamma \pi^+\pi^- J/\psi$
$114 \begin{array}{c} +16 \\ -15 \end{array} \pm \end{array}$	7	⁴ LEES	12AC	BABR	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^- J/\psi$

108	± 19	± 10		^{3,5} YUAN	07	BELL	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^- J/\psi$
73	$^{+39}_{-25}$	\pm 5	13.6	HE	06 B	CLEO	9.4–10.6 $e^+e^- \to \gamma \pi^+\pi^- J/\psi$
88	± 23	$^{+}_{-}$ 6	125	⁶ AUBERT,B	051	BABR	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^- J/\psi$
¹ From a three-resonance fit. ² From a combined fit of BELLE, BABAR and BES3 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ and $e^+e^ \pi^+\pi^-\psi(2S)$ data.							
³ F 4 F	From a From a	two-r single	esona -resor	nce fit. nance fit. Superse	edes AU	BERT,B	051.
5 c	Superse	eded b	y LIU	13B.			
6 F	From a	single	e-resoi	nance fit. Two ir	nterferin	g resona	nces are not excluded. Superseded

by LEES 12AC.

	Mode	Fraction (Γ_i/Γ)
Γ_1	e ⁺ e ⁻	
Γ_2	$J/\psi \pi^+ \pi^-$	seen
Γ ₃	$J/\psi f_0(980), f_0(980) \rightarrow \pi^+\pi^-$	seen
Γ ₄	$Z_c(3900)^{\pm}\pi^{\mp}$, $Z_c^{\pm} \rightarrow J/\psi\pi^{\pm}$	seen
Γ_5	$J/\psi \pi^0 \pi^0$	seen
Г ₆	$J/\psi K^+ K^-$	seen
Γ ₇	$J/\psi K^0_S K^0_S$	not seen
Г ₈	$J/\psi \eta$	not seen
Γ ₉	$J/\psi \pi^0$	not seen
Γ ₁₀	$J/\psi \eta'$	not seen
Γ_{11}	$J/\psi \pi^+\pi^-\pi^0$	not seen
Γ_{12}	$J/\psi \eta \pi^0$	not seen
Γ_{13}	$J/\psi \eta \eta$	not seen
Γ ₁₄	$\psi(2S)\pi^+\pi^-$	not seen
Γ ₁₅	$\psi(2S)\eta$	not seen
Γ ₁₆	$\chi_{c0}\omega$	not seen
Γ_{17}	$\chi_{c1}\pi^{+}\pi^{-}\pi^{0}$	not seen
Γ ₁₈	$\chi_{c2}\pi^+\pi^-\pi^0$	not seen
1 ₁₉	$h_c(1P)\pi^+\pi^-$	not seen
l ₂₀	$\phi \pi^+ \pi^-$	not seen
I 21	$\phi f_0(980) \rightarrow \phi \pi^+ \pi^-$	not seen
I 22		not seen
I 23	$D^{\circ} D^{\circ}$	not seen
I 24	$D^* \overline{D}$	not seen
I 25	$D^* D + c.c.$	not seen
1 ₂₆	$D'(2007)^*D^*+C.C.$	not seen
I 27 Г	$D^* \overline{D^*}$	not seen
I 28		not seen

ψ (4260) DECAY MODES

Γ ₂₉	$D^{*}(2007)^{0} \overline{D}^{*}(2007)^{0}$	not seen
Γ ₃₀	$D^{*}(2010)^{+}D^{*}(2010)^{-}$	not seen
Гз1	$D\overline{D}\pi$ +c.c.	
[32	$D^0 D^- \pi^+ + c.c.$ (excl.	not seen
52	$D^{*}(2007)^{0}\overline{D}^{*0}$ +c.c.	
	$D^{*}(2010)^{+}D^{-}$ +c.c.)	
Γ22	$D\overline{D}^*\pi$ +c.c. (excl. $D^*\overline{D}^*$)	not seen
· 33	$D^0 D^{*-} \pi^+ + c c$ (excl	not seen
• 54	$D^{*}(2010)^{+}D^{*}(2010)^{-})$	
Гаг	$D^0 D^* (2010)^- \pi^+ + c c$	not seen
· 35	$D_1(2420)\overline{D} + cc$	not seen
- 30 Faz	$D^*\overline{D}^*\pi$	not seen
	$D^{+}D^{-}$	not seen
' 38 F	$D_s^{*+}D^{-}$	liot seen
I 39	$D_s + D_s + c.c.$	not seen
I ₄₀	$D_s^* + D_s^*$	not seen
Г ₄₁	p p	not seen
Γ ₄₂	$p \overline{p} \pi^0$	not seen
Г ₄₃	=-=+	
Γ ₄₄	$K^0_S K^{\pm} \pi^{\mp}$	not seen
Γ ₄₅	$K^0_{S} K^{\pm} \pi^{\mp} \pi^0$	
Γ ₄₆	$K^{0}_{S}K^{\pm}\pi^{\mp}\eta$	
Γ ₄₇	$K^+ K^- \pi^0$	not seen
71	Radiative der	ave
Г.,	m(1S)	
148 E	$\eta_c(15)$	possibly seen
149 E	χ_{c1}	not seen
1 50 F	$\chi_{c2}\gamma$	not seen
51	$\chi_{c1}(3012)\gamma$	seen

ψ (4260) Γ (i) × Γ (e^+e^-)/ Γ (total)

$\Gamma(J/\psi \pi^+\pi^-)$	×Γ	$(e^+e^-)/\Gamma_{total}$			$\Gamma_2\Gamma_1/\Gamma_1$
VALUE (eV)	EVTS	DOCUMENT ID		TECN	COMMENT
9.2±1.0 OUR	AVERA	GE			
$9.2\!\pm\!0.8\!\pm\!0.7$		¹ LEES	12AC	BABR	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^- J/\psi$
$8.9^{+3.9}_{-3.1}{\pm}1.8$	8.1	HE	06 B	CLEO	9.4–10.6 $e^+e^- \to \gamma \pi^+\pi^- J/\psi$
• • • We do not	t use t	he following data fo	or aver	ages, fit	s, limits, etc. ● ● ●
$6.4 \pm 0.8 \pm 0.6$		² LIU	13 B	BELL	$e^+e^- \rightarrow \gamma \pi^+\pi^- J/\psi$
$20.5\!\pm\!1.4\!\pm\!2.0$		³ LIU	13 B	BELL	$e^+e^- \rightarrow \gamma \pi^+\pi^- J/\psi$
$6.0\!\pm\!1.2^{+4.7}_{-0.5}$		^{2,4} YUAN	07	BELL	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^- J/\psi$
$20.6\!\pm\!2.3^{+9.1}_{-1.7}$		^{3,4} YUAN	07	BELL	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^- J/\psi$
$5.5 {\pm} 1.0 {+} 0.8 {-} 0.7$	125	⁵ AUBERT,B	051	BABR	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^- J/\psi$

¹ From a single-resonance fit. Supersedes AUBERT, B 051.
 ² Solution I of two equivalent solutions in a fit using two interfering resonances.

HTTP://PDG.LBL.GOV Page 3

Created: 6/1/2020 08:32

³Solution II of two equivalent solutions in a fit using two interfering resonances.

⁴ Superseded by LIU 13B.

⁵ From a single-resonance fit. Two interfering resonances are not excluded. Superseded by LEES 12AC.

$\Gamma(J/\psi K^+)$	K-) >	$\langle \Gamma(e^+e^-)/\Gamma_{tot}$	al		Г ₆ Г ₁ /Г
<i>VALUE</i> (eV)	CL%	DOCUMENT ID		TECN	COMMENT
<1.7	90	¹ SHEN	14	BELL	$9.4-10.9 \ e^+ e^- \rightarrow \ \gamma K^+ K^- J/\psi$
• • • We do	o not use	e the following data	for a	/erages, f	fits, limits, etc. • • •

08 BELL $e^+e^- \rightarrow \gamma K^+ K^- J/\psi$ 2 YUAN <1.2 90

¹ From a fit of the broad $K^+ K^- J/\psi$ enhancement including a coherent ψ (4260) amplitude with mass and width from LIU 13B. Supersedes YUAN 08. The shape of the cross section observed by ABLIKIM 18N between 2.2 and 2.3 GeV is incompatible with that of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ in ABLIKIM 13T and ABLIKIM 17B. They also observe a broad enhancement around 2.5 GeV. ² From a fit of the broad $K^+ K^- J/\psi$ enhancement including a coherent ψ (4260) ampli-

tude with mass and width from YUAN 07.

$\Gamma(J/\psi K_S^0 K$	í <u>s</u>) × [$\left(e^+e^-\right)/\Gamma_{\text{total}}$			Γ ₇ Γ ₁ /Γ
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT
<0.85	90	¹ SHEN	14	BELL	9.4–10.9 $e^+e^- \rightarrow \gamma K^0_S K^0_S J/\psi$

¹ From a fit of the $K_S^0 K_S^0 J/\psi$ mass range from 4.4 to 5.5 GeV including a coherent ψ (4260) amplitude with mass and width from LIU 13B.

$\Gamma(J/\psi\eta) \times$	Γ(e ⁺ e ⁻)/F _{total}					$\Gamma_8\Gamma_1/\Gamma$
VALUE (eV)	•		DOCUMENT	ID	TECN	COMMENT	
• • • We do n	ot use the	following	data for avera	ges, fits,	limits,	etc. • • •	
<14.2		90	WANG	13 B	BELL	$e^+e^- \rightarrow$	$J/\psi \eta \gamma$
$\Gamma(J/\psi \eta') \times$	Γ(e ⁺ e ⁻	⁻)/Γ _{total}					$\Gamma_{10}\Gamma_1/\Gamma$
VALUE (eV)		EVTS	DOCUMENT	ID	TECN	COMMENT	
• • • We do n	ot use the	following	data for avera	ges, fits,	limits,	etc. • • •	
0.06 ± 0.03		46 1	^{,2} ABLIKIM	20A	BES3	$e^+e^- \rightarrow$	$\eta' J/\psi$
1.38 ± 0.11		46 1	^{,3} ABLIKIM	20A	BES3	$e^+ e^- \rightarrow$	$\eta^\prime{\sf J}/\psi$
$\psi(4100)$ and $3.6 \pm 0.6 \pm 2$ Solution I c 3 Solution II	of the fit, of the fit,	correspond correspond	ling to a phase ding to a pha	s = 4.2 e of -0.0 e of 2.54	$3 { m GeV},$ 03 ± 0.41 1 ± 0.04	σ(e ' e = _ I4 rad. Frad.	$\rightarrow \eta J/\psi =$
$\Gamma(\psi(2S)\pi^+\pi)$	π ⁻) × Γ	(e^+e^-)	/Γ _{total}				$\Gamma_{14}\Gamma_1/\Gamma$
VALUE (eV)	CL%	DOCUN	IENT ID	TECN	COMME	ΝT	
• • • We do n	ot use the	following	data for avera	ges, fits,	limits,	etc. • • •	
<4.3	90	1 LIU	08H	RVUE	10.58 e	$e^+e^- \rightarrow \psi$	$(2S)\pi^+\pi^-\gamma$
$7.4^{+2.1}_{-1.7}$		² LIU	08н	RVUE	10.58 e	$e^+e^- \rightarrow \psi$	$(2S)\pi^+\pi^-\gamma$
¹ For constru _ WANG 07D	ctive inte data witl	rference w n three res	ith the $\psi(436)$ onances.	0) in a c	ombine	d fit of AUB	ERT 07S and

² For destructive interference with the ψ (4360) in a combined fit of AUBERT 07S and WANG 07D data with three resonances.

$\Gamma(\phi\pi^+\pi^-)$	× Г(e ⁺ е	⁻)/Γ _{total}					Γ ₂₀ Γ ₁ /Γ
VALUE (eV)	<u>CL%</u>	DOCUMEN	T ID	TECN	СОММЕ	NT	
<0.4	90	AUBERT,	BE 06D	BABR	10.6 e	$^+e^- \rightarrow K$	$+ \kappa^{-} \pi^{+} \pi^{-} \gamma$
$\Gamma(\phi f_0(980) - VALUE(eV))$	$\rightarrow \phi \pi^+ \pi^-$	-) × Γ(e	+ e ⁻)/Γ _t	otal TECN	COMME	NT	$\Gamma_{21}\Gamma_1/\Gamma$
<0.28	90	¹ AUBERT	07AK	BABR	10.6 e	$^+e^- \rightarrow \pi^-$	$+\pi^{-}\kappa^{+}\kappa^{-}\gamma$
1 AUBERT ($e^{+}e^{-})/\Gamma_{ m tc}$ value B(ϕ (1	D7AK report $p_{tal} \times [B($ $1020) \rightarrow P$	$rac{1}{c} s [\Gamma(\psi(426) \rightarrow (1020) \rightarrow (K^+ K^-) = 0)]$	$\begin{array}{rcl} 0) & \rightarrow & \phi \\ & & & & \\ & & & & \\ & & & & \\ 49.2 \times 10^{-1} \end{array}$	f ₀ (980))] < 0.1 -2	$ ightarrow \phi \pi$ 14 eV w	$(+\pi^{-}) \times$	$\Gamma(\psi(4260) \rightarrow$ ide by our best
$\Gamma(\Xi^{-}\overline{\Xi}^{+}) >$	< Γ(e ⁺ e⁻	[−])/Γ _{total}	DOCUMENT	חו	TECN	COMMEN	Г ₄₃ Г ₁ /Г
$<2.7 \times 10^{-4}$		90	ARLIKIM	200	- BES3		, <u> </u>
Γ(K⁰_SK[±]π ∓ VALUE (eV)) × Г(<i>е</i> ⁻	+e ⁻)/Γ _{to}	tal Ment ID	<u>TE</u>	<u>CN CC</u>	DMMENT	$\Gamma_{44}\Gamma_1/\Gamma$
• • • We do no	ot use the t	following da	ta for aver	ages, fit	s, limits,	etc. ● ● ●	
2.04 ± 0.19	± 0.09	¹ ABLI	KIM	19ae Be	S3 e ⁻	$e^- \rightarrow K_{q}^{0}$	$S K^{\pm} \pi^{\mp}$
0.0027 ± 0.0023	± 0.0001	² ABLI	KIM	19ae Be	S3 e⁻	$e^{+}e^{-} \rightarrow K_{2}^{0}$	$5 K^{\pm} \pi^{\mp}$
< 0.5 at 90% (CL	AUBI	ERT	08s BA	ABR 10	$^{0.6} e^+ e^{K^0_S K^\pm \pi^\mp}$	$\frac{2}{\gamma}$
MeV from 56.0 ± 3.6 ² Solution II o MeV from 56.0 ± 3.6	PDG 16 and \pm 6.9 MeV of the fit in PDG 16 and \pm 6.9 MeV	Ind the $\psi(42)$ from GAO cluding the and the $\psi(42)$ from GAO	230) with 17. ψ (4160) w 230) with 17.	mass 42 vith mass mass 42	$^{219.6}$ \pm 5 4191 \pm 219.6 \pm	$3.3~\pm~5.1$ MeV and $3.3~\pm~5.1$ MeV and $3.3~\pm~5.1$ M	MeV and width I width 70 \pm 10 MeV and width
$I(KSK + \pi^+)$	π°) × I	(e' e_)/I	total	,	TECN	COMMENT	45 1/
<i>VALUE</i> (eV) <0.05	<u> </u>	<u>% DC</u> AE	<u>ICUMENT IL</u> BLIKIM	, 19	BES3	$\frac{COMMENT}{e^+e^-} \rightarrow$	$K^0_{c} K^{\pm} \pi^{\mp} \pi^0$
$\Gamma(K^0_S K^{\pm} \pi^{\mp})$	η) × Γ(е ⁺ е ⁻)/Г ₁	otal				ς Γ ₄₆ Γ ₁ /Γ
VALUE (eV)	<u> </u>	<u>_%</u>	OCUMENT I	D	TECN	COMMENT	
<0.19	90) A	BLIKIM	19	BES3	$e^+e^- \rightarrow$	$K^0_S K^{\perp} \pi^+ \eta$
$\Gamma(K^+ K^- \pi^0)$ <i>VALUE</i> (eV)) × Γ(e ⁺ _{CL%}	[−] e [−])/Γ _{tot} DOCUM	al ENT ID	TECI	V COM	IMENT	$\Gamma_{47}\Gamma_1/\Gamma$
• • • We do no	ot use the	ollowing da	ta for aver	ages, fit	s, limits,	etc. • • •	
<0.6	90	AUBEF	80 T	BS BAB	BR 10.6	$e^+e^- \rightarrow$	$K^+ K^- \pi^0 \gamma$
$\Gamma(\chi_{c1}\gamma) \times $ VALUE (eV)	Г(е+е-)	/F _{total}	DOCUMENT	ID	TECN	COMMEN	Г ₄₉ Г ₁ /Г
<1.4 ¹ Using B(η -	$\rightarrow \gamma \gamma$) =	$\begin{array}{ccc} 90 & 1 \ \ (39.41 \pm 0. \end{array}$	HAN 21)%.	15	BELL	. 10.58 e ⁺	$e^- \rightarrow \chi_{c1} \gamma$

HTTP://PDG.LBL.GOV

Created: $6/1/2020 \ 08:32$

$(\chi_{c2}\gamma) \times (e)$	' e ⁻)/I _{total}	DOCUMEN	IT ID	TECN	COMMENT	I 50I 1/I
<4.0	<u> </u>	¹ HAN	15	BELL	$\frac{10.58 e^{+}e^{-}}{10.58 e^{+}e^{-}}$	$- \rightarrow \chi_{c2} \gamma$
1 Using B($\eta ightarrow \gamma$	$\gamma\gamma$) = (39.41 :	\pm 0.21)%.				
	ψ (426	50) BRANC	CHING R	ATIOS		
Γ(J/ψ f₀(980), f	$b_0(980) \rightarrow \pi^{-1}$	+π ⁻)/Γ(J	/ψπ+π <u>τες</u>	-) <u>N COMM</u>	ИENT	Γ ₃ /Γ
• • • We do not us	se the followin	g data for av	erages, fit	s, limits,	etc. • • •	
0.17 ± 0.13	¹ LE	ES	12AC BAE	3R 10.58	$3 e^+e^- \rightarrow \gamma$	$\gamma \pi^+ \pi^- J/\psi$
¹ Systematic unce	ertainties not e	estimated.				
$\Gamma(Z_c(3900)^{\pm}\pi^{\mp}$, $Z_c^{\pm} \rightarrow J/c$	ψ π[±])/Γ(J DOCUMEN	/ψπ⁺π IT ID	-) TECN	COMMENT	Γ ₄ /Γ
0.215±0.033±0.07	'5	¹ ABLIKIN	1 13	T BES3	$e^+e^- \rightarrow -$	$\pi^+\pi^- J/\psi$
• • • We do not us	se the followin	g data for av	erages, fit	s, limits,	etc. • • •	
0.29 ± 0.08		² LIU	13	b BELL	$e^+e^{\gamma\pi^+\pi^-}$	J/ψ
¹ Assuming that ¹ ² Systematic erro	the cross section r not evaluated	on of e^+e^- d.	$\rightarrow \pi^+ \pi$	$^{-}J/\psi$ is	fully due to tl	he ψ (4260).
$\frac{\Gamma(J/\psi K_S^0 K_S^0)}{VALUE}$	rtotal DOCUN	1ENT ID	TECN	COMMEN	Т	Γ ₇ /Ι
not seen	SHEN	14	BELL	9.4–10.9	$e^+e^- \rightarrow \gamma$	$\kappa^0_S \kappa^0_S J/\psi$
$\Gamma(J/\psi\eta\pi^0)/\Gamma_{tot}$	tal	DOCUMENT II) 7	ECN CC	DMMENT	Γ ₁₂ /Ι
not seen		ABLIKIM	15Q E	BES3 4.0	0-4.6 e^+e^-	$\rightarrow J/\psi \eta \pi^0$
$\Gamma(\psi(2S)\pi^+\pi^-)$	$/\Gamma(J/\psi\pi^+\eta)$	τ⁻)	חד וח	TECN	COMMENT	Γ ₁₄ /Γ ₂
• • • We do not us	se the followin	g data for av	erages, fit	s, limits,	etc. $\bullet \bullet \bullet$	
$(0.11 \pm 0.03 \pm 0.03) \\ 0.18 \pm 0.19)$	to (0.55 \pm	¹ ZHANG	17	c RVUE	$e^+e^- \rightarrow 0$ or $\psi(2S)$	$\pi^+\pi^-J/\psi$
¹ From a combine	ed fit of BELLE ata.	E, BABAR an	d BES3 e ⁻	$^+e^- \rightarrow$	$\pi^+\pi^- J/\psi$ a	nd e^+e^- –
$\pi^+\pi^-\psi(2S)$ d						
$\pi^+\pi^-\psi(2S) d$ $\Gamma(h_c(1P)\pi^+\pi^-)$)/Γ(<i>J/ψ</i> π ⁺	π⁻) DOCUMENT	ID	TECN	COMMENT	Г ₁₉ /Г
$\pi^{+}\pi^{-}\psi(2S) d$ $\Gamma(h_{c}(1P)\pi^{+}\pi^{-})$ <u>VALUE</u> <1.0)/Γ(<i>J/ψ</i> π ⁺ 	π) <u>DOCUMENT</u> ¹ PEDLAR	<i>ID</i> 11	<u>TECN</u>	$\frac{COMMENT}{e^+e^- \rightarrow h_c}$	Γ_{19}/Γ_{2}

 $\Gamma(D\overline{D})/\Gamma(J/\psi\pi^+\pi^-)$ Γ_{22}/Γ_2 VALUE DOCUMENT ID TECN COMMENT ¹ AUBERT 90 07BE BABR $e^+e^- \rightarrow D\overline{D}\gamma$ <1.0 • • • We do not use the following data for averages, fits, limits, etc. • • • CRONIN-HEN..09 CLEO e^+e^- 90 <4.0 ¹Using 4259 \pm 10 MeV for the mass and 88 \pm 24 MeV for the width of ψ (4260). $\Gamma(D^0 \overline{D}{}^0) / \Gamma_{\text{total}}$ Γ_{23}/Γ DOCUMENT ID VALUE CRONIN-HEN..09 CLEO $e^+e^- \rightarrow D^0 \overline{D}^0$ not seen • • • We do not use the following data for averages, fits, limits, etc. • • • 09M BABR $e^+e^- \rightarrow D^0 \overline{D}^0 \gamma$ AUBERT not seen BELL $e^+e^- \rightarrow D^0 \overline{D}^0 \gamma$ PAKHLOVA 80 not seen $\Gamma(D^+D^-)/\Gamma_{\text{total}}$ Γ_{24}/Γ DOCUMENT ID TECN COMMENT VALUE CRONIN-HEN..09 CLEO $e^+e^- \rightarrow D^+D^$ not seen • • • We do not use the following data for averages, fits, limits, etc. • • • 09M BABR $e^+e^- \rightarrow D^+D^-\gamma$ AUBERT not seen BELL $e^+e^- \rightarrow D^+D^-\gamma$ PAKHLOVA 80 not seen $\Gamma(D^*\overline{D}+\text{c.c.})/\Gamma(J/\psi\pi^+\pi^-)$ Γ_{25}/Γ_{2} VALUE DOCUMENT ID TECN COMMENT 09M BABR $e^+e^- \rightarrow \gamma D^*\overline{D}$ <34 90 AUBERT • • • We do not use the following data for averages, fits, limits, etc. • • • CRONIN-HEN..09 CLEO e^+e^- <45 90 $\Gamma(D^*(2007)^0 \overline{D}^0 + \text{c.c.}) / \Gamma_{\text{total}}$ Γ_{26}/Γ <u>VALUE</u> DOCUMENT ID TECN COMMENT CRONIN-HEN..09 CLEO $e^+e^- \rightarrow D^{*0}\overline{D}{}^0$ not seen • • We do not use the following data for averages, fits, limits, etc. • 09M BABR $e^+e^- \rightarrow D^{*0}\overline{D}^0\gamma$ AUBERT not seen $\Gamma(D^{*}(2010)^{+}D^{-}+c.c.)/\Gamma_{total}$ Γ_{27}/Γ VALUE TECN COMMENT DOCUMENT ID CLEO $e^+e^- \rightarrow D^{*+}D^$ not seen CRONIN-HEN..09 BELL $e^+e^- \rightarrow D^{*+}D^-\gamma$ PAKHLOVA 07 not seen • • We do not use the following data for averages, fits, limits, etc. • • • 09M BABR $e^+e^- \rightarrow D^{*+}D^-\gamma$ AUBERT not seen $\Gamma(D^*\overline{D}^*)/\Gamma(J/\psi\pi^+\pi^-)$ Γ_{28}/Γ_2 VALUE DOCUMENT ID TECN COMMENT <11 90 CRONIN-HEN..09 CLEO e^+e^- • • We do not use the following data for averages, fits, limits, etc. • • • 09M BABR $e^+e^- \rightarrow \gamma D^* \overline{D}^*$ AUBERT <40 90

 $\Gamma(D^{*}(2007)^{0}\overline{D}^{*}(2007)^{0})/\Gamma_{total}$ Γ_{29}/Γ VALUE TECN COMMENT DOCUMENT ID CRONIN-HEN..09 CLEO $e^+e^- \rightarrow D^{*0}\overline{D}^{*0}$ not seen • • • We do not use the following data for averages, fits, limits, etc. • • • 09M BABR $e^+e^- \rightarrow D^{*0}\overline{D}^{*0}\gamma$ AUBERT not seen $\Gamma(D^*(2010)^+ D^*(2010)^-) / \Gamma_{total}$ Γ_{30}/Γ DOCUMENT ID TECN COMMENT VALUE CLEO $e^+e^- \rightarrow D^{*+}D^{*-}$ not seen CRONIN-HEN..09 BELL $e^+e^- \rightarrow D^{*+}D^{*-}\gamma$ 07 PAKHLOVA not seen • • • We do not use the following data for averages, fits, limits, etc. • • • 09M BABR $e^+e^- \rightarrow D^{*+}D^{*-}\gamma$ AUBERT not seen $\Gamma(D^0 D^- \pi^+ + \text{c.c.} (\text{excl. } D^*(2007)^0 \overline{D}^{*0} + \text{c.c.}, D^*(2010)^+ D^- + \text{c.c.}))/$ **F**total Γ_{32}/Γ VALUE DOCUMENT ID TECN COMMENT 08A BELL 10.6 $e^+e^- \rightarrow D^0 D^- \pi^+ \gamma$ PAKHLOVA not seen $\Gamma(D\overline{D}^*\pi + \text{c.c.} (\text{excl. } D^*\overline{D}^*))/\Gamma_{\text{total}}$ Γ_{33}/Γ DOCUMENT ID VALUE TECN COMMENT CRONIN-HEN...09 CLEO $e^+e^- \rightarrow D^*\overline{D}\pi$ not seen $\Gamma(D\overline{D}^*\pi + \text{c.c.} (\text{excl. } D^*\overline{D}^*))/\Gamma(J/\psi\pi^+\pi^-)$ Γ_{33}/Γ_2 VALUE CL% DOCUMENT ID TECN COMMENT <15 90 CRONIN-HEN..09 CLEO $e^+e^ \Gamma(D^0 D^{*-} \pi^+ + \text{c.c.} (\text{excl. } D^*(2010)^+ D^*(2010)^-)) / \Gamma_{\text{total}}$ Γ_{34}/Γ DOCUMENT ID VALUE TECN COMMENT not seen PAKHLOVA 09 BELL e^+e -*0 ⁰ $\Gamma(D^0 D^*(2010)^- \pi^+ + \text{c.c.}) / \Gamma(J/\psi \pi^+ \pi^-)$ Γ_{35}/Γ_{2} DOCUMENT ID TECN COMMENT VALUE BELL $e^+e^- \rightarrow D^0 D^{*-}\pi^+$ <9 PAKHLOVA 90 09 $\Gamma(D^0 D^*(2010)^- \pi^+ + \text{c.c.}) / \Gamma_{\text{total}} \times \Gamma(e^+ e^-) / \Gamma_{\text{total}}$ $\Gamma_{35}/\Gamma \times \Gamma_1/\Gamma$ DOCUMENT ID TECN COMMENT CL% VALUE ¹ PAKHLOVA < 0.42 × 10⁻⁶ 09 BELL $e^+e^- \rightarrow D^0 D^{*-}\pi^+$ 90 ¹Using 4263⁺⁸₋₀ MeV for the mass of ψ (4260). $\Gamma(D^*\overline{D}^*\pi)/\Gamma_{\text{total}}$ Γ_{37}/Γ VALUE TECN COMMENT DOCUMENT ID CRONIN-HEN..09 CLEO $e^+e^- \rightarrow D^*\overline{D}^*\pi$ not seen $\Gamma(D^*\overline{D}^*\pi)/\Gamma(J/\psi\pi^+\pi^-)$ Γ_{37}/Γ_2 VALUE DOCUMENT ID CL% TECN COMMENT <8.2 90 CRONIN-HEN..09 CLEO e^+e^- HTTP://PDG.LBL.GOV Page 8 Created: 6/1/2020 08:32

$\Gamma(D_1(2420)\overline{D} + \text{c.c.})/\Gamma$	total					Г ₃₆ /Г
VALUE	1	DOCUMENT ID	10.5	<u>TECN</u>	$\underline{COMMENT}$	$+ - 0 \overline{5}$
	-		19AR	BE23	$e \cdot e \rightarrow$	π π DD
Results from a measuren 4.6 GeV.	nent of σ	$(e^+ e^- \rightarrow D_1)$	(2420)	D + c.c	.) between	$\sqrt{s}=$ 4.3 and
$\Gamma(D_s^+ D_s^-) / \Gamma_{\text{total}}$		DOCUMENT ID		TECN	COMMENT	Г ₃₈ /Г
not seen			10N	RARR	$e^+e^- \rightarrow$	$D^+ D^- \gamma$
not seen		CRONIN-HEN	00			$D_s D_s / D_s$
• • • We do not use the fo	llowing d	ata for averages	fits	limits e		sss
not seen	nowing at	PAKHLOVA	11	BELL	$e^+e^- \rightarrow$	$D_s^+ D_s^- \gamma$
$\Gamma(D_s^+ D_s^-) / \Gamma(J/\psi \pi^+ \pi$	·)					Г ₃₈ /Г ₂
VALUE CL	%	DOCUMENT ID		TECN	COMMENT	
<0.7 95	5	DEL-AMO-SA.	10 N	BABR	10.6 e ⁺ e ⁻	_
• • • We do not use the fo	llowing da	ata for averages	, fits,	limits, e	tc. ● ● ●	
<1.3 90)	CRONIN-HEN.	.09	CLEO	e ⁺ e ⁻	
$\Gamma(D_s^{*+}D_s^-+\text{c.c.})/\Gamma_{\text{total}}$	I	DOCUMENT ID		TECN	COMMENT	Г ₃₉ /Г
not seen			10N	BARR		$D^{*+}D^{-} \gamma$
not seen						$D_s D_s \gamma$
• • • Wa do not use the fe	llowing d	CRONIN-HEN.	.09	LEU limite	$e \cdot e \rightarrow$	$D_s D_s$
not seen	nowing us	PAKHLOVA	11	BELL	$e^+e^- \rightarrow$	$D_s^{*+}D_s^-\gamma$
$\Gamma(D_s^{*+}D_s^-+\text{c.c.})/\Gamma(J/s^+)$	$\psi \pi^+ \pi^-$	-)				Г ₃₉ /Г ₂
<u>VALUE</u> <u>CL</u>	_%	DOCUMENT ID		TECN	COMMENT	
< 0.8 90)	CRONIN-HEN.	.09	CLEO	e⊤e_	
 • • • We do not use the fo <44 95 	llowing da	DEL-AMO-SA.	. 10N	BABR	10.6 e^+e^-	_
$\Gamma(D_s^{*+}D_s^{*-})/\Gamma_{\text{total}}$		DOCUMENT ID		TECN	COMMENT	Г ₄₀ /Г
not soon			00			D*+ D*-
• • • We do not use the fo	llowing da	ata for averages	, fits.	limits, e		s s
not seen	0	PAKHLOVA	11	BELL	$e^+e^- ightarrow$	$D^{*+}_{-}D^{*-}_{-}\gamma$
not seen		DEL-AMO-SA.	10 N	BABR	$e^+e^- \rightarrow$	$D_{s}^{s+}D_{s}^{s-}\gamma$
$\Gamma(D_s^{*+}D_s^{*-})/\Gamma(J/\psi\pi^+)$	-π-)					Γ_{40}/Γ_2
VALUE CL	<u>_%_</u>	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	
< 9.5 90) Ilouine di	CRONIN-HEN.	.09 f:+-	CLEO	e⊤e¯	
• • • vve do not use the fo	nowing da	ata for averages	, IITS,	mmts, e		_
<30 95)	DEL-AMO-SA.	10N	RARK	10.6 e⊤ e ⁻	

Page 9

Created: 6/1/2020 08:32

$\Gamma(\eta_c(1S)\gamma)/\Gamma_{\text{total}}$

Г₄₈/Г

				-
VALUE	DOCUMENT ID	(COMMENT	
possibly seen	¹ ABLIKIM	17W e	$e^+e^- \rightarrow \gamma \eta_c(1S)$	

¹Significance ranges from 4.2 σ to as low as 1.5 σ for a flat component plus $\psi(4260)$ spectrum. Needs confirmation.

$\Gamma(\chi_{c1}(3872)\gamma)/\Gamma$	total					Г ₅₁ /Г
VALUE	EVTS	DOCUMENT ID		TECN	<u>COMMENT</u>	
seen	20 ± 5	ABLIKIM	14	BES3	$e^+e^- \rightarrow$	$J/\psi \pi^+ \pi^- \gamma$

ψ (4260) REFERENCES

ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM GAO ZHANG	20A 20C 19 19AE 19AR 18N 17B 17F 17W 17 17B	PR D101 012008 PRL 124 032002 PR D99 012003 PR D99 072005 PR D100 032005 PR D97 071101 PRL 118 092001 PL B771 45 PR D96 051101 PR D95 092007 PR D96 054008	 M. Ablikim et al. X.Y. Gao, C.P. Shen, C.Z. Yuan J. Zhang, J. Zhang 	(BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.)
ZHANG	17C	EPJ C77 727	J. Zhang, L. Yuan	
PDG	16	CP C40 100001	C. Patrignani <i>et al.</i>	(PDG Collab.)
ABLIKIM	15Q	PR D92 012008	M. Ablikim <i>et al.</i>	(BESIII Collab.)
HAN	15	PR D92 012011	Y.L. Han <i>et al.</i>	(BELLE Collab.)
ABLIKIM	14	PRL 112 092001	M. Ablikim <i>et al.</i>	(BESIII Collab.)
SHEN	14	PR D89 072015	C.P. Shen et al.	(BELLE Collab.)
ABLIKIM	13T	PRL 110 252001	M. Ablikim <i>et al.</i>	(BESIII Collab.)
LIU	13B	PRL 110 252002	Z.Q. Liu <i>et al.</i>	(BELLE Collab.)
WANG	13B	PR D87 051101	X.L. Wang <i>et al.</i>	(BELLE Collab.)
LEES	12AC	PR D86 051102	J.P. Lees <i>et al.</i>	(BABAR Collab.)
PAKHLOVA	11	PR D83 011101	G. Pakhlova <i>et al.</i>	(BELLE Collab.)
PEDLAR	11	PRL 107 041803	T. Pedlar <i>et al.</i>	(CLEO Collab.)
DEL-AMO-SA	10N	PR D82 052004	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
AUBERT	09M	PR D79 092001	B. Aubert <i>et al.</i>	(BABAR Collab.)
CRONIN-HEN	09	PR D80 072001	D. Cronin-Hennessy et al.	(CLEO Collab.)
PAKHLOVA	09	PR D80 091101	G. Pakhlova <i>et al.</i>	(BELLE Collab.)
AUBERT	08S	PR D77 092002	B. Aubert <i>et al.</i>	(BABAR Collab.)
LIU	08H	PR D78 014032	Z.Q. Liu, X.S. Qin, C.Z. Yuan	
PAKHLOVA	08	PR D77 011103	G. Pakhlova <i>et al.</i>	(BELLE Collab.)
PAKHLOVA	08A	PRL 100 062001	G. Pakhlova <i>et al.</i>	(BELLE Collab.)
YUAN	08	PR D77 011105	C.Z. Yuan <i>et al.</i>	(BELLE Collab.)
AUBERT	07AK	PR D76 012008	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	07BE	PR D76 111105	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	075	PRL 98 212001	B. Aubert <i>et al.</i>	(BABAR Collab.)

HTTP://PDG.LBL.GOV

Page 10

Created: 6/1/2020 08:32

PAKHLOVA	07	PRL 98 092001	G. Pakhlova <i>et al.</i>	(BELLE Collab.)
WANG	07D	PRL 99 142002	X.L. Wang <i>et al.</i>	(BELLE Collab.)
YUAN	07	PRL 99 182004	C.Z. Yuan et al.	(BELLE Collab.)
AUBERT	06B	PR D73 012005	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,BE	06D	PR D74 091103	B. Aubert <i>et al.</i>	(BABAR Collab.)
HE	06B	PR D74 091104	Q. He <i>et al.</i>	(CLEO Collab.)
AUBERT,B	051	PRL 95 142001	B. Aubert et al.	(BABAR Collab.)

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)