# t' (4th Generation) Quark, Searches for

## t'(2/3)-quark/hadron mass limits in $p\overline{p}$ and pp collisions

| VALUE (GeV)                                                                               | CL% | DOCUMENT ID              | TECN       | COMMENT                                                                                                      |  |
|-------------------------------------------------------------------------------------------|-----|--------------------------|------------|--------------------------------------------------------------------------------------------------------------|--|
| >1280                                                                                     | 95  | <sup>1</sup> SIRUNYAN    | 19AQ CMS   | $B(t'\to~Zt)=1$                                                                                              |  |
| >1370                                                                                     | 95  | <sup>2</sup> SIRUNYAN    | 19BWCMS    | $B(t'\to\ ht)=1$                                                                                             |  |
| > 980                                                                                     | 95  | <sup>3</sup> AABOUD      | 18CE ATLS  | $\geq 2\ell +  ot \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                    |  |
| >1010                                                                                     | 95  | <sup>4</sup> AABOUD      |            | $B(t' \rightarrow h t) = 1$                                                                                  |  |
| >1030                                                                                     | 95  | <sup>5,6</sup> AABOUD    | 18CP ATLS  | $2.3\ell$ , singlet model                                                                                    |  |
| >1210                                                                                     | 95  | <sup>5,7</sup> AABOUD    | 18CP ATLS  | $2,3\ell$ , doublet model                                                                                    |  |
| >1310                                                                                     | 95  | <sup>8,9</sup> AABOUD    | 18CR ATLS  | singlet $t'$ . ATLAS combination                                                                             |  |
| >1370                                                                                     | 95  | 8,10 AABOUD              | 18CR ATLS  | t' in a weak isospin doublet                                                                                 |  |
|                                                                                           |     |                          |            | (t',b'). ATLAS combination.                                                                                  |  |
| >1140                                                                                     | 95  | <sup>11</sup> SIRUNYAN   | 18BM CMS   | Wb, Zt, ht modes                                                                                             |  |
| > 845                                                                                     | 95  | <sup>12</sup> SIRUNYAN   | 18Q CMS    | $B(t' \to \ Wq) = 1\ (q{=}d,s)$                                                                              |  |
| >1295                                                                                     | 95  | <sup>13</sup> SIRUNYAN   | 18W CMS    |                                                                                                              |  |
| >1160                                                                                     | 95  | <sup>14</sup> AABOUD     | 17L ATLS   | $B(t'\to\ Zt)=1$                                                                                             |  |
| > 860                                                                                     | 95  | <sup>15</sup> SIRUNYAN   | 17AU CMS   |                                                                                                              |  |
| > 770                                                                                     | 95  | <sup>16</sup> AAD        | 15AR ATLS  | $B(t'\to \ Wb)=1$                                                                                            |  |
| > 590                                                                                     | 95  | <sup>17</sup> AAD        | 15BY ATLS  |                                                                                                              |  |
| > 745                                                                                     | 95  | <sup>18</sup> KHACHATRY. | 15AI CMS   | $B(t'\to\ ht)=1$                                                                                             |  |
| > 735                                                                                     | 95  | <sup>19</sup> AAD        | 14AZ ATLS  | $B(b' \to \ Wt) = 1$                                                                                         |  |
| > 700                                                                                     | 95  | <sup>20</sup> CHATRCHYAN |            | $B(t'\to\ Wb)=1$                                                                                             |  |
| > 706                                                                                     | 95  | <sup>20</sup> CHATRCHYAN | N 14A CMS  | $B(t'\to~Zt)=1$                                                                                              |  |
| > 782                                                                                     | 95  | <sup>20</sup> CHATRCHYAN | N 14A CMS  | $B(t'\to\ ht)=1$                                                                                             |  |
| > 350                                                                                     | 95  | <sup>21</sup> AAD        | 12BC ATLS  | $B(t' 	o Wq) = 1 \ (q = d, s, b)$                                                                            |  |
| > 420                                                                                     | 95  | <sup>22</sup> AAD        | 12C ATLS   | $t'  ightarrow X t \ (m_{	extbf{X}} < 140 \ 	ext{GeV})$                                                      |  |
| > 685                                                                                     | 95  | <sup>23</sup> CHATRCHYAN | N 12BH CMS | $m_{b'} = m_{t'}$                                                                                            |  |
| > 557                                                                                     | 95  | <sup>24</sup> CHATRCHYAN | N12P CMS   | $t' \frac{\overline{b}'}{\overline{t}'} \rightarrow \frac{W^+ b W^- \overline{b}}{b \ell^+ \nu} \rightarrow$ |  |
| <ul> <li>• • We do not use the following data for averages, fits, limits, etc.</li> </ul> |     |                          |            |                                                                                                              |  |

|       |                 | _                         | -         |                                                            |
|-------|-----------------|---------------------------|-----------|------------------------------------------------------------|
| > 656 | 95              | <sup>25</sup> AAD         | 13F ATLS  | $B(t'\to \ Wb)=1$                                          |
| > 625 | 95              |                           | V 13ı CMS | $B(t'\to~Zt)=1$                                            |
| > 404 | 95              |                           |           |                                                            |
| > 570 | 95              |                           |           | $t'\overline{t}' \rightarrow W^+bW^-\overline{b}$          |
| > 400 | 95              | <sup>29</sup> AALTONEN    | 11AH CDF  | $t'  ightarrow X t \; (m_{	extsf{X}} < 70 \; 	extsf{GeV})$ |
| > 358 | 95              | <sup>30</sup> AALTONEN    |           | $t' \rightarrow Wb$                                        |
| > 340 | 95              | <sup>30</sup> AALTONEN    | 11AL CDF  | $t'  ightarrow \ W \ q \ (q{=}d,s,b)$                      |
| > 360 | 95              | <sup>31</sup> AALTONEN    | 110 CDF   | $t'  ightarrow X t \ (m_{	extsf{X}} < 100 \ 	ext{GeV})$    |
| > 285 | 95              | <sup>32</sup> ABAZOV      | 11Q D0    | $t'  ightarrow \ W \ q \ (q{=}d,s,b)$                      |
| > 256 | 95 <sup>3</sup> | <sup>33,34</sup> AALTONEN | 08н CDF   | t'  ightarrow W q                                          |

<sup>&</sup>lt;sup>1</sup> SIRUNYAN 19AQ based on 35.9 fb<sup>-1</sup> of pp data at  $\sqrt{s}=13$  TeV. Pair production of vector-like t' is seached for with one t' decaying into Zt and the other t' decaying into Wb, Zt, ht. Events with an opposite-sign lepton pair consistent with coming from Z and jets are used. Mass limits are obtained for a variety of branching ratios of t'.

- <sup>2</sup> SIRUNYAN 19BW based on 35.9 fb<sup>-1</sup> of pp data at  $\sqrt{s}=13$  TeV. The limit is for the pair-produced vector-like t' using all-hadronic final state. The analysis is made for the Wb, Zt, ht modes and mass limits are obtained for a variety of branching ratios.
- <sup>3</sup> AABOUD 18CE based on 36.1 fb<sup>-1</sup> of proton-proton data taken at  $\sqrt{s}=13$  TeV. Events including a same-sign lepton pair are used. The limit is for a singlet model, assuming the branching ratios of t' into Zt, Wb and Ht as predicted by the model.
- <sup>4</sup> AABOUD 18CL based on 36.1 fb<sup>-1</sup> of pp data at  $\sqrt{s}=13$  TeV. The limit is for the pair-produced vector-like t' using all-hadronic final state. The analysis is also made for the Wb, Zt, ht modes and mass limits are obtained for a variety of branching ratios.
- <sup>5</sup> AABOUD 18CP based on 36.1 fb<sup>-1</sup> of pp data at  $\sqrt{s}=13$  TeV. Pair and single production of vector-like t' are seached for with at least one t' decaying into Zt. In the case of B( $t' \to Zt$ ) = 1, the limit is  $m_{t'} > 1340$  GeV.
- <sup>6</sup> The limit is for the singlet model, assuming that the branching ratios into Zt, Wb, and Ht add up to one.
- <sup>7</sup> The limit is for the doublet model, assuming that the branching ratios into Zt, Wb, and Ht add up to one.
- <sup>8</sup> AABOUD 18CR based on 36.1 fb<sup>-1</sup> of pp data at  $\sqrt{s}=13$  TeV. A combination of searches for the pair-produced vector-like t' in various decay channels ( $t' \rightarrow Wb$ , Zt, ht). Also a model-independent limit is obtained as  $m_{t'}>1.31$  TeV, assuming that the branching ratios into Zt, Wb and ht add up to one.
- <sup>9</sup> The limit is for the singlet t'.
- $^{10}$  The limit is for t' in a weak isospin doublet (t',b') and  $|V_{t'b}| \ll |V_{tb'}|$ .
- <sup>11</sup> SIRUNYAN 18BM based on 35.9 fb<sup>-1</sup> of pp data at  $\sqrt{s}=13$  TeV. The limit is for the pair-produced vector-like t'. Three channels (single lepton, same-charge 2 leptons, or at least 3 leptons) are considered for various branching fraction combinations. Assuming B(tH)=1, the limit is 1270 GeV and for B(tZ)=1 it is 1300 GeV.
- $^{12}$  SIRUNYAN 18Q based on 19.7 fb $^{-1}$  of pp data at  $\sqrt{s}=8$  TeV. The limit is for the pair-produced vector-like t' that couple only to light quarks. Constraints for other decay channels (Z q and Hq) are also given in the paper.
- <sup>13</sup> SIRUNYAN 18W based on 35.8 fb<sup>-1</sup> of pp data at  $\sqrt{s}=13$  TeV. The limit is for the vector-like t' pair-produced by strong interaction using lepton-plus-jets mode and assuming that B( $t' \to Wb$ ) is 100product of the production cross section and branching faction to Wb for any new pair-produced heavy quark decaying to this channel as a narrow resonance.
- <sup>14</sup> AABOUD 17L based on 36.1 fb<sup>-1</sup> of pp data at  $\sqrt{s}=13$  TeV. No signal is found in the search for heavy quark pair production that decay into Zt followed by  $Z \to \nu \nu$  in the events with one lepton, large  $E_T$ , and  $\geq 4$  jets. The lower mass limit 0.87 (1.05) TeV is obtained for the singlet (doublet) model with other possible decay modes.
- <sup>15</sup> SIRUNYAN 17AU based on 2.3-2.6 fb<sup>-1</sup> of pp data at  $\sqrt{s}=13$  TeV. Limit on pair-produced singlet vector-like t' using one lepton and several jets. The mass bound is given for a t' transforming as a singlet under the electroweak symmetry group, assumed to decay through W, Z or Higgs boson (which decays to jets) and to a third generation quark. For a doublet, the limit is >830 GeV. Other limits are also given in the paper.
- <sup>16</sup> AAD 15AR based on 20.3 fb<sup>-1</sup> of pp data at  $\sqrt{s}=8$  TeV. Used lepton-plus-jets final state. See Fig. 20 for mass limits in the plane of B( $t' \rightarrow Ht$ ) vs. B( $t' \rightarrow Wb$ ) from a combination of  $t'\overline{t}' \rightarrow Wb + X$  and  $t'\overline{t}' \rightarrow Ht + X$  searches. Any branching ratio scenario is excluded for mass below 715 GeV.
- scenario is excluded for mass below 715 GeV. 
  17 AAD 15BY based on 20.3 fb $^{-1}$  of pp data at  $\sqrt{s}=8$  TeV. Limit on pair-produced vector-like t' assuming the branching fractions to W, Z, and h modes of the singlet model. Used events containing  $\geq 2\ell + \not\!\!E_T + \geq 2\mathbf{j}$  (  $\geq 1$  b) and including a same-sign lepton pair.

- <sup>18</sup> KHACHATRYAN 15AI based on 19.7 fb<sup>-1</sup> of pp data at  $\sqrt{s}=8$  TeV. The search exploits all-hadronic final states by tagging boosted Higgs boson using jet substructure and b-tagging.
- <sup>19</sup> Based on 20.3 fb<sup>-1</sup> of pp data at  $\sqrt{s}=8$  TeV. No significant excess over SM expectation is found in the search for pair production or single production of t' in the events with dilepton from a high pT Z and additional jets ( $\geq 1$  b-tag). If instead of B( $b' \rightarrow Wt$ ) = 1 an electroweak singlet with B( $b' \rightarrow Wt$ )  $\sim 0.45$  is assumed, the limit reduces to 685 GeV
- <sup>20</sup> Based on 19.5 fb<sup>-1</sup> of pp data at  $\sqrt{s}=8$ TeV. The t' quark is pair produced and is assumed to decay into three different final states of bW, tZ, and th. The search is carried out using events with at least one isolated lepton.
- <sup>21</sup> Based on 1.04 fb<sup>-1</sup> of pp data at  $\sqrt{s}=7$  TeV. No signal is found for the search of heavy quark pair production that decay into W and a quark in the events with dileptons, large  $\not\!\!E_T$ , and  $\geq 2$  jets.
- Based on 1.04 fb $^{-1}$  of data in pp collisions at 7 TeV. AAD 12C looked for  $t'\overline{t}'$  production followed by t' decaying into a top quark and X, an invisible particle, in a final state with an isolated high- $P_T$  lepton, four or more jets, and a large missing transverse energy. No excess over the SM  $t\overline{t}$  production gives the upper limit on  $t'\overline{t}'$  production cross section as a function of  $m_{t'}$  and  $m_X$ . The result is obtained for  $B(t' \to Wt) = 1$ .
- <sup>23</sup> Based on 5 fb<sup>-1</sup> of pp data at  $\sqrt{s}=7$  TeV. CHATRCHYAN 12BH searched for QCD and EW production of single and pair of degenerate 4'th generation quarks that decay to Wb or Wt. Absence of signal in events with one lepton, same-sign dileptons or trileptons gives the bound. With a mass difference of 25 GeV/c<sup>2</sup> between  $m_{t'}$  and  $m_{b'}$ , the corresponding limit shifts by about  $\pm 20$  GeV/c<sup>2</sup>.
- <sup>24</sup> Based on 5.0 fb<sup>-1</sup> of pp data at  $\sqrt{s}=7$  TeV. CHATRCHYAN 12P looked for  $t'\overline{t}'$  production events with two isolated high  $p_T$  leptons, large  $\not\!\!E_T$ , and 2 high  $p_T$  jets with b-tag. The absence of signal above the SM background gives the limit for B( $t' \to Wb$ ) = 1
- $^{25}$  Based on 4.7 fb $^{-1}$  of  $p\,p$  data at  $\sqrt{s}=7$  TeV. No signal is found for the search of heavy quark pair production that decay into W and a b quark in the events with a high  $p_T$  isolated lepton, large  $E_T$  and at least 3 jets (  $\geq 1$  b-tag). Vector-like quark of charge 2/3 with 400  $< m_{t'} < 550$  GeV and B( $t' \to W\,b$ ) > 0.63 is excluded at 95% CL.
- $^{26}\,\mathrm{Based}$  on 5.0 fb $^{-1}$  of  $p\,p$  data at  $\sqrt{s}=7$  TeV. CHATRCHYAN 131 looked for events with one isolated electron or muon, large  $E_T$ , and at least four jets with large transverse momenta, where one jet is likely to originate from the decay of a bottom quark.
- <sup>27</sup> Based on 1.04 fb<sup>-1</sup> of pp data at  $\sqrt{s}=7$  TeV. No signal is found in the search for pair produced heavy quarks that decay into W boson and a b quark in the events with a high  $p_T$  isolated lepton, large  $E_T$  and at least 3 jets ( $\geq 1$  b-tag).
- <sup>28</sup> Based on 5.0 fb<sup>-1</sup> of pp data at  $\sqrt{s}=7$  TeV. CHATRCHYAN 12BC looked for  $t'\overline{t}'$  production events with a single isolated high  $p_T$  lepton, large  $\not\!\!E_T$  and at least 4 high  $p_T$  jets with a b-tag. The absence of signal above the SM background gives the limit for B( $t' \to Wb$ ) = 1.
- <sup>29</sup> Based on 5.7 fb<sup>-1</sup> of data in  $p\overline{p}$  collisions at 1.96 TeV. AALTONEN 11AH looked for  $t'\overline{t}'$  production followed by t' decaying into a top quark and X, an invisible particle, in the all hadronic decay mode of  $t\overline{t}$ . No excess over the SM  $t\overline{t}$  production gives the upper limit on  $t'\overline{t}'$  production cross section as a function of  $m_{t'}$  and  $m_X$ . The result is obtained for B( $t' \to Xt$ ) = 1.
- <sup>30</sup> Based on 5.6 fb<sup>-1</sup> of data in ppbar collisions at 1.96 TeV. AALTONEN 11AL looked for  $\ell + \geq 4j$  events and set upper limits on  $\sigma(t'\overline{t}')$  as functions of  $m_{t'}$ .
- <sup>31</sup> Based on 4.8 fb<sup>-1</sup> of data in  $p\bar{p}$  collisions at 1.96 TeV. AALTONEN 110 looked for  $t'\bar{t}'$  production signal when t' decays into a top quark and X, an invisible particle, in

- $\ell+\not\!\!E_T$  + jets channel. No excess over the SM  $t\,\overline{t}$  production gives the upper limit on  $t'\,\overline{t}'$  production cross section as a function of  $m_{t'}$  and  $m_X$ . The result is obtained for  $\mathsf{B}(t'\to X\,t)=1$ .
- <sup>32</sup> Based on 5.3 fb<sup>-1</sup> of data in  $p\bar{p}$  collisions at 1.96 TeV. ABAZOV 11Q looked for  $\ell+E_T+\geq 4j$  events and set upper limits on  $\sigma(t'\bar{t}')$  as functions of  $m_{t'}$ .
- <sup>33</sup> Searches for pair production of a new heavy top-like quark t' decaying to a W boson and another quark by fitting the observed spectrum of total transverse energy and reconstructed t' mass in the lepton + jets events.
- $^{34}$  HUANG 08 reexamined the t' mass lower bound of 256 GeV obtained in AALTONEN 08H that assumes B( $b' \to q Z$ ) = 1 for q=u, c which does not hold when  $m_{b'} < m_{t'} m_W$  or the mixing  $\sin^2(\theta_{b\,t'})$  is so tiny that the decay occurs outside of the vertex detector.
  - Fig. 1 gives that lower bound on  $m_{t'}$  in the plane of  $\sin^2(\theta_{ht'})$  and  $m_{h'}$ .

#### t'(5/3)-quark/hadron mass limits in $p\overline{p}$ and pp collisions

| VALUE (GeV) | CL% | DOCUMENT ID                       | TECN | COMMENT                                       |
|-------------|-----|-----------------------------------|------|-----------------------------------------------|
| >1330       | 95  | <sup>1</sup> SIRUNYAN 19T         | CMS  | $t_R'(5/3) \rightarrow tW^+$                  |
| >1300       | 95  | <sup>1</sup> SIRUNYAN 19T         | CMS  | $t_I'(5/3) \rightarrow tW^+$                  |
| >1350       | 95  | <sup>2</sup> AABOUD 18AW          | ATLS | $t^{7}(5/3) \rightarrow tW^{+}$               |
| >1190       | 95  | <sup>3</sup> AABOUD 18CE          | ATLS | $\geq 2\ell +  ot\!\!\!E_T + \geq 1$ bj       |
| >1020       | 95  | <sup>4</sup> SIRUNYAN 17J         | CMS  | $t_R'(5/3) \rightarrow tW^+$                  |
| > 990       | 95  | <sup>4</sup> SIRUNYAN 17J         | CMS  | $t_I'(5/3) \rightarrow tW^+$                  |
| > 750       | 95  | <sup>5</sup> AAD 15 <sub>BY</sub> | ATLS | $t^{\overline{\prime}}(5/3) \rightarrow tW^+$ |
| > 840       | 95  |                                   | ATLS | $t'(5/3) \rightarrow tW^+$                    |
| > 800       | 95  | <sup>7</sup> CHATRCHYAN 14T       | CMS  | $t'(5/3) \rightarrow tW^+$                    |

- <sup>1</sup> SIRUNYAN 19T based on 35.9 fb<sup>-1</sup> of pp data at  $\sqrt{s}=13$  TeV. Signals are searched in the final states of t' pair production, with same-sign leptons (which come from a t' decay) or a single lepton (which comes from a W out of 4Ws), along with jets, and no excess over the SM expectation is found.
- <sup>2</sup>AABOUD 18AW based on 36.1 fb<sup>-1</sup> of pp data at  $\sqrt{s}=13$  TeV. Limit on t'(5/3) in pair production assuming its coupling to Wt is equal to one. Lepton-plus-jets final state is used, characterized by  $\ell+\cancel{E}_T+$  jets ( $\geq 1$  b-tagged).
- $^3$  AABOUD 18CE based on 36.1 fb $^{-1}$  of proton-proton data taken at  $\sqrt{s}=13$  TeV. Events including a same-sign lepton pair are used. The limit is for the pair-produced vector-like t'. With single t' production included, assuming  $t'\,t\,W$  coupling of one, the limit is  $m_{t'}>1.6$  TeV.
- <sup>4</sup> SIRUNYAN 17J based on 2.3 fb<sup>-1</sup> of pp data at  $\sqrt{s}=13$  TeV. Signals are searched in the final states of t' pair production, with same-sign leptons (which come from a t' decay) or a single lepton (which comes from a W out of 4Ws), along with jets, and no excess over the SM expectation is found.
- <sup>5</sup> AAD 15BY based on 20.3 fb<sup>-1</sup> of pp data at  $\sqrt{s}=8$  TeV. Limit on t'(5/3) in pair and single production assuming its coupling to Wt is equal to one. Used events containing  $\geq 2\ell + \not\!\!E_T + \geq 2j$  ( $\geq 1$  b) and including a same-sign lepton pair.
- <sup>6</sup> AAD 15Z based on 20.3 fb<sup>-1</sup> of pp data at  $\sqrt{s}=8$  TeV. Used events with  $\ell+E_T+2$  6j (  $\geq 1$  b) and at least one pair of jets from weak boson decay, sensitive to the final state  $b\overline{b}W^+W^-W^+W^-$ .
- <sup>7</sup> CHATRCHYAN 14T based on 19.5 fb<sup>-1</sup> of pp data at  $\sqrt{s}=8$  TeV. Non-observation of anomaly in  $H_T$  distribution in the same-sign dilepton events leads to the limit when pair produced t'(5/3) quark decays exclusively into t and  $W^+$ , resulting in the final state with  $b \overline{b} W^+ W^- W^+ W^-$ .

#### t'(2/3) mass limits from single production in $p\overline{p}$ and pp collisions

| VALUE (GeV) | CL% | DOCUMENT ID         | TECN      | COMMENT                                                                                                                                     |
|-------------|-----|---------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|
| >950        | 95  | <sup>1</sup> AAD    | 16AV ATLS | $egin{aligned} qg & ightarrow  q't'b, \; B(t'  ightarrow \ Wb) = 0.5 \end{aligned}$                                                         |
| >403        | 95  | <sup>2</sup> ABAZOV | 11F D0    | $qd \rightarrow q't' \rightarrow q'(Wd)$                                                                                                    |
| >551        | 95  | <sup>2</sup> ABAZOV | 11F D0    | $\widetilde{\kappa}_{dt'} = 1$ , $B(t' \to Wd) = 1$<br>$qu \to qt' \to q(Zu)$<br>$\widetilde{\kappa}_{ut'} = \sqrt{2}$ , $B(t' \to Zu) = 1$ |

 $<sup>^1</sup>$  AAD 16AV based on 20.3 fb $^{-1}$  of pp data at  $\sqrt{s}=8$  TeV. No significant excess over SM expectation is found in the search for a fully reconstructed vector-like t' in the mode  $\ell+\not\!\!E_T+ \ge 2j$  (  $\ge 1b$ ). A veto on massive large-radius jets is used to reject the  $t\overline{t}$  background.

### t'(5/3) mass limits from single production in $p\bar{p}$ and pp collisions

VALUE (GeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

<sup>1</sup> SIRUNYAN 19AI CMS tW o t'(5/3) o tW

Created: 6/1/2021 08:32

## REFERENCES FOR Searches for (Fourth Generation) t' Quark

| SIRUNYAN   | 19AI | EPJ C79 90     | A.M. Sirunyan et al.         | (CMS   | Collab.) |
|------------|------|----------------|------------------------------|--------|----------|
| SIRUNYAN   | 19AQ | EPJ C79 364    | A.M. Sirunyan et al.         | (CMS   | Collab.) |
| SIRUNYAN   | 19BW | PR D100 072001 | A.M. Sirunyan et al.         | (CMS   | Collab.) |
| SIRUNYAN   | 19T  | JHEP 1903 082  | A.M. Sirunyan et al.         | (CMS   | Collab.) |
| AABOUD     | 18AW | JHEP 1808 048  | M. Aaboud et al.             | (ATLAS | Collab.) |
| AABOUD     | 18CE | JHEP 1812 039  | M. Aaboud et al.             | (ATLAS | Collab.) |
| AABOUD     | 18CL | PR D98 092005  | M. Aaboud et al.             | (ATLAS | Collab.) |
| AABOUD     | 18CP | PR D98 112010  | M. Aaboud et al.             | (ATLAS | Collab.) |
| AABOUD     | 18CR | PRL 121 211801 | M. Aaboud et al.             | (ATLAS | Collab.) |
| SIRUNYAN   | 18BM | JHEP 1808 177  | A.M. Sirunyan <i>et al.</i>  | (CMS   | Collab.) |
| SIRUNYAN   | 18Q  | PR D97 072008  | A.M. Sirunyan <i>et al.</i>  | (CMS   | Collab.) |
| SIRUNYAN   | 18W  | PL B779 82     | A.M. Sirunyan <i>et al.</i>  |        | Collab.) |
| AABOUD     | 17L  | JHEP 1708 052  | M. Aaboud et al.             | (ATLAS |          |
| SIRUNYAN   | 17AU | JHEP 1711 085  | A.M. Sirunyan <i>et al.</i>  |        | Collab.) |
| SIRUNYAN   | 17J  | JHEP 1708 073  | A.M. Sirunyan <i>et al.</i>  | (CMS   | Collab.) |
| AAD        | 16AV | EPJ C76 442    | G. Aad <i>et al.</i>         | (ATLAS | Collab.) |
| AAD        | 15AR | JHEP 1508 105  | G. Aad <i>et al.</i>         | (ATLAS | Collab.) |
| AAD        | 15BY | JHEP 1510 150  | G. Aad <i>et al.</i>         | (ATLAS | Collab.) |
| AAD        | 15Z  | PR D91 112011  | G. Aad <i>et al.</i>         | (ATLAS | Collab.) |
| KHACHATRY  | 15AI | JHEP 1506 080  | V. Khachatryan <i>et al.</i> |        | Collab.) |
| AAD        |      | JHEP 1411 104  | G. Aad <i>et al.</i>         | (ATLAS | Collab.) |
| CHATRCHYAN |      | PL B729 149    | S. Chatrchyan <i>et al.</i>  |        | Collab.) |
| CHATRCHYAN | 14T  | PRL 112 171801 | S. Chatrchyan <i>et al.</i>  |        | Collab.) |
| AAD        | 13F  | PL B718 1284   | G. Aad <i>et al.</i>         |        | Collab.) |
| CHATRCHYAN | -    | JHEP 1301 154  | S. Chatrchyan <i>et al.</i>  |        | Collab.) |
| AAD        | 12AR | PRL 108 261802 | G. Aad <i>et al.</i>         | (ATLAS | Collab.) |

https://pdg.lbl.gov Page 5

<sup>&</sup>lt;sup>2</sup> Based on 5.4 fb<sup>-1</sup> of data in ppbar collisions at 1.96 TeV. ABAZOV 11F looked for single production of t' via the Z or E coupling to the first generation up or down quarks, respectively. Model independent cross section limits for the single production processes  $p\overline{p} \to t' q \to (W d)q$ , and  $p\overline{p} \to t' q \to (Z d)q$  are given in Figs. 3 and 4, respectively, and the mass limits are obtained for the model of ATRE 09 with degenerate bi-doublets of vector-like quarks.

 $<sup>^1</sup>$  SIRUNYAN 19AI based on 35.9 fb $^{-1}$  of  $p\,p$  data at  $\sqrt{s}=13$  TeV. Exclusion limits are set on the product of the production cross section and branching fraction for the b'(-1/3)+t and t'(5/3)+t modes as a function of the vector-like quark mass in Fig. 8 and Tab. 2 for relative vector-like quark widths between 1 and 30% for left- and right-handed vector-like quark couplings. No significant deviation from the SM prediction is observed.

| AAD 12        | 2BC P | R D86 012007  | G. Aad et al.         | (ATLAS Collab.) |
|---------------|-------|---------------|-----------------------|-----------------|
| AAD 12        | 2C P  | RL 108 041805 | G. Aad et al.         | (ATLAS Collab.) |
| CHATRCHYAN 12 | 2BC P | L B718 307    | S. Chatrchyan et al.  | (CMS Collab.)   |
| CHATRCHYAN 12 | 2BH P | R D86 112003  | S. Chatrchyan et al.  | (CMS Collab.)   |
| CHATRCHYAN 12 | 2P P  | L B716 103    | S. Chatrchyan et al.  | (CMS Collab.)   |
| AALTONEN 1    | 1AH P | RL 107 191803 | T. Aaltonen et al.    | (CDF Collab.)   |
| AALTONEN 1    | 1AL P | RL 107 261801 | T. Aaltonen et al.    | (CDF Collab.)   |
| AALTONEN 1    | 10 P  | RL 106 191801 | T. Aaltonen et al.    | (CDF Collab.)   |
| ABAZOV 1      | 1F P  | RL 106 081801 | V.M. Abazov et al.    | (D0 Collab.)    |
| ABAZOV 1      | 1Q P  | RL 107 082001 | V.M. Abazov et al.    | (D0 Collab.)    |
| ATRE 09       | 9 P   | R D79 054018  | A. Atre <i>et al.</i> |                 |
| AALTONEN 08   | 8H P  | RL 100 161803 | T. Aaltonen et al.    | (CDF Collab.)   |
| HUANG 08      | 8 P   | R D77 037302  | P.Q. Hung, M. Sher    | (UVA, WILL)     |
|               |       |               |                       | ·               |