
1 41. Machine Learning

41. Machine Learning

Written November 2021 by K. Cranmer (NYU), U. Seljak (UC Berkeley; LBNL) and K. Terao
(SLAC; Stanford U.).

41.1 Introduction . 3
41.1.1 A gentle introduction with a representative example 3

41.2 Fundamental concepts . 4
41.2.1 Loss, risk, empirical risk . 4
41.2.2 Generalization . 5

41.3 Common tasks and their associated loss functions 6
41.3.1 Supervised learning . 6

41.3.1.1 Regression . 6
41.3.1.2 A note on regularization . 7
41.3.1.3 Classification . 8

41.3.2 Unsupervised learning . 11
41.3.2.1 Density estimation . 11
41.3.2.2 Representation learning, compression, and auto-encoders 12
41.3.2.3 Clustering . 13

41.3.3 Optimal control, reinforcement learning, and active learning 14
Reinforcement learning . 15
Multi-arm bandits . 15
Bayesian optimization . 15
Connection to experimental design 16
Active learning . 16

41.3.4 Anomaly detection and out-of-distribution detection 17
41.3.5 Simulation-based inference . 18

41.3.5.1 Differentiable simulations . 19
41.3.5.2 Unfolding as an inverse problem . 20

41.4 Data representations, inductive bias, and example applications 20
41.5 Flavors of ML models . 22

41.5.1 Support vector machines and kernel machines 22
Maximum-margin classifiers 23
Soft margins and slack variables 23
The dual problem . 24
The kernel trick . 24
Support vector regression 24
Kernel ridge regression . 25
Gaussian Process Regression (krigging) 25

41.5.2 Decision trees . 26
Tree-based models . 26
Ensemble methods . 27
Bagging . 27
Random forests . 27
AdaBoost . 27
Gradient boosting . 28

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2021) and 2021 update
1st December, 2021 8:53am

2 41. Machine Learning

41.5.3 Neural networks . 29
41.5.3.1 Feed-forward multi-layer perceptron 29
41.5.3.2 Activation functions . 29
41.5.3.3 Softmax . 30
41.5.3.4 The rise of deep learning . 30
41.5.3.5 Convolutional neural networks . 30
41.5.3.6 Pooling . 32
41.5.3.7 CNN architectures for image analysis 32

Region Convolutional Neural Network 33
U-Net . 34

41.5.3.8 Residual networks and skip connections 34
41.5.3.9 Recurrent neural networks . 36
41.5.3.10 LSTM and GRU . 37
41.5.3.11 Attention . 38
41.5.3.12 Scaled dot-product attention . 40
41.5.3.13 Transformer and multi-head attention 41
41.5.3.14 Graph networks and geometric deep learning 41

41.5.4 Deep generative models . 43
41.5.4.1 Variational auto-encoders . 44
41.5.4.2 Generative adversarial networks . 46
41.5.4.3 Normalizing flows, autoregressive models, and score based models . 47

41.6 Learning algorithms . 49
41.6.1 Gradient-based optimization . 49
41.6.2 Stochastic gradient descent . 49
41.6.3 Optimization algorithms . 50
41.6.4 Automatic differentiation and back propagation 50
41.6.5 The vanishing and exploding gradient problems 51
41.6.6 Early stopping . 52
41.6.7 Initialization of model parameters . 53
41.6.8 Input normalization . 53
41.6.9 Batch normalization . 53
41.6.10Transfer learning: pre-training and fine-tuning 54
41.6.11Zero, one, and a few shot learning . 54

41.7 Incorporating uncertainty . 54
41.7.1 Propagation of errors . 55
41.7.2 Domain adaptation . 56
41.7.3 Parameterized models . 57
41.7.4 Data augmentation . 58
41.7.5 Aleatoric and epistemic uncertainty . 58
41.7.6 Model averaging and Bayesian machine learning 59
41.7.7 Connection to probabilistic machine learning 60

41.8 Infrastructure for deployment in experiments . 61

1st December, 2021

3 41. Machine Learning

41.1 Introduction
This chapter gives an overview of the core concepts of machine learning that are relevant to

particle physics with some examples of applications to the energy, intensity, cosmic, and accelerator
frontiers. Machine learning (ML) is an enormous field that has grown substantially in the last
decade, propelled largely by the emergence of so-called deep learning (DL) [1, 2]. ML has a long
history in particle physics going back to the late 1980s and early 1990s, see Refs. [3–5] for recent
reviews.

Physicists are exploring and contributing to machine learning at an unprecedented rate, which
poses a challenge for those that wish to have an up-to-date view of the field. This motivated an
effort to create A Living Review of Machine Learning for Particle and Nuclear Physics [6], which
can be downloaded here: https://github.com/iml-wg/HEPML-LivingReview. As of the time of
this writing, the Living Review includes over 500 references organized hierarchically by topic. While
we make references to some of these papers, this chapter focuses on the methodology and does not
attempt to give a comprehensive review of the applications.

Despite the connotations of machine learning and artificial intelligence as a mysterious and
radical departure from traditional approaches, we stress that machine learning has a mathematical
formulation that is closely tied to statistics, the calculus of variations, approximation theory, and
optimal control theory.

The topic can be organized along a few axes, which we use to organize this section. First,
there are different learning paradigms, for example supervised learning, unsupervised learning, and
reinforcement learning. We focus on the first two in this review, since reinforcement learning is less
commonly used in particle physics. Within these paradigms there are various tasks; for example,
classification and regression – which have been the primary use of ML in particle physics – are
examples of supervised learning. In addition to the learning paradigm and tasks, there are various
types of machine learning models that generically process some input and produce some output.
The types of models vary based on what it is they are modelling (e.g. so-called discriminative vs.
generative models), as well as the way that they are implemented (e.g. neural networks, decision
trees, and kernel machines). Next, there are the issues around training or learning within the
context of a given task and model class, which connects to optimization and regularization. We
will briefly discuss the various considerations that emerge in the application of machine learning
methods to physics, such as the treatment of systematic uncertainty, the interpretability of the
models, the incorporation of symmetry, etc..

41.1.1 A gentle introduction with a representative example
We will use a specific, familiar example to introduce the various ingredients in context before

factorizing and abstracting them. Consider the task of classifying energy deposits in a particle
detector as electrons or protons. For this example, let the detector data consist of energy deposits
in d sensors so that the data can be represented as feature vector x ∈ Rd. Different components of
x may have different units (e.g. units of energy, momentum, position etc.). Due to the complex
interactions of particles in the detector, we do not have an explicit probability model for the high-
dimensional data for the electron and proton scenarios, but we do have a simulator that allows us to
generate Monte Carlo samples for each. This allows us to assemble a training dataset {xi, yi}i=1,...,n,
where y is used as a label to identify how the example was generated (e.g. y = 0 for electrons and
y = 1 for protons). We would like to find a function f : x → y that is able to accurately predict
the label on new data. Because we have feature-label pairs, this is considered a supervised learning
problem. We can use a neural network to provide a flexible family of functions fφ : Rd → R, where
φ denotes the internal parameters of the neural network (i.e. the weights and biases that we will
discuss in Sec.41.5.3). The goal of the training procedure is to find the value of the parameters φ

1st December, 2021

https://github.com/iml-wg/HEPML-LivingReview

4 41. Machine Learning

that provide the ‘best’ predictions, but since no model is perfect, we must be explicit about the
tradeoffs. This is made concrete through a loss function L(fφ(x), y). For this example, instead of
the obvious zero-one loss (which is 0 if fφ(x) equals y and 1 if they are not), we choose to use the
squared-loss Lsq(fφ(x), y) = (y − fφ(x))2 (which may seem ad hoc now, but will be motivated in
Sec. 41.3.1.3). We can evaluate the average of the loss on the training set of size n, which is referred
to as the emprical risk Remp(fφ) = ∑n

i=1 L(fφ(x), y)/n. Training refers to numerically minimizing
the empirical risk (often referred to as the training loss through some abuse of terminology). We can
numerically optimize the model through gradient descent, which iteratively adjusts the parameters
of the network according to φt+1 = φt − λ∇φRemp(fφ), where λ is referred to as the learning rate.
Once the optimization is complete and we obtain the solution φ̂, it is natural to assess the quality of
the trained model fφ̂ on an independent testing dataset. The empirical risk evaluated on the testing
set is often larger than on the training set, and large differences indicate overfitting, which indicates
that the model does not generalize well to the unseen data. The ability to accurately predict on
unseen data is referred to as generalization and the empirical risk on the test data provides a
measure of the generalization error. In order to reduce the generalization error one might explore
different model choices (e.g. neural network architectures), additional regularization terms in the
loss function, different learning rates, optimization algorithms, or early stopping criterion in the
optimization. Once trained, the model can be applied to data. In order to produce a binary
electron vs. proton decision from the continuous ouptut of the neural network, we must threshold
(i.e. classify as proton if fφ̂(x) > k). The choice of the threshold k is often referred to as a working
point and it sets the tradeoff between electron and proton efficiency, fake-rates, purity, etc. These
familiar concepts in particle physics are usually referred to in different terms in machine learning and
a receiver operating characteristic curve, or ROC curve, is used to summarize the tradeoff between
true positive rate (TPR) and false positive rate (FPR). Importantly, the characterization of the
efficiency / rejection (or equivalently the ROC curve) requires labeled data. In a particle physics
context, it is recognized that the simulation is not perfect and the mismodelling is associated to the
presence of systematic uncertainty. In machine learning, the discrepancy between the distribution
of the training dataset and the distribution of the data that the model will be applied to in practice
is referred to as domain shift or distribution shift. While mismodelling in the training dataset
might lead to a less-than-optimal classifier in practice, the real source of systematic uncertainty
comes from mismatch between the data used to characterize the performance of the classifier and
the unlabeled data that the classifier is applied to. This motivates the use of data-driven methods
to calibrate the resulting model.

This example provides a vertical slice through the various aspects of supervised machine learning
in particle physics. Now we factorize and abstract the various ingredients in order to provide a
more general treatment with a broader scope.
41.2 Fundamental concepts
41.2.1 Loss, risk, empirical risk

The term learning in machine learning generally refers to optimization of some objective, which
can be thought of as maximizing utility or minimizing risk. The risk brings together three main
ingredients. The first is the model family F (where f ∈ F is the quantity that we vary during
optimization), the second is the loss function L, and the third is a data distribution p(u). The risk
for a model f ∈ F is defined as its expected loss

R[f] := Ep(u)[L(u, f(u))] ≡
∫
L(u, f(u)), p(u) du , (41.1)

where Ep[·] refers to the expectation with respect to the distribution p. In the context of supervised
learning, the distribution p(u) describes a joint distribution over the features x and the labels y

1st December, 2021

5 41. Machine Learning

(i.e. p(u) = p(x, y)), the model only depends on the features f(u) = f(x), and the loss function
takes on the special form L(u, f(u)) = L(y, f(x)). In the context of unsupervised learning there are
no labels, and u = x. Written this way, the risk is a functional, and the idealized goal for machine
learning is to solve the optimization problem

f∗ = arg min
f∈F
R[f] , (41.2)

where F would include all possible functions.
One of the defining characteristics of machine learning in practice is that one does not know

the data distribution p(u), but does have access to samples from that distribution, i.e. {ui}i=1,...,n

with ui i.i.d.∼ p(u). This leads to the corresponding empirical risk

Remp[f] := Ep̂(u)[L(u, f(u))] ≡ 1
n

n∑
i=1
L(ui, f(ui)) , (41.3)

where p̂(u) = 1
n

∑n
i=1 δ(u−ui) is referred to as the empirical distribution of the dataset {ui}i=1,...,n.

The empirical risk minimization principle is a core idea in statistical learning theory [7], which
approximates f∗ with its empirical analogue

f̂ = arg min
f∈F̂
Remp[f] , (41.4)

where F̂ are all possible functions parametrized by the model parameters φ. In an idealized infinite
parameter limit machine learning functions, such as neural networks, are universal approximators,
such that they cover all functions and F = F̂ . For finite size networks this may or may not be
a valid assumption. Expressivity of the network characterizes this universality property and is a
function of the network architecture and its parameters such as width and depth of neural network
layers. If the expressivity is too small it leads to underfitting. However, an equally important
consideration is the risk of overfitting if we optimize equation 41.4 for too long.

While the loss function may quantify some well-motivated notion of (negative) utility, it is also
common to design loss functions so that f∗ has some desired property. While in practice one does
not know the data distribution p(u), it is constructive to imagine that one does and analyze Eq. 41.2
with the calculus of variations. In Secs. 41.3 we will consider several such loss functions where one
can show that the corresponding f∗ has the desired property even if the form of the loss is not
obvious from the point of view of utility. Furthermore, there are often multiple loss functions that
can lead to the same f∗. Then one can think of machine learning as applied calculus of variations
where one solves Eq. 41.4 with a sufficiently flexible model, powerful optimization algorithms, and
practical considerations to break the degeneracy between different loss functions that lead to the
same f∗.
41.2.2 Generalization

With a sufficiently flexible model, it is possible to fit the training dataset very well, though
the model might not generalize well to unseen data due to overfitting. More concretely, for a non-
negative loss function one might have Remp[f̂]→ 0, while the true risk might be large (R[f̂]� 0).
The gap between the R[f̂]−Remp[f̂] is typically referred to as the excess risk1. While it is generally
not possible to evaluate R[f̂] exactly because we do not know p(u), we can use an independent
testing dataset (also called validation dataset) to obtain an unbiased estimate of it. This cross-
validation method motivates the test – train split of the data.

1Similarly, the gap between the true risk of the learned model and the true risk of the optimal model (i.e.
R[f̂] − R[f∗]) is referred to as the regret. This quantity is mainly of interest for theoretical analysis of machine
learning algorithms, and not of practical concern since usually neither term is tractable.

1st December, 2021

6 41. Machine Learning

Intuitively, a model with many parameters has more flexibility and is more prone to overfitting.
A common and intuitive heuristic is that one should not fit a model with more parameters than
there are data points. However, a more careful treatment reveals that this heuristic can be both
pessimistic and optimistic. For example, the single-parameter model fφ(x) = sign(sin(φx)) can
perfectly classify any assignment of labels on data (xi, yi) with x ∈ R and y ∈ {−1, 1} and generalize
poorly. Conversely, sometimes highly over-parameterized models (that have large subspaces of
their parameters where Remp[f̂φ] → 0) might generalize well [8, 9]. Often this is achieved through
regularization, both explicit and implicit (section 41.3.1.2).

Structural risk minimization is a modification to the empirical risk minimization principle that
was introduced by Vapnik and Chervonenkis to account for the potential for overfitting [7]. However,
the bounds are based on a worst-case type analysis and are often very weak. Recall that while one
cannot calculate the true risk, one can obtain an unbiased estimate of it with a held-out, independent
testing sample. Thus one can empirically compare the generalization error of two models and find
that one generalizes better than the other even if the bounds might suggest the opposite. One of the
major conceptual shifts that happened with the rise of deep learning was to more fully appreciate
that these bounds and structural risk minimization were not a good learning principle in practice
and that more theoretical work is needed to close the gap between formal bounds and empirical
estimates of generalization error.
41.3 Common tasks and their associated loss functions

We now move to common tasks encountered in machine learning and their associated loss
functions.
41.3.1 Supervised learning

Supervised learning generally refers to the class of problems where the training dataset are
presented as input-output pairs {xi, yi}i=1,...,n, where xi ∈ X are the input features and yi ∈ Y
are the corresponding target labels. Furthermore, it is typically assumed that (xi, yi) i.i.d.∼ p(x, y),
though p(x, y) is usually not known explicitly. Finally, the loss function in supervised learning takes
on the special form L(y, f(x)). The resulting trained model is then used to predict the labels for
dataset where labels are not available.

In what follows we will make use of the equalities p(x, y) = p(x|y)p(y) = p(y|x)p(x) and Bayes
theorem, which is discussed in Sec. 39.1. We will also use the notation x ∼ p(x) to indicate that
the random variable x is being drawn, sampled, or generated from the distribution p(x).
41.3.1.1 Regression

The goal of regression is to predict a label y ∈ Y given an input feature vector x ∈ X . Typically,
the label is a real-valued scalar, but X can be Rd or some more structured target (e.g. an image,
sequence, graph, quantile, or distribution). When Y is discrete, the task is usually referred to
as classification; however, the two are closely related and logistic regression is an example where
the model predicts a continuous probability associated to the possible label values. In elementary
statistical language, the target label y is often called a dependent variable, while the feature x is
called the independent variable. In classical statistics, one often assumes a model for the data such
as

yi = fφ(xi) + ei , (41.5)

where ei is an additive error term that is often assumed to be independent of x and often assumed
to be normally distributed. This leads to classic approaches like least-squares (see Sec. 40.2.3),
and when the model fφ is linear in φ (not in x!) one has linear regression that has a closed-form
solution. However, we can relax these assumptions and consider the general case of an arbitrary
joint distribution p(x, y), which can be written as p(y|x)p(x) without loss of generality. Consider

1st December, 2021

7 41. Machine Learning

the squared error as a loss function, which leads to the mean-squared error (MSE) for the empirical
risk:

LMSE(y, f(x)) = (y − f(x))2 . (41.6)

One might expect that the squared error would only be appropriate in the case that the conditional
distribution p(y|x) is normally distributed, but one can use the calculus of variations to show that
in general

f∗MSE(x) = Ep(y|x)[y] , (41.7)

that is the optimal regressor for the MSE is the conditional expectation of y given x.
One issue with the squared-error as a loss function is that it is sensitive to outliers. Alternatively,

one can use the absolute error |y− f(x)| as a loss function2. However, the discontinuous derivative
of the absolute (L1) error leads to challenges in optimization. As a result there are various other loss
functions, such as the Huber loss, that aim to be both robust and more amenable to optimization
that we do not discuss here.

Note that these this framing of regression yields a function f(x) that only provides a point
estimate for y. An alternative approach to regression is to model the full conditional distribution
p(y|x). One such example is Gaussian Process regression, which is discussed in Sec. 41.5.1. In that
probabilistic approach, one can still obtain a point estimator, such as the conditional expectation
or the maximum a posteriori (MAP) estimator

f∗(x) = arg max
y

p(y|x) , (41.8)

and one can also derive uncertainty estimates on the predicted value y. In this setting, the prior
distribution on the model family is closely related to the concept of regularization, which we touch
on in Sec. in Sec. 41.3.1.2 and in Sec. 41.5.1.

When one directly models p(y|x), or goes further to model the joint distribution p(x, y) =
p(y|x)p(x), then one can use maximum likelihood for the loss function. In that approach, the
problem is really one of density estimation, which is a type of unsupervised learning that we
discuss in Sec. 41.3.2.1. These two approaches are a classic examples of two different approaches
to modelling. Regression with f∗MSE(x) is the prototypical example of descriminative modelling,
while modelling the joint distribution is a prototypical example of generative modelling. Generally,
discriminative approaches with supervised learning out perform generative approaches when there
is sufficient data, but generative approaches can be beneficial in data-starved settings [10].
41.3.1.2 A note on regularization

The trained model f̂ , or equivalently, the parameters of the trained model φ̂ can be thought of
as point estimates of f∗, and there is a correspondence to the issues of bias and variance discussed
in Sec. 40.2 on parameter estimation. Generically, there is a bias–variance tradeoff, and when the
number of parameters is large and the number of data points is not much larger, introducing a
small bias can often lead to a significant reduction in variance. This motivates the explicit addition
of a regularization term to the loss function, which will introduce some bias f∗reg 6= f∗. A common
form for of regularization is to penalize by the L2 norm of the parameters (i.e. ‖φ‖2), which is
referred to as Tikhonov regularization. This appears in the form of penalized maximum likelihood,
and it is also commonly used in unfolding [11]. One can also interpret the regularization term as
an explicit prior on the parameters, and the resulting model as the Bayesian maximum a posteriori
(MAP) estimator. When paired with linear regression this is known as ridge regression, and when

2The absolute error and squared error are often denoted as L1 and L2 errors, respectively, in reference to the
corresponding norms.

1st December, 2021

8 41. Machine Learning

paired with kernel machines (see Sec. 41.5.1) this gives rise to kernel ridge regression or Gaussian
process regression.

Another form of regularization is to restrict the model class F̂ . For example, a neural net-
work and a sequence of narrow step functions (delta functions) can both be shown to be universal
approximators in infinite parameter size limit, but on real world examples the former generalizes
much better than the latter. Within the class of neural network models, convolutional neural net-
works are a subset of generic feedforward neural networks that enforce translational symmetry (see
Sec. 41.5.3.5 for more discussion). Similarly, one might restrict to Lipschitz continuous functions.
These types of choices are often encoded in the architecture of a neural network and are broadly
referred to as inductive bias in the model.

In addition to explicit regularization terms in the loss function or through restrictions to the
model class, it is also possible to regularize implicitly. One implicit regularization is through early
stopping [11,12], where we monitor the loss on training dataset and the loss on test dataset. While
the training dataset loss continues to decrease with more gradient descent cycles, the test loss
may not, and early stopping stops the training when test loss flattens out or begins to increase.
Another powerful form of regularization used in deep learning models is known as dropout [13],
which randomly removes some some parts of the model during training and can be thought of as
implementing a type of model averaging [14]. What is more surprising is that in the case of highly
over-parameterized models where there is a large degenerate parameter space that achieves zero
loss, Φ0 = {φ|Remp[fφ]} = 0, that the dynamics of the optimization algorithm that is used will
break the degeneracy and favor some particular φ̂ ∈ Φ0 as if an additional regularization term was
secretly included. Despite zero loss and over-parametrization, the corresponding generalization
error may be small, a phenomenon called benign overfitting [15]. Importantly, the dynamics of
different optimization algorithms will have different implicit regularization effects, and thus favor
different parameter points in Φ0 that will have different generalization error [16]. Understanding
this interaction is a topic of contemporary research in machine learning [17].

41.3.1.3 Classification
The goal of classification is to predict one of a finite number of class labels y ∈ Y given an

input feature vector x ∈ X. It is similar to regression in this way, but the focus is on discrete
target space Y. An important special case is when the label can only take on one of two values
(e.g. “signal” or “background”), which is referred to as binary classification and is equivalent to
simple hypothesis testing in statistics. It is common for a classifier to be the composition of a
model g : X → R|Y| that predicts continuous probabilities for each class (i.e. g(x) ≈ p(y|x))
followed by an operation that then chooses the discrete label y ∈ Y, such as a fixed threshold or
f(x) = arg max g(x) ≈ arg maxy p(y|x). This is the case for both classical methods like logistic
regression and modern, deep learning approaches to classification; therefore, we will use the term
probabilistic classifier for g(x) or just classifier when it is clear in context.

An intuitive loss function for classification is the zero-one loss, which simply counts the number
of mis-classifications:

L0/1(y, f(x)) =
{

0, if f(x) = y

1, otherwise .
(41.9)

The zero-one loss can also be written as L0/1(y, f(x)) = 1(y 6= f(x)), where 1(·) is the indicator
function. The zero-one loss is non-differentiable, so it does not pair well with gradient-based
optimization.

For binary classification, one can use y = {0, 1} as numerical values for the class labels and
the mean-squared error LMSE(y, f(x)) in Eq. 41.6 for the loss function. The resulting model will

1st December, 2021

9 41. Machine Learning

approximate f∗MSE, the conditional expectation of Eq. 41.7 takes on the form

f∗MSE(x) = Ep(y|x)[y]→ p(y = 1|x) = p(x|y = 1)p(y = 1)
p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1) . (41.10)

That is the MSE loss for binary classification leads to the Bayesian posterior probability that the
label y = 1 given the feature vector x.

Equation 41.10 highlights an important general feature of supervised learning relevant for par-
ticle physics, which is that the joint distribution p(x, y) of the training dataset implies a prior
distribution p(y) on the labels or classes. This prior distribution need not reflect a degree of belief
or the frequency in real data, it represents the frequency in the training dataset. However, it is im-
portant to keep in mind that when applying the resulting model to a different dataset with the same
conditional distribution (data likelihood) p(x|y) for the features and a different prior p′(y) for the
labels that the probabilistic interpretation of the result will not be properly calibrated. A common
choice for binary classification is to use a balanced training dataset with p(y = 0) = p(y = 1) = 1

2 ,
while in many cases the true p′(y = 1) in the experimental data might be very small (i.e. low
signal-to-background), unknown, or zero (i.e. a hypothetical particle that does not exist).

If p′(y) and p(y) are known then the Bayes theorem can be used to re-calibrate the posterior
p(y|x) from one prior to another. One example of such re-calibration is the correspondence of
binary classification to simple hypothesis tests in frequentist statistics discussed in Sec. 40.3.1 of
the Statistics chapter. In that setting, the Neyman-Pearson lemma states that the optimal classifier
is given by the likelihood-ratio. Adapting to the notation of this chapter, we have

f∗N.P.(x) = p(x|y = 1)
p(x|y = 0) , (41.11)

which does not depend on the prior probabilities p′(y = 0) or p′(y = 1) as in Eq. 41.10, or,
equivalently, assumes equal priors p′(y = 0) = p′(y = 1). From Bayes theorem, we have the identity
p(y = 1|x)/p(y = 0|x) = [p(x|y = 1)p(y = 1)]/[p(x|y = 0)p(y = 0)], which can be used to show that
the two functions are related by a one-to-one, monotonic transformation

f∗N.P.(x) = p(y = 0)
p(y = 1)

f∗MSE(x)
1− f∗MSE(x) , (41.12)

which is referred to as the likelihood-ratio trick, which plays an important role in simulation-
based inference (see Sec. 41.3.5). Importantly, the monotonic transformation does not impact the
tradeoff of type-I and type-II error (or, equivalently, the FPR and TPR), therefore the ROC curve
for fN.P.(x) and fMSE(x) are identical and do not depend on the prior probabilities p(y). This
property has been leveraged in the context of weakly supervised approaches [18] and enables one
to train a classifier on data without access to labels as long as one has two datasets with different
ratios p(y = 1)/p(y = 0) and the same conditional distribution p(x|y) of the features given the
labels.

A generalization of the binary loss function for classification of Eq. 41.10, which applies to
multiple classes, is the cross-entropy loss

Lxe(y, f(x)) = −
∑
c∈|Y|

1(y = c) log(fc(x)) , (41.13)

where f : X → R|Y| and the indicator function picks out the term in the sum for the corresponding
class label y. This loss can be derived from maximizing the posterior of Eq. 41.57 using a discrete set

1st December, 2021

10 41. Machine Learning

of class labels y, which identifies fc(x) = f̃(y = c|x) = p(y = c|x) and thus enforces the constraint∑
c fc(x) = 1 and fc(x) ≥ 0 (for all x ∈ X , e.g. by using the softmax function). The notation is

aligned with the interpretation of f̃(y|x) as a conditional distribution, i.e. an approximation to the
true posterior p(y|x). The risk associated to the cross entropy loss function is

Rxe[f] = Ep(x,y)

− ∑
c∈|Y|

1(y = c) log fc(x)

 = −
∑
c∈|Y|

p(y = c)Ep(x|y)[log f̃(y = c|x)] . (41.14)

This is equivalent to Rxe[f] = Ep(x)[H[p(y|x), f̃(y|x)]], where H[p, f] = Ep[− log f] is the cross-
entropy between the two distributions. One can use a Lagrange multiplier λ to enforce the normal-
ization constraint (e.g. equation 41.10) and the calculus of variations to show that

f∗x.e.,c(x) = λp(x, y = c) = λp(y = c|x)p(x) = p(y = c|x) . (41.15)

This approach is closely related to the loss functions that are used for density estimation, the
forward Kullback–Leibler (KL) divergence, and the maximum likelihood estimation. Minimizing
cross entropy H[p, fφ] with respect to φ is equivalent to minimizing the forward KL divergence

KL(p||fφ) := Ep[log p(x))− log fφ] = H[p, fφ]−H[p] , (41.16)

whereH[p] :=
∫
p(x) log p(x)dx is the entropy and independent of fφ. The KL divergenceKL[p||f] ≥

0, and equal if and only if p = f .
One can also consider the reverse KL divergence KL[fφ||p], which is also minimized by fφ = p;

however, this requires one to be able to generate samples xi ∼ fφ(x) and be able to evaluate
the probability density p(xi). Often this is not the case for real world data, but this approach is
useful in the context of variational inference, where fφ(x) is an approximation to the posterior of
x, and p(x) is the likelihood times the prior, which can be evaluated on samples xi drawn from fφ.
Because likelihood times prior is not normalized this KL divergence optimizes the lower bound to
the normalization (Evidence Lower Bound Objective or ELBO).

The forward KL is also closely related to the variational free energy principle in statistical me-
chanics where H[fφ] represents the entropy of the variational distribution, p(x) ∝ exp(−E(x)/kT)
is the Boltzman factor for the state x with energy E(x), and H[fφ, p] = Efφ [E(x)] represents the
expected energy for the variational distribution. As is well known to physicists, minimizing the free
energy involves a balance between minimizing the energy and maximizing the entropy.

In some cases it is possible to augment the training dataset with an unbiased, stochastic estimate
of p(y = c|x) that we denote sc(x, z). For example, when the simulation involves latent variables
z (i.e. Monte Carlo truth quantities), then the simulation encodes p(x, z|y), the joint distribution
over the observed features x and the latent variables z conditioned on the class y. In many cases
the simulation evolves through a Markov process (e.g. the detector response only depends on the
momenta of the incoming particles z, not the details of the hard scattering y). In that case, it is
often possible to calculate sc(x, z) = p(y = c|x, z) for each training sample [19]. Using the identity,
Ep(z|x)[p(y|x, z)] = p(y|x), we see that sc(x, z) is an unbiased estimator of p(y = c|x). In this
case, one can use sc(x, z) in place of the indicator function in Eq. 41.13 to construct an improved
(lower-variance) loss function that reproduces the same cross-entropy risk function3,4

R′xe[f] = Ep(x,y,z)

− ∑
c∈|Y|

sc(x, z) log fc(x)

 = −
∑
c∈|Y|

Ep(x)[p(y = c|x) log fc(x)] , (41.17)

3A similar approach can also be used for the squared-error, see Ref. [20].
4The right hand side of Eqs. 41.14 and 41.17 are written in a different form, but are equivalent.

1st December, 2021

11 41. Machine Learning

which yields the same optimal classifier f∗x.e.,c(x) = p(y = c|x) [20, 21].
We note that unlike in the binary classification case, the multi-class classifier is sensitive to

the priors p(y) used in training. This leads to complications as often the class proportions are
unknown. For example, one might be interested in classifying a signal when multiple backgrounds
are present and the relative proportion of those different background components is uncertain.
Ideally one would like the class proportions for the background components used in training to
match those in the data, which presents an additional training challenge if those proportions are
heavily unbalanced.
41.3.2 Unsupervised learning

Unsupervised learning generally refers to the class of problems that use unlabeled training
dataset {xi}i=1,...,n, where xi ∈ X are the input features. Furthermore, it is typically assumed that
(xi) i.i.d.∼ p(x), though p(x) is usually not known explicitly. Finally, the loss function in supervised
learning takes on the special form L(x, f(x)).

A related concept is that of self-supervised learning, which also aims to distill useful features in
the data without requiring supervision labels for every sample in the input data. Self-supervised
methods can make use of large unsupervised datasets and build meaningful representations by
performing data augmentation, and learning the latent space mapping that is insensitive to it. For
example, in the case of galaxy images one may augment the data by performing image rotations,
adding noise, size scaling, adding point spread function smoothing etc., all of which are realistic
transformations expected in a real galaxy image survey [22]. Self-supervised learning then learns
the latent space representation where all of these augmentations of the same training sample result
in the same latent space position. This training is augmented with contrastive learning, which
ensures that different training samples do not all collapse to the same latent space position. When
this latent space representation is used for downstream tasks such as classification it outperforms
other forms of supervised learning [23].
41.3.2.1 Density estimation

The goal of density estimation is to estimate a distribution p(x) based on samples {xi}i=1,...,n

with xi i.i.d.∼ p(x). Conceptually, this is the same goal as when fitting a parameterized distribution
f(x; θ) to data using the method of maximum likelihood as described in Sec. 40.2.2 of the chapter on
statistics. In practice, the difference in the machine learning context has to do with the flexibility
of the model and the dimensionality of the data. A highly-flexible model, which can effectively
approximate any distribution, is referred to as a non-parametric model (though, ironically, usually
this means the model has many parameters). In contrast, typical maximum likelihood fits in particle
physics are based on restricted families of distributions with relatively few parameters and the data
is typically one- or two-dimensional, though occasionally five- or six-dimensional.

Maximizing the likelihood function in Eq. 40.10 L(θ) = ∏n
i=1 f(xi; θ) is equivalent to minimizing

the empirical risk:

Remp,xe[fφ] = − 1
n

n∑
i=1

log fφ(x) , (41.18)

where we adopt the notion used in this chapter. The loss is simply L(x, fφ(x)) = − log fφ(x), and
the corresponding risk is

Rxe[fφ] = Ep(x)[− log fφ(x)] , (41.19)

which is the cross entropy H[p, fφ]. For density estimation, the model is usually constructed to
enforce

∫
fφ(x)dx = 1 and fφ(x) ≥ 0 so that it can be interpreted as a distribution. With this

constraint, one can show that f∗xe(x) = p(x).

1st December, 2021

12 41. Machine Learning

The concepts of generalization and overfitting are particularly acute in unsupervised learning,
where the likelihood maximization of equation 41.18, combined with universal approximator as-
sumption, must converge onto p̂(x) = 1

n

∑n
i=1 δ(x − xi), the empirical distribution of the dataset

{xi}i=1,...,n. This distribution has the highest likelihood on the training dataset and the lowest
likelihood on the test data where it gives p̂(x) = 0. as long as the test dataset are not identical to
the training dataset. So the empirical distribution of the training dataset has the worst possible
generalization property, yet it is the solution we converge to for sufficiently expressive architec-
tures in the absence of any regularization. In contrast, in supervised learning we often observe the
phenomenon of benign overfitting, where even zero loss can generalize well.

In addition to approaches to density estimation that involve learning in the sense of minimizing
a loss or risk function, we note that there are also classical density estimation techniques such as
histogramming and kernel density estimation [24–26].
41.3.2.2 Representation learning, compression, and auto-encoders

A recurring topic in machine learning and statistics is how to represent the data. Much of
classical statistics involves constructing a low-dimensional summary statistic that extracts the rel-
evant information from the data for a particular task (a sufficient statistic in language of classical
statistics). There is a spectrum of representations with trade-offs. At one end of this spectrum is
lossless compression that allows you to encode the data into a smaller, intermediate representation
that carries all the information since it can be decoded back into the original data. At the other
end of the spectrum is something like the likelihood-ratio, which is a single scalar that carries the
relevant information needed for hypothesis testing for a single hypothesis, but it discards all the
other information that might be needed for other tasks (such as testing other hypotheses). An in-
termediate point in this spectrum is the process of feature engineering, which refers to the creation
of new features X ′ from the original features X in hopes that the down-stream task will be easier
with the new features. For example, instead of working directly with the energy and momentum of
particles, one might compute invariant masses, angles between particles, etc. This type of feature
engineering generally improved performance for shallow neural networks, decision trees, etc.; how-
ever, with the rise of deep learning this is often no longer necessary and often limits performance
compared to working with the original features. One can think of the intermediate layers of a
neural network between the input and the output a representation of the data that is good for the
task at hand, and by training all the layers of the network simultaneously (or “end-to-end”) one
can see the intermediate layers as a learned representations. For a review see Ref. [27].

An example of a linear dimensionality reduction representation and data compression is principal
component analysis (PCA) of data x ∈ Rd at fixed latent space dimensionality k (k<d), which finds
the orthogonal linear transformation, O,

O : Rk → Rd, z 7→ Oz, OOT=Id (41.20)

that maximizes the data variance in the latent space. Maximizing the variance of the transformed
data is equivalent to minimizing the average reconstruction error (the residual variance in data
space),

La.e.(x, f(x)) = ‖x− f(x)‖2 . (41.21)

A PCA can thus be interpreted as a linear, orthogonal model that is trained to minimize the L2-
distance between the input data and the reconstructed data given the fixed dimensionality k. In
practice, the PCA problem can be solved analytically without the use of optimization algorithms
or the loss function: the principal components are given by the eigenvectors of the data covariance
matrix.

1st December, 2021

13 41. Machine Learning

A suitable latent space dimensionality, k, is chosen by ordering the eigenvalues, λi, of the data
covariance in descending order, and keeping only the first few eigenvectors that correspond to the
largest eigenvalues. The cut is often made at dimensionalities that capture around 90% of the data
variance. For many data sets this results in k�d. The average reconstruction error that originates
from the discarded eigenvalues is σ2

recon=∑d
i=k+1 λi.

Another common type of representation learning and nonlinear dimensionality reduction is
based on the auto-encoder f = g ◦ e : X → X , where e : X → Z is referred to as the encoder
and g : Z → X is referred to as the generator or decoder . Typically the dimensionality of Z is
much less than X , and z = e(x) can be thought of as a compressed representation of the input.
The intermediate space Z is sometimes referred to as the bottleneck or the latent space of the
auto-encoder. If the bottleneck is sufficiently large and the encoder and decoder are sufficiently
flexible, then the function f could just be the identity (i.e. lossless compression). However, if the
encoder and decoder are not sufficiently flexible or the dimensionality of the latent space is not
large enough there will be some reconstruction error. Therefore the reconstruction error of Eq.
41.21 serves as a natural loss function of an auto-encoder.

Once trained, the encoder e(x) can be used independently of the decoder to provide a generic
low-dimensional representation of the data. The flexibility of this approach is attractive; however,
there are no guarantees that this representation will be optimal for the other task. Indeed, the
transition from pre-trained auto-encoders to end-to-end learning is one of the important trends
that characterized the onset of the deep learning era.

While achieving zero reconstruction error may seem good as it would imply lossless compression,
it often performs poorly in practice. First, the encoder may be overfit to the training dataset
and not generalize well to held out data. Secondly, it may not be robust to domain shift (see
Sec. 41.7.2). One approach to address these issues is the denoising auto-encoder, which uses a form
of regularization that corrupts the input with noise x′ ∼ q(x′|x) while still targeting reconstruction
of the uncorrupted input x.

Ld.a.e.(x, f(x)) = ‖x− f(x′)‖2 with x′ ∼ q(x′|x) , (41.22)

where q(x′|x) is some probability distribution such as a multivariate normal.
41.3.2.3 Clustering

The goal of clustering is to group the data {xi}i=1,...,n into k groups, or clusters, usually with
k � n. Intuitively, if two data points belong to the same cluster, then they should be similar
in some sense. Conversely, if two data points are very different, then they should be assigned to
different clusters. The notion of similarity usually is based on some heuristic, and there are a
variety of algorithmic and probabilistic clustering algorithms. In some cases k is specified, while
in others it is determined by the clustering algorithm. There is also a distinction between flat
clustering that directly partitions the data into k clusters and hierarchical clustering where clusters
are nested hierarchically as the name suggests. In many cases clustering uses some notion of distance
d(xi, xj), which may be the Lp norm ‖xi − xj‖p.

One of the most common clustering algorithms is known as k-means, where k is specified by
the user and results in sets S = {S1, . . . , Sk} that minimize the variance of each cluster. Thus, the
objective is

arg min
S

k∑
i=1

∑
x∈Si
‖x− µi‖

2 = arg min
S

k∑
i=1
|Si|VarSi = arg min

S

k∑
i=1

1
2|Si|

∑
x,y∈Si

‖x− y‖2 (41.23)

where µi is the mean of points in Si.

1st December, 2021

14 41. Machine Learning

While k-means and many other clustering algorithms are defined in terms of an optimization
problem, the optimization objective is often not representative of the actual notions of performance
in a given context. As a result, there are a number of quantities used for the evaluation and
assessment of the resulting clustering. These include Davies–Bouldin index, Dunn index, Rand
index, Jaccard index, purity, F-measure, Hopkins statistic, etc. [28].
41.3.3 Optimal control, reinforcement learning, and active learning

Many problems in science and engineering can be cast as a control problem, which comprises a
cost functional that is a function of state and some control variables that specify some underlying
dynamical system. This is relevant for the control of accelerators where the dynamical system
is physical. This formalism can also be used to describe the design of experiments, planning of
an observational survey, and other decision making processes relevant to the scientific method.
There is a tremendous amount of literature on the subject, and it is closely connected to planning,
dynamic programming, and reinforcement learning. Optimal control can be seen as an extension
of the calculus of variations, and thus generalizes the framing of learning presented in Sec. 41.2.

Optimal control theory deals with finding a control for a dynamical system over a period of time
such that the objective function is optimized. The underlying system can be discrete or continuous
and may be deterministic or stochastic. The commonalities and differences between optimal control
and reinforcement learning can be best understood through the formalism of a Markov decision
process (MDP), which is a discrete-time stochastic control process. We follow common notation,
such as that found in Wikipedia.

A Markov decision process comprises four components often organized as a 4-tuple (S,A, Pa, Ra),
where: S is a set of states called the state space, A is a set of actions called the action space,
Pa(s, s′) = Pr(st+1 = s′ | st = s, at = a) is the probability that action a in state s at time t will lead
to state s′ at time t+1, Ra(s, s′) is the immediate reward (or expected immediate reward) received
after transitioning from state s to state s′, due to action a.

The policy function π is a mapping from state space to action space that can be either deter-
ministic or probabilistic. For examples, the policy that drives a computer chess playing system,
decides which move to make given the current state of the board. Similarly, policies dictate which
experiment should be built next, which field of the sky should be observed, or how to adjust the
operational parameters of an accelerator. The dynamics of the resulting system are then fixed by
combining the policy with the underlying MDP. The evolution of the resulting dynamical system
behaves like a Markov chain since the action chosen in state s is completely determined by π(s)
and Pr(st+1 = s′ | st = s, at = a) implies the Markov transition matrix Pr(st+1 = s′ | st = s).

The objective optimal control is to choose a policy π that will maximize a cumulative function
of the instantaneous rewards Ra. A common choice is the expected discounted sum:

E
[∞∑
t=0

γtRat(st, st+1)
]
, (41.24)

where at ∼ π(st) are the actions given by the policy, the expectation computed with respect to the
distribution st+1 ∼ Pat(st, st+1), and γ is the discount factor satisfying 0 ≤ γ ≤ 1. The discount
factor is usually close to 1 and sometimes reparameterized as γ = 1/(1 + r), where r is called the
discount rate. A lower discount factor motivates the decision maker to favor taking actions early,
rather than postpone them indefinitely.

A policy that maximizes the objective function is called an optimal policy and denoted π∗,
though the optimal policy need not be unique. Importantly, the Markov property implies that the
optimal policy is only a function of the current state. Dynamic programming can be used to find

1st December, 2021

15 41. Machine Learning

the optimal policy for MDPs with finite state and action spaces. For instance, in value iteration
(a.k.a. backward induction) can be used to solve the “Bellman equation” [29]. For continuous-time
systems, the optimal policy is defined by the Hamilton–Jacobi–Bellman equation [30].

In many settings, it is assumed that the state s is fully known when action is to be taken
and there are no latent variables. When this assumption is not true, the problem is called a par-
tially observable MDP. These problems are generally more difficult and the dynamic programming
algorithms do not directly apply [31].

Reinforcement learning The main difference between the classical dynamic programming meth-
ods and reinforcement learning (RL) algorithms is that the latter do not assume knowledge of an
exact mathematical model of the MDP and they target large MDPs where exact methods become
infeasible. For example, RL was used in the context of jet physics to search for the most likely
jet clustering when the number of constituents was too large for the exact dynamic programming
algorithm to be used [32]. In addition, RL can be used when the probabilities or rewards are un-
known. Instead, the transition probabilities are often accessed indirectly through interaction with
a real or simulated environment. For example, in Q-learning one uses experience to estimate the
array Q(s, a) defined as

Q(s, a) =
∑
s′

Pa(s, s′)(Ra(s, s′) + γV (s′)). (41.25)

While this function is also unknown, it can be estimated during learning based on (s, a) pairs
together with the outcome s′.

Numerous variations to RL exist, which include so-called model-based and model-free ap-
proaches (referring to models of the instantaneous rewards and the state transitions) and on-policy
and off-policy (which describes how the actions taken during learning are related to the current
policy). See Ref. [33] for an introduction and Ref. [34] for a recent review.

Multi-arm bandits Multi-arm bandit problems are a classic reinforcement learning problem
where one tries to maximize the expected gain by allocating a limited set of resources to vari-
ous alternatives. The name is a reference to a gambler with a fixed amount of money that must
choose between multiple slot machines (or “one-armed” bandits) when the payoff for the individual
machines is unknown. A hallmark of multi-arm bandit problems is that they involve a trade-off
between exploration (playing machines to estimate their payoff) and exploitation (playing machines
with the highest estimated payoff). Multi-armed bandits are used to manage large projects, orga-
nizations, and scheduling problems. The theory has a long history going back to Robbins in 1952
that used it to study the sequential design of experiments [35] and Gittins who derived an optimal
policy under some conditions [36].

Bayesian optimization A closely related set of techniques involve optimizing some expensive
black box function f(x). For instance, the function may be computationally expensive to evaluate
or low-latency, e.g. it may involve manually re-configuring a system. This is particularly relevant for
analysis optimization in particle physics where evaluating f(x) involves processing large numbers
of simulated collisions. Another common use case involves optimizing the hyperparameters of a
learning algorithm.

Without any assumptions about the function f(x) this is hopeless; however, if one assumes
something about the functions (e.g. some notion of smoothness) then one can leverage function
evaluations evaluations {f(xt)}t=1,...,T to say something about what value the function might take

1st December, 2021

16 41. Machine Learning

on at other values of x. This is usually cast in Bayesian terms, and Gaussian processes (Section
41.5.1) are often used to model the distribution over f(x). The optimization techniques that use
this framing are generically referred to as Bayesian Optimization [37].

Optimization in this context is usually characterized by an exploration-exploitation trade-off,
similar to what is found in multi-arm bandits. Here, exploration refers to function evaluations
that characterize the function in regions that haven’t been evaluated, while exploitation refers to
evaluations near what is predicted to be its maximum. This setting is similar to reinforcement
learning in that it involves sequential decisions (i.e. where to evaluate the function next), but
usually the target function f(x) is assumed to be static. In that sense, the state referred to in
the language of an MDP is the state of knowledge about the function after sequential evaluations
{f(xt)}t=1,...,T . The reward at time t is not the value of the function f(xt), but some quantity that
characterizes what was learned about the function’s maximum. In this literature, one often refers
to the acquisition function, which plays a similar role as the expected value of the reward in RL.
Common acquisition functions include the probability of improvement, the expected improvement,
and an upper-confidence bound [38].

Connection to experimental design In the context of physics experiments we often want to
build the next generation experiment which can reach certain target precision on parameters of
interest that the experiment can measure. To achieve this precision we may deploy the concept
of experimental design, where we the objective is to optimize some objective that quantifies the
expected performance of an experiment. Moreover, we would like to achieve this within some
constraints such as a minimal cost. Such problems are often solved using the Fisher matrix opti-
mization, where Fisher matrix can be viewed as the expectation of the inverse covariance matrix.
We can define

t(x|θ0) := ∇θ log p(x|θ)|θ0 , (41.26)

where t(x|θ0) is referred to by statisticians as the score [20]. The score plays an important role
in the classical statistics as it is a sufficient statistic when p(x|θ) is in the exponential family, and
through the Rao-Cramér-Fréchet bound on the variance of an estimator for θ, and is used to define
the Fisher information matrix Iij(θ) := Ep(x|θ)[ti(x|θ)tj(x|θ)]. The Fisher information, in turn is
an important object in experimental design. In particle physics, the score is closely related to the
concept of optimal observables. The corresponding diagonal element of the inverse of the Fisher
matrix thus provides expected uncertainty estimation of a given parameter, and is a lower bound
to the error of an unbiased estimator (Cramér-Rao bound). In experimental design we vary the
experiment parameters within the constraints such as the total cost to minimize this uncertainty.
This framework has been widely used in cosmology, where Fisher analysis is the foundation of any
experiment proposal.

Active learning Active learning is closely related to Bayesian optimization, described above.
In Bayesian optimization one estimates the function f(x) from some set of evaluations {yt =
f(xt)}t=1,...,T ; however, the goal is to find the maximum x∗ = arg maxx f(x). In active learning, the
goal is not to find the maximum of f(x), but to approximate the function as one does in supervised
learning. The main difference compared to vanilla supervised learning is that the labeled training
dataset isn’t provided a priori in a passive way, but the learning algorithm actively decides where
to generate (xt, yt = f(xt)) pairs. The function f(x) is sometimes referred to as an oracle. Active
learning is particularly attractive when obtaining labelled data is a costly process.

More broadly, a challenge of many machine learning applications is obtaining labeled data,
which can be a costly process. If a system could learn from small amounts of data, and choose by

1st December, 2021

17 41. Machine Learning

itself what data it would like the user to label via an external process called oracle, it would make
machine learning more powerful. Such frameworks are also called Experiment Design or Active
Learning. In Active Learning, a model is trained on a small amount of data (the initial training
dataset), and an acquisition function (often based on the model’s uncertainty) decides on which
data points to ask for a label. The acquisition function selects one or more points from a pool of
unlabelled data points, with the pool points lying outside of the training dataset. Once we label
the selected data points, these are added to the training dataset, and a new model is trained on
the updated training dataset. This process is then repeated, with the training dataset increasing
in size over time. The advantage of such systems is that they often result in dramatic reductions
in the amount of labelling required to train an ML system (and therefore cost and time).

41.3.4 Anomaly detection and out-of-distribution detection
Unsupervised anomaly detection techniques detect anomalies in an unlabeled test data set under

the assumption that the majority of the in-distribution data are normal under some measure, while
out-of-distribution (OOD) data are not. In the context of auto-encoders a popular technique is to
use the reconstruction error of Eq. 41.21 to identify an outlier as one with a large reconstruction
error [39, 40]. One issue with this method is that for higher dimensional latent space and flexible
neural network architectures the encoder-decoder map become identity for any input data, f(x) =
x, regardless of whether input x is from the in-distribution training dataset or from the out-of-
distribution data. The choice of auto-encoder latent space dimensionality is thus an important
hyperparameter that must be tuned.

Another set of anomaly detection techniques construct a model representing normal behavior
from a given In Distribution training dataset, and then test the likelihood of a test instance to be
generated by the utilized model. For instance, one can use density estimation methods such as
normalizing flows (section 41.5.4.3) to learn the density (likelihood) of the In Distribution training
dataset p(x), and apply it to the test data. The expectation is that out-of-distribution data will have
a lower density (likelihood) under the in-distribution density model. This expectation is however
not always met in high dimensions and the method suffers because likelihood based training is
sensitive to the smallest variance directions [41]: for example, a zero variance pixels leads to an
infinite p(x), and noise must be added to regularize it. But low variance directions may contain little
or no information on the global structure of the image, so there is a mismatch between the training
objective and outlier detection objective. A related issue is that of typicality: an in-distribution
likelihood will typically be lower than the maximum value. For a Gaussian likelihood the typical
set is on average be n/2 in log likelihood below the peak value, where n is the dimensionality of
the data. So an out-of-distribution dataset that is closer to the peak would be preferred in terms
of likelihood even though its distribution does not match the in-distribution data. If this happens
by chance on low variance directions which dominate the likelihood, normalizing flows can assign
higher likelihoods to out-of-distribution data than to in-distribution training dataset [42]. A number
of techniques have been proposed to circumvent these limitations, such as likelihood regret [43],
likelihood-ratio [41], likelihood in auto-encoder latent space [44], and Wasserstein distance training
of the likelihood p(x) [45]. These methods can achieve better anomaly detection performance than
the auto-encoder reconstruction error [44,46].

Supervised anomaly detection techniques require a data set that has been labeled as in-distribution
and out-of-distribution and involves training a classifier (the key difference to many other statistical
classification problems is the inherent unbalanced nature of outlier detection). These methods as-
sume some form for what out-of-distribution data may look like, and their success relies on whether
the assumed form is a realistic representation of actual out-of-distribution data. When this assump-
tion is valid these methods can be more powerful than unsupervised methods, but the reverse is

1st December, 2021

18 41. Machine Learning

also true. A hybrid between the two approaches is to train a classifier without labels [47]. All
these approaches are largely complementary to each other [48]. An example of different anomaly
detection methods applied to HEP is LHC Olympics 2020 and Dark Machines challenges [49,50].
41.3.5 Simulation-based inference

The goal of simulation-based inference (related to, but distinct from, likelihood-free inference) is
to extend the statistical procedures described in the Chapter on Statistics (e.g. parameter estima-
tion, hypothesis tests, confidence intervals, and Bayesian posterior distributions) to the situation
where one does not know the explicit likelihood p(x|θ), the probability of the data given the pa-
rameters θ, but has access to a simulator that defines the likelihood p(x|θ) implicitly [51, 52]. In
a typical setup we would like to solve the so called inverse problem of getting the posterior of the
parameters given the data, p(θ|x), but we cannot use Bayes theorem directly because we do not
have explicit p(x|θ).

In particle physics, the simulators usually use Monte Carlo event generators (see Sec. 43) to
sample unobserved latent variables z, such as the zp phase space of the hard scattering (see Sec.
49.4), zs associated to showering and hadronization, and zd associated to the interaction of particles
with the detector (see Sec. 34). As such, the full simulation chain can be expressed symbolically as

p(x|θ) =
∫
dzp(x, z|θ) =

∫
dzd

∫
dzs

∫
dzp p(x|zd)p(zd|zs)p(zs|zp)p(zp|θ) , (41.27)

where θ are the Lagrangian parameters that dictate the hard scattering. Evaluating the likelihood
is intractable as it would require evaluating the integral above for each event.

While the likelihood is intractable, simulators provide the ability to generate synthetic data
xi

i.i.d.∼ p(x|θ) for any value of the parameters θ. One can use a suitable proposal distribution p̃(θ),
sample θi i.i.d.∼ p̃(θ), generate synthetic data xi ∼ p(x|θi), and then assemble a training dataset
{xi, θi}i=1,...,n that can be used to train various machine learning models.

There is thus a close analogy between Simulation-based Inference and data driven machine
learning tasks discussed so far, replacing θ with y. One difference is that in simulation-based
inference we can always generate new samples by running additional simulations, while we typically
view training dataset in machine learning as fixed. This property of Simulation-based Inference
enables Active Learning, where the additional simulations are chosen such as to minimize the error
on the desired statistical inference task. Another difference is that we often have access to the joint
likelihood p(x, z|θ), where z are unobserved latent variables5.

Typically in particle physics, one uses histograms or kernel density estimation to model the
distribution of observables (low-dimensional summary statistics such as the invariant mass) of
simulated data [53]. Alternatively, one can use an explicit parametric family (such as a falling
exponential, a Gaussian distribution, etc.) to model f̂(x|θ) ≈ p(x|θ). That model is then used as
as a surrogate for the unknown density implicitly defined by the simulator. A related approach is
known as Approximate Bayesian Computation (ABC), which approximates the likelihood through
an acceptance probability that synthetic data is sufficiently close to the observed data [54, 55].
In practice, these techniques are limited to low-dimensional representations of the data. Thus
the potential of recent machine learning approaches to simulation-based inference is to extend
this approach to higher-dimensional data, while maintaining the already well-established statistical
procedures.

For instance, one can use normalizing flows (see Sec. 41.5.4.3) and the loss functions for density
estimation (see Sec. 41.3.2.1) to learn a surrogate model for the likelihood f̂(x|θ) ≈ p(x|θ) [56].
Similarly, one can use conditional density estimation to learn a surrogate model for the posterior

5For this reason we prefer to use simulation-based inference instead of likelihood-free inference: joint likelihood
p(x, z|θ) is often available, it is the marginal integral over latent space z that is assumed to be intractable.

1st December, 2021

19 41. Machine Learning

f̂(θ|x) ≈ p(θ|x), which may involve including the prior-to-proposal ratio p̃(θ)/p(θ) [57]. In addition
to the unsupervised learning techniques, one can also use supervised learning to learn the likelihood-
ratio r(x|θ0, θ1) = p(x|θ0)/p(x|θ1) by leveraging the likelihood-ratio trick of Eq. 41.12 [20,58].

In some cases one can also augment the training dataset to include the joint likelihood-ratio

r(xi, zi|θ0, θ1) := p(xi, zi|θ0)/p(xi, zi|θ1) , (41.28)

which can be used to reduce the variance for the squared-error loss or the improved cross-entropy
estimator of Eq. 41.17 [20,21]. While the marginal likelihood p(x|θ) is intractable due to the high-
dimensional integral over the latent space, the joint likelihood is often tractable since no integration
is necessary. In addition, one can often augment the training dataset with the joint score

t(xi, zi|θ0) := ∇θ log p(xi, zi|θ)|θ0 . (41.29)

Regressing on the joint score with the squared loss function L(t(x, z|θ0), f(x)) = (t(x, z|θ0)−f(x))2

corresponds to risk functional

Rscore[f] :− Ep(x,z|θ0)[(∇θ log p(xi, zi|θ)|θ0 − f(x))2] . (41.30)

One can show with the calculus of variations that the risk is minimized by the score of equation
41.26.
41.3.5.1 Differentiable simulations

One of the approaches to make inference feasible in high dimensional latent space is to make
simulations differentiable with respect to all of its parameters, global variables θ and latent variables
z. Latent variable models are known in Machine Learning as generative models and are discussed
below, but latent variable models are also common in scientific applications. As an example, in
cosmology one can view the initial conditions of the large scale structure or cosmic microwave
background as Gaussian distributed latent variables.

While differentiable simulations have traditionally not been developed for scientific applications,
the success of Machine Learning, where backpropagation algorithm combined with gradient descent
optimization (see Sec. 41.6.1) is the basis of its recent advances, has inspired a new look at this.
One recent example is FlowPM cosmological N-body simulation, which takes advantage of Mesh-
Tensorflow to achieve a GPU-accelerated, distributed, and differentiable simulation [59].

One broad class of inference problems where gradients make the problem simpler are the so
called inverse problems. As a simple example let’s assume the data x are observed with some
Gaussian noise with known variance σ2, equal for all data points. The likelihood of the data can
be written as

log p(x|z, θ)=− N

2 log[2πσ2]− ||x−g(z, θ)||2
2σ2 . (41.31)

Here g(z, θ) is the forward model (generator or decoder), i.e. the simulation output in the absence
of noise. The joint distribution is p(x, z|θ) = p(x|z, θ)p(z|θ), where p(z|θ) is the prior of latent
space variables, assumed to be known, with a known gradient with respect to θ and z. In this case
the gradients ∇θ log p(x, z|θ) and ∇z log p(x, z|θ) are available when the simulation forward model
gradients ∇θg(z, θ) and ∇zg(z, θ) are available.

Availability of simulation gradients in turn enables gradient based optimization or sampling.
In sampling approach one can use Monte Carlo Markov Chains to obtain the posterior samples of
latent space z and parameter space θ [60]. In optimization approach one can find the best-fit point
ẑ, which is the MAP estimate of the latent space variables z given x and fixed θ [61]. Another
optimization approach is Variational Inference, which attempts to model the posterior probability
distribution using optimization. This is discussed further in Section 41.5.4.

1st December, 2021

20 41. Machine Learning

41.3.5.2 Unfolding as an inverse problem
While much of the work on simulation-based inference described above is aimed at inferring

the parameters θ of the simulator, there is also work that aims to to infer the latent variables z.
Here it is useful to think of the parameters θ as parameters of a theory, such as masses, coupling
constants, or Lagrangian parameters, while z might describe the kinematics of a collision before
the detector response.

Inferring the distribution p(z|{x1, . . . , xn}) from a dataset of multiple observations is commonly
referred to as unfolding in particle physics, and deconvolution in other contexts. Unfolding is a
classic inverse problem, and the collection of ideas being used for machine-learning based simulation-
based inference are also being applied in this setting. Examples of recent work exploring these
approaches are Refs. [62–73]. In addition, there has been work to infer the posterior distribution
for an individual event p(z|xi) using probabilistic programming techniques [74–76].

41.4 Data representations, inductive bias, and example applications
In Sec. 41.3 we describe the input data as living in an abstract space xi ∈ X . In this section,

we briefly describe some of the common types of structured data that are encountered in physics
and refer to the corresponding models classes that have been developed to work with them. We
will describe the model classes in more detail in the following section.

The most basic and common type of data structure is when X = Rd. This is often referred to
as tabular data since the entire data set {xi}i=1,...,n can be thought of as a table with n rows and
d columns. It is common to think of an individual entry xi as a vector in d-dimensional Euclidean
space, where the coordinates correspond to the columns of this table. In some cases individual
components of xi might be integers or take on only discrete values, in which case describing the
space of the data as real-valued is a slight abuse of notation and representation. For many years
this was the dominant type of data in high energy physics as it is a natural input type for shallow
neural networks, multi-layer perceptrons, support vector machines, and tree-based methods found
in popular tools such as TMVA [77].

For categorical data, one typically uses a numerical representation such as integer encoding
where different categories are mapped to integers with a corresponding dictionary. Another com-
mon representation of categorical data is based on the so-called one-hot encoding (aka ‘one-of-K’
or ‘dummy’), in which case the category is mapped to a k-dimensional binary vector where k
is the number of categories and each component of this vector corresponds to a particular cat-
egory. In the one-hot encoding, only one of the components is non-zero. Finally, there are ap-
proaches in one learns an embedding that maps discrete categories into Rd; an example of this is
Word2Vec [78]. Interestingly, such embeddings can preserve various types of semantics; for instance,
the vector walking-walk is similar to the vectorswimming-swam as are the vectors connecting coun-
tries and their capital cities. This allows for a loose sense of algebra on the word embedings such as
walking-swimming+swam = walk. Similar types of embeddings have also been used in a number of
scientific use-cases including biological sequences (e.g. DNA, RNA, and Proteins) for bioinformatics
applications [79].

Particle physics data often is represented with an extension of the simple tabular data structure
where the number of columns is not fixed. For instance, if the rows correspond to data for individual
collisions, the number of electrons (and positrons) reconstructed in the event is variable. Thus the
number of columns needed to represent the energy, momentum, and charge of these particles is
also variable. A common solution to this problem is to fix a maximum number of particles and
then truncate and zero-pad to fit the data into a fixed tabular representation, though this is not
the natural representation of the data and it leads to a loss of information.

Sequential data is also commonly encountered in physics (e.g. in time series). Here an individual

1st December, 2021

21 41. Machine Learning

entry xi = (x1
i , . . . , x

t
i, . . . x

Ti
i) where t is index for the ordered sequence, Ti is the length of the

sequence (which might be variable), and the data associated to each “time” xti ∈ Rd. This is
similar to the previous example where the energy, momentum, and charge of the t-th electron
in the i-the event would be xti and the electrons might be sorted according to their energy or
transverse momentum. Sequential data is also encountered in natural language processing, where
xti correspond to individual words in a sentence. Recurrent neural networks (see Sec. 41.5.3.9)
are particularly well suited to sequential data. Examples applications from the Living Review
include [80–85].

Image-like data is one of the most dominant forms of data in industrial applications of deep
learning, is very relevant for astronomy and cosmology, and also appears in particle physics in
various forms. Image-like data typically involves d-dimensional features associated to a regular
grid or lattice that does not vary across the individual instances xi. The canonical example is
a standard image from a camera with W × H pixels where the p-th pixel has data xpi ∈ R3

corresponding to the three channels in the RGB color model. It is important to recognize that the
data corresponding to the 2-dimensional image is not 2-dimensional; instead, it is (W × H × c)-
dimensional, where c is the number of channels. In astronomy, an image may be grey scale (c = 1)
or there may be more channels (c > 3) corresponding to different color filters. In other applications,
the grid or lattice might be 3- or 4-dimensional. For example, the data associated to a regularly
segmented calorimeter can be thought of as a 3-dimensional image and the data associated to a
lattice simulation of a classical or quantum system can be thought of as a 4-dimensional image.
Convolutional neural networks, described in Sec. 41.5.3.5, are particularly well suited to image-like
data. Example applications from the Living Review include [81,86–108].

It is also possible that the the data (or features) associated to one “pixel” or lattice site may
itself be structured. For example, the single read-out plane of a Liquid Argon time projection
chamber (LArTPC) may involve a 1-dimensional or 2-dimensional grid, but the data associated to
each “pixel” is itself a sequence or waveform. Example applications in Neutrino Physics from the
Living Review include [109–139]. Similarly, in lattice quantum chromodynamics, the data associate
to a particular site (or link) would be group valued (e.g. xpi ∈ SU(3) as in Refs. [140,141]).

Both sequential and image-like data have a notion of temporal or spatial structure. While it is
possible to unroll an image into a (W × H × c)-dimensional vector, that would erase the spatial
structure and obfuscate the fact that nearby pixels are highly correlated. Similarly, one could
permute the time index for sequential data, but that would destroy the temporal structure of the
data. The complementary point of view is that the model class should also be aware of the structure
of the data. Recurrent neural networks and convolutional neural networks are good examples of
what is called inductive bias as the models do incorporate something about the structure of the
data that they are expected to be used with. In some cases this can be formalized in terms of
symmetry. For example, if we train model to classify images of cats and dogs, we would like it’s
prediction to be invariant to where in the image the cat is. This type of translational invariance
can be enforced in the design of the model class.

While permuting the elements of a sequence destroys the temporal structure of a time series,
attaching a temporal index t to a set of objects with features xti can also be problematic. If the
data corresponding to xi really are a set {x1

i , . . . , x
Ti
i } (e.g. a point cloud), then we would like the

output of the model to be permutation invariance. A standard sequential or convolutional model
will not generally be permutation invariant, but recently models such as Deep Sets, various types of
graph neural networks, and transformers can be made to enforce permutation symmetry. Example
applications from the Living Review include [100,142–152]

The temporal and spatial structure of sequences and image like data can also be generalized.
For instance, a 1-dimensional sequence can be generalized to a tree structured data like one finds

1st December, 2021

22 41. Machine Learning

in the hierarchical clustering of jets or as in a directed-acyclic graph (DAG). Generalizations of
recurrent neural networks have been constructed that can operate over these more complex data
structures [153,154]. More generally, one can considered graph-structured data composed of nodes
and edges or multi-graphs that group together three nodes into faces or k nodes into k-edges. Graph
neural networks are a class of models that work with this type of data. The emerging subfield of
geometric deep learning aims to unify the notation, terminology, and theory that connect these
considerations of the structure of the data and the corresponding model architecture. Example
applications in the Living Review include [121,128,131,132,134,155–181].

If the data are expected to have a symmetry associated to them but one is working with a
model class that does not enforce this symmetry, then data augmentation is a common procedure
used to improve generalization performance. Here one starts with an initial dataset {xi}i=1,...,n
and produces an augmented dataset {x′i}i′=1,...,n′ through some data augmentation strategy. For
example, one might apply a random rotation Ri′ to an image to produce x′i = Ri′(xi) if one assumes
rotational invariance in the underlying problem.

In some cases some of the individual features (components) of x are functions of other features.
For instance, one may include components of a four-vector (E, px, py, pz) as well as redundant
information such as transverse momentum, azimuthal angles, rapidity, etc. In this case, the data
is restricted to a lower-dimensional surface embeded in X . Even if the features aren’t redundant,
statistically the data are often effectively restricted to a small subspace of statistically likely samples
and those that are exceedingly unlikely. For instance, the space of natural images is a small and
highly structured subspace of all possible images, which are dominated by what we would perceive
visually as noise. The term data manifold is used to describe this restricted subspace where the
data are to be found, even though it does not necessarily satisfy the formal requirements of a
manifold in the mathematical sense.

These considerations on the structure of the data not only apply not to the input data xi ∈ X ,
but also to the output data yi ∈ Y. For instance, one might want a sequence-to-sequence model
as in machine translation of written text [182] or to learn a function that takes sets as input and
produces graphs as output as in the Set2Graph mode [183]. One might also want the input and
output of the model to be different in representations of an underlying symmetry group and for
the model to enforce group-equivariance [140, 141]. The development of the necessary modelling
components to enable practitioners to compose and train these types of models is a significant
development for the field of physics.
41.5 Flavors of ML models
41.5.1 Support vector machines and kernel machines

Support Vector Machines (SVM) are a class of supervised learning models used for classification
and regression. The learning algorithm involves a convex optimization problem that has a unique
solution and can be solved with quadratic programming techniques. In this sense, they are robust
and easier to characterize than neural networks that involve non-convex optimization. While their
history goes back to Vapnik and Chervonenkis in the 1960s, they gained popularity after Bernhard
Boser, Isabelle Guyon and Vladimir Vapnik suggested a way to create nonlinear classifiers by
applying the kernel trick in 1992 [184]. Originally they were developed for binary classification and
only supported therestricted case where the training dataset can be separated without errors, but in
1995 Cortes and Vapnik extended the technique to non-separable training dataset [185]. A variant
targeting regression, known as support vector regression (SVR), was developed in 1997 [186]. The
theory around support vector machines was well developed, and they dominated machine learning
research for roughly a decade before the rise of deep learning (see Sec. 41.5.3.4).

1st December, 2021

23 41. Machine Learning

b

kwk

<latexit sha1_base64="rvBXxP4SBCis+DdPUFYjXIRzJw8=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lEUG9FLx4r2A9oQtlsN+3SzSbsbiolzT/x4kERr/4Tb/4bt20O2vpg4PHeDDPzgoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRS8WpJLRJYh7LToAV5UzQpmaa004iKY4CTtvB6G7mt8dUKhaLRz1JqB/hgWAhI1gbqWfbXigxyYI886boyZvmPbvq1Jw50CpxC1KFAo2e/eX1Y5JGVGjCsVJd10m0n2GpGeE0r3ipogkmIzygXUMFjqjys/nlOTozSh+FsTQlNJqrvycyHCk1iQLTGWE9VMveTPzP66Y6vPYzJpJUU0EWi8KUIx2jWQyozyQlmk8MwUQycysiQ2yi0CasignBXX55lbQuau5l7ebhslq/LeIowwmcwjm4cAV1uIcGNIHAGJ7hFd6szHqx3q2PRWvJKmaO4Q+szx/7dJPo</latexit>

2

kwk

<latexit sha1_base64="IHS6+4qA81ZyAbwVlJjLqbdpjVk=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lKQb0VvXisYD+gCWWz3bRLN5uwu6mUtP/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMCxLOlHacb6uwsbm1vVPcLe3tHxwe2ccnLRWnktAmiXksOwFWlDNBm5ppTjuJpDgKOG0Ho7u53x5TqVgsHvUkoX6EB4KFjGBtpJ5te6HEJKvOMm+KnrzprGeXnYqzAFonbk7KkKPRs7+8fkzSiApNOFaq6zqJ9jMsNSOczkpeqmiCyQgPaNdQgSOq/Gxx+QxdGKWPwliaEhot1N8TGY6UmkSB6YywHqpVby7+53VTHV77GRNJqqkgy0VhypGO0TwG1GeSEs0nhmAimbkVkSE2UWgTVsmE4K6+vE5a1Ypbq9w81Mr12zyOIpzBOVyCC1dQh3toQBMIjOEZXuHNyqwX6936WLYWrHzmFP7A+vwBsQSTuA==</latexit>

w
T x�

b =
0

<latexit sha1_base64="AOR0ioRYy4x56f2e8qKFuiVl8JY=">AAAB73icdVDLSsNAFJ3UV62vqks3g0VwY0hq6GMhFN24rNAXtLFMppN26GQSZyZqCf0JNy4UcevvuPNvnLQVVPTAhcM593LvPV7EqFSW9WFklpZXVtey67mNza3tnfzuXkuGscCkiUMWio6HJGGUk6aiipFOJAgKPEba3vgi9du3REga8oaaRMQN0JBTn2KktNS5u27cn3hnVj9fsMxqpVR0StAyLatsF+2UFMvOqQNtraQogAXq/fx7bxDiOCBcYYak7NpWpNwECUUxI9NcL5YkQniMhqSrKUcBkW4yu3cKj7QygH4odHEFZ+r3iQQFUk4CT3cGSI3kby8V//K6sfIrbkJ5FCvC8XyRHzOoQpg+DwdUEKzYRBOEBdW3QjxCAmGlI8rpEL4+hf+TVtG0HbN65RRq54s4suAAHIJjYIMyqIFLUAdNgAEDD+AJPBs3xqPxYrzOWzPGYmYf/IDx9gmXbo+1</latexit>

w
T x�

b =
1

<latexit sha1_base64="GNH3LJwL7583vO02lwHSIjbNFUQ=">AAAB73icdVDLSgMxFM3UV62vqks3wSK4sSSl2HYhFN24rNAXtGPJpGkbmsmMSUYtQ3/CjQtF3Po77vwbM20FFT1w4XDOvdx7jxcKrg1CH05qaXlldS29ntnY3Nreye7uNXUQKcoaNBCBantEM8ElaxhuBGuHihHfE6zljS8Sv3XLlOaBrJtJyFyfDCUfcEqMldp31/X7E+8M97I5lEcIYYxhQnDpFFlSqZQLuAxxYlnkwAK1Xva92w9o5DNpqCBadzAKjRsTZTgVbJrpRpqFhI7JkHUslcRn2o1n907hkVX6cBAoW9LAmfp9Iia+1hPfs50+MSP920vEv7xOZAZlN+YyjAyTdL5oEAloApg8D/tcMWrExBJCFbe3QjoiilBjI8rYEL4+hf+TZiGPi/nKVTFXPV/EkQYH4BAcAwxKoAouQQ00AAUCPIAn8OzcOI/Oi/M6b005i5l98APO2yeF2Y+q</latexit>

w

<latexit sha1_base64="kb+UKGUJj5Ow3856JUZe/QgwfHs=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKQL0FvXhMwDwgWcLspDcZMzu7zMwqIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YhK81jem3GCfkQHkoecUWOl+lOvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwyp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvUr5ul4pVW+yOPJwAqdwDh5cQhXuoAYNYIDwDK/w5jw4L86787FozTnZzDH8gfP5A+iVjQc=</latexit>

w
T x�

b =
�1

<latexit sha1_base64="Cw9VCpsOIbCURXQN8aqIeDui6Y4=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQ3HZLS0boQim5cVuhL2rFk0kwbmnmQZNQy9CvcuFDErZ/jzr8xfQgqeuDC4Zx7ufceLxZcaYQ+rIXFpeWV1cxadn1jc2s7t7PbUFEiKavTSESy5RHFBA9ZXXMtWCuWjASeYE1veDHxm7dMKh6FNT2KmRuQfsh9Tok20vXdTe2+4J0VcDeXRzY6dkq4DJHtIFzGjiFFByNUhNhGU+TBHNVu7r3Ti2gSsFBTQZRqYxRrNyVScyrYONtJFIsJHZI+axsakoApN50ePIaHRulBP5KmQg2n6veJlARKjQLPdAZED9RvbyL+5bUT7ZfdlIdxollIZ4v8REAdwcn3sMclo1qMDCFUcnMrpAMiCdUmo6wJ4etT+D9pFG1csk+vSvnK+TyODNgHB+AIYHACKuASVEEdUBCAB/AEni1pPVov1uusdcGaz+yBH7DePgHzP4/h</latexit>

x2

<latexit sha1_base64="O76kjDC2rk5pOTxbQq6SNK3hW1I=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGgHoLevEY0TwgWcLspDcZMju7zMyKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YhK81g+mHGCfkQHkoecUWOl+6depVcsuWV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjpT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0K2WvWr66q5Zq11kceTiBUzgHDy6gBrdQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBERSNrQ==</latexit>

x1

<latexit sha1_base64="Zgso4r/5+qHuvA0cy8G5JHMuw8k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4r2g9oQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqZ+65FrI2L1gOOE+xEdKBEKRtFK9089r1euuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophpd+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb3z6tXdeaV2ncdRhCM4hlPw4AJqcAt1aACDATzDK7w50nlx3p2PeWvByWcO4Q+czx8PkI2s</latexit>

w
T x�

b =
0

<latexit sha1_base64="AOR0ioRYy4x56f2e8qKFuiVl8JY=">AAAB73icdVDLSsNAFJ3UV62vqks3g0VwY0hq6GMhFN24rNAXtLFMppN26GQSZyZqCf0JNy4UcevvuPNvnLQVVPTAhcM593LvPV7EqFSW9WFklpZXVtey67mNza3tnfzuXkuGscCkiUMWio6HJGGUk6aiipFOJAgKPEba3vgi9du3REga8oaaRMQN0JBTn2KktNS5u27cn3hnVj9fsMxqpVR0StAyLatsF+2UFMvOqQNtraQogAXq/fx7bxDiOCBcYYak7NpWpNwECUUxI9NcL5YkQniMhqSrKUcBkW4yu3cKj7QygH4odHEFZ+r3iQQFUk4CT3cGSI3kby8V//K6sfIrbkJ5FCvC8XyRHzOoQpg+DwdUEKzYRBOEBdW3QjxCAmGlI8rpEL4+hf+TVtG0HbN65RRq54s4suAAHIJjYIMyqIFLUAdNgAEDD+AJPBs3xqPxYrzOWzPGYmYf/IDx9gmXbo+1</latexit>

w
T x�

b =
1

<latexit sha1_base64="GNH3LJwL7583vO02lwHSIjbNFUQ=">AAAB73icdVDLSgMxFM3UV62vqks3wSK4sSSl2HYhFN24rNAXtGPJpGkbmsmMSUYtQ3/CjQtF3Po77vwbM20FFT1w4XDOvdx7jxcKrg1CH05qaXlldS29ntnY3Nreye7uNXUQKcoaNBCBantEM8ElaxhuBGuHihHfE6zljS8Sv3XLlOaBrJtJyFyfDCUfcEqMldp31/X7E+8M97I5lEcIYYxhQnDpFFlSqZQLuAxxYlnkwAK1Xva92w9o5DNpqCBadzAKjRsTZTgVbJrpRpqFhI7JkHUslcRn2o1n907hkVX6cBAoW9LAmfp9Iia+1hPfs50+MSP920vEv7xOZAZlN+YyjAyTdL5oEAloApg8D/tcMWrExBJCFbe3QjoiilBjI8rYEL4+hf+TZiGPi/nKVTFXPV/EkQYH4BAcAwxKoAouQQ00AAUCPIAn8OzcOI/Oi/M6b005i5l98APO2yeF2Y+q</latexit>

w
T x�

b =
�1

<latexit sha1_base64="Cw9VCpsOIbCURXQN8aqIeDui6Y4=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQ3HZLS0boQim5cVuhL2rFk0kwbmnmQZNQy9CvcuFDErZ/jzr8xfQgqeuDC4Zx7ufceLxZcaYQ+rIXFpeWV1cxadn1jc2s7t7PbUFEiKavTSESy5RHFBA9ZXXMtWCuWjASeYE1veDHxm7dMKh6FNT2KmRuQfsh9Tok20vXdTe2+4J0VcDeXRzY6dkq4DJHtIFzGjiFFByNUhNhGU+TBHNVu7r3Ti2gSsFBTQZRqYxRrNyVScyrYONtJFIsJHZI+axsakoApN50ePIaHRulBP5KmQg2n6veJlARKjQLPdAZED9RvbyL+5bUT7ZfdlIdxollIZ4v8REAdwcn3sMclo1qMDCFUcnMrpAMiCdUmo6wJ4etT+D9pFG1csk+vSvnK+TyODNgHB+AIYHACKuASVEEdUBCAB/AEni1pPVov1uusdcGaz+yBH7DePgHzP4/h</latexit>

x2

<latexit sha1_base64="O76kjDC2rk5pOTxbQq6SNK3hW1I=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGgHoLevEY0TwgWcLspDcZMju7zMyKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YhK81g+mHGCfkQHkoecUWOl+6depVcsuWV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjpT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0K2WvWr66q5Zq11kceTiBUzgHDy6gBrdQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBERSNrQ==</latexit>

x1

<latexit sha1_base64="Zgso4r/5+qHuvA0cy8G5JHMuw8k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4r2g9oQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqZ+65FrI2L1gOOE+xEdKBEKRtFK9089r1euuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophpd+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb3z6tXdeaV2ncdRhCM4hlPw4AJqcAt1aACDATzDK7w50nlx3p2PeWvByWcO4Q+czx8PkI2s</latexit>

⇠ >
1

<latexit sha1_base64="6jogbu41WCUzuKyd9HJStzvCnRI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUC9S9OKxgmkLbSib7aZdutmE3YlYSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6ZSGHTdb6ewsrq2vlHcLG1t7+zulfcPGibJNOM+S2SiWyE1XArFfRQoeSvVnMah5M1weDv1m49cG5GoBxylPIhpX4lIMIpW8jtP4trrlitu1Z2BLBMvJxXIUe+Wvzq9hGUxV8gkNabtuSkGY6pRMMknpU5meErZkPZ521JFY26C8ezYCTmxSo9EibalkMzU3xNjGhszikPbGVMcmEVvKv7ntTOMLoOxUGmGXLH5oiiTBBMy/Zz0hOYM5cgSyrSwtxI2oJoytPmUbAje4svLpHFW9c6rV/fnldpNHkcRjuAYTsGDC6jBHdTBBwYCnuEV3hzlvDjvzse8teDkM4fwB87nD1SajmQ=</latexit>

0 <
⇠ <

1

<latexit sha1_base64="MTnQE37iyYeL1KpgC4Dt1Rf4CPg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKexKQIUcgl48RjAPSJYwO5lNhszOLjO9Ygj5CC8eFPHq93jzb5wke9DEgoaiqpvuriCRwqDrfju5tfWNza38dmFnd2//oHh41DRxqhlvsFjGuh1Qw6VQvIECJW8nmtMokLwVjG5nfuuRayNi9YDjhPsRHSgRCkbRSi232n0SVa9XLLlldw6ySryMlCBDvVf86vZjlkZcIZPUmI7nJuhPqEbBJJ8WuqnhCWUjOuAdSxWNuPEn83On5MwqfRLG2pZCMld/T0xoZMw4CmxnRHFolr2Z+J/XSTG88idCJSlyxRaLwlQSjMnsd9IXmjOUY0so08LeStiQasrQJlSwIXjLL6+S5kXZq5Sv7yul2k0WRx5O4BTOwYNLqMEd1KEBDEbwDK/w5iTOi/PufCxac042cwx/4Hz+AEF1juI=</latexit>

⇠ =
0

<latexit sha1_base64="WwVi+jtbYAae5bociEVkDS2Ubqo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCqYttKFstpN26WYTdjdiKf0NXjwo4tUf5M1/47bNQVsfDDzem2FmXpgKro3rfjuFldW19Y3iZmlre2d3r7x/0NBJphj6LBGJaoVUo+ASfcONwFaqkMahwGY4vJ36zUdUmifywYxSDGLalzzijBor+Z0nfu12yxW36s5AlomXkwrkqHfLX51ewrIYpWGCat323NQEY6oMZwInpU6mMaVsSPvYtlTSGHUwnh07ISdW6ZEoUbakITP198SYxlqP4tB2xtQM9KI3Ff/z2pmJLoMxl2lmULL5oigTxCRk+jnpcYXMiJEllClubyVsQBVlxuZTsiF4iy8vk8ZZ1TuvXt2fV2o3eRxFOIJjOAUPLqAGd1AHHxhweIZXeHOk8+K8Ox/z1oKTzxzCHzifP1GRjmI=</latexit>

Figure 41.1: Illustration of a maximum margin classifier for a linear support vector machine in
the separable case (left) and with the soft-margin and slack variables ξ (right).

Maximum-margin classifiers Linear support vector machines are used for binary classification,
where X = Rd and the target labels are conventionally defined as Y = {−1, 1}. The classification is
simply based on which side of a hyperplane the data lie. Any hyperplane can be written as the set
of points x satisfying wTx− b = 0, where w, b ∈ Rd are the parameters of the model. The vector w
is normal to the hyperplane, but not necessarily normalized. The quantity b

‖w‖ quantifies the offset
of the hyperplane from the origin along the normal vector w.

If the training dataset is linearly separable, then there is a region bounded by two parallel
hyperplanes, called the margin, that separate the two classes of data. The maximum margin
classifier is uniquely defined by making the distance between these two hyperplanes as large as
possible. The boundaries of the margin can be defined by wTxi − b = ±1, and the width of the
margin is given by 2

‖w‖ . Figure 41.1 illustrates this for x ∈ R2.
Since the width of the margin is maximized when ‖w‖ is minimized, we can state the goal

of the (hard) maximum-margin classifier in the linear separable case as the following constrained
optimization problem: Minimize ‖w‖2 subject to the constraint yi(wTxi − b) ≥ 1 for i = 1, . . . , n.
The w and b that solve this problem uniquely determine the resulting classifier, ŷ(x) = sgn(wTx−b).

This geometric description makes it clear that the maximum-margin hyperplane is completely
determined by those xi that lie nearest to it: the eponymous support vectors.

Soft margins and slack variables Often the data will not be linearly separable and thus the
hard-margin optimization problem described above has no solution. Such a non-separable case can
be accommodated with the use of so-called slack variables. One slack variable ξi > 0 is introduced
for each data point. As shown in Figure 41.1 (right), if a data point xi is outside the margin and
correctly classified as in the separable case, then ξi = 0. If it within the margin but still correctly
classified, then 0 < ξi < 1. If it is misclassified, then ξi > 1. The new constrained optimization
problem is to minimize ∑

i

ξi + λ‖w‖2 (41.32)

subject to the constraints yi(wTxi − b) ≥ 1− ξi and ξi > 0 for i = 1, . . . , n. Effectively, this
corresponds to minimizing ∑i max(0, 1− yi(wTxi − b)) + λ‖w‖2, where the first term is called the
hinge loss.

1st December, 2021

24 41. Machine Learning

The dual problem In the language of convex optimization, linear programming, and quadratic
programming the optimization problems stated above for the hard and soft maximum-margin clas-
sifiers define the primal objective to be minimized. There is a Lagrange dual problem where the
solution corresponds to maximization with minφ L(φ) = supα>0 L̄(φ, α), where α are Lagrange
multipliers. While it is not apparent in the primal formulation of the constrained optimization
problems, the solution to the dual problem takes on the form

ŷ(x) = sgn(
∑
i

yiαix
T
i x− b) , (41.33)

where the αi > 0 for the support vectors and otherwise zero. This reformulation is plausible since
the orientation of the maximum-margin hyperplanes defined by w is completely specified by the
support vectors. The crucial observation for the kernel trick described below is that the final model
is defined in terms of coefficients and the inner product 〈xi, x〉X = xTi x.

The kernel trick One approach to obtain non-linear decision boundaries is introduce a non-
linear mapping ϕ : X → V that embeds the data in some higher-dimensional space V. One can
then use the linear SVM described above in the space V. This is not unlike the many neural network
models where the first layers use a non-linear activation function while the last layer is linear.

The kernel trick avoids the explicit mapping ϕ that is needed to get linear learning algorithms
to learn a nonlinear function or decision boundary. This is possible because the solution to the
dual problem in Eq. 41.33 is represented in terms of inner products 〈ϕ(xi), ϕ(x)〉V = ϕ(xi)Tϕ(x)
corresponding to the candidate point x and the support vectors xi. Thus all that is needed is a way
to evaluate the inner products. A kernel or a kernel function k : X ×X → R is a function that can
be expressed as an inner product in another space V via k(x, x′) = 〈ϕ(x), ϕ(x′)〉V . Critically, one
does not need to ever evaluate the map ϕ(x′), which is implicitly defined by the kernel. In some
cases the kernel is straight forward to evaluate, even though the target space V implicitly defined
by the kernel would be infinite dimensional.

The choice of the kernel is roughly the analog of the architecture of a neural network. It
dictates the types of non-linearities the SVM can implement in the input space. It also provides an
opportunity to encode prior knowledge from physics such as symmetries, length scales, etc. There
are also connections between very wide neural networks with random weights and biases and the
kernel of a Gaussian process [187–189], which, when applied to deep networks, lead to the concept
of neural tangent kernel [190]. While it is beyond the scope of this chapter, the interested reader
may also be curious to understand the connections as formalized in the language of Reproducing
kernel Hilbert spaces (RKHS) [191].

Support vector regression There are a few flavors of SVR. In Vapnik’s ε-SVR formulation is
similar to the picture for classification, but the boundary hyperplane serves as the prediction and
the width of the margin for which there is no penalty is ε. Again, one can introduce a non-linear
map φ(x) explicitly or implicitly via the corresponding kernel k(x, x′). One can view the predictive
model as ŷ(x) = wTφ(x)− b and the goal of the optimization problem is to minimize

‖w‖2 + C
∑
i

(ξi + ξ∗i) (41.34)

where ξi and ξ∗i are slack variables associated to the model over or under-estimating yi ∈ R. The
constrained optimization is subject to wTxi − b− yi ≤ ε+ ξi, yi − wTxi + b ≤ ε+ ξ∗i , ξi, ξ∗i ≥ 0 for
i = 1 . . . , n. The solution to the dual problem leads to a kernelized representation of the solution

ŷ(x) =
∑
i

(α∗ − α)K(x, xi)− b , (41.35)

1st December, 2021

25 41. Machine Learning

X

<latexit sha1_base64="njHztr7ubcCHSHfh7PDWIq4/LbU=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQiqLuiG5cV7APaUCbTSTt0MgkzN0IJ/Qw3LhRx69e482+ctFlo64GBwzn3MueeIJHCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7nK/88S1EbF6xGnC/YiOlAgFo2ilXj+iOGZUZt3ZoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs3nkGTmzypCEsbZPIZmrvzcyGhkzjQI7mUc0y14u/uf1Ugyv/UyoJEWu2OKjMJUEY5LfT4ZCc4ZyagllWtishI2ppgxtSxVbgrd88ippX9S9y/rNw2WtcVvUUYYTOIVz8OAKGnAPTWgBgxie4RXeHHRenHfnYzFacoqdY/gD5/MHlyGReg==</latexit>

V

<latexit sha1_base64="QVMjhtaSr16PYKDO5r4Za7BCYoI=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQiqLuiG5cV7APaUCbTSTt0MgkzN0IJ/Qw3LhRx69e482+ctFlo64GBwzn3MueeIJHCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7nK/88S1EbF6xGnC/YiOlAgFo2ilXj+iOGZUZu3ZoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs3nkGTmzypCEsbZPIZmrvzcyGhkzjQI7mUc0y14u/uf1Ugyv/UyoJEWu2OKjMJUEY5LfT4ZCc4ZyagllWtishI2ppgxtSxVbgrd88ippX9S9y/rNw2WtcVvUUYYTOIVz8OAKGnAPTWgBgxie4RXeHHRenHfnYzFacoqdY/gD5/MHlBeReA==</latexit>

'

<latexit sha1_base64="5eql3ALlVVVvF5tU8/Wqda0s4bs=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKQb0VvXisYD+gXUo2zbah2WxIsoWy9Ed48aCIV3+PN/+NabsHbX0w8Hhvhpl5oRLcWM/7RoWNza3tneJuaW//4PCofHzSMkmqKWvSRCS6ExLDBJesabkVrKM0I3EoWDsc38/99oRpwxP5ZKeKBTEZSh5xSqyT2r0J0WrE++WKV/UWwOvEz0kFcjT65a/eIKFpzKSlghjT9T1lg4xoy6lgs1IvNUwROiZD1nVUkpiZIFucO8MXThngKNGupMUL9fdERmJjpnHoOmNiR2bVm4v/ed3URjdBxqVKLZN0uShKBbYJnv+OB1wzasXUEUI1d7diOiKaUOsSKrkQ/NWX10nrqurXqrePtUr9Lo+jCGdwDpfgwzXU4QEa0AQKY3iGV3hDCr2gd/SxbC2gfOYU/gB9/gB/Ko+y</latexit>

Figure 41.2: Figure depicting the nonlinear SVM decision boundary in X (left) and the corre-
sponding linear maximum margin classifier in V (right). Figure adapted from Kernel_Macine.svg
Wikimedia Commons (CC BY-SA 4.0) by Cranmer.

where the αi, α∗i are the parameters of the dual problem. In libraries like LibSVM the output of the
algorithm is just α∗i − αi for i = 1 . . . , n.

Kernel ridge regression Kernel Ridge Regression (KRR) uses the same model as in SVR;
however, it uses a different loss function. KRR uses the squared error loss while support vector
regression uses the ε-insensitive loss function (i.e. no penalty is encured if the prediction is within
ε). Both are combined with l2 regularization (the ‖w‖2 term). While SVR leads to a sparse
solution that only depends on the support vectors, it can be slow to solve the constrained convex
optimization problem. In contrast, KRR can be done in closed-form and is typically faster to train
for medium-sized datasets. The consequence is that the learned model is non-sparse and thus slower
than SVR to evaluate at prediction-time.

Gaussian Process Regression (krigging) Another variation on kernel-based regression is
Gaussian process regression (GPR), also referred to as krigging. Again the model is based on
the kernel trick. While KRR aims to minimize the mean-squared error loss (yi− ŷ(xi))2 along with
an l2 regularization term proportional to ‖w‖2, GPR elevates these terms to a probabilistic inter-
pretation where the first is proportional to a log-likelihood for Gaussian N(yi|ŷ(xi)), σ) likelihood
and the second corresponds to the log of a Gaussian prior on wi. This is related to the discussion on
Tikhonov regularization found in Sec. 41.3.1.2. GPR goes further and uses a mean function m(x)
and kernel k(x, x′) to define a probabilistic model for y(x) and y(x′) that includes correlations. For
any finite number of points {xj}j=1,...,m, the Gaussian process defines the joint distribution for the
values that f(xi) might take. Typically, one specifies the prior mean m(x) and prior covariance
function k(x, x′) and then conditions on the training dataset {xi, yi}i=1,...,n. The posterior can then
be evaluated for an independent set of points {xj}j=1,...,m. The posterior mean is typically used as
the prediction equivalent to SVR and KRR, but GPR also gives a meaningful notion of uncertainty
in the predictions, and can be viewed as a realization of kernel Bayesian regression [192].

One advantage of GPR is that one can work with a family of kernel functions parameterized
by some hyperparameters η. One can then optimize the hyperparameters via gradient-ascent on
the marginal likelihood function. In contrast, hyperparameter tuning in SVR and KRR typically

1st December, 2021

26 41. Machine Learning

requires a grid search or some other black-box optimization procedure evaluated on held out data
or some form of cross-validation.

Rasmussen and Williams provides an excellent review of Gaussian processes [193]. Numeri-
cally, Gaussian Process libraries are confronted with computing the log determinant of the co-
variance kernel, which naively scales like O(n3) in computational complexity. However, recently
there have been a number of numerical advances that make these methods fast and scalable to
large datasets [194, 195]. While Gaussian Processes are used more widely in cosmology, they are
not widely used in particle physics or astro-particle physics. Recent works explore the design of
physics-inspired kernels and use Gaussian Processes to model the intensity for a Poisson point pro-
cess like those found in experimental particle physics and γ-ray and X-ray astronomy [196–198].
Gaussian Processes are also extensively used in Bayesian Optimization (Section 41.3.3).
41.5.2 Decision trees
Tree-based models Classification and Regression Trees (CART) typically partition the input
space into J disjoint regions X = X 1 ∪ · · · ∪ X J through a sequence of J − 1 binary splits based
on an individual components of x ∈ X (e.g. x4 < 0.7) [199]. The model is piecewise constant and
assigns the value bj ∈ Y to the j-th terminal region X j . The model can be written

ŷ(x) = fφ(x) =
∑
j

bj1(x ∈ X j) . (41.36)

The parameters φ of the model comprise the components index and thresholds for the successive
splittings and the coefficients bj .

Tree learning refers to the algorithm used to choosing the tree structure and determining the
predictions at leaf nodes. Optimization of the tree structure involves a difficult discrete optimiza-
tion since the change in the loss with respect to the tree structure is non-differentiable and it is
intractable to explore the combinatorially large space of possible trees with brute force. Therefore,
the discrete optimization component of tree learning typically involves some approximate algo-
rithm based on heuristics. In contrast, optimization of the bj for a given tree structure can exploit
gradient-based optimization algorithms.

Common approaches to building the decision tree start with a root node and grow with splits
based on individual attributes (components of x). These are referred to as top-down induction
strategies. There are various impurity heuristics used for choosing the best attribute to split on
such as the Gini index, cross-entropy and mis-classification error. Generally they aim to find a split
that will refine the the terminal nodes such that they have higher purity than the parent node.

Because most tree learning algorithms consider splits aligned with individual feature compo-
nents, there are some failure modes for tree-based models. However, tree-based models work well
with tabular data that is composed of a mix of continuous and discrete features. Tools such as
XGBoost [200] are widely used in data science competitions such as Kaggle and the boosted decision
trees (BDTs) implemented in StatPatternRecognition [201] and TMVA [77] have been one of the
most used techniques in particle physics [3].

Individual trees are often referred to as weak-learners and they can be combined in various
ways described below. Regularization is also an important consideration with tree-based models as
one can always learn a tree that assigns exactly one training dataset point per terminal node and
memorize the training dataset exactly. One approach to this is called pre-pruning, which simply
terminates the growing of the trees if the number of training samples reaching the terminal node
drops below some threshold, the purity of a terminal nodes is below some threshold, or if the
improvement in purity due to a proposed split is not above a threshold. Another regularization
approach is called post-pruning, which uses a validation data set that is disjoint from the training

1st December, 2021

27 41. Machine Learning

dataset to probe generalization performance. In this approach, after initially growing a tree with the
training dataset, one considers a sequences of pruned trees where splits are removed based on some
heuristic. One finds the tree in this sequence of pruned trees that minimizes the generalization error
on the validation set. Alternatively, in tools such as XGBoost there is an explicit regularization
term included in the loss function (see Eq. 41.43).

Ensemble methods The idea of ensemble methods is to combine multiple models into a more
performant one by exploiting the bias-variance tradeoff [202]. This is most commonly achieved
through averaging (e.g. bagging and random forests), which primarily reduces variance, or boosting
(e.g. AdaBoost and gradient boosting), which primarily reduces bias. Here bias refers to the
difference between the Bayes optimal model and the average model produced by the learning
procedure with different training sets and variance quantifies how much the learned model varies
from one training set to another.

The motivation of boosting is to combine the outputs of many “weak” models to produce a
more expressive model. Compared to averagaing techniques like bagging and random forests, the
model is built sequentially on modified versions of the data and the final predictions are combined
through a weighted sum

ŷ(x) =
T∑
t=1

βtŷt(x) , (41.37)

where βt expand the parameters of the model φ.

Bagging The idea behind bagging (bootstrap aggregating) is to create T bootstrap training
datasets B1, . . . , BT drawn from the training dataset {xi, yi}i=1,...,n, then learn a model ŷt for each,
and finally construct an average model ŷ(x) = (1/T)∑t ŷt(x). If one had T independent training
datasets each of size n, then the bias of the average model would be the same as the original model,
but the variance would be reduced by a factor of T . By using bootstrap resampling, the bias may
increase but the reduction in variance often dominates, which leads to improved performance.

Random forests Random forests refers to a type of “perturb and combine algorithm” that com-
bines bagging and random attribute subset selection. Again one builds trees ŷt(x) from bootstrap
training datasets Bt, but instead of choosing the best split among all attributes, one select the best
split among a random subset of k attributes. If k includes all attributes, then it is equivalent to
bagging.

AdaBoost In AdaBoost (adaptive boost) the sequence of trees ŷ1, . . . , ŷT are trained with reweighted
versions of the original training dataset such that the weight of individual training sample is based
on the prediction error in the previous iteration [203]. This requires working with a loss function
that and learning procedure for the individual iterations that is amenable to weighted training
dataset {xi, yi, wi}i=1,...,n. Incorporating the weights wi is straight forward when the risk is ex-
pressed as an expectation, since the emperical risk of Eq. 41.3 is just replaced with the weighted
average. Similarly, the heuristic for many of the tree-based learning algorithms (e.g. the Gini index)
also have natural generalizations with weighted events.

In the context of classification, the weighted error of the model ŷt(x) is

errt =
∑
iw

(t)
i 1[yi 6= ŷt(xi)]∑

iw
(t)
i

. (41.38)

1st December, 2021

28 41. Machine Learning

Based on this weighted error, the coefficient βt of the component ŷt(x) in Eq. 41.37 is given by

βt = log
(1− errt

errt

)
. (41.39)

Then for the next iteration the weights of the misclassified events are updated as w(t+1) = w(t) exp(βt)
and then renormalized so that the sum of all weights is 1. This reweighted dataset is then
used to train the next model ŷt+1(x) and the entire procedure is initialized with uniform weights
wt=0
i = 1/n.
There is an analogous procedure for regression with the squared loss function based on the

residuals ri = yi − ŷt(xi) (see for example Ref. [77] for details).

Gradient boosting One of the most powerful forms of tree based models, which is implemented
in the tool XGBoost is referred to as gradient boosting [204]. In this setup, the model is purely
additive as in the case of random forests, so the model is Eq. 41.37 with all βt = 1. Note this is
without loss of generality since the βt can be absorbed into the bj of Eq. 41.36. As with AdaBoost,
the model is built sequentially through the sequence ŷ1, . . . , ŷT .

At each iteration, a new term ft will be added to the sum in Eq. 41.37. For a given decision
tree defined by splits on attributes, one can approximate the objective function (the loss function
L plus a regularization term Ω) as a function of bj in a second order Taylor series:

obj(t) =
n∑
i=1

[L(yi, ŷ(t−1)
i) + gift(xi) + 1

2hif
2
t (xi)] +Ω(ft) + constant , (41.40)

where
gi = ∂

ŷ
(t−1)
i

L(yi, ŷ(t−1)
i) (41.41)

and
hi = ∂2

ŷ
(t−1)
i

L(yi, ŷ(t−1)
i) (41.42)

In XGBoost, the regularization term is taken to be

Ω(f) = γJ + 1
2λ

J∑
j=1

b2
j , (41.43)

where J is the number of terminal nodes in the tree. With the second-order approximation of the
objective, one can directly solve for the optimal bj for the next tree and the corresponding value of
the optimized objective function. The improvement in the objective function can then be used as
a heuristic for choosing the best split. Specifically, define Gj = ∑

i∈Ij gi and Hj = ∑
i∈Ij hi, where

Ij is the set of indices of data points assigned to the j-th leaf. The heuristic used in XGBoost for
splitting a node is

Gain = 1
2

[
G2
L

HL + λ
+ G2

R

HR + λ
− (GL +GR)2

HL +HR + λ

]
− γ . (41.44)

This formula can be interpreted as the score on the new left leaf plus the score on the new right
leaf minus the score on the original leaf minus a regularization penalty on the additional leaf. If
the gain from splitting a leaf is smaller than γ, then the total Gain is negative and the split will
not be added, which can be seen as implementing a form of pruning.

1st December, 2021

29 41. Machine Learning

41.5.3 Neural networks
In this section we focus on the different types of components used in modern neural network

architectures. Gradient-based optimization techniques are most commonly used for training neural
networks, and they are described in Sec. 41.6.1. Similarly, other important aspects to effectively
training neural network models such as parameter initialization, early stopping, etc. are discussed
in Sec. 41.6.

The vanishing and exploding gradient problem is a common challenge for gradient-based opti-
mization of neural networks and is described in Sec. 41.6.5. That problem is referred to repeatedly
in this section because it has motivated the development of numerous architectural components
described below.
41.5.3.1 Feed-forward multi-layer perceptron

One of the core components in neural networks is the fully-connected, feedforward network
ormulti-layer perceptron (MLP), which is composed of L layers: f = f (L) ◦ · · · ◦ f (1). The lth layer
defines a function that maps a dl−1-dimensional input vector, called features, to an dl-dimensional
output f (l) : Rdl−1 → Rdl . A unit responsible for producing an individual output in dl-dimesional
output is called a neuron or a filter interchangeably. For l < L, the functions fl are called hidden
layers, and the number of neurons (dl) is referred to as the width of the hidden layers. The layers
in an MLP take on the form:

f (l)(u) = σ(l)(W (l)u+ b(l)) , (41.45)

where W (l) ∈ Rdl×dl−1 is called the weight matrix, the components of the vector b(l) ∈ Rdl
are referred to as the biases, u ∈ Rdl−1 is the input from the previous layer, W (l)u denotes a
matrix-vector product, and σ(l) is a non-linear activation function that is usually applied element-
wise. The parameters of the network comprise the full collection of weights and biases, φ =
(W (1), . . . ,W (L), b(1), . . . , b(L)).
41.5.3.2 Activation functions

The activation functions σ in neural networks are nonlinear functions and key to the expressive-
ness of the resulting family of functions. Two traditionally used functions are logistic and hyperbolic
tangent functions. These functions are bounded to be (0, 1) and (−1, 1) respectively, and are sym-
metric about the input value of zero. On the other hand, away from the zero input value, a gradient
of both functions quickly vanishes and this poses a challenge in using gradient-based optimization
method (see Sec. 41.6.1). This can be avoided, to some extent, by normalizing the input values
and carefully initializing the values of W (l) and b(l). These are discussed in Sec. 41.6.7, 41.6.8 and
41.6.9. Yet, it becomes difficult to maintain a null input value for a deep neural network, a model
with many layers. Instead, a popular choice for a deep neural network is Rectified Linear Unit
(ReLU):

σ(x) =
{
x if x > 0
0 otherwise

(41.46)

which computational cost is small and provides the gradient does not vanish for x ∈ (0,+ inf) [205,
206]. An alternative to preserve a non-zero gradient in negative input values are called Leaky ReLU
and modifies the output to 0.01x for x ∈ (−inf, 0) [207]. Another variant, called Parametric ReLU
(PReLU), turns the coefficient 0.01 into a variable that is optimized as a part of the model during
optimization [208].

The choice of activation functions depends on the model architecture and applications. As
described, while the use of ReLU types are a typical choice for a deep neural network, a logistic
function is a popular choice at the final layer for classification tasks. Recently, in the area of

1st December, 2021

30 41. Machine Learning

neural scene representation, sinusoidal activation functions have been found to be surprisingly
effective [209].
41.5.3.3 Softmax

A softmax function is often used to normalize elements of a discrete vector u, or to interpret
the output as a probability over a set of n discrete categories. Given a real-valued input vector
u ∈ Rn, the softmax function computes the output vector v ∈ Rn the i-th component is given by:

vi = exp(ui)
n∑
j=1

exp(uj)
. (41.47)

The result has the property that vi ∈ (0, 1) and ∑ vi = 1. The components of the input vector u
are often referred to as logits in reference to their connection to the logistic function used in logistic
regression. The softmax function is commonly used as the last layer in multi-class classifier. The
softmax is also used in the context of attention (see Sec. 41.5.3.11).
41.5.3.4 The rise of deep learning

There are a number of universal approximation theorems in the theory of neural networks.
One of the first was that even with one hidden layer (L = 2), an MLP can approximate any
continuous function if the non-linear activation function σ not a polynomial and the width d1 is
large enough [210]. However, it is often more efficient (in terms of the number of parameters) to
increase the depth of the network L [211].

Training a deep network (i.e. L > 2) that generalizes well can be more difficult, requiring
large training datasets, many gradient updates, and suitable regularization. The introduction of
large labeled training sets, advances in computing (e.g. graphic processing units or GPUs which
enabled orders of magnitude acceleration in parallel computation including matrix multiplies [212]),
development of ReLU, research progress in initialization and optimization algorithms for model
parameters, and regularization techniques like dropout [13] all played an important role in the rise
of deep learning [2,213]. Though the name deep learning was originally a reference to the depth L
of such networks, modern deep learning is characterized more by the composition of various types
of modules that are trained through gradient-based optimization. Below we introduce some other
common network architectures.
41.5.3.5 Convolutional neural networks

Convolutional Neural Networks (CNNs) are widely used for image-like data. They implement
the convolution of the input image u and a filter W (also referred to as a kernel). The parameters
of the filter are learnable and the convolution involves traversing over input and calculating the
inner product of the filter W with the part of the input in the receptive field, which has the same
spatial shape as the filter and is centered at the target pixel. At each location – indexed by i and
j below – there is a pixel that may have a vector of features associated with it. In the context
of CNNs, these components of these features – indexed by c and c′ below – are often referred to
as channels in reference to the red, green, and blue color channels in a traditional image. The
convolution operation is often denoted with a ∗, and the result can be expressed as

vc(j) = (W ∗ uc)(j) =
∑
c′

∑
i

Wc,c′(i)uc′(“j − i”) , (41.48)

where “j − i” is shorthand for the pixel index corresponding to the translation from pixel j to i.
By repeating the operation over all pixels, the result of a kernel convolution is also an image as
illustrated in Figure 41.3. Note that the the number of channels in the output v does not need to

1st December, 2021

31 41. Machine Learning

Figure 41.3: A pictorial description of a kernel convolution over four input pixels. It takes a
product of the weight matrix (kernel) and the local input matrix centered at a target pixel. The
operation is repeated over the input image using the same kernel. The size of the output image
depends on the size of the kernel, stride, and padding. In this figure, the kernel size of 3, stride of
1, and padding of 0 is used.

be the same as in the input, and the collection of filters Wc,c′ is often referred to as a filter bank.
The entire image for a fixed channel index is often referred to as a feature map.

A key feature of the CNN architecture is that it is equivariant to translations, meaning that
if the input image is shifted (e.g. u(i) → u′(i) = u(i − k)), then the output is also shifted by the
same amount (e.g. v(j) → v′(j) = v(j − k)). This equivariance property is a natural consequence
of using convolutions. A fully connected MLP would not generally have this symmetry; however,
it is enlightening to imagine transferring the computation performed by a CNN to the weights and
biases of a fully connected MLP, which would result in duplicating the weights of the filters multiple
times. In this view, the CNN can be interpreted as a fully connected MLP with shared weights,
which would maintain the equivariance property. This view is helpful for gaining intuition about
the inductive bias of models and makes clear that a CNN is a subset of the fully connected MLPs
that satisfy the translation equivariance property.

The discussion above makes it clear that CNNs will have fewer parameters than the corre-
sponding fully connected MLP, which can alleviate the optimization challenge. In addition, the
convolutional structure allows for data to be reused effectively as patterns in one part of an image
in the training dataset effectively contribute to learning that pattern anywhere in the image. Larger
kernel sizes allow for the filters to learn more complicated patterns, but at the expense of having
more parameters and needing more data to train (the extreme case being a kernel size that is the
the size of the entire image, which would be equivalent to a fully connected MLP). In practice,
kernel sizes of 3 are popular, 5 is sometimes used, and larger kernels are rarely used.

A kernel convolution involves three hyperparameters, the size of kernel (typically an odd number
so that the filter has an unambiguous center), stride, and padding. The stride is the number of
pixels between each target pixel (i.e. the center of the filter). The stride size of 1 implies the target
pixels are adjacent, and a stride of 2 implies skipping 1 pixel in between (along each spatial axis).
Padding is an operation to expand the input image by a specified number of pixels (i.e. “padding
size") for when the target pixel is near the edge and the filter would extend beyond the input
image. In Figure 41.3, the input image is 4×4 pixels, the kernel is of size 3, and no (zero) padding
is applied. The result is a smaller image. Alternatively, With the padding of size 1, the output
would retain the 4×4 shape of the input image.

A kernel size of 1 is also frequently used and is referred to as a 1×1 convolution. While it cannot
capture a geometrical features, it can perform linear operations on the input features, including
increasing or decreasing the number of features. When combined with a non-linearity and stacked
repeatedly this can be seen as a small MLP attached to an individual pixel, and for this reason
the 1×1 convolution is sometimes referred to as a network-in-network [214]. This is often used to

1st December, 2021

32 41. Machine Learning

extract more powerful features to be used by the latter layers, and also to compress features when
the next layers may be computationally demanding such as a block of many convolution layers with
a large kernel size [215,216].

One may wonder how CNNs identify features with a spatial size larger than a typical kernel
size. One mechanism for this is by stacking multiple convolutional layers – e.g. the composition of
two 3×3 kernels will lead to an effective 4×4 kernel. In addition, a typical CNN architecture uses
pooling (described below), which effectively down-samples the image so that it can be processed at
different resolutions. The effective receptive field in the input image may be much larger than the
kernel size in this case. An alternative approach is to use an inception module which is designed to
extract features simultaneously using kernels of different size [215].

41.5.3.6 Pooling
Pooling plays an important role in convolutional neural networks both practically and in terms

of their mathematical properties. A pooling operation is a type of aggregation or down-sampling
that takes many pixels as input and produce one pixel for output. Typically, the pooling operation is
applied independently for each channel or feature component. The most popular pooling operations
are max and average pooling. Max-pooling picks the highest activation pixel value within the
specified receptive field, while the average pooling computes the average pixel value in the receptive
field. The idea of pooling generalizes to other architectures, including graph neural networks where
the receptive field includes the neighbors of a particular node in the graph (see Sec. 41.5.3.14).
The pooling operation gives rise to robustness of the model to small, local deformations in the
input, a property called geometric stability [217–219]. This type of local deformation is important
and distinct from the equivariance to rigid translations provided by the convolutional structure.
Repeated pooling operations that eventually lead to a single feature vector with no spatial index is
what gives rise to the invariance of common CNN architectures to translations (i.e. an image with
a dog will be labeled ‘dog’ even independent of where the dog is in the image).

On the practical side, it is also beneficial to reduce the dimensionality of the input to a smaller
hidden state representation. This can be done either a convolution operation with the stride size
larger than 1, or employing a pooling.

A typical CNN for extracting a 1-dimensional array of features is designed with repeating blocks
of convolution layers and pooling operations [220]. Figure 41.4 shows an example evolution of a
data tensor through the succession of a convolution and pooling operations in order to extract a 1-
dimensional array of features, which then can be fed into a block of MLP for an image classification
(or a regression) task. This type of an architecture is referred to as an encoder or feature extractor.

The reduction in the spatial size of an image is performed slowly, typically by a factor of 2,
which is the minimum possible reduction factor. After the reduction of the spatial extent, the
number of channels is typically increased (also by a factor of 2 in most cases), converging one set
of feature maps into a larger number of down-sampled feature maps. There may be more than
one convolution layer within each spatial resolution (i.e. in between pooling operations). Following
these design principles, CNN encoders typically become deep, consisting of dozens or sometimes
hundreds of convolution layers, and face challenges of vanishing gradients problem (see Sec. 41.6.5).
A standard practice to mitigate this issue is explicitly normalize the input tensor input at each
convolution layer using algorithms like Batch Normalization. This will be discussed in Sec. 41.6.9.

41.5.3.7 CNN architectures for image analysis
There are three major categories of computer vision tasks where CNNs are often used:

1st December, 2021

33 41. Machine Learning

Figure 41.4: An example CNN architecture to extract a 1-dimensional array of features from an
image via succession of convolution layers and pooling operations. The (square) kernel, stride, and
padding size of a convolution operation are 3, 1, and 1 in respective order. The pooling operation
uses a square kernel size of 2. The number of filters at the first convolution layer is 6, and is
increased by a factor of 2 at subsequent convolution layers.

• Image classification or regression requires a prediction of single value for the whole image
(i.e. a category or target value)

• Object detection produces a list location information for arbitrary number of objects in the
input image

• Semantic segmentation outputs an image of the same spatial dimension as the input, in which
every pixel is segmented by a predicted value for a target task (classification or regression).

As discussed previously, a CNN feature extractor followed by MLP is often used for image classifi-
cation and regression tasks in wide range of applications including particle physics. Many successful
CNN architectures for object detection and semantic segmentation applications share key designs
which we briefly discuss below.

Region Convolutional Neural Network (R-CNN) is one of the most successful design for
object detection [221]. R-CNN is explored in HEP experiments where the number and location
of signal (e.g. neutrino interactions) are not known apriori in large image data such as neutrino
detectors [3, 116,222].

R-CNN consists of multiple CNNs. The first is a feature extractor which produces a spatially
compressed feature tensor. The second CNN applies 1× 1 convolution to predict two information:
an object score which indicates whether there is an object in this (spatially compressed) pixel or not,
and prediction of the location and size of a rectangular, axis-aligned bounding box that contains the
object (if exists). This second CNN is called Region Proposal Network (RPN), and the bounding
box is called Region of Interest (ROI). The the size of a bounding box is not directly solved by a
regression. Instead, the model requires a set of pre-defined anchor boxes, which sizes and aspect
ratios are hyperparameters, and predict the object score, location, and size (as a multiplicative
factor to the defined anchor box) for each anchor box. This allows RPN to detect multiple objects
with different aspect ratios even if they are within the same receptive field in the original input
image. For each ROI with an object score above threshold (hyperparameter), the third CNN
operates in the corresponding sub-field of an already-compressed tensor (i.e. by the first CNN) to
perform a classification for an object inside the ROI.

This approach can produce multiple ROIs for the same object with a high overlap. Those
predictions are reduced using Non-Maximum Suppression (NMS) algorithm. Given a list of bound-

1st December, 2021

34 41. Machine Learning

ing boxes with confidence scores, NMS takes the box with the highest score, and computes the
Intersection-over-Union (IoU) of this box and all the rest of boxes. Boxes with the IoU higher than
a threshold (hyperparameter) are eliminated as they are likely to represent the same object. Then
NMS repeats the same operation for the box with the second highest score among the remaining
boxes. This is repeated till the list is exhausted.

U-Net is one of the of most successful models used for semantic segmentation [223]. As the
output of U-Net is also an image, it gives some interpretability compared to models for an image-
level classification or regression tasks. The model is used widely in HEP experiments in both 2D
and 3D image data [112,113,118,125,127].

The architecture of U-Net consists of a CNN encoder and decoder. A decoder consists of
convolution and convolution-transpose layer (also called strided transpose-convolution, or rarely
deconvolution). The operation of a convolution transpose can be seen an opposite of a convolution:
for every pixel in an input image, its value is multiplied to the kernel and copied to the output. 3x3
kernel in transpose-convolution layer fills 3x3 pixels in the output tensor. The concept of padding
and the stride are also applied to the output tensor. For instance, the stride 2 transpose-convolution
fills 3x3 fields centered at every other pixel (i.e. stride 2) for every input pixel. The spatial size of
an output tensor is therefore determined by the spatial size of an input tensor, stride, and padding.
In the decoder of U-Net, convolution-transpose layers are used to up-sample spatially compressed
feature tensors back to the original image resolution. The stride size of a convolution-transpose
layer is almost always 2 in order to slowly transform the spatial size, and standard convolution
layers (with stride 1) are placed in-between up-sampling operations. Because the output of the
decoder has the same size as the input image, features for every pixel can be used for either a
classification or a regression task at the pixel-level.

The idea behind encoder-decoder architecture is to extract features in the encoder, and the
decoder interpolates those features back to the original spatial resolution. The down-sampling
operation (e.g. max-pooling) in the encoder is, however, a lossy process where spatial information
is permanently lost. This prevents a simple encoder-decoder architecture to perform a semantic
segmentation task at the level of precision required for science research and industrial use. Interest-
ing observation made by the U-Net authors is a symmetry in the encoder-decoder architecture in
which there are tensors of corresponding (i.e. the same) spatial size between two parts of the model.
This observation inspired them to concatenate the intermediate tensors in the encoder block to the
intermediate tensors of the corresponding size in the decoder block before convolution layers are
applied in the decoder, which dramatically improved the performance of semantic segmentation.
This is a type of a skip connection discussed below.
41.5.3.8 Residual networks and skip connections

The representation power of a neural network increases as more hidden layers are added, but
gradient-based optimization of deep models can be notoriously difficult due to vanishing gradi-
ents (see Sec. 41.6.5). One of powerful techniques to address this challenge is a residual network
(ResNet), which is a modular architecture design that can be applied to neural network mod-
els [216]. Suppose a f∗(x) as the target transformation to be learned by a few stacked layers where
x is the input to the first layer. The authors of ResNet hypothesized that it may be easier for a
model to learn a residual transformation f̃x) := f∗(x)− x, thus the objective to learn is f̃(x) + x
where f̃(x) denotes the output of stacked layers. This form assumes f̃(x) and x share the same
tensor dimension and size. If they differ in the feature dimension, equivalently the count of channels
in an image tensor, one could use 1×1 convolutions to transform and match the dimension. The
design is modular as it can be applied per a stack of convolution layers (e.g. U-ResNet introduced

1st December, 2021

35 41. Machine Learning

Figure 41.5: Two types of skip connections: the top is from ResNet where the input is element-wise
added to the output tensor of a block of convolution layers while the bottom shows a concatenation
of the input to the output tensor as employed in other models including U-Net and DenseNet.

for LArTPC detectors uses ResNet modules within a U-Net architecture [112, 113]) widely in the
present applications.

The authors of ResNet successfully demonstrated an improved performance of some models at
the depth exceeding 1000 layers where the non-residual counter part could not improve the accuracy
beyond a few dozens of layers. This remarkable success was due to the skip connections in ResNet,
namely the element-wise addition of the input to the output at each block of convolution layers as
shown in Figure 41.5. Without the presence of the skip connections, the gradients from the loss
function is forced to go through all convolution layers (i.e. the reverse direction of orange allows
in Figure 41.5), which results in the gradient being altered at every convolution layer. The layers
closer to the input receive altered gradients by the continuously updated weights of deeper layers,
making conversion difficult and slow. The skip connections provides the path for the gradient to flow
directly to the preceding layers. As a result, the gradient can flow more directly to preceding layers
and allows simultaneous optimization across layers. It is possible, however, that some convolution
layers in ResNet may learn an identity mapping, thus contributing no effect to solving a given task
despite consuming computing power.

Another type of skip connections is a concatenation of feature maps, in which case the input
and the output of a block of convolution layers do not necessarily have to have the same number
of features. This is shown to be very powerful in number of popular model architectures including
U-Net [223] and DenseNet [224]. In this case, the input features are re-used: the next block of
hidden layers can learn an optimal way to combine the input and the output of the preceding block
(i.e. it could learn a simple addition operation, which makes it identical to ResNet). In DenseNet,
input to a convolution layer is concatenated with the output of all preceding convolution layers of
the same spatial dimension, thus xl = fl([x1, x2, · · · , xl−1]) where xl is the output of l-th layer fl
and [x1, · · · , xl−1] denotes a concatenation of the inputs. In U-Net, tensors from the encoder block
are concatenated with the tensors in the decoder block where they have the same size in spatial
dimensions. This was critical for achieving a high spatial resolution for semantic segmentation, a
class of tasks in Computer Vision to classify every pixel in an image among the predefined set of
types (semantics), because the geometrical features at each spatial resolution is otherwise lost via
pooling operation in the encoder block [223].

1st December, 2021

36 41. Machine Learning

Figure 41.6: Pictorial description of a RNN (on the left) which takes an input and produces
an output at every step with a hidden-to-hidden connection. The right diagram is unrolled over
discrete steps. The yellow box represents a cell: a set of operations unique to each architecture.

41.5.3.9 Recurrent neural networks
Recurrent Neural Networks (RNNs) [225] are a family of neural networks designed for sequential
data (e.g. time series). Consider sequential data where xt represents each step in a sequence with
t ∈ [1, n]. A typical RNN takes the following form:

ht = gh(ht−1, xt, θ) (41.49)

where ht and θ denote the hidden state of the system and parameters of f , the RNN model. The
term recurrent refers the nature of the model operating on the previous state of the system (and
hence the whole history). RNNs operate on three types of tasks:

• One-to-many takes a single input and generates a sequence (e.g. generates a sequence data,
such as a sentence or waveform, given a category).

• Many-to-one takes a sequence and generates an output (e.g. sequence-labeling).
• Many-to-many takes a sequence and generates a sequence where the length of input and

output sequence may be same (e.g. classification of individual element in a sequence) or
different (e.g. sequence to sequence mapping).

Figure 41.6 shows an example for a many-to-many task, where {xt}t=1:n, {yt}t=1:n, and {ht}t=0:n
denote the inputs, outputs, and hidden states respectively. A set of operations at each time step is
called a cell. A simple RNN cell may look like:

ht = gh(Wxt + V ht−1 + b)
yt = go(Uht)

(41.50)

where W ∈ Rdh×di , V ∈ Rdh×dh , U ∈ Rdo×dh are matrices gh and go represent functions. di, dh,
and do are the dimension of input, hidden state, and output. b ∈ Rdh is a bias term. An example
application is sequence-labeling where the goal is for yt to classify each input xt in the sequence.
In that case, one might use gh = tanh and go = softmax and use a loss function that averages
clasification accuracy over the sequence.

Variations in RNN architectures result from the design of cells (described below) and flow of
information across the cells. For instance, a bi-directional RNN (Figure 41.7 left) employs two
set of RNNs, one processing the sequence in the forward direction and the other in the backward
direction, and the hidden states from both directions are then combined to capture the context
from both parts of the sequence. An RNN encoder-decoder (Figure 41.7 right) use one RNN to
generate a context vector that encodes the whole input sequence, and use a separate RNN to
generate another sequence from the encoded context. This can be used for machine translation.

1st December, 2021

37 41. Machine Learning

Figure 41.7: Bi-directional RNN (left) provides contexts in the preceding and subsequent parts of
the input sequence. RNN encoder-decoder (right) can generate an output with a different sequence
length from an input. Each cell in the decoder may take a previously generated element, starting
from a special marker that signals the beginning of the sequence (BoS) and ending when the end
of sequence is generated.

41.5.3.10 LSTM and GRU
An RNN applies the same functions gh and go in Eq. 41.50 repeatedly for each element of the

sequence. This repeated component is similar to the shared weights for a convolutional filter in a
CNN.

A hyperbolic tangent (tanh) is traditionally a popular choice for gh as it regulates the magnitude
of the hidden states and prevents it from diverging. Yet, this simple model is challenging to train
for a long sequence of data [226,227]. This is partially due to the fact that tanh contributes to the
vanishing gradient problem and because repeated multiplication of the same weight matrices (i.e.
V and W in Eq. 41.50) can lead to gradients that can either explode or vanish (see Sec. 41.6.5).
Additionally, the way the signal accumulates means that changes early in the sequence have different
impact from changes late in the sequence.
Long Short-Term Memory (LSTM) [228] is a model designed to address the issue of vanishing
gradient for RNNs. In this model, a context is introduced as a way to enable the model to hold
long-term memory while the hidden states remain to hold short-term memory. The context ct and
hidden state ht at step t are computed as follows:

ct = ft
⊙

ct−1 + it
⊙

c̃t

ht = ot
⊙

ct
where

ft = σ
(
W fxt + V fht−1 + bf

)
it = σ

(
W ixt + V iht−1 + bi

)
ot = σ (W oxt + V oht−1 + bo)
c̃t = tanh (W cxt + V cht−1 + bc)

(41.51)

where σ and ⊙ denote logistic function and an element-wise (i.e. Hadamard) product and ft, it,
and ot are referred to as gates. Each gate outputs a value between 0 and 1, and is associated with
unique weights, W and V , and a bias b. One can see ct is a combination of the previous context
vector ct−1 and a new context vector c̃t. The forget gate ft controls which and how much of the past
context should be kept or forgotten. The input gate it controls how much of the present context
c̃t should propagate to the current state ct. The output gate ot controls which and how much of
the context vector should represent the present hidden state ht. From Figure 41.8, one can see

1st December, 2021

38 41. Machine Learning

Figure 41.8: LSTM (left) and GRU (right) are both gated neural network designed to address a
vanishing gradient problem for RNNs.

that the context vector ct evolves with a gated addition operation. As such, it can be seen as an
uninterrupted path for gradients to flow. This is similar to a residual connection (see ResNet in
Sec. 41.5.3.8), which enabled training of CNNs with thousands of layers.

Another gated model to solve a vanishing gradient problem is theGated Recurrent Unit (GRU) [182].
The GRU is similar to the LSTM with a few simplifications: the GRU merges the context vector
and the hidden states and combines three gates into two. As a result, it requires less computational
resources while retaining a similar level of performance for long sequences. The GRU operations
are defined as follows:

ht = zt
⊙

ht−1 + (1− zt)h̃t where
rt = σ (W rxt + V rht−1 + br)
zt = σ (W zxt + V zht−1 + bz)

h̃t = tanh
(
W hxt + V h

(
rt
⊙

ht−1
)

+ bh
) (41.52)

where rt and zt are referred to as reset and update gate. As one can see in Figure 41.6, the reset gate
in GRU performs the same task as the forget gate in LSTM by removing or reducing the elements
of its memory (i.e. the hidden state). The update gate zt determines the relative proportion of the
previous hidden state ht−1 and the new context h̃t to be mixed in producing the new hidden state.

In addition to sequential data, the LSTM and GRU units can be used for data that has a
tree-like structure. In this setting, the networks are often referred to as recursive neural networks
or TreeRNN and they have found applications in natural language processing and jet physics [153,
154,229–231].
41.5.3.11 Attention

Many tasks encountered in machine learning can be divided into subtasks. For example, classi-
fying each pixel of an image or element of a sequence, predicting a target for each node in a graph,
etc.. For each subtask the model may need to draw upon information from the entire input, but
some parts of the input will be more relevant than others. At some point, the model will need to

1st December, 2021

39 41. Machine Learning

form a representation for the input as context for the subtask at hand. A fixed length vector c
as a global context for this subtask is possible, but this approach scales poorly as the size of the
input and number of subtasks grow. Either the size of the global context must grow or it will not
have the capacity to represent all the relevant information, which would lead to a degredation in
performance.

The idea behind attention is intuitive: one still forms a representation for the entire input, but
different parts of the input are weighted differently according to the task at hand. By making
the weights a learnable component, the network can learn to attend to the relevant parts of the
input. A softmax function is a natural way to represent attention as it assigns a positive value
to each component of the input and sums to one. Then for the i-th task, one can simply form a
task-specific context ci by computing the weighted average of the hidden state representations hj
for each component of the input. Let αij be the weights assigned to the j-th input for the i-th task,
such that ∑j αij = 1. We can satisfy this naturally if for each i the αij are computed from the
logits βij using a softmax function that normalizes by summing over j. Putting these ingredients
together, we have the additive attention mechanism

ci =
n∑
j=1

αijhj where αij = softmax (βij) over j . (41.53)

As in the case of a multi-class classifier, the logits βij can be computed from a network component
with learnable parameters. For instance, in the case of a cell of an RNN encoder-decoder network
(see Fig. 41.7) that is decoding element i with an incoming input state si−1, the logits for the
attention mechanism could be computed as follows

βij = U tanh
(
Wsi−1 + W̃hj + bi

)
, (41.54)

where U , W , W̃ are the weights and b is the bias term of the model. Fig. 41.9 from Ref. [232]
illustrates the full attention mechanism. The idea was implemented by a model called RNNSearch
which made a breakthrough in machine translation by combining a bi-directional RNN with an
additive attention mechanism [233].

The attending RNN generates a
query describing what it wants
to focus on.

Each item is dot producted with the
query to produce a score, describing
how well it matches the query. The
scores are fed into a softmax to
create the attention distribution.

Figure 41.9: An illustration of the attention mechanism From Olah and Carter, “Attention and
Augmented Recurrent Neural Networks”. Lower boxes labeled A represent input elements in the
sequence and upper boxes labeled B indicate output elements. The left-most line originating from
the first B corresponds to the state si−1 in the text.

1st December, 2021

40 41. Machine Learning

Figure 41.10: Visualization of the attention weights in a sequence-to-sequence problem taken from
Olah & Carter, "Attention and Augmented Recurrent Neural Networks" The thickness of the lines
is proportional to the attention weights αij ..

We end this section by noting that the softmax αij can be used to visualize the influence of the
j-th input element on the i-th output eleement, which improves interpretability of the model. An
example of this from Ref. [232] is shown in Fig. 41.10.

41.5.3.12 Scaled dot-product attention
Shortly after the introduction of RNNSearch, the attention mechanism has been recognized as

a powerful tool. One such variant is scaled dot-product attention, which is most widely recognized
as the foundation of the Transformer architecture [234], which is described in more detail below.

In additive attention (Eq. 41.53) the hidden representations hj were combined through a
weighted average based on the coefficients αij , resulting in a task-specific context vector ci. In
the literature around scaled dot-product attention, multi-head attention, and transformers, the
hidden states that will be combined are referred to as values, and they are often arranged in a
matrix labeled V ∈ Rm×dv , where the m rows of the matrix correspond to individual hidden state
vectors of length dv. The αij can also be represented as a n×m matrix α resulting from applying
the softmax function to the n × m matrix β, normalized independently for each row. With this
notation, Eq. 41.53 could be rewritten as c = softmax(β)V , where the softmax is normalized per
row.

In scaled dot-product attention, the basic structure will be different, but instead of using an
non-linear network component to compute the logits β as in Eq. 41.54, the logits will be computed
by forming a dot product between a in incoming query and a key. The set of n query vectors
can be arranged into the matrix Q ∈ Rn×d and the set of d key vectors can be arranged into the
matrix (transpose) KT ∈ Rd×m. When the dot product between a particular query vector qi ∈ Rd
and key vector kj ∈ Rd is large, then the resulting logit βij and attention weight αij will be large.
One can interpret the keys as trying to detect certain types of queries and routing the attention
to the relevant value. Typically, the dot-product is scalled by a factor of 1/

√
d. The resulting

task-dependent context is ci = softmaxj(qi · kj/
√
d)vj , where softmaxj indicates that normalizing

sum runs over the index j. A common, though sometimes confusing, notation is simply

c = Attention (Q,K, V) = softmax
(
QKT

√
d

)
V , (41.55)

where c is a n×dv matrix organizing the n context vectors of length dv that are taylored summaries
of the input vector for each of the n tasks.

1st December, 2021

41 41. Machine Learning

41.5.3.13 Transformer and multi-head attention
The Transformer architecture is a powerful encoder-decoder model based on the scaled-dot

product attention mechanism. It was originally designed for sequential data like RNNSearch, and
subsequently used in other areas of research including computer vision. One advantage of scaled-
dot product attention compared to the approach used in RNNSearch (Eq. 41.54) is that computing
the logits βij (and thus the attention weights) does not involve any sequential processing. This
allows the models to better leverage parallelism of the hardware to train much more expressive
models than before. In place of the gated unites of an RNN that are key to avoiding the vanishing
gradient problem, the Transformer architecture employs a residual connections at every attention
module (i.e. the input tensor is added to the output as in Fig 41.5).

The second major ingredient in the Transformer architecture is the multi-head attention mech-
anism. A multi-head attention module executes multiple scaled dot-product attention in parallel.
The query Q, key K, and value V matrices in each scaled dot-product attention module is ob-
tained by applying a linear transformation (with learnable weights) to the common Q, K, and V
input matrices. Each of them can be considered as a different (albeit rotated) perspective to derive
attention.

For a sequence-to-sequence mapping task, the output of encoder is used to derive key K and
value V matrices for the multi-head attention module in the decoder. The decoder is then respon-
sible for mapping between the key-value features derived from the input (the encoder) and the
queries from the decoder (which is still executed sequentially) in order to produce the final decoded
output.

Finally, we note that the Transformer architecture does not just employ an attention mechanism
in the decoder. By employing attention in the encoder as well the model has more capacity to
“interpret” the input – a concept referred to as self-attention.

Models such as these have made breakthroughs in many areas of scientific and industrial re-
search [235].
41.5.3.14 Graph networks and geometric deep learning

Graphs are a powerful data structure for representing structure data. A graph consists of nodes
as elements and edges between between them. Graphs are sufficiently flexible to describe many
types of structured data including images and sequences. Graph-based neural networks can also
be seen as a generalization of many common types of machine learning models such as recurrent
networks, convolutional neural networks, etc. [219]. The term geometric deep learning refers to this
recent formulation that focuses largely on the symmetries of the data.

An earlier attempt to organize the variations on different flavors of graph-based neural networks
can be found in Ref. [236]. In their formalism a Graph Network may be represented as G(u, V, E)
where u represents an array of global features, V = {vi}i=1:Nv represents a set of Nv nodes with vi
as features for the i-th node (e.g. such as RGB channels if a node represents a pixel in image data),
and E = {(ek, rk, sk)}k=1:Ne represents a set of N e edges with ek as features for the k-th edge. An
edge may be (bi-)directional where rk and sk denotes the destination and origin nodes respectively.
The features of a graph may evolve with three update functions φ and and three aggregate functions
ρ:

e′k = φe(ek,vrk ,vsk ,u)
v′i = φv(ēi,vi,u)
u′ = φu(ē′, v̄′,u)

e′i = ρe→v(E′i) where E′i = {(e′k, rk, sk)}rk=i,k=1:Ne

ē′ = ρe→u(E′) where E′ = ∪iE′i = {(e′k, rk, sk)}k=1:Ne

v̄′ = ρv→u(V ′) where V ′ = {v′i}i=1:Nv

(41.56)

where e′, v′, and u′ denote the updated node, edge, and graph features. In Graph Networks,
three types of information are updated in the following order. The first step is φe to update every

1st December, 2021

42 41. Machine Learning

edge. The second step updates every node: for i-th node, compute ρe→v to aggregate updated
attributes from the edges with rk = i then compute φv to update the node attributes. The third
step updates the graph attributes through φu which takes the original state u, aggregated node
and edge attributes by ρv→u and ρe→u respectively.

Graph Neural Networks [237] (GNNs) are the class of neural networks that work on graph-
structured data. A direct analog in Computer Vision and physics is the point cloud data type,
which is an unordered set of points. Operations on point cloud need to be permutation invariant
(e.g. min, max, +, ·), and analysis of 3-dimensional physical object represented by point cloud need
to be rotation and translation invariant as in the case for an image. PointNet [238, 239], a GNN
that performs an object classification on point cloud of 3-dimensional positions, treats each point
as a node, applies MLPs as φv to update node features, and global max-pooling operation as ρv→u.
There is no explicit edge definition in PointNet (though the model applies affine transformation to
all points using Spatial Transformer Network [240], which could be considered as a separate graph
operation, to introduce rotation and translation invariance and to capture topological features).
Deep Sets [241] follows the same manner except φv takes the global entities u. This is same for
PointNet when performing point cloud segmentation: φv takes a step of simply concatenating u to
node entities to combine a local and global features. Dynamic Graph CNN [242] is a variant that
(re)define edges dynamically using attention mechanism: ρe→v aggregates k neighbor nodes where
the inter-node distance is defined as a Cartesian distance in the feature space. φv remains a MLP
and, while edges are defined, there is no associated entity. A similar technique is used in Non-Local
Neural Network [243] to efficiently propagate local feature information to points that may be far in
the 3D cartesian coordinate. Message Passing Neural Network [244] (MPNN) explicitly defines a
feature vector as edge entities. In MPNN, ρe→v performs element-wise sum of features and feed into
φe, explicitly passing features across nodes as the name suggests. While these are representative
models that are frequently used in particle physics applications [117,121,132,142,156,183,245,246],
it is only a tiny fraction of GNN models developed over the past decade.

Graph-based models are particularly interesting for science applications because they often
offer a natural way to organize the entities in the data and encode how those components should
interact each other. This particular type of inductive bias is referred to as relational inductive bias
in Ref. [237]. The structure of the graph is both an opportunity and a responsibility as one needs
to define the graph structure including the edges to define the mode. A naive approach may be
defining a fully-connected graph. However, for applications on hundreds of thousands of nodes (e.g.
high resolution 3D point cloud), this may require a prohibitive amount of memory and computation.
On the other hand, if the graph is too sparse, it may negatively impact the performance. One may
need to compare the model performance among differently constructed graphs and balance against
computational burden. Ideally the graph would be based on some knowledge of the interactions,
but in the absence of such knowledge, popular graph construction methods include fully-connected,
k−Nearest Neighbors, a Delaunay graph, and Minimum Spanning Tree.

Classification and regression tasks for graphs can be formulated such that the prediction is
made for the entire graph or its individual nodes or edges. Graph-level prediction is like classifying
an entire image, while node-level prediction is like semantic segmentation where individual pixels
are classified. For clustering of points, GNNs can approximate a transformation function for nodes
into the latent space where an optimal clustering of points can be performed. Alternatively, one
can formulate clustering as an edge classification task. A comprehensive review on particle physics
applications have been made available recently [247].

1st December, 2021

43 41. Machine Learning

41.5.4 Deep generative models
Deep generative models are powerful machine learning models that can learn complex, high-

dimensional distributions and generate samples from them. Because of their inherently probabilistic
formulation, generative models are rapidly becoming an indispensable tool for scientific data anal-
ysis in a range of domains. Generative models can be contrasted against discriminative models
that are primarily used for supervised learning tasks. Roughly, discriminative models are used for
prediction and f(x) provides a point estimate of the target y, and they are more closely connected
to function approximation. In contrast, generative models describe the data distribution p(x) (or
the joint data distribuiton p(x, y) in a supervised setting). An enlightening discussion of these two
approaches can be found in Ref. [10].

There are a number of different types of deep generative models that have various pros and
cons as they do not all have the same capabilities. We will focus on Variational Auto-Encoders
(VAEs) [248, 249] , Generative Adversarial Networks (GANs) [250, 251], and Normalizing Flows
(NFs) [252–256], though there other approaches have been explored in this quickly developing area
of research. Consider these three distinct types of functionality:

• generation: ability to sample or “generate” a data point xi ∼ p(x).
• likelihood for generated data: ability to evaluate the probability density (likelihood) p(xi)

for a data point xi sampled from the model xi ∼ p(x).
• likelihood for arbitrary data: ability to evaluate the probability density p(xi) for an

arbitrary data point xi ∈ X .
Each of the models above can be used for generation; however, only normalizing flows provide
all three capabilities. For reasons that we will describe below, GANs and VAEs do not provide a
tractable likelihood function, and they are sometimes referred to as implicit models. This establishes
a connection to simulation-based inference where most scientific simulators are also implicit models
with an intractable likelihood. Because normalizing flows have a tractable likelihood, they can be
trained via maximum likelihood (Eq. 41.18) as described in Sec. 41.3.2.1. GANs and VAEs, on the
other hand, need to employ some other loss function to be trained. In the case of VAEs, training
is based on the ELBO used in variational inference (see Sec. 41.3.1.3 and the discussion around
the reverse KL divergence below Eq. 41.16). While GANs are also implicit models they data they
can generate is typically restricted to a lower-dimensional manifoldM⊂ X , meaning that almost
all real training dataset doesn’t “live on” the subspace of possibilities that the model can produce.
In this case, the liklelihood is for almost all data is zero, and so even ELBO-based training will
not work. The breakthrough idea introduced in Ref. [250] was to use adversarial training where a
classifier would be used to quantify how different the data generated from the model is from the
data from the target distribution.

VAEs, GANs, and normalizing flows introduce a mapping g(z, θ) from a base random variable
z to the space of the data X . The map g(z, θ) is typically implemented with a neural network. The
random variable z is sampled from some known base distribution p(z) that is both easy to sample
and has a density that is easy to evaluate. Typically, the base distribution is a multivariate normal.

In the literature on GANs and normalizing flows, this base random variable is often referred
to as a latent variable and p(z) is often referred to as a prior distribution, but this may cause
confusion as the relationship between z and the observed x is deterministic. Typically, one would
reserve the term latent variable for situations where one must marginalize (integrate) over z to
obtain the marginal likelihood as in p(x) =

∫
p(x, z)dz. In this integral would involve a delta

function imposing the deterministic relationship x = g(z, θ). A more natural interpretation of the
relationship between x and z is through the change of variables formula, which is the essence of
normalizing flows.

1st December, 2021

44 41. Machine Learning

In the case of VAEs, the one additionally adds some normally-distributed (Gaussian) random
noise ε to the output so that x = g(z, θ) + ε. In this case, x and z are not deterministically related
and z is a legitimate latent variable in the model and p(z) can be interpreted as the prior on that
latent variable. In this case, the model can populate the full space of the data. Unfortunately, the
marginal likelihood p(x) =

∫
p(x, z)dz involves an intractable integral, thus maximum likelihood

training is infeasible. However, the likelihood term p(x|z) is tractable (i.e. the Gaussian noise), so
training with the ELBO is possible.

Note that the dimensionality of of z need not be the same as that of x. If z ∈ Rq and X = Rd
with q < d, then all points g(z, θ) will lie on a d-dimensional surface in Rd. In the case of a VAE,
the Gaussian noise ε means that the generted data x will be distributed in a thin region around
the surface defined by g(z, θ). The presence of a bottleneck (i.e. q < d) leads to advantages and
disadvantages. The disadvantages for GANs is that the likelihood assigned to almost all real world
data (i.e. data not generated by the model) will be zero, so training is more difficult and many
tasks in probabilistic inference won’t be applicable. However, often real world data is also effectively
described by a low-dimensional subspace in the full space of the data – random images look like
noise, while natural images are in some sense special. For this reason, images produced by GANs
for instance often have better visual quality than those produced by other techniques. This points
to the ambiguity encountered in quantifying how close two distributions are, and also motivates
the use of distance measures such as the Earth Movers distance or Wasserstein distance [257,258].
Conversely, the lack of a bottleneck (i.e. q = d) leads to very large models and scalability issues
when the data is high dimensional.

Recent work has also focused on combining ideas from VAEs, GANs, and normalizing flows so
that the generative model does involve a bottleneck but can still provide tractable likelihoods for
density estimation restricted to that manifold [44,46,252,259,260]. Some of these models can also
be used in the context of anomaly detection and out of distribution detection by identifying data
that is off the manifold.

The parametrization of the mapping (the architecture of the neural network) should match
the structure of the data and be expressive enough. For problems with explicit symmetries it
is beneficial to include them into the architecture of the network explicitly, which restricts the
allowed space of the models and matches their inductive bias (implicit regularization inherently
built into the choice of architecture of the network) to the data. Different architectures have been
proposed [255,261–263], and to achieve the best performance on a new dataset one needs extensive
hyperparameter explorations [264].

41.5.4.1 Variational auto-encoders
The auto-encoder was described in Sec. 41.3.2.2 as model for compression and representation

learning. The model is f = g ◦ e : X → X , where e : X → Z is referred to as the encoder
and g : Z → X is referred to as the generator or decoder . The standard auto-encoder is not a
probabilistic model, but additional probabilitic structure can be added.

One approach is VAE mentioned above [248, 249]. By equipping the latent space with a prior
distribution p(z), the decoder of the auto-encoder g(z, θ) implies a distribution on a manifold in
the output space X . VAEs additionally add some normally-distributed (Gaussian) random noise ε
to the output so that x = g(z, θ) + ε. This implies that pθ(x|z) is a tractable quantity, and it is
interpreted as the likelihood in this context.

In a VAE one also elevates the encoder to have a probabilistic form. Instead of encoding
z = e(x) in a deterministic way, one seeks a distribution over z given x. A natural target for
the probabilistic encoder would be to probabilistically invert the decoder. This inverse problem is

1st December, 2021

45 41. Machine Learning

solved by the posterior distribution p(z|x) via Bayes theorem

p(z|x) = p(x|z)p(z)
p(x) . (41.57)

While the likleihood and the prior may both be tractable, the normalizing constant p(x) =∫
p(x, z)dz involves an intractable integral (the same intractable integral that makes maximum

likelihood training of the VAE infeasible).
One approach to Bayesian inference in these settings is variational inference (VI). In VI one

approximates the posterior with some parametric family qφ(z|x) in a parametric form, and then
uses optimization to optimize the ELBO with respect to its parameters φ.

ELBO = Eq(z)log p(x|z)−DKL[q(z)||p(z)] ≤ logEq(z)

[
p(x, z)
q(z)

]
= log p(x) , (41.58)

where we used Jensen’s inequality for concave functions (log) and the reverse Kullback-Leibler (KL)
divergence term is

DKL[q(z)||p(z)] = Eq(z)[log q(z)− log p(z)] ≥ 0. (41.59)

In a VAE, the variational model for the posterior qφ(z|x) is often assumed to be an uncorrelated
Gaussian (this is often called mean field approximation) defined by the mean µ and variance Σ.
Instead of optimizing the mean and variance independently for each x, VAEs use neural networks
to predict the mean µφ(x) and the variance Σφ(x). This is called amortized inference, since after an
up-front training cost the approximate posterior qφ(z|x) can be evaluated effeciently with a single
forward pass of the neural network. Note the standard auto-enocder is recovered if one only used
the mean µφ(x) for the encoder and did not add noise ε to the decoder.

Both the probabilistic encoder qφ(z|x) and the probabilistic decoder pθ(x|z) are trained jointly
by optimizing the ELBO. Unlike the standard auto-encoder, which only minimizes the reconstruc-
tion error, ELBO optimization of Eq. 41.58 has a trade-off between minimizing the reconstruction
error in the first term (averaged over the approximate posterior q(z)), which encourages high qual-
ity reconstructions, and minimizing the KL divergence term, which forces the posterior q(z) to be
as close to the chosen prior p(z), and thus controls the sample quality by matching the aggregate
posterior with a chosen prior distribution [265]. This term regularizes the VAE latent space, such
that every sample drawn from the prior p(z) correspond to a valid sample. Successful VAE training
requires to find a delicate balance between the two contributing terms to the ELBO. Whether the
VAE training process succeeds in striking this balance depends on a number of factors, including
the network architectures, the chosen prior and the class of allowed posterior distributions. Once
trained, the VAE can be used as a generative model by sampling from the prior zi ∼ p(z) and then
decoding according to pθ(x|z) = g(z, θ) + ε.

VAEs allow for expressive architectures, enjoy the benefits of regularization through data com-
pression and have a firm theoretical foundation. Compared to GANs [250], VAEs are of particular
interest to the scientific community as they provide a lower bound to the marginal likelihood (albeit
potentially with a large gap) and a posterior distribution for the latent variables.

It is also interesting to consider a special case of the auto-encoder and VAE where the encoder
and decoder are restricted to be linear transformations, which is effectively PCA. In PCA the
(linear) decoder can be written g(z) = Oz, where O is a matrix. As in the case of the auto-encoder,
PCA is not a probabilitic model, but probabilistic structure can be added. Probabilistic PCA [266]
assumes that the latent variables follow a Gaussian distribution with mean zero and covariance Λ,
where Λ is a diagonal matrix with the rank-ordered eigenvalues λi along its diagonal. The true
distribution of the PCA components may be non-Gaussian, but a Gaussian is the maximum entropy

1st December, 2021

46 41. Machine Learning

approximation given their first two moments. Note that in Probabilistic PCA these moments are
measured on training dataset (when finding the principal components).

One can generalize Probabilistic PCA to use non-linear encoder and decoder as in an auto-
encoder. A Gaussian prior is a poor ansatz for the latent space distribution of data proceed by
an auto-encoder. Instead one can learn the density of the training samples in latent space using a
normalizing flow. This model was introduced in M-flows [46] and in Probabilistic Auto-Encoder
(PAE) [44], which achieves similar performance to a VAE in terms of sample quality without explicit
ELBO optimization. In all these cases the dimensionality of the latent space is a hyperparameter to
be chosen or optimized by the user. Unlike a standard VAE, these models do not add noise to the
decoded output, thus the data is strictly restricted to the manifold defined by the decoder g(z, θ).
However, unlike a GAN there is a well defined way to take an arbitrary data point x, project it
onto the manifold, and calculate the density of the data point projected onto the manifold. Thus
these models can also be used in the context of anomaly detection and out of distribution detection
by identifying data that is off the manifold.
41.5.4.2 Generative adversarial networks

GANs [250] also typically choose a low dimensional latent space z with a known prior distri-
bution p(z), typically a normal (Gaussian) distribution with zero mean and unit variance. GANs
do not add noise to the output g(z, θ), so the likelihood p(x|z) (and marginal likleihood p(x)) for
almost all of the data space is 0, which precludes training by maximum likelihood and the ELBO.
Instead of training on ELBO, GANs train on a dissimilarity measure defined implicitly by a dis-
criminator D(x) (also referred to as the critic). Calculating the dissimilarity often involves it’s own
learning problem (i.e. adversarial training of the discriminator).

The training is usually framed as a mini-max game

min
g

max
D
LGAN = min

g
max
D
{Ex∼p(x) logD(x) + Ez∼p(z) log[1−D[g(z)]]}. (41.60)

The goal of the discriminator is to distinguish between true and generated data, hence we want to
maximize this loss with respect to D, assigning 1 to true data and 0 to generated data. The goal
of generator is to fool the discriminator such that it cannot distinguish between true and generated
data, hence we want to minimize this loss with respect to g at fixed D. This can be viewed as a
game theoretical setup in a zero sum game between generator and distriminator.

Instead of this game theory interpretation we can view the internal objective maxD LGAN as
an implicit loss function that measures the dissimilarity between the target and generated distri-
butions. The loss of Eq. 41.60 corresponds to the Jensen-Shannon (JS) divergence, which is a
symmetrized form of KL divergence. However, JS divergence is hard to directly work with, and
the adversarial training could bring many problems such as vanishing gradient, mode collapse (ten-
dency of generator to cluster the samples around the training samples, with holes between them)
and non-convergence [257, 258]. One of the core issues is that the distribution generated by the
GAN is restricted to a manifold and the KL divergence isn’t well defined in this case (because p is
not absolutely continuous with respect to q). To address these issues Wasserstein GANs train on

min
g

max
D
LWGAN = min

g
max
D
{Ex∼p(x)D(x)− Ez∼p(z)D[g(z)]}. (41.61)

Here again the goal of discriminator is to make the loss as large as possible between the true data
and the generated data, while the goal of generator is to make it as small as possible, so that the
discriminator cannot distinguish between the two. There is no requirement for D(x) to be between
0 and 1, which helps with the above mentioned problems of JS divergence. Instead, this is replaced
with a requirement that D(x) is 1-Lipshitz, i.e. the absolute value of the norm of the gradient of
the discriminator output with respect to the input has to be less or equal to 1.

1st December, 2021

47 41. Machine Learning

Eq. 41.61 can be interpreted as the dual form of the 1-Wasserstein distance between the true
and generated distribution [267]. Wasserstein distances are a measure of dissimilarity between two
distributions used in the context of Optimal Transport, mathematical theory of how to optimally
transport one distribution to another. Since the transport distance increases with the separation
between the two distributions when they are non-overlapping, there is no gradient collapse that
plagues other measures. In its primal form p-Wasserstein distance, p ∈ [1,∞), between two prob-

ability distributions p1 and p2, is defined as Wp(p1, p2) = infγ∈Π(p1,p2)
(
E(x,y)∼γ [|x− y|p]

) 1
p , where

Π(p1, p2) is the set of all possible joint distributions γ(x, y) with marginalized distributions p1
and p2. In 1D the Wasserstein distance has a closed form solution via Cumulative Distribution
Functions (CDFs), but this evaluation is intractable in high dimensions.

In the dual form of 1-Wasserstein distance, one instead maximizes Eq. 41.61 over all possible
functions D(x) that are 1-Lipschitz. One way to implement this is through weight clipping of the
parameters of discriminator network, but a simpler solution is to add a gradient norm penalty term
explicitly to the loss function [268].

Because of the discriminative nature of the dissimilarity measure defined in data space, GANs
often generate more realistic samples than VAE or normalizing flows in high dimensions such as
natural images. However, GANs do not provide an encoder from data to latent space, do not
provide a tractable likelihood p(x).
41.5.4.3 Normalizing flows, autoregressive models, and score based models

Normalizing Flows (NF) provide a powerful framework for density estimation and sampling [252–
256,269]. These models map the data x to latent variables z through a sequence of invertible trans-
formations f = f1 ◦ f2 ◦ · · · ◦ fn, such that z = f(x) or x = g(z) = f−1(x). As in the VAE and
GAN, z is modelled as a random number with a simple base distribution pZ(z), which is typically
chosen to be a standard normal (Gaussian) distribution. The probability density of the model be
evaluated using the change of variables formula:

pX(x) = pZ(f(x))
∣∣∣∣det

(
∂f(x)
∂x

)∣∣∣∣ = pZ(f(x))
n∏
l=1

∣∣∣∣det
(
∂fl(x)
∂x

)∣∣∣∣ , (41.62)

where we have added subscripts to pX(x) and pZ(z) for clarity. The Jacobian determinant det(∂fl(x)
∂x)

must be efficient to compute for density estimation to be practical, and the transformation fl should
be easy to invert for sampling. In contrast to VAE and GANs, standard normalizing flows preserve
the dimensionality of the data space as they are invertible (though there are normalizing flows
that are defined on lower dimensional manifolds embeded in the data space [44, 46, 252, 259, 260]).
As such, they do not have the problems of GANs and VAEs they can be trained via maximum
likelihood (Eq. 41.18) as described in Sec. 41.3.2.1.

There are several popular architectures of NFs. A method used by NICE, RealNVP and Glow
[253–255] is to split the space into two disjoint sets z1 and z2, and then use an identity forward
map z → x for x1, x1 = z1, and an affine transformation for x2 of the form

x2 = exp(s(z1))� z2 +m(z1), (41.63)

where � is elementwise product and m(z1), s(z1) are neural networks. The Jacobian of this map
is lower triangular, and its determinant is simply the product of elements along the diagonal,
which is tractable, as is the inverse of the transformation. At the next layer one then performs a
different split of dimensions into z1 and z2. The affine transformation can be further generalized
to a nonlinear form using rational splines [270].

1st December, 2021

48 41. Machine Learning

One can interpret the sequence of invertible transformations f1 ◦ f2 ◦ · · · ◦ fn as n discrete time
steps in a continuous flow. In particular, one can think of a continuous-time flow described by an
ordinary differential equation (ODE) and then interpret the discrete time steps as the result of a
numerical integration of that ODE. This is the approach taken by the Ffjord algorithm [271] and
other variants.

A different approach creating a deep generative model with a tractable likelihood is to model
p(x) autoregressively as

p(x) =
n∏
i=1

p(xi|x1, x2, . . . , xi−1) . (41.64)

This form describes each new dimension conditionally on all previous dimensions. It can model a
general likelihood p(x) as a sequence of conditional 1d distributions, whose conditional dependence
on the parameters x1, x2, . . . , xi−1 can be modeled with neural networks. If x is a time series this
form imposes a causal structure where xi depends on all previous times xj , j < i. WaveNet [272]
and PixelCNN [273]) are two well known examples. Sampling from an autoregressive model is
sequential, and can be slow in high dimensions. Inverse autoregressive flow reverses this process
and makes sampling fast, but the likelihood evaluation is slow. Some normalizing flows have
autoregressive coupling layers, such as Masked Autoregressive Flow (MAF) [269].

All of the methods above use maximum likelihood training of likelihood p(x) against network
parameters, so the training is to minimize KL divergence between the data distribution and a
Gaussian in latent space. This can be overly sensitive to small variance directions that dominate
the likelihood, without being sensitive to the global structure of the data. An alternative is to use
Optimal Transport Wasserstein distance between the density of the generated samples and the data,
which can be evaluated either in data space or in latent space. As Wasserstein distance is difficult
to evaluate in high dimensions, one can instead use slices, 1d projections of the data along different
directions in high dimensional space, to build the flow [45]. Along each slice direction one obtains
the 1d marginal distribution that can be mapped to a Normal distribution using a cumulative
distribution function method. In 1d the Jacobian and the inverse transformation are tractable.
The projection directions are chosen to maximize the sliced 1d Wasserstein distance between the
data and the distribution generated by the samples, or between the inverse flow from the data to the
latent space and the target distribution (typically chosen as the Normal distribution). Because this
training is less sensitive to small variance directions than maximum likelihood training it achieves
better results on anomaly detection tasks [45].

One can reduce the architectural restrictions imposed by normalizing flows or autoregressive
models by modeling the “score” ∇x log p(x) instead of p(x). Note this usage of the term “score” is
non-standard and goes back to Ref. [274]; the standard use of the term score is theta of Eq. 41.26.
Score-based training avoids the normalization requirement. Score based models learn gradients of
log probability density functions on a large number of noise-perturbed data distributions, and then
generate samples by Langevin-type sampling. The resulting generative models, called score-based
generative models [275] or diffusion probabilistic models [276], have several advantages over existing
model families. They achieve GAN-level sample quality without adversarial training, and enable
exact log-likelihood computation through their connection to continuous-time flows, which can be
represented as a probability flow ordinary differential equation [276]. The main advantage is that
the distribution p(x) can be specified solely by its gradient, which can subsequently be sampled
from using Langevin dynamics. This is similar to the gradient based Monte Carlo Markov Chain
methods (such as Langevin or Hamiltonian Monte Carlo) that sample from Bayesian posteriors
without directly estimating the normalizing constant. This in turn enables more flexible model
architectures than what can be used in normalizing flows or autoregressive models.

1st December, 2021

49 41. Machine Learning

We end by noting that normalizing flows, autoregressive models, and other deep generative
models that provide a tractable likelihood are incredibly powerful tools for simulation-based infer-
ence. They can provide surrogate models trained from large simulated datasets when the simulators
have intractable likelihood functions, which is usually the case. As described in Sec. 41.3.5, one
would like to work with models that can provide conditional density estimation in order to model
either the likelihood p(x|θ) or the posterior p(θ|x) [56, 57]. These techniques are being actively
explored and applied to a number of scientific problems.
41.6 Learning algorithms
41.6.1 Gradient-based optimization

Given a parameterized model f(x, θ) and a loss function L(x, θ), where x and θ denotes data
and model parameters, one way to optimize θ is to first apply an appropriate initialization, θt=0
(e.g. Sec. 41.6.7 for neural networks), and perform an iterative update:

θt = θt−1 − λ∇θL(x, θ), (41.65)

where λ is a small, real valued hyperparameter called learning rate. To see how this works, define
δθ ≡ θt − θt−1 and consider δ(∇θL(x, θ)):

δ (∇θL(x, θ)) ≈ δθ · ∇θL(x, θ) = −λ|∇θL(x, θ)|2 (41.66)

which would monotonically decrease the loss function, and locally move the parameter values in
the desired direction of loss function minimization. This algorithm is called Gradient Descent . We
note that λ needs to be sufficiently small for the approximation to hold. When λ is too large, this
can be a cause of a gradient explosion discussed in Sec. 41.6.7.
41.6.2 Stochastic gradient descent

Stochastic Gradient Descent (SGD) follows GD but replaces the exact gradient term ∇θL(x, θ)
with a stochastic approximation, where we subsample the data in the loss function using N samples,
where N < n,

∇θEp̂(x)L ≈
1
N

N∑
i

∇θLi, (41.67)

where Li is the loss function for data sample i. It should be noted that N needs to be randomly
and independently sampled for the approximation to hold. Implementation of SGD follows three
steps: take new samples of size N , approximate the gradient, then update the parameters θ.

In the case of optimizing the loss using a static database (i.e. one cannot take new N samples for
every update), mini-batch learning is often employed. This replaces the first step with a randomly
sampled batch of data, which is a subset of all the samples in the database. In this case, however,
since a batch of data used for each parameter update is not entirely independent, a model may
overfit. In practice, a part of the whole dataset is reserved as a validation sample, and the model
performance is carefully monitored during the optimization process to avoid overfitting via an early
stopping criterion (see Sec. 41.6.6 and Fig. 41.11).

SGD with slowly decreasing learning rate can be shown to converge to a local minimum almost
surely under mild conditions, and to a global minimum for unimodal loss functions. SGD may
also prevent getting stuck in shallow local minima of the loss function, thereby reaching a better
local minimum for multi-modal loss functions. The noise in SGD with a constant learning rate
can be viewed as a form of Langevin dynamics, which under proper conditions on the learning rate
and mini-batch size converges to the stationary posterior distribution of the weights [277]. Thus
SGD at a constant learning rate can be viewed as a sampler bouncing around and exploring the

1st December, 2021

50 41. Machine Learning

posterior surface for better solutions, descending onto the best found solution as the learning rate
is decreased, a process related to temperature annealing in global optimization.

Another advantage of SGD is simply the computational cost: rather than evaluating the loss
over all the data samples at each update, we use a small subset of data instead at each update.
Furthermore, mini-batching can take advantage of vectorization libraries and GPU architectures.
Large batch training requires specialized methods of training, such as Layer-wise Adaptivee Rate
Scaling (LARS).
41.6.3 Optimization algorithms

GD and SGD are the basic building blocks for more advanced optimization algorithms. One
can improve the convergence rate of gradient based optimization by considering the learning rate
λ to depend on individual θi. Second order algorithms such as Newton’s method take into account
second order derivatives (Hessian) to find the minimum, and give an exact solution in a single
update when the loss is quadratic around the peak. However, this requires a matrix inversion
of the Hessian, which is exceedingly expensive in ML applications, where the number of network
parameters is very large. As a consequence, second order optimization is rarely used in ML.

There are several improvements to the basic SGD even in the absence of Hessian information.
Momentum based optimization takes a physics perspective of a viscous fluid in an external potential,
where one updates current velocity with the potential gradient (force), followed by an update in
position based on velocity. This approach therefore uses previous gradients in addition to the
current one to compute a running average of the gradient, with a forgetting factor that controls
how far back the averaging goes. This helps move faster towards the minimum in ravines, where
gradient descent is usually inefficient due to the high condition number of the Hessian.

One way to make the learning rate dependent on θi is to consider the gradient norm squared
(∇θiL)2. RMSprop learns its running average and then reduces the learning rate in directions with a
large average gradient norm squared, thereby reducing the oscillations along that direction. ADAM
(Adaptive Moment Estimation) combines the momentum and gradient norm ideas, computing
running averages of both the gradient and the gradient norm squared, each with its own forgetting
factor [278].
41.6.4 Automatic differentiation and back propagation

In practice, f(x, θ) might take a complex form and may include a large set of parameters.
The term ∇θL = ∇θL(f(x, θ)) requires computing partial derivatives with respect to individual
parameter θi. If f is a composite model (i.e. f = fn(fn−1(· · · , θn−1), θn)), and if all of fi:1,n are
differentiable, a chain rule can be applied:

∇θiL = ∂L(f(x, θ))
∂θi

= ∂L
∂xn

· ∂xn
∂xn−1

· · · ∂xi
∂θi

(41.68)

where xn denotes the output of n-th composite function fn. In order to compute ∇θiL for fi, it
needs computation of a gradient at all preceeding (or subsequent if seen in the forward context)
functions. As the gradients accumulate across differentiable functions in the reverse order of the
model composition, this technique is called back propagation [225]. An example of f that satisfies
conditions to apply back propagation is a neural network, which consists of repeating blocks of a
(differentiable) activation function and an affine transformation.

When the model f(x, θ) is implemented as a computer program in practice, automatic differ-
entiation (AD), also called algorithmic differentiation, is used to compute the derivatives. AD
exploits the fact that any computer program consists of a sequence of elementary arithmetic opera-
tions (i.e. addition, subtraction, multiplication, division) and functions (e.g. log, exp, sin, cos) and
apply chain rules to compute the target derivative. AD has advantages over traditional approaches

1st December, 2021

51 41. Machine Learning

including symbolic and numerical differentiation. The symbolic differentiation faces a serious dif-
ficulty of converting a program into a single expression, and the numerical differentiation suffers
from round-off errors. Finally, both methods scale poorly in speed of computation for calculating
partial derivatives with a large number of inputs. AD delivers much faster speed and does not
suffer from increasing errors for calculating higher derivatives.

There are two modes of AD: the forward and backward mode. Consider a composite func-
tion f(x, θ) = fn(fn−1(· · · f1(x, θ1) · · ·), θn−1), θn). The forward mode applies the chain rule in the
same order of the forward evaluation of f by computing ∂f1/∂x first, then ∂f2/∂f1, and continue to
∂fn/∂fn−1. The backward mode traverses the reverse direction: starting from the last (outer-most)
function ∂fn/∂fn−1, next ∂fn−1/∂fn−2, and continue to ∂f1/∂x. Therefore, the back propagation
of gradients can be implemented using the backward AD, in which the target variable to be differ-
entiated is fixed and the derivative is computed with respect to each sub-expression recursively as
shown in Eq. 41.68. The forward mode is simpler to implement as the order of gradient calculation
follows the order of composite functions to be executed. The reverse mode typically requires less
amount of computation than the forward mode, but more memory is required to store intermediate
function output values to calculate derivatives efficiently. Another consideration is the mapping of
dimensionality f : Rk → R` as it concerns the number of variables to sweep from each end. The
forward mode is efficient when k << ` while the reverse mode takes an advantage if ` << k. For
instance, in the case of an image classification where (k, `) = (pixel count, 1), the reverse AD is
more efficient.
41.6.5 The vanishing and exploding gradient problems

Gradient based optimization crucially depends on the size of gradient with respect to each
model parameter. If the magnitude of gradient is too large with respect to the distance to an
optimal parameter value, it may repeatedly overshoot the target and cause an oscillation preventing
convergence. If the gradient is too small, it may take an impractically long time to converge. As
shown in Eq. 41.68, the gradient of i-th function fi is a product of gradients from the subsequent
functions. If those gradients are too large or too small, the magnitude can can either increase or
decrease exponentially in the number of layers. These are called exploding and vanishing gradient
problem respectively.

Modern deep neural networks consist with many composite functions (i.e. layers) and are
particularly prone to this effect. Let us consider a simple RNN. From Eq. 41.50, we can write the
back-propagating gradient:

∂ht
∂ht−1

= diagonal
(
f ′ (Wxt + V ht−1 + b1)

)
W (41.69)

where f ′ denotes the derivative of an activation function. The gradient of the contribution to the
loss Li from the i-th element in the sequence with respect to the j-th hidden state hj is therefore:

∂Li
∂hj

= ∂Li
∂hi

V i−j ∏
j<t≤i

diagonal
(
f ′ (Wxt + V ht−1 + b1)

)
(41.70)

where we can see that V contributes multiplicatively with i− j powers when i − j > 1. This
example is explored in depth for recurrent models [226, 227] but is common for all types of deep
neural networks.

In practice, one may explicitly inspect the magnitude of gradients propagating across layers to
ensure an effective optimization. One way to mitigate an exploding gradient is to set the maximum
gradient value δmax as a model hyperparameter and clip any larger gradients δ where it appears in

1st December, 2021

52 41. Machine Learning

Figure 41.11: An example instance of overfitting. The training loss (vertical axis) shown in blue
decreasing over iterations (horizontal axis) while the loss values evaluated on test samples shown
in orange start to increase at around 26,000 iterations as indicated by the vertical line.

the back propagation:

δ = δmax
‖δ‖

δif‖δ‖ > δmax. (41.71)

This is called gradient clipping [227].
Alternatively, there are many architecture designs that are motivated by the vanishing and

exploding gradient problem or which aim to help propagate gradients across many layers. These
considerations drove the design of gated models like the LSTM and GRU for sequential data and also
motivated the ReLU non-linearity. Other example architectural designs or components motivated
by these considerations include identity mapping and skip connections used in ResNet, U-Net, and
DenseNet, which allow gradients to flow across many layers.

Other factors contributing to vanishing and exploding gradient include initialization of model
parameters and normalization of input data. These factors contribute in keeping the magnitude
of activation, which also concerns the magnitude of gradient, within a reasonable range. A rec-
ommended practice for a gradient-based optimization of a neural network is to maintain the input
values centered around zero and a similar level of covariance across the inputs (and the outputs
that are the inputs to the next layer) [279]. These factors are discussed in the following.
41.6.6 Early stopping

Early stopping is a form of regularization used to avoid overfitting when an iterative method,
such as gradient descent, is used as a learning algorithm. Imagine a plot of the training loss and
test loss as a function of iterations (i.e. parameter updates). As learning proceeds, the training
loss will generally decrease. However, the test loss will often decrease initially and then start to
increase, which is the classic sign of overfitting as shown in Fig. 41.11. The basic idea of early
stopping is simply to stop training before overfitting takes place. In some approaches to early
stopping theoretical analysis of the learning problem provides a prescription for when to stop the

1st December, 2021

53 41. Machine Learning

training [280]; however, the most straight forward approaches use a held-out validation dataset to
monitor the generalization performance [281].
41.6.7 Initialization of model parameters

An improper initialization can slow down the optimization process or even result in a loss of
convergence. While b(l) is typically initialized to zero, W (l) values need to be stochastic to avoid
identical updates during optimization. One way is to sample W (l) from a zero-centered Gaussian
distribution with a small variance (e.g. 0.01) [282]. However, this method does not guarantee
the same variance in the input to each layer, which depends on the size of the input layer, and
makes it difficult to train a deep neural network [220]. The Xavier initialization takes this into
account and sets the variance of a Gaussian distribution to be σ2 = 1/d(l−1) assuming a symmetric
activation function around zero, such as a logistic function or hyperbolic tangent [283]. The He
initialization uses the variance σ2 = 0.5/d(l−1), and is a simple extension of Xavier initialization
for leaky, parametric, and standard ReLU activation [208].
41.6.8 Input normalization

Input data to a neural network is often pre-processed for the same goals discussed previously:
values are shift to have the mean of zero and scaled to keep a similar covariance across features.
Furthermore, a data may be transformed using techniques including PCA and whitening (sphering)
to keep input features independent and uncorrelated from each other [279].
41.6.9 Batch normalization

Even with careful normalization of the input data and initialization of model parameters, the
mean and covariance of the data representations in hidden layers will evolve during training and may
pose challenges for learning for downstream layers. This is called an internal covariate shift [284]
and may cause negative effects to an optimization process. Accordingly, techniques to explicitly
normalize features in between hidden layers are often employed for a deep neural network. One of
them is Batch Normalization, which shifts and scales the input to a hidden layer:

ũ(l) = γ
u(l) − µB√
σ2
B + ε

+ β (41.72)

where u(l) and ũ(l) refer to the raw and normalized input to the l-th layer, µB and σB represent
the mean and mean-squared-error of u(l) calculated using a batch of input data used to update
the network parameters. γ and β are part of model parameters that are updated during the
optimization. After optimization is complete, these parameters are fixed for model evaluation
during production. ε is a small, fixed constant value to ensure numerical stability. While it is
popular (especially in Computer Vision), a downside of BN is its dependency on the batch size.
In situations where the batch size is limited to be a small number (e.g. memory limitation for a
large data or a model), the performance using BN could degrade since β and γ values may not be
generalized for the dataset during training.

There are several variants to batch normalization with considerations on how to group a subset
of values in ul. For instance, an image naturally has three groupings: a set of pixels across spatial
axis, features within one pixel (i.e. image channels), alongside with a grouping across multiple
images (i.e. batch). Different groupings have been studied and found and some are found effective
to particular type of applications: Layer Normalization groups values along the channel and spatial
dimensions [285], Instance Normalization groups along the spatial dimension but not along the
batch nor channel [286], and Group Normalization is similar to Layer Normalization but forms
multiple sub-groups of channels [287]. These variants does not apply normalization across samples
within a batch, and thus agnostic to the batch size.

1st December, 2021

54 41. Machine Learning

41.6.10 Transfer learning: pre-training and fine-tuning
Transfer learning is a technique to improve performance and accelerate optimization process

by reusing a pre-trained machine learning model for a new task. Two tasks and data sets for each
task may be different: the idea is that fundamental features may be reusable across different data
and tasks. Transfer learning typically takes two steps: the first is to alter the model or data if
necessary, then train (fine-tuning) the model. The first step is required, for example, when solving
a different task that requires a different architecture (e.g. regression v.s. classification), or when
input data format requires a change (e.g. original model trained on three channel image, such as
RGB images, while new data has a single channel). Transfer learning has been widely practiced
in the field of Computer Vision where large, labeled data sets are available [288–291]: a CNN
trained for classifying images of an animal can be largely reused for object detection, or even for
analyzing image data in science (e.g. particle trajectories recorded by an imaging detector). It is
a critical aspect for the development of generic AI as well as interdisciplinary sharing of models
across research fields.

For sequential models, transfer learning had been challenging before the appearance of Trans-
former. While Transformer was initially introduced for machine translation, Generative Pre-trained
Transformer (GPT-1) showed that the model can be generalized to multiple NLP tasks by achieving
the state-of-the-art in several seemingly different tasks including a sentence classification, semantic
similarity, question answering and commonsense reasoning [292].
41.6.11 Zero, one, and a few shot learning

Fine-tuning (and thus transfer learning) may not be necessary if model is well generalized:
humans can picture an imaginary animal in mind just from descriptions, or perform a task that
he or she has never done before. One-shot learning is an extreme case of transfer learning where
only one example is presented at the fine-tuning stage [293]. A similar variant is called a few-shot
learning (fine-tuning using a few examples). This is possible only if the model has already learned
the solution during the pre-training and the example is used to map the solution to the task. Zero-
shot [294–296] learning is even more extreme where the model is given a new task without any
example. This is only possible if the task is already learned during the pre-training in an implicit
or unsupervised manner since zero-shot training implies that the model was never trained for the
task.

41.7 Incorporating uncertainty
A fundamental aspect of data analysis is the quantification of uncertainty. This broad topic

includes the traditional distinction between statistical and systematic uncertainty, procedures for
propagation of errors, and the incorporation of uncertainty in to the statistical models (e.g. with
nuisance parameters) that are used in Bayesian or frequentist statistical procedures (see Sec. 40).
Accounting for systematic uncertainty can be seen as a requirement, but ideally systematic uncer-
tainties are also taken into account in the design of the analysis so as to mitigate their effect. The
introduction of machine learning into the analysis pipeline requires revisiting the techniques used
for uncertainty quantification and exposes many fundamental issues that have nothing to do with
the use of machine learning per se. See Ref. [297] for a recent review on this topic.

In machine learning research and industrial settings, the mismatch between the data distribution
ptrain(x, y) used for training and the data distribution pprod(x, y) that the model will be applied
to in production is referred to as covariate shift or domain shift. For example, one might train a
classifier to identify cats and dogs with images from a well lit studio and then apply the classifier
on images taken in doors with poor lighting conditions and a scratched lens. Not surprisingly, the
mis-classification rate of the classifier will be different between the two settings.

Physicists are keenly aware that the simulations that we use to describe the data are not perfect,

1st December, 2021

55 41. Machine Learning

and this mismodelling corresponds to a large fraction of the of systematic uncertainties accounted
for in published works. Since simulated data is often used to train machine learning models (i.e.
ptrain(x, y)), it is important to understand and account for how this mismodelling will influence
results when applied to real data (i.e. pprod(x, y)).

One of the primary approaches to incorporating this type uncertainty is to introduce nuisance
parameters ν corresponding to the uncertain inputs to the simulation and to parameterize various
types of perturbations (e.g. corrections to efficiencies, energy scales, etc.) in hopes that the resulting
family of distributions p(x|y, ν) is flexible enough to encompass the true data distribution for class
y. In this approach one does not have just two “domains” for the data (i.e. ptrain and pprod), but a
continuous family of domains parameterized by the nuisance parameters ν.

With this framing in mind, there are several approaches to incorporating uncertainty into an
analysis that includes ML-based components:

• propagation of errors: one works with a model f(x) and simply characterizes how un-
certainty in the data distribution propagate through the function to the down-stream task
irrespective of how it was trained.

• domain adaptation: one incorporates knowledge of the distribution for domains (or the
parameterized family of distributions p(x|y, ν)) into the training procedure so that the per-
formance of f(x) for the down-stream task is robust or insensitive to the uncertainty in ν.

• parameterized models: instead of learning a single function of the data f(x), one learns
a family of functions f(x; ν) that is explicitly parameterized in terms of nuisance parameters
and then accounts for the dependence on the nuisance parameters in the down-stream task.

• data augmentation: one trains a model f(x) in the usual way using training dataset from
multiple domains by sampling from some distribution over ν.

In this setting it is best to consider the trained model f(x) or f(x; ν) to be a fixed function
and decouple the variability associated to training or the choice of architecture. The fact that
one could have chosen a different architecture or learning algorithm should be treated in the same
way as other choices that are made in the data analysis pipeline. While it is reasonable to want
downstream inference and decisions to be robust to these choices, they are of a different nature than
the uncertainty in the modelling of the data distribution. We return to this point in Sections 41.7.5
and 41.7.6.
41.7.1 Propagation of errors

In this Section we consider the common scenario in which one has used some machine learning
technique to train a model f(x) for classification or regression and wants to assess the sensitivity
of the output of f(x) to uncertainty in the input x. We regard the function f(x) as fixed and we
are not concerned with how the model was trained.

Propagating uncertainty through a ML-based model f(x) is not fundamentally different than
for any other function, and one can use the standard propagation of errors formula of Sec. 39.2.1.
As always, it is important to recognize the limitations of the propagation of errors formula, which
is accurate when the uncertainty on x is Gaussian and the function f(x) is approximately linear
within the region set by the uncertainty on x.

Similarly, classifiers are often used for particle identification or event selection. In that case,
one is primarily interested in the efficiency ε to satisfy a cut on the classifier output. The efficiency
depends on the distribution p(x|y) through the equation εy = P (f(x) > fcut|y) =

∫
H(f(x) −

fcut)p(x|y)dx, where H is the Heaviside step function and y is an index or label for the category of
data that is being considered (e.g. signal or background, electron or jet, etc.). Thus, the question
in this context is what is the uncertainty on the efficiency εy due to uncertainty in the distribution

1st December, 2021

56 41. Machine Learning

p(x|y). In practice, the quantification of the uncertainty in the efficiency εy is usually based on
either a calibration measurement on real data or estimated with simulated data. These procedures
typically treat the classifier as a black-box, and thus nothing precludes using those procedures on
a ML-based classifier. An early example of this approach for b-tagging can be found in Ref. [298].

In the case where simulation is used to estimate the efficiency εy and its uncertainty, one usually
varies nuisance parameters ν associated to the simulation. One then uses simulated samples to
approximate εy(ν) = P (f(x) > fcut|y, ν) =

∫
H(f(x) − fcut)p(x|y, ν)dx. Again, the procedure for

incorporating uncertainty isn’t fundamentally different if the classifier f(x) is based on machine
learning or a hand-crafted observable.
41.7.2 Domain adaptation

While estimating the uncertainty for a ML-based model is not fundamentally different than any
other hand-crafted observable used for regression or classification, the worry of many physicists
is that by working with a high-dimensional set of features x that one is more susceptible to mis-
modelling of subtle correlations. This is a valid concern, and it should be appreciated that a great
deal of prior knowledge and physical insight goes into the construction of hand-crafted observables
so that they will be robust to the most uncertain aspects of data. However, much of this craft is
based on heuristics that are difficult to systematize. Furthermore, one can only validate that such
an observable is robust if one can explicitly evaluate the performance for a perturbed distribution.
Thus in the settings where one can validate the robustness to a perturbed scenario ν0, one must
have access to p(x|y, ν0).

One approach to formalize this type of robustness is to consider the dependence on the distri-
bution of the output of the model f(x) to the nuisance parameters. In statistics, if the distribution
of f is independent of the nuisance parameters, then f is referred to as a pivotal quantity. This is a
property that we can incorporate directly into the training procedure to target a particular notion
of robustness. The authors of Ref. [299] introduced an adversarial approach (similar to what is used
in the generative adversarial network of Sec. 41.5.4.2) to penalize a model during training if the
distribution of the output varies with the nuisance parameters. To construct the training dataset
{xi, yi, νi}i=1,...,n, one must sample y and ν according to some proposal distribution (similar to a
prior, but only used for the creation of training dataset, not necessarily for statistical inference),
corresponding to a joint distribution p(x, y, ν). Instead of minimizing the target loss Lf (e.g. cross-
entropy, squared-error, etc.) with respect to the parameters φf that parameterize the model f , one
trains with a minimax strategy that also includes an adversary q with parameters φr. The trained
model is characterized by the saddle point

φ̂f , φ̂r = arg min
φf

arg max
φr

Eλ(φf , φr) , (41.73)

where the value function Eλ includes the target loss as well as a regularization term associated to
the adversary

Eλ(φf , φr) = Lf (φf)− λLr(φf , φr) . (41.74)
The constant λ is a hyperparameter, since generially there is a tradeoff between the two terms and
only in special cases can the model that minimizes Lf also be a pivotal quantity. The regularization
term

Lr(φf , φr) = Ep(x,y,ν)[− log qφr(ν|fφf (x))] (41.75)
is an example of conditional density estimation (see Sec. 41.3.2.1), where the model qφr(ν|f) is trying
to predict the distribution of the nuisance parameter ν given the output of the model f(x). This
term is maximized when f is independent of ν. Earlier work had also used an adversarial technique
for domain adaptation, but was limited to just two domains [300–302], while here ν parameterizes

1st December, 2021

57 41. Machine Learning

a continuous family of distributions and can have multiple components corresponding to different
sources of uncertainty. Furthermore, the previous work aimed to make the distribution for a high-
dimensional, intermediate representation of the data be invariant to the domain shift as opposed
to just the final output f(x).

One way of interpreting Eq. 41.73 is that the goal is to minimize a regularized loss function
L̃(φf) = arg maxφr Eλ(φf , φr), where the optimization with respect to φr is not exposed. This
motivates another approach in which the regularization is not achieved through a learned adversary,
but by a measure of discrepancy between distributions that can be computed directly from samples.
In particular, the authors of Ref. [303] proposed the use of distance correlation to avoid what can
be a challenging min-max optimization problem.

In either case, the optimization of the hyperparameter λ is based on the downstream task. For
example, in Ref. [299] considered the case where f was a signal vs. background binary classifier
where the nuisance parameter ν was associated to uncertainty in the background model. The
hyperparameter λ was then optimized to maximize the approximate median significance (AMS).
Similarly, the authors of Refs. [304] and [303] considered new physics searches in the context of
boosted jet tagging, where the hyperparameter controls the sculpting of the side-bands used for
background estimation.

While these strategies modify the training procedure so that the sensitivity to the nuisance
parameters is reduced, it does not typically eliminate it. As a result, one still needs to propagate
the uncertainty in the data distribution through the learned model as described in the preceding
section.

Note, this adversarial technique has also been employed in other settings where one would like
to decorrelate the output of the classifier with an observed quantity so that it can be used for back-
ground estimation [304]. Widely used alternative approaches to decorrelation include uboost [305]
and DDT [306]. Other examples of the domain adaptation and decorrelation use cases from the
Living Review include [299,303–318].

41.7.3 Parameterized models
An alternative to learning a model f(x) that is pivotal — i.e. whose distribution is independent

of the nuisance parameter ν — is to learn a family of models f(x; ν) that is parameterized in terms
of the nuisance parameters. In general, there is a tradeoff between the two terms of Eq. 41.74 for
a single model f(x). In a parameterized model, f(x; ν) optimizes the performance of the model
for every value of ν. Parameterized classifiers were first advocated in Ref. [58] in the context of
simulation-based inference (see Sec. 41.7.7) and in Ref. [319] for new physics searches. It has also
been applied to simulation-based inference for effective field theory parameters in Ref. [19] and
Ref. [320] provides additional pedagogical examples.

The training of a parameterized model is similar to the standard procedure. For example, if
one originally wanted to minimize the squared loss function L(y, f(x)) = (y− f(x))2 with training
dataset {xi, yi}i=1,...,n, then the corresponding training procedure for the parameterized model
would be as follows. One would need to construct a training set {xi, yi, νi}i=1,...,n as described in the
preceeding section, construct a parameterized model f(x; ν) that takes as input the original feature
vector x as well as the nuisance parameters ν, and then train using the same loss L(y, f(x; ν)) =
(y − f(x; ν))2.

One complication of the parameterized approach is that it is no longer possible to evaluate
the model on a dataset {xi} and pass on only {fi} for downstream analysis tasks since f(xi; ν)
still depends on ν. Instead, one delay evaluating the model to some down-stream stage when the
dependence on ν would accounted for. For example, in the context of a likelihood based analysis
where one is testing a hypothesis where the nuisance parameters take on a particular value νtest,

1st December, 2021

58 41. Machine Learning

then one will consider the data distribution p(x|νtest), and at that point one would evaluate the
model at the corresponding nuisance parameter value, i.e. f(x; νtest). Explicit examples are given
in Refs. [19, 58, 297, 320]. While this may seem complicated, it actually corresponds to what is
done in a typical likelihood-based fit when the statistical model has nuisance parameters; i.e. the
likelihood-ratio corresponds to the model f(x; ν) as in Eq. 41.12.
41.7.4 Data augmentation

An intuitive approach to building in robustness to systematic effects that can lead to domain
shift, is simply to augment the training dataset so that it includes examples corresponding to
several values of the nuisance parameter or systematic variations. As before one can construct a
dataset {xi, yi, νi}i=1,...,n, but instead of leveraging the information about νi, one simply discards
this information. This corresponds to sampling from the marginal distribution xi, yi ∼ p(x, y) =∫
dνp(x, y|ν)p(ν), and is often referred to as smearing. One can then use this smeared dataset

for supervised learning in the traditional way. While it is possible that this approach will lead
to improved robustness to systematic variations (i.e. generalization for ν other than the nominal
value) than if systematic uncertainty weren’t considered at all), this intuitive approach has several
shortcomings. The approach does not yield a pivotal quantity as in the adversarial approach, so
propagation of uncertainty through the network is still required. Moreover, there is no direct way
to control the trade-off between independence from the nuisance parameter and the original target
loss as in the adversarial approach. Finally, it can lead to significant performance loss compared to
what is possible with the parameterized approach. These trade-offs were studied in Refs. [319,320]
with both pedagogical and physically-motivated examples.
41.7.5 Aleatoric and epistemic uncertainty

In the machine learning and risk assessment literature, uncertainty is often characterized in
terms of aleatoric and epistemic uncertainty [321–324]. Familiarity with these terms is useful, but
the distinction between the two can be ambiguous, the terms are not always consistently used, and
they do not clearly map onto the concepts used physics.

For example, Ref. [323], states that “roughly speaking, aleatoric (aka statistical) uncertainty
refers to the notion of randomness, that is, the variability in the outcome of an experiment which
is due to inherently random effects”, while “epistemic (aka systematic) uncertainty refers to un-
certainty caused by a lack of knowledge (about the best model)”. This seems clear enough, but in
that same reference (and in Ref. [325]) the aleatoric uncertainty is considered irreducible, while the
epistemic uncertainty could be reduced with additional information. This may seem backwards for
many physicists since often in particle physics, we think of how uncertainties scale as we collect
more data but keep the experimental design fixed. In that case, the statistical uncertainty will be
reduced with time while the systematic uncertainty will remain constant6. There is no paradox
here, it is simply a different point of view. The emphasis of the risk assessment community is not
on collecting more data with the same experimental design, but collecting different types of data
that will inform the models themselves. Clearly even for physicists, data from new experiments
or calibration measurements could also reduce our systematic uncertainties. While there are ex-
ceptions in the literature, the bulk of it associates aleatoric uncertainty with the randomness of
classical probability (i.e. the statistical uncertainty associated to repeating the same experiment
many times) and epistemic uncertainty with our state of knowledge.

Perhaps a more important distinction between the perspective of physicists and machine learning
researchers has to do with the use of the term “model” and what exactly is uncertain. In physics, the
systematic and epistemic uncertainty is typically associated to our understanding of the underlying

6Further complicating the relationship between the terms is that many experimental uncertainties that are char-
acterized as systematic are actually statistical in nature as auxiliary measurements and control regions are used to
constrain the corresponding nuisance parameters.

1st December, 2021

59 41. Machine Learning

physics and “the model” usually refers to the physics model, detector model encapsulated in a
simulation. In contrast, for machine learning research, “the model” usually refers to the trained
model f̂ ∈ F used as described in Section 41.2.1 (or the class of functions F itself). This makes sense
if we recall that in the bulk of machine learning research, one has little insight into the process
that generated the data (e.g. images of cats and dogs, natural language, etc.). In that sense,
the epistemic uncertainty in machine learning is usually associated to uncertainty in the model
parameters φ after training, which would be reduced if one could collect more training dataset (see
Ref. [324] for this point of view).

In the literature on Uncertainty Quantification (UQ), which is more closely connected to physics
given the role of computer simulations, the terminology is more fine grained and less ambiguous.
That community uses the terms parameter uncertainty (i.e. nuisance parameters), structural un-
certainty (i.e. mismodelling), algorithmic uncertainty (i.e. numerical uncertainty), experimental
uncertainty (i.e. uncertainty from experimental resolution and statistical fluctuations), and inter-
polation uncertainty (i.e. uncertainty due to interpolating between different parameter values due
to lack of computational resources).

41.7.6 Model averaging and Bayesian machine learning
The core of Bayesian machine learning is the model averaging view. Here one often takes a

more ambitious view of learning than described in Sec. 41.2.1, which is framed mainly as function
approximation. While in Sec. 41.2.1, the goal is to find a function that minimizes the risk, in
Bayesian machine learning one explicitly builds a probability model qφ(x, y) for the training dataset
D = {xi, yi}i=1,...,n. It is the same change in perspective that one has when one views the squared
error loss function LMSE = (y−fφ(x))2 as the log-likelihood for a probability model y ∼ N(f(x), σ).
In addition, one assumes some prior on the model parameters p(φ), which is often a Gaussian
distribution, and is analogous to Tikhonov regularization (see Sec. 41.3.1.2). With this view in
mind, a single trained model f̂ = fφ̂ is the MAP point estimate and the more complete Bayesian
solution is the entire posterior distribution over the model parameters p(φ|D). With this view, it
is clear how increasing the number of training examples n will lead to a reduction in uncertainty
on φ. However, this notion of epistemic uncertainty has little to do with the notion of systematic
uncertainty as the term is used by particle physicists.

Bayesian methods can be applied to non-probabilistic regression problems, in which case they
can provide uncertainty quantification. Consider the case of regression in traditional (non-Bayesian)
machine learning. The trained model fφ̂(x) is used to predict the target label y. For a fixed x,
the model does not provide any notion of uncertainty on the prediction. One could propagate
uncertainty on x through f(x), but that is also not the desired quantity to characterize the intrinsic
spread p(y|x) in the data, which may exist even if x has negligible uncertainty. In contrast, Gaussian
process regression (a Bayesian method) does provide a natural way to communicate the uncertainty
on the prediction, which is possible because one first had to specify a prior on the mean and
covariance of the Gaussian process.

In the context of Bayesian deep learning and Bayesian Neural Networks, one would place a
prior on the weights and biases of the neural network p(φ) and then use one of the many emerging
techniques to calculate the approximate posterior p(φ|D). However, we should recognize that
we have little-to-no insight into the parameters of a deep neural network, so the prior on φ is
hardly well-justified. Furthermore, just as in all Bayesian approaches, the prior is not invariant to
reparametrizing the model: φ→ η(φ). While it is difficult to justify the choice of the prior on the
parameters (and, thus, the resulting posterior), the resulting model may perform well empirically.
In such high-dimensional parameter spaces, the bias-variance tradeoff can be dramatic.

Bayesian model averaging (BMA) performs Bayesian average over the posterior p(φ|D). This

1st December, 2021

60 41. Machine Learning

can be applied to any quantity fφ, such as a regression or classification prediction y. Suppose we
can draw from the posterior φ ∼ p(φ|D). For each draw we can evaluate the predicted regression
variable y = fφ(x) + ε, where ε is some noise to account for uncertainty in the predictions. We can
denote this process as a draw from p(y|x, φ), y ∼ p(y|x, φ) = N(fφ(x), σ2

ε), where σ2
ε is the noise

variance. The BMA then performs

p(y|x,D) =
∫
dφp(φ|D)p(y|x, φ). (41.76)

In practice p(y|x, φ) is evaluated by drawing samples of y and φ, so the posterior is defined implicitly
by the samples. For example, the mean prediction is obtained by averaging fφ(x) over the samples
of φ, and the covariance matrix is similarly evaluated by averaging the second moments over the
samples of φ.

Ref. [326] provides a different perspective on BMA analyzed in what are referred to as theM-
open andM-closed settings [326]. TheM-closed setting refers to the situation where the true data
generating process is in the space of models, even if it is unknown to us. In contrast, theM-open
setting refers to when the true data generating process is not in model space (i.e. the model is
mis-specified). Interestingly, in theM-open case one can potentially do better than any one model
in the model class by considering an average over the models, since averaging can create a new
model that is not in the model class. BMA provides one such averaging, but other averages, which
are not weighted by p(φ|D), can be a better choice. When the weights of each model are optimized
against appropriate loss the resulting procedure is called stacking, which has been shown to be
superior to BMA in theM-open setting [326]. Ref. [327] performed experiments indicating that in
some cases model averaging can also improve predictive uncertainty estimates under domain shifts.

Neural network model averaging beyond BMA comes in several different flavors. Two successful
model averaging procedures are Monte Carlo dropout [328], which uses dropout ensembling, and
deep ensembles [329], which use random initialization ensembling. These methods may not only be
superior to BMA, they are also often significantly faster than BMA. Whether these model averages
are an approximation to BMA, or an alternative to it, remains a debated topic, and both views
have been advocated. BMA itself can be accelerated using approximate methods, such as stochastic
Variational Inference with reparametrization trick [330].
41.7.7 Connection to probabilistic machine learning

We end this Section by reinforcing the connection between uncertainty quantification in tra-
ditional machine learning and the more probabilistic approaches to machine learning exemplified
by simulation-based inference (see Sec 41.3.5) and deep generative models (see Sec. 41.5.4). In the
standard approach to supervised learning (e.g. classification and regression) the model f(x) pro-
vides a point estimate for y. Estimating an uncertainty on y goes a step further, but the complete
picture would be to model the posterior distribution p(y|x). Gaussian processes (see Sec. 41.5.1)
are an example, but the form of the models is limited to Gaussian posteriors. In Sec 41.3.5 we
discussed approaches to model p(y|x) using conditional density estimation [51,56,57]. If we extend
this task to include a family of distributions parameterized by some nuisance parameters ν, then
the task is to model p(y|x, ν), which is structurally similar.

In the context of classification, the output is already probabilistic, and the interpretation of
the resulting classifier is f̂MSE(x) ≈ p(y = 1|x) (see Eq. 41.10). Incorporating the dependence
on the nuisance parameter, then connects to the likelihood-ratio trick (see Eq. 41.12), approaches
to simulation-based inference that involve learning the likelihood-ratio, and the parameterized
approaches described in Sec. 41.7.3.

If one pairs the training procedure for classification, regression, or density estimation used in
the approaches above with model averaging techniques such as BMA, then it would be possible to

1st December, 2021

61 41. Machine Learning

incorporate both uncertainty associated to finite training dataset and the uncertainty associated to
systematic uncertainties. However, as described in Sec. 41.7.5 and Sec. 41.7.1, it is not clear that
in physics applications it is desirable to account for the variability associated to training when the
more common practice is to regard the trained model f̂(x) as fixed.

While these probabilistic approaches to machine learning are attractive conceptually, it is known
in the machine learning community that classifiers often are poorly calibrated and often overly
confident in their predictions. This is a problem even if one regards the trained model f̂(x) as
fixed. Various approaches, including model averaging, are being pursued to improve the calibration
of trained models, but the problem is unlikely to be eliminated entirely. Miscalibration can be
verified by evaluating the true positive and false positive rates on held out data. This is common
practice in experimental particle physics, where the output of a binary classifier is rarely taken at
face value. Instead, the true and false positive rates are estimated with simulated data or control
samples as described in Sec. 41.7.1. Furthermore, the true and false positives can be characterized as
a function of the nuisance parameters. These procedures can be used to help calibrate parameterized
models based on the likelihood-ratio trick (see Refs. [58, 320]). Unfortunately, calibration in the
context of density estimation is more challenging. This connects to topics and challenges in anomaly
detection (see Sec. 41.3.4).
41.8 Infrastructure for deployment in experiments

The software and computing needs of training a machine learning model are different than
those encountered when it deployed for use. In machine learning jargon, the two stages are often
referred to as training and inference, where inference might refer to making a prediction for y given
x in a classification or regression problem. Sometimes this transition also involves using different
programming languages for implementing the trained model from the ones used for training them.
Modern machine learning frameworks support various serialization formats to exchange trained
models. For instance, ONNX provides an open source format for many types of models and is is
widely supported and can be found in many frameworks, tools, and hardware. This is important
when integrating a trained model into the large software frameworks used by the large experiments.

While hardware acceleration with GPUs is important for efficiently training modern machine
learning techniques, there are also advantages of hardware acceleration at inference time. This may
include GPUs or Field Programmable Gate Arrays (FPGAs), and the Living Review includes many
example works focusing on efficient inference for a given hardware architecture [81, 108, 331–340].
For applications where latency is a key concern (eg triggering at collider experiments), various
accelerators have been investigated [167,171,341–355]. In addition, some solutions for deployment
of ML models involve deployment in the cloud [356,357].
References
[1] Y. Lecun, Y. Bengio and G. Hinton, Nature 521, 7553, 436 (2015), ISSN 14764687.
[2] J. Schmidhuber, Neural Networks 61, 85 (2015).
[3] A. Radovic et al., Nature 560, 7716, 41 (2018).
[4] D. Guest, K. Cranmer and D. Whiteson, Ann. Rev. Nucl. Part. Sci. 68, 161 (2018),

[arXiv:1806.11484].
[5] G. Carleo et al., Rev. Mod. Phys. 91, 4, 045002 (2019), [arXiv:1903.10563].
[6] M. Feickert and B. Nachman (2021), [arXiv:2102.02770].
[7] V. Vapnik, The nature of statistical learning theory, Springer science & business media (2013).
[8] C. Zhang et al., Communications of the ACM 64, 3, 107 (2021).
[9] P. Nakkiran et al., arXiv preprint arXiv:1912.02292 (2019).

1st December, 2021

http://doi.org/10.1038/nature14539
http://doi.org/10.1038/nature14539
http://doi.org/10.1016/j.neunet.2014.09.003
http://doi.org/10.1016/j.neunet.2014.09.003
http://doi.org/10.1038/s41586-018-0361-2
http://doi.org/10.1038/s41586-018-0361-2
http://doi.org/10.1146/annurev-nucl-101917-021019
http://doi.org/10.1146/annurev-nucl-101917-021019
https://arxiv.org/abs/1806.11484
http://doi.org/10.1103/RevModPhys.91.045002
http://doi.org/10.1103/RevModPhys.91.045002
https://arxiv.org/abs/1903.10563
https://arxiv.org/abs/2102.02770

62 41. Machine Learning

[10] A. Y. Ng and M. I. Jordan, in T. G. Dietterich, S. Becker and Z. Ghahramani, editors,
“Advances in Neural Information Processing Systems 14 [Neural Information Processing Sys-
tems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia,
Canada],” 841–848, MIT Press (2001), URL https://proceedings.neurips.cc/paper/
2001/hash/7b7a53e239400a13bd6be6c91c4f6c4e-Abstract.html.

[11] M. Kuusela and V. M. Panaretos, Ann. Appl. Stat. 9, 1671 (2015), [arXiv:1505.04768].
[12] L. Rosasco, A. Tacchetti and S. Villa, CoRR abs/1405.0042 (2014), URL http://arxiv.

org/abs/1405.0042.
[13] G. E. Hinton et al., CoRR abs/1207.0580 (2012), [arXiv:1207.0580], URL http://arxiv.

org/abs/1207.0580.
[14] P. Baldi and P. J. Sadowski, Advances in neural information processing systems 26, 2814

(2013).
[15] M. Belkin, S. Ma and S. Mandal, in J. G. Dy and A. Krause, editors, “Proceedings of the 35th

International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018,” volume 80 of Proceedings of Machine Learning Research, 540–548,
PMLR (2018), URL http://proceedings.mlr.press/v80/belkin18a.html.

[16] S. Gunasekar et al., in J. Dy and A. Krause, editors, “Proceedings of the 35th In-
ternational Conference on Machine Learning,” volume 80 of Proceedings of Machine
Learning Research, 1832–1841, PMLR (2018), URL http://proceedings.mlr.press/v80/
gunasekar18a.html.

[17] L. Zdeborová, Nature Physics 16, 6, 602 (2020).
[18] E. M. Metodiev, B. Nachman and J. Thaler, JHEP 10, 174 (2017), [arXiv:1708.02949].
[19] J. Brehmer et al., Phys. Rev. D98, 5, 052004 (2018), [arXiv:1805.00020].
[20] J. Brehmer et al., Proc. Nat. Acad. Sci. 201915980 (2020), [arXiv:1805.12244].
[21] M. Stoye et al. (2018), [arXiv:1808.00973].
[22] M. A. Hayat et al., ApJ Letters 911, 2, L33 (2021).
[23] T. Chen et al., in “Proceedings of the 37th International Conference on Machine Learning,

ICML 2020, 13-18 July 2020, Virtual Event,” volume 119 of Proceedings of Machine Learning
Research, 1597–1607, PMLR (2020), URL http://proceedings.mlr.press/v119/chen20j.
html.

[24] E. Parzen, The annals of mathematical statistics 33, 3, 1065 (1962).
[25] R. A. Davis, K.-S. Lii and D. N. Politis, in “Selected Works of Murray Rosenblatt,” 95–100,

Springer (2011).
[26] K. S. Cranmer, Comput. Phys. Commun. 136, 198 (2001), [hep-ex/0011057].
[27] Y. Bengio, A. Courville and P. Vincent, IEEE transactions on pattern analysis and machine

intelligence 35, 8, 1798 (2013).
[28] https://en.wikipedia.org/wiki/Cluster_analysis.
[29] R. E. Bellman, Dynamic Programming, Princeton University Press, USA (1957), ISBN

069107951X.
[30] D. E. Kirk, Optimal control theory: an introduction, Courier Corporation (2004).
[31] K. J. Åström, Journal of Mathematical Analysis and Applications 10, 174 (1965).
[32] J. Brehmer et al., in “34th Conference on Neural Information Processing Systems,” (2020),

[arXiv:2011.08191].

1st December, 2021

https://proceedings.neurips.cc/paper/2001/hash/7b7a53e239400a13bd6be6c91c4f6c4e-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/7b7a53e239400a13bd6be6c91c4f6c4e-Abstract.html
http://doi.org/10.1214/15-AOAS857
http://doi.org/10.1214/15-AOAS857
https://arxiv.org/abs/1505.04768
http://arxiv.org/abs/1405.0042
http://arxiv.org/abs/1405.0042
https://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
http://proceedings.mlr.press/v80/belkin18a.html
http://proceedings.mlr.press/v80/gunasekar18a.html
http://proceedings.mlr.press/v80/gunasekar18a.html
http://doi.org/10.1007/JHEP10(2017)174
http://doi.org/10.1007/JHEP10(2017)174
https://arxiv.org/abs/1708.02949
http://doi.org/10.1103/PhysRevD.98.052004
http://doi.org/10.1103/PhysRevD.98.052004
https://arxiv.org/abs/1805.00020
http://doi.org/10.1073/pnas.1915980117
http://doi.org/10.1073/pnas.1915980117
https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1808.00973
http://doi.org/10.3847/2041-8213/abf2c7
http://doi.org/10.3847/2041-8213/abf2c7
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
http://doi.org/10.1016/S0010-4655(00)00243-5
http://doi.org/10.1016/S0010-4655(00)00243-5
https://arxiv.org/abs/hep-ex/0011057
https://en.wikipedia.org/wiki/Cluster_analysis
https://arxiv.org/abs/2011.08191

63 41. Machine Learning

[33] R. S. Sutton and A. G. Barto, Cambridge, MA 22447 (1998).
[34] K. Arulkumaran et al., IEEE Signal Processing Magazine 34, 6, 26 (2017).
[35] H. Robbins, Bulletin of the American Mathematical Society 58, 5, 527 (1952).
[36] J. C. Gittins, Journal of the Royal Statistical Society: Series B (Methodological) 41, 2, 148

(1979).
[37] J. Mockus, Bayesian approach to global optimization: theory and applications, volume 37,

Springer Science & Business Media (2012).
[38] E. Brochu, V. M. Cora and N. De Freitas, arXiv preprint arXiv:1012.2599 (2010).
[39] M. Farina, Y. Nakai and D. Shih, Physical Review D 101, 7 (2020), ISSN 2470-0029, URL

http://dx.doi.org/10.1103/PhysRevD.101.075021.
[40] T. Heimel et al., SciPost Physics 6, 3 (2019), ISSN 2542-4653, URL http://dx.doi.org/

10.21468/SciPostPhys.6.3.030.
[41] J. Ren et al., in H. M. Wallach et al., editors, “Advances in Neural Information Processing

Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada,” 14680–14691 (2019).

[42] E. T. Nalisnick et al., in “7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019,” OpenReview.net (2019), URL https:
//openreview.net/forum?id=H1xwNhCcYm.

[43] Z. Xiao, Q. Yan and Y. Amit, arXiv preprint arXiv:2003.02977 (2020).
[44] V. Böhm and U. Seljak, arXiv preprint arXiv:2006.05479 (2020).
[45] B. Dai and U. Seljak, in M. Meila and T. Zhang, editors, “Proceedings of the 38th Inter-

national Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,”
volume 139 of Proceedings of Machine Learning Research, 2352–2364, PMLR (2021), URL
http://proceedings.mlr.press/v139/dai21a.html.

[46] J. Brehmer and K. Cranmer (2020), [arXiv:2003.13913].
[47] E. M. Metodiev, B. Nachman and J. Thaler, Journal of High Energy Physics 2017, 10 (2017),

ISSN 1029-8479, URL http://dx.doi.org/10.1007/JHEP10(2017)174.
[48] J. H. Collins et al., The European Physical Journal C 81, 7 (2021), ISSN 1434-6052, URL

http://dx.doi.org/10.1140/epjc/s10052-021-09389-x.
[49] G. Kasieczka et al. (2021), [arXiv:2101.08320].
[50] T. Aarrestad et al. (2021), [arXiv:2105.14027].
[51] K. Cranmer, J. Brehmer and G. Louppe, Proc. Nat. Acad. Sci. 117, 48, 30055 (2020),

[arXiv:1911.01429].
[52] J. Brehmer and K. Cranmer, Artificial Intelligence for Particle Physics, chapter Simulation-

based inference methods for particle physics, World Scientific Publishing Co (2021).
[53] P. J. Diggle and R. J. Gratton, in “Journal of the Royal Statistical Society: Series B (Method-

ological),” volume 46, 193–212 (1984), ISSN 0035-9246.
[54] D. B. Rubin, The Annals of Statistics 12, 4, 1151 (1984), ISSN 0090-5364, URL https:

//doi.org/10.1214/aos/1176346785.
[55] M. A. Beaumont, W. Zhang and D. J. Balding, Genetics 162, 4, 2025 (2002), ISSN 00166731.
[56] K. Cranmer and G. Louppe, J. Brief Ideas (2016), 10.5281/zenodo.198541.
[57] G. Papamakarios and I. Murray, in “Advances in Neural Information Processing Systems,”

1036–1044 (2016), ISSN 10495258, [arXiv:1605.06376].

1st December, 2021

http://doi.org/10.1103/physrevd.101.075021
http://doi.org/10.1103/physrevd.101.075021
http://dx.doi.org/10.1103/PhysRevD.101.075021
http://doi.org/10.21468/scipostphys.6.3.030
http://doi.org/10.21468/scipostphys.6.3.030
http://dx.doi.org/10.21468/SciPostPhys.6.3.030
http://dx.doi.org/10.21468/SciPostPhys.6.3.030
https://openreview.net/forum?id=H1xwNhCcYm
https://openreview.net/forum?id=H1xwNhCcYm
http://proceedings.mlr.press/v139/dai21a.html
https://arxiv.org/abs/2003.13913
http://doi.org/10.1007/jhep10(2017)174
http://doi.org/10.1007/jhep10(2017)174
http://dx.doi.org/10.1007/JHEP10(2017)174
http://doi.org/10.1140/epjc/s10052-021-09389-x
http://doi.org/10.1140/epjc/s10052-021-09389-x
http://dx.doi.org/10.1140/epjc/s10052-021-09389-x
https://arxiv.org/abs/2101.08320
https://arxiv.org/abs/2105.14027
http://doi.org/10.1073/pnas.1912789117
http://doi.org/10.1073/pnas.1912789117
https://arxiv.org/abs/1911.01429
http://doi.org/10.1214/aos/1176346785
http://doi.org/10.1214/aos/1176346785
https://doi.org/10.1214/aos/1176346785
https://doi.org/10.1214/aos/1176346785
http://doi.org/10.1111/j.1937-2817.2010.tb01236.x
http://doi.org/10.1111/j.1937-2817.2010.tb01236.x
https://arxiv.org/abs/1605.06376

64 41. Machine Learning

[58] K. Cranmer, J. Pavez and G. Louppe, arXiv:1506.02169 (2015), [arXiv:1506.02169], URL
http://arxiv.org/abs/1506.02169.

[59] C. Modi, F. Lanusse and U. Seljak, “Flowpm: Distributed tensorflow implementation of the
fastpm cosmological n-body solver,” (2020), [arXiv:2010.11847].

[60] J. Jasche and B. D. Wandelt, Mon. Not. Roy. Astron. Soc. 432, 894 (2013), [arXiv:1203.3639].
[61] U. Seljak et al., JCAP 12, 009 (2017), [arXiv:1706.06645].
[62] A. Andreassen et al., Phys. Rev. Lett. 124, 18, 182001 (2020), [arXiv:1911.09107].
[63] K. Datta, D. Kar and D. Roy (2018), [arXiv:1806.00433].
[64] M. Bellagente et al. (2019), [arXiv:1912.00477].
[65] N. D. Gagunashvili (2010), [arXiv:1004.2006].
[66] A. Glazov (2017), [arXiv:1712.01814].
[67] M. Bellagente et al. (2020), [arXiv:2006.06685].
[68] M. Vandegar et al., in A. Banerjee and K. Fukumizu, editors, “Proceedings of The 24th

International Conference on Artificial Intelligence and Statistics,” volume 130 of Proceedings
of Machine Learning Research, 2107–2115, PMLR (2021), [arXiv:2011.05836], URL https:
//proceedings.mlr.press/v130/vandegar21a.html.

[69] P. Baroň (2021), [arXiv:2104.03036].
[70] A. Andreassen et al. (2021), [arXiv:2105.04448].
[71] P. Komiske, W. P. McCormack and B. Nachman (2021), [arXiv:2105.09923].
[72] V. Andreev et al. (H1) (2021), [arXiv:2108.12376].
[73] M. Arratia et al. (2021), [arXiv:2109.13243].
[74] T. A. Le, A. G. Baydin and F. Wood, in “Proceedings of the 20th International Conference on

Artificial Intelligence and Statistics, AISTATS 2017,” volume 54 of Proceedings of Machine
Learning Research, 1338–1348, PMLR, Fort Lauderdale, FL, USA (2017), [arXiv:1610.09900].

[75] A. G. Baydin et al. (2018), [arXiv:1807.07706].
[76] A. G. Baydin et al., International Conference for High Performance Computing, Networking,

Storage and Analysis, SC arXiv:1907.03382 (2019), ISSN 21674337, [arXiv:1907.03382].
[77] A. Hocker et al., PoS ACAT, 040 (2007), [arXiv:physics/0703039].
[78] T. Mikolov et al., arXiv preprint arXiv:1301.3781 (2013).
[79] E. Asgari and M. R. Mofrad, PloS one 10, 11, e0141287 (2015).
[80] D. Guest et al., Phys. Rev. D94, 11, 112002 (2016), [arXiv:1607.08633].
[81] T. Q. Nguyen et al., Comput. Softw. Big Sci. 3, 1, 12 (2019), [arXiv:1807.00083].
[82] E. Bols et al. (2020), [arXiv:2008.10519].
[83] K. Goto et al., “Development of a Vertex Finding Algorithm using Recurrent Neural Net-

work,” (2021), [arXiv:2101.11906].
[84] R. T. de Lima (2021), [arXiv:2102.06128].
[85] Technical Report ATL-PHYS-PUB-2017-003, CERN, Geneva (2017), URL http://cdsweb.

cern.ch/record/2255226.
[86] J. Pumplin, Phys. Rev. D 44, 2025 (1991).
[87] J. Cogan et al., JHEP 02, 118 (2015), [arXiv:1407.5675].
[88] L. G. Almeida et al., JHEP 07, 086 (2015), [arXiv:1501.05968].

1st December, 2021

https://arxiv.org/abs/1506.02169
http://arxiv.org/abs/1506.02169
https://arxiv.org/abs/2010.11847
http://doi.org/10.1093/mnras/stt449
http://doi.org/10.1093/mnras/stt449
https://arxiv.org/abs/1203.3639
http://doi.org/10.1088/1475-7516/2017/12/009
http://doi.org/10.1088/1475-7516/2017/12/009
https://arxiv.org/abs/1706.06645
http://doi.org/10.1103/PhysRevLett.124.182001
http://doi.org/10.1103/PhysRevLett.124.182001
https://arxiv.org/abs/1911.09107
https://arxiv.org/abs/1806.00433
https://arxiv.org/abs/1912.00477
https://arxiv.org/abs/1004.2006
https://arxiv.org/abs/1712.01814
https://arxiv.org/abs/2006.06685
https://arxiv.org/abs/2011.05836
https://proceedings.mlr.press/v130/vandegar21a.html
https://proceedings.mlr.press/v130/vandegar21a.html
https://arxiv.org/abs/2104.03036
https://arxiv.org/abs/2105.04448
https://arxiv.org/abs/2105.09923
https://arxiv.org/abs/2108.12376
https://arxiv.org/abs/2109.13243
https://arxiv.org/abs/1610.09900
https://arxiv.org/abs/1807.07706
http://doi.org/10.1145/3295500.3356180
http://doi.org/10.1145/3295500.3356180
http://doi.org/10.1145/3295500.3356180
https://arxiv.org/abs/1907.03382
https://arxiv.org/abs/physics/0703039
http://doi.org/10.1103/PhysRevD.94.112002
http://doi.org/10.1103/PhysRevD.94.112002
https://arxiv.org/abs/1607.08633
http://doi.org/10.1007/s41781-019-0028-1
http://doi.org/10.1007/s41781-019-0028-1
https://arxiv.org/abs/1807.00083
https://arxiv.org/abs/2008.10519
https://arxiv.org/abs/{2101.11906}
https://arxiv.org/abs/2102.06128
http://cdsweb.cern.ch/record/2255226
http://cdsweb.cern.ch/record/2255226
http://doi.org/10.1103/PhysRevD.44.2025
http://doi.org/10.1103/PhysRevD.44.2025
http://doi.org/10.1007/JHEP02(2015)118
http://doi.org/10.1007/JHEP02(2015)118
https://arxiv.org/abs/1407.5675
http://doi.org/10.1007/JHEP07(2015)086
http://doi.org/10.1007/JHEP07(2015)086
https://arxiv.org/abs/1501.05968

65 41. Machine Learning

[89] L. de Oliveira et al., JHEP 07, 069 (2016), [arXiv:1511.05190].
[90] Technical Report ATL-PHYS-PUB-2017-017, CERN, Geneva (2017), URL http://cds.

cern.ch/record/2275641.
[91] J. Lin et al., JHEP 10, 101 (2018), [arXiv:1807.10768].
[92] P. T. Komiske et al., Phys. Rev. D98, 1, 011502 (2018), [arXiv:1801.10158].
[93] J. Barnard et al., Phys. Rev. D95, 1, 014018 (2017), [arXiv:1609.00607].
[94] P. T. Komiske, E. M. Metodiev and M. D. Schwartz, JHEP 01, 110 (2017), [arXiv:1612.01551].
[95] G. Kasieczka et al., JHEP 05, 006 (2017), [arXiv:1701.08784].
[96] S. Macaluso and D. Shih, JHEP 10, 121 (2018), [arXiv:1803.00107].
[97] J. Li, T. Li and F.-Z. Xu (2020), [arXiv:2008.13529].
[98] J. Li and H. Sun (2020), [arXiv:2009.00170].
[99] J. S. H. Lee et al., J. Korean Phys. Soc. 74, 3, 219 (2019), [arXiv:2012.02531].

[100] J. Collado et al., “Learning to Isolate Muons,” (2021), [arXiv:2102.02278].
[101] Y.-L. Du, D. Pablos and K. Tywoniuk (2020), [arXiv:2012.07797].
[102] J. Filipek et al. (2021), [arXiv:2105.04582].
[103] Technical Report ATL-PHYS-PUB-2019-028, CERN, Geneva (2019), URL http://cds.

cern.ch/record/2684070.
[104] M. Andrews et al. (2018), [arXiv:1807.11916].
[105] Y.-L. Chung, S.-C. Hsu and B. Nachman (2020), [arXiv:2009.05930].
[106] Y.-L. Du et al., Eur. Phys. J. C 80, 6, 516 (2020), [arXiv:1910.11530].
[107] M. Andrews et al. (2021), [arXiv:2104.14659].
[108] A. A. Pol et al. (2021), [arXiv:2105.05785].
[109] A. Aurisano et al., JINST 11, 09, P09001 (2016), [arXiv:1604.01444].
[110] R. Acciarri et al. (MicroBooNE), JINST 12, 03, P03011 (2017), [arXiv:1611.05531].
[111] L. Hertel et al. (2017), URL https://dl4physicalsciences.github.io/files/nips_

dlps_2017_7.pdf.
[112] C. Adams et al. (MicroBooNE), Phys. Rev. D99, 9, 092001 (2019), [arXiv:1808.07269].
[113] L. Dominé and K. Terao (DeepLearnPhysics), Phys. Rev. D 102, 1, 012005 (2020),

[arXiv:1903.05663].
[114] S. Aiello et al. (KM3NeT) (2020), [arXiv:2004.08254].
[115] C. Adams, K. Terao and T. Wongjirad (2020), [arXiv:2006.01993].
[116] L. Dominé et al. (DeepLearnPhysics), Phys. Rev. D 104, 3, 032004 (2021), [arXiv:2006.14745].
[117] F. Drielsma et al. (DeepLearnPhysics), Phys. Rev. D 104, 7, 072004 (2021),

[arXiv:2007.01335].
[118] D. H. Koh et al. (DeepLearnPhysics) (2020), [arXiv:2007.03083].
[119] H. Yu et al., JINST 16, 01, P01036 (2021), [arXiv:2007.12743].
[120] F. Psihas et al. (2020), [arXiv:2008.01242].
[121] S. Alonso-Monsalve et al., Phys. Rev. D 103, 3, 032005 (2021), [arXiv:2009.00688].
[122] P. Abratenko et al. (MicroBooNE) (2020), [arXiv:2010.08653].
[123] B. Clerbaux et al. (2020), [arXiv:2011.08847].

1st December, 2021

http://doi.org/10.1007/JHEP07(2016)069
http://doi.org/10.1007/JHEP07(2016)069
https://arxiv.org/abs/1511.05190
http://cds.cern.ch/record/2275641
http://cds.cern.ch/record/2275641
http://doi.org/10.1007/JHEP10(2018)101
http://doi.org/10.1007/JHEP10(2018)101
https://arxiv.org/abs/1807.10768
http://doi.org/10.1103/PhysRevD.98.011502
http://doi.org/10.1103/PhysRevD.98.011502
https://arxiv.org/abs/1801.10158
http://doi.org/10.1103/PhysRevD.95.014018
http://doi.org/10.1103/PhysRevD.95.014018
https://arxiv.org/abs/1609.00607
http://doi.org/10.1007/JHEP01(2017)110
http://doi.org/10.1007/JHEP01(2017)110
https://arxiv.org/abs/1612.01551
http://doi.org/10.1007/JHEP05(2017)006
http://doi.org/10.1007/JHEP05(2017)006
https://arxiv.org/abs/1701.08784
http://doi.org/10.1007/JHEP10(2018)121
http://doi.org/10.1007/JHEP10(2018)121
https://arxiv.org/abs/1803.00107
https://arxiv.org/abs/2008.13529
https://arxiv.org/abs/2009.00170
http://doi.org/10.3938/jkps.74.219
http://doi.org/10.3938/jkps.74.219
https://arxiv.org/abs/2012.02531
https://arxiv.org/abs/{2102.02278}
https://arxiv.org/abs/2012.07797
https://arxiv.org/abs/2105.04582
http://cds.cern.ch/record/2684070
http://cds.cern.ch/record/2684070
https://arxiv.org/abs/1807.11916
https://arxiv.org/abs/2009.05930
http://doi.org/10.1140/epjc/s10052-020-8030-7
http://doi.org/10.1140/epjc/s10052-020-8030-7
https://arxiv.org/abs/1910.11530
https://arxiv.org/abs/2104.14659
https://arxiv.org/abs/2105.05785
http://doi.org/10.1088/1748-0221/11/09/P09001
http://doi.org/10.1088/1748-0221/11/09/P09001
https://arxiv.org/abs/1604.01444
http://doi.org/10.1088/1748-0221/12/03/P03011
http://doi.org/10.1088/1748-0221/12/03/P03011
https://arxiv.org/abs/1611.05531
https://dl4physicalsciences.github.io/files/nips_dlps_2017_7.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_7.pdf
http://doi.org/10.1103/PhysRevD.99.092001
http://doi.org/10.1103/PhysRevD.99.092001
https://arxiv.org/abs/1808.07269
http://doi.org/10.1103/PhysRevD.102.012005
http://doi.org/10.1103/PhysRevD.102.012005
https://arxiv.org/abs/1903.05663
https://arxiv.org/abs/2004.08254
https://arxiv.org/abs/2006.01993
http://doi.org/10.1103/PhysRevD.104.032004
http://doi.org/10.1103/PhysRevD.104.032004
https://arxiv.org/abs/2006.14745
http://doi.org/10.1103/PhysRevD.104.072004
http://doi.org/10.1103/PhysRevD.104.072004
https://arxiv.org/abs/2007.01335
https://arxiv.org/abs/2007.03083
http://doi.org/10.1088/1748-0221/16/01/P01036
http://doi.org/10.1088/1748-0221/16/01/P01036
https://arxiv.org/abs/2007.12743
https://arxiv.org/abs/2008.01242
http://doi.org/10.1103/PhysRevD.103.032005
http://doi.org/10.1103/PhysRevD.103.032005
https://arxiv.org/abs/2009.00688
https://arxiv.org/abs/2010.08653
https://arxiv.org/abs/2011.08847

66 41. Machine Learning

[124] J. Liu et al. (2020), [arXiv:2012.06181].
[125] P. Abratenko et al. (MicroBooNE) (2020), [arXiv:2012.08513].
[126] S. Y.-C. Chen et al. (2020), [arXiv:2012.12177].
[127] R. Acciarri et al. (SBND) (2020), [arXiv:2012.01301].
[128] Z. Qian et al. (2021), [arXiv:2101.04839].
[129] R. Abbasi et al. (IceCube), “A Convolutional Neural Network based Cascade Reconstruction

for the IceCube Neutrino Observatory,” (2021), [arXiv:2101.11589].
[130] F. Drielsma et al., in “34th Conference on Neural Information Processing Systems,” (2021),

[arXiv:2102.01033].
[131] M. Rossi and S. Vallecorsa, in “25th International Conference on Computing in High-Energy

and Nuclear Physics,” (2021), [arXiv:2103.01596].
[132] J. Hewes et al. (2021), [arXiv:2103.06233].
[133] R. Acciarri et al. (ArgoNeuT) (2021), [arXiv:2103.06391].
[134] V. Belavin, E. Trofimova and A. Ustyuzhanin (2021), [arXiv:2104.02040].
[135] D. Maksimović, M. Nieslony and M. Wurm (2021), [arXiv:2104.13426].
[136] A. Gavrikov and F. Ratnikov, in “25th International Conference on Computing in High-

Energy and Nuclear Physics,” (2021), [arXiv:2106.02907].
[137] J. García-Méndez et al. (2021), [arXiv:2107.13654].
[138] K. Carloni et al. (2021), [arXiv:2110.10766].
[139] P. Abratenko et al. (MicroBooNE) (2021), [arXiv:2110.11874].
[140] D. Boyda et al., Phys. Rev. D 103, 7, 074504 (2021), [arXiv:2008.05456].
[141] G. Kanwar et al., Phys. Rev. Lett. 125, 12, 121601 (2020), [arXiv:2003.06413].
[142] P. T. Komiske, E. M. Metodiev and J. Thaler, JHEP 01, 121 (2019), [arXiv:1810.05165].
[143] H. Qu and L. Gouskos, Phys. Rev. D 101, 5, 056019 (2020), [arXiv:1902.08570].
[144] V. Mikuni and F. Canelli, Eur. Phys. J. Plus 135, 6, 463 (2020), [arXiv:2001.05311].
[145] J. Shlomi et al. (2020), [arXiv:2008.02831].
[146] M. J. Dolan and A. Ore (2020), [arXiv:2012.00964].
[147] M. J. Fenton et al. (2020), [arXiv:2010.09206].
[148] J. S. H. Lee et al. (2020), [arXiv:2012.03542].
[149] V. Mikuni and F. Canelli (2021), [arXiv:2102.05073].
[150] A. Shmakov et al. (2021), [arXiv:2106.03898].
[151] C. Shimmin (2021), [arXiv:2107.02908].
[152] Technical Report ATL-PHYS-PUB-2020-014, CERN, Geneva (2020), URL https://cds.

cern.ch/record/2718948.
[153] G. Louppe et al., Journal of High Energy Physics 2019, 1, 57 (2019), ISSN 10298479,

[arXiv:1702.00748].
[154] T. Cheng (2017), [arXiv:1711.02633].
[155] I. Henrion et al. (2017), URL https://dl4physicalsciences.github.io/files/nips_

dlps_2017_29.pdf.
[156] X. Ju et al., 33rd Annual Conference on Neural Information Processing Systems (2020),

[arXiv:2003.11603].

1st December, 2021

https://arxiv.org/abs/2012.06181
https://arxiv.org/abs/2012.08513
https://arxiv.org/abs/2012.12177
https://arxiv.org/abs/2012.01301
https://arxiv.org/abs/2101.04839
https://arxiv.org/abs/{2101.11589}
https://arxiv.org/abs/2102.01033
https://arxiv.org/abs/2103.01596
https://arxiv.org/abs/2103.06233
https://arxiv.org/abs/2103.06391
https://arxiv.org/abs/2104.02040
https://arxiv.org/abs/2104.13426
https://arxiv.org/abs/2106.02907
https://arxiv.org/abs/2107.13654
https://arxiv.org/abs/2110.10766
https://arxiv.org/abs/2110.11874
http://doi.org/10.1103/PhysRevD.103.074504
http://doi.org/10.1103/PhysRevD.103.074504
https://arxiv.org/abs/2008.05456
http://doi.org/10.1103/PhysRevLett.125.121601
http://doi.org/10.1103/PhysRevLett.125.121601
https://arxiv.org/abs/2003.06413
http://doi.org/10.1007/JHEP01(2019)121
http://doi.org/10.1007/JHEP01(2019)121
https://arxiv.org/abs/1810.05165
http://doi.org/10.1103/PhysRevD.101.056019
http://doi.org/10.1103/PhysRevD.101.056019
https://arxiv.org/abs/1902.08570
http://doi.org/10.1140/epjp/s13360-020-00497-3
http://doi.org/10.1140/epjp/s13360-020-00497-3
https://arxiv.org/abs/2001.05311
https://arxiv.org/abs/2008.02831
https://arxiv.org/abs/2012.00964
https://arxiv.org/abs/2010.09206
https://arxiv.org/abs/2012.03542
https://arxiv.org/abs/2102.05073
https://arxiv.org/abs/2106.03898
https://arxiv.org/abs/2107.02908
https://cds.cern.ch/record/2718948
https://cds.cern.ch/record/2718948
http://doi.org/10.1007/JHEP01(2019)057
http://doi.org/10.1007/JHEP01(2019)057
https://arxiv.org/abs/1702.00748
https://arxiv.org/abs/1711.02633
https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf
https://arxiv.org/abs/2003.11603

67 41. Machine Learning

[157] M. Abdughani et al., JHEP 08, 055 (2019), [arXiv:1807.09088].
[158] J. Arjona Martínez et al., Eur. Phys. J. Plus 134, 7, 333 (2019), [arXiv:1810.07988].
[159] J. Ren, L. Wu and J. M. Yang, Phys. Lett. B 802, 135198 (2020), [arXiv:1901.05627].
[160] E. A. Moreno et al., Eur. Phys. J. C 80, 1, 58 (2020), [arXiv:1908.05318].
[161] S. R. Qasim et al., Eur. Phys. J. C 79, 7, 608 (2019), [arXiv:1902.07987].
[162] A. Chakraborty, S. H. Lim and M. M. Nojiri, JHEP 19, 135 (2020), [arXiv:1904.02092].
[163] A. Chakraborty et al. (2020), [arXiv:2003.11787].
[164] M. Abdughani et al. (2020), [arXiv:2005.11086].
[165] E. Bernreuther et al. (2020), [arXiv:2006.08639].
[166] J. Shlomi, P. Battaglia and J.-R. Vlimant, Machine Learning: Science and Technology 2, 2,

021001 (2021), ISSN 2632-2153, URL http://dx.doi.org/10.1088/2632-2153/abbf9a.
[167] Y. Iiyama et al., Front. Big Data 3, 598927 (2020), [arXiv:2008.03601].
[168] X. Ju and B. Nachman, Phys. Rev. D 102, 075014 (2020), [arXiv:2008.06064].
[169] N. Choma et al. (2020), [arXiv:2007.00149].
[170] Jun Guo and Jinmian Li and Tianjun Li (2020), [arXiv:2010.05464].
[171] A. Heintz et al., 34th Conference on Neural Information Processing Systems (2020),

[arXiv:2012.01563].
[172] Y. Verma and S. Jena (2020), [arXiv:2012.08515].
[173] F. A. Dreyer and H. Qu (2020), [arXiv:2012.08526].
[174] J. Pata et al. (2021), [arXiv:2101.08578].
[175] C. Biscarat et al., in “25th International Conference on Computing in High-Energy and

Nuclear Physics,” (2021), [arXiv:2103.00916].
[176] S. Thais and G. DeZoort (2021), [arXiv:2103.06509].
[177] G. Dezoort et al. (2021), [arXiv:2103.16701].
[178] Y. Verma and S. Jena (2021), [arXiv:2103.14906].
[179] A. Hariri, D. Dyachkova and S. Gleyzer (2021), [arXiv:2104.01725].
[180] O. Atkinson et al. (2021), [arXiv:2105.07988].
[181] P. Konar, V. S. Ngairangbam and M. Spannowsky (2021), [arXiv:2109.14636].
[182] K. Cho et al., in “Conference on Empirical Methods in Natural Language Processing (EMNLP

2014),” (2014).
[183] H. Serviansky et al., in H. Larochelle et al., editors, “Advances in Neu-

ral Information Processing Systems,” volume 33, 22080–22091, Curran Asso-
ciates, Inc. (2020), URL https://proceedings.neurips.cc/paper/2020/file/
fb4ab556bc42d6f0ee0f9e24ec4d1af0-Paper.pdf.

[184] B. E. Boser, I. M. Guyon and V. N. Vapnik, in “Proceedings of the fifth annual workshop on
Computational learning theory,” 144–152 (1992).

[185] C. Cortes and V. Vapnik, Machine learning 20, 3, 273 (1995).
[186] H. Drucker et al., Advances in neural information processing systems 9, 155 (1997).
[187] R. M. Neal, University of Toronto (1994).
[188] C. K. Williams, Advances in neural information processing systems 295–301 (1997).

1st December, 2021

http://doi.org/10.1007/JHEP08(2019)055
http://doi.org/10.1007/JHEP08(2019)055
https://arxiv.org/abs/1807.09088
http://doi.org/10.1140/epjp/i2019-12710-3
http://doi.org/10.1140/epjp/i2019-12710-3
https://arxiv.org/abs/1810.07988
http://doi.org/10.1016/j.physletb.2020.135198
http://doi.org/10.1016/j.physletb.2020.135198
https://arxiv.org/abs/1901.05627
http://doi.org/10.1140/epjc/s10052-020-7608-4
http://doi.org/10.1140/epjc/s10052-020-7608-4
https://arxiv.org/abs/1908.05318
http://doi.org/10.1140/epjc/s10052-019-7113-9
http://doi.org/10.1140/epjc/s10052-019-7113-9
https://arxiv.org/abs/1902.07987
http://doi.org/10.1007/JHEP07(2019)135
http://doi.org/10.1007/JHEP07(2019)135
https://arxiv.org/abs/1904.02092
https://arxiv.org/abs/2003.11787
https://arxiv.org/abs/2005.11086
https://arxiv.org/abs/2006.08639
http://doi.org/10.1088/2632-2153/abbf9a
http://doi.org/10.1088/2632-2153/abbf9a
http://doi.org/10.1088/2632-2153/abbf9a
http://dx.doi.org/10.1088/2632-2153/abbf9a
http://doi.org/10.3389/fdata.2020.598927
http://doi.org/10.3389/fdata.2020.598927
https://arxiv.org/abs/2008.03601
http://doi.org/10.1103/PhysRevD.102.075014
http://doi.org/10.1103/PhysRevD.102.075014
https://arxiv.org/abs/2008.06064
https://arxiv.org/abs/2007.00149
https://arxiv.org/abs/2010.05464
https://arxiv.org/abs/2012.01563
https://arxiv.org/abs/2012.08515
https://arxiv.org/abs/2012.08526
https://arxiv.org/abs/2101.08578
https://arxiv.org/abs/2103.00916
https://arxiv.org/abs/2103.06509
https://arxiv.org/abs/2103.16701
https://arxiv.org/abs/2103.14906
https://arxiv.org/abs/2104.01725
https://arxiv.org/abs/2105.07988
https://arxiv.org/abs/2109.14636
https://proceedings.neurips.cc/paper/2020/file/fb4ab556bc42d6f0ee0f9e24ec4d1af0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fb4ab556bc42d6f0ee0f9e24ec4d1af0-Paper.pdf

68 41. Machine Learning

[189] J. Lee et al., in “6th International Conference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,” OpenReview.net
(2018), URL https://openreview.net/forum?id=B1EA-M-0Z.

[190] A. Jacot, C. Hongler and F. Gabriel, in S. Bengio et al., editors, “Advances
in Neural Information Processing Systems 31: Annual Conference on Neural In-
formation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada,” 8580–8589 (2018), URL https://proceedings.neurips.cc/paper/2018/hash/
5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html.

[191] T. Hofmann, B. Schölkopf and A. J. Smola, The Annals of Statistics 1171–1220 (2008).
[192] C. M. Bishop, Pattern recognition and machine learning, springer (2006).
[193] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning, volume 2,

MIT press Cambridge, MA (2006).
[194] S. Ambikasaran et al., IEEE transactions on pattern analysis and machine intelligence 38, 2,

252 (2015).
[195] J. R. Gardner et al., arXiv preprint arXiv:1809.11165 (2018).
[196] M. Frate et al. (2017), [arXiv:1709.05681].
[197] S. Mishra-Sharma and K. Cranmer, in “34th Conference on Neural Information Processing

Systems,” (2020), [arXiv:2010.10450].
[198] J. W. Foster et al., Phys. Rev. Lett. 127, 5, 051101 (2021), [arXiv:2102.02207].
[199] L. Breiman et al. (1984).
[200] “Xgboost,” https://xgboost.readthedocs.io/.
[201] I. Narsky (2005), [arXiv:physics/0507143].
[202] G. Louppe, arXiv preprint arXiv:1407.7502 (2014).
[203] Y. Freund and R. E. Schapire, Journal of computer and system sciences 55, 1, 119 (1997).
[204] J. H. Friedman, Annals of statistics 1189–1232 (2001).
[205] K. Fukushima, Biological Cybernetics 36, 193 (1980).
[206] V. Nair and G. E. Hinton, in “ICML,” (2010).
[207] A. L. Maas, A. Y. Hannun and A. Y. Ng, in “in ICML Workshop on Deep Learning for Audio,

Speech and Language Processing,” (2013).
[208] K. He et al., IEEE International Conference on Computer Vision (ICCV 2015) 1502 (2015).
[209] V. Sitzmann et al., in “Proc. NeurIPS,” (2020).
[210] G. Cybenko, Mathematics of control, signals and systems 2, 4, 303 (1989).
[211] O. Delalleau and Y. Bengio, in J. Shawe-Taylor et al., editors, “Ad-

vances in Neural Information Processing Systems,” volume 24, Curran Asso-
ciates, Inc. (2011), URL https://proceedings.neurips.cc/paper/2011/file/
8e6b42f1644ecb1327dc03ab345e618b-Paper.pdf.

[212] R. Raina, A. Madhavan and A. Y. Ng, in “Proceedings of the 26th Annual International
Conference on Machine Learning,” ICML ’09, 873–880, Association for Computing Machin-
ery, New York, NY, USA (2009), ISBN 9781605585161, URL https://doi.org/10.1145/
1553374.1553486.

[213] Y. LeCun, “Deep Learning est mort. Vive Differentiable Programming!” https:
//www.facebook.com/yann.lecun/posts/10155003011462143 (2018), URL https:

1st December, 2021

https://openreview.net/forum?id=B1EA-M-0Z
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://arxiv.org/abs/1709.05681
https://arxiv.org/abs/2010.10450
http://doi.org/10.1103/PhysRevLett.127.051101
http://doi.org/10.1103/PhysRevLett.127.051101
https://arxiv.org/abs/2102.02207
https://xgboost.readthedocs.io/
https://arxiv.org/abs/physics/0507143
http://doi.org/10.1007/BF00344251
http://doi.org/10.1007/BF00344251
http://doi.org/10.1109/ICCV.2015.123
http://doi.org/10.1109/ICCV.2015.123
https://proceedings.neurips.cc/paper/2011/file/8e6b42f1644ecb1327dc03ab345e618b-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/8e6b42f1644ecb1327dc03ab345e618b-Paper.pdf
https://doi.org/10.1145/1553374.1553486
https://doi.org/10.1145/1553374.1553486
https://www.facebook.com/yann.lecun/posts/10155003011462143
https://www.facebook.com/yann.lecun/posts/10155003011462143
https://www.facebook.com/yann.lecun/posts/10155003011462143 and https://techburst.io/deep-learning-est-mort-vive-differentiable-programming-5060d3c55074
https://www.facebook.com/yann.lecun/posts/10155003011462143 and https://techburst.io/deep-learning-est-mort-vive-differentiable-programming-5060d3c55074

69 41. Machine Learning

//www.facebook.com/yann.lecun/posts/10155003011462143andhttps://techburst.
io/deep-learning-est-mort-vive-differentiable-programming-5060d3c55074.

[214] M. Lin, Q. Chen and S. Yan, arXiv preprint arXiv:1312.4400 (2013).
[215] C. Szegedy et al., in “2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR),” 1–9 (2015).
[216] K. He et al., in “2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR),” 770–778 (2016).
[217] N. Cohen and A. Shashua, CoRR abs/1605.06743 (2016), URL http://arxiv.org/abs/

1605.06743.
[218] A. Bietti, L. Venturi and J. Bruna, arXiv preprint arXiv:2106.07148 (2021).
[219] M. M. Bronstein et al., arXiv preprint arXiv:2104.13478 (2021).
[220] K. Simonyan and A. Zisserman, CoRR abs/1409.1556 (2015).
[221] S. Ren et al., in C. Cortes et al., editors, “Advances in Neural Information Processing Sys-

tems,” volume 28, Curran Associates, Inc. (2015), URL https://proceedings.neurips.cc/
paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf.

[222] M. collaboration, Journal of Instrumentation 12, 03, P03011 (2017), URL https://doi.
org/10.1088/1748-0221/12/03/p03011.

[223] O. Ronneberger, P. Fischer and T. Brox, in N. Navab et al., editors, “Medical Image Comput-
ing and Computer-Assisted Intervention – MICCAI 2015,” 234–241, Springer International
Publishing, Cham (2015), ISBN 978-3-319-24574-4.

[224] G. Huang et al., in “2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR),” 2261–2269 (2017).

[225] D. Rumelhart, G. Hinton and R. Williams .
[226] Y. Bengio, P. Simard and P. Frasconi, Neural Networks, IEEE Transactions on 5, 2, 157

(1994).
[227] R. Pascanu, T. Mikolov and Y. Bengio, in S. Dasgupta and D. McAllester, editors, “Pro-

ceedings of the 30th International Conference on Machine Learning,” volume 28 of Proceed-
ings of Machine Learning Research, 1310–1318, PMLR, Atlanta, Georgia, USA (2013), URL
https://proceedings.mlr.press/v28/pascanu13.html.

[228] S. Hochreiter and J. Schmidhuber, Neural Computation 9, 8, 1735 (1997).
[229] R. Socher et al., in “ICML,” (2011).
[230] R. Socher et al., in “Proceedings of the 2011 conference on empirical methods in natural

language processing,” 151–161 (2011).
[231] X. Chen et al., in “Proceedings of the 2015 conference on empirical methods in natural

language processing,” 793–798 (2015).
[232] C. Olah and S. Carter, Distill (2016), URL http://distill.pub/2016/augmented-rnns.
[233] D. Bahdanau, K. Cho and Y. Bengio (2015), 3rd International Conference on Learning Rep-

resentations, ICLR 2015 ; Conference date: 07-05-2015 Through 09-05-2015.
[234] A. Vaswani et al., in I. Guyon et al., editors, “Advances in Neural Information Processing

Systems,” volume 30, Curran Associates, Inc. (2017), URL https://proceedings.neurips.
cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[235] R. Bommasani et al., arXiv preprint arXiv:2108.07258 (2021).
[236] P. Battaglia et al., arXiv (2018), URL https://arxiv.org/pdf/1806.01261.pdf.

1st December, 2021

https://www.facebook.com/yann.lecun/posts/10155003011462143 and https://techburst.io/deep-learning-est-mort-vive-differentiable-programming-5060d3c55074
https://www.facebook.com/yann.lecun/posts/10155003011462143 and https://techburst.io/deep-learning-est-mort-vive-differentiable-programming-5060d3c55074
https://www.facebook.com/yann.lecun/posts/10155003011462143 and https://techburst.io/deep-learning-est-mort-vive-differentiable-programming-5060d3c55074
http://arxiv.org/abs/1605.06743
http://arxiv.org/abs/1605.06743
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
http://doi.org/10.1088/1748-0221/12/03/p03011
http://doi.org/10.1088/1748-0221/12/03/p03011
https://doi.org/10.1088/1748-0221/12/03/p03011
https://doi.org/10.1088/1748-0221/12/03/p03011
https://proceedings.mlr.press/v28/pascanu13.html
http://doi.org/10.23915/distill.00001
http://distill.pub/2016/augmented-rnns
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/pdf/1806.01261.pdf

70 41. Machine Learning

[237] M. Gori, G. Monfardini and F. Scarselli, in “Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005.”, volume 2, 729–734 vol. 2 (2005).

[238] C. R. Qi et al., in “Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR),” (2017).

[239] C. Qi et al., in “NIPS,” (2017).
[240] M. Jaderberg et al., in C. Cortes et al., editors, “Advances in Neural Information Processing

Systems,” volume 28, Curran Associates, Inc. (2015), URL https://proceedings.neurips.
cc/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf.

[241] M. Zaheer et al., in I. Guyon et al., editors, “Advances in Neural Information Processing
Systems,” volume 30, Curran Associates, Inc. (2017), URL https://proceedings.neurips.
cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf.

[242] Y. Wang et al., ACM Transactions on Graphics 38 (2018).
[243] X. Wang et al., in “2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR),” 7794–7803, IEEE Computer Society, Los Alamitos, CA, USA (2018), URL https:
//doi.ieeecomputersociety.org/10.1109/CVPR.2018.00813.

[244] J. Gilmer et al., in D. Precup and Y. W. Teh, editors, “Proceedings of the 34th International
Conference on Machine Learning,” volume 70 of Proceedings of Machine Learning Research,
1263–1272, PMLR (2017), URL https://proceedings.mlr.press/v70/gilmer17a.html.

[245] N. Choma et al. (IceCube) (2018), [arXiv:1809.06166].
[246] S. R. Qasim et al., The European Physical Journal C 79, 7 (2019), ISSN 1434-6052, URL

http://dx.doi.org/10.1140/epjc/s10052-019-7113-9.
[247] J. Shlomi, P. Battaglia and J.-R. Vlimant, Machine Learning: Science and Technology 2, 2,

021001 (2021), URL https://doi.org/10.1088/2632-2153/abbf9a.
[248] D. P. Kingma and M. Welling, arXiv preprint arXiv:1312.6114 (2013).
[249] D. J. Rezende, S. Mohamed and D. Wierstra, in “Proceedings of the 31th International

Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014,” volume 32
of JMLR Workshop and Conference Proceedings, 1278–1286, JMLR.org (2014), URL http:
//proceedings.mlr.press/v32/rezende14.html.

[250] I. J. Goodfellow et al., in Z. Ghahramani et al., editors, “Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada,” 2672–2680 (2014), URL http://papers.
nips.cc/paper/5423-generative-adversarial-nets.

[251] A. Radford, L. Metz and S. Chintala, in Y. Bengio and Y. LeCun, editors, “4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings,” (2016), URL http://arxiv.org/abs/1511.06434.

[252] D. Rezende and S. Mohamed, Proceedings of the 32nd International Conference on Machine
Learning 37, 1530 (2015), URL http://proceedings.mlr.press/v37/rezende15.html.

[253] L. Dinh, D. Krueger and Y. Bengio, 3rd International Conference on Learning Representa-
tions, ICLR 2015 - Workshop Track Proceedings (2015), [arXiv:1410.8516].

[254] L. Dinh, J. Sohl-Dickstein and S. Bengio, in “5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings,”
OpenReview.net (2017), URL https://openreview.net/forum?id=HkpbnH9lx.

[255] D. P. Kingma and P. Dhariwal, in S. Bengio et al., editors, “Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada,” 10236–10245 (2018).

1st December, 2021

https://proceedings.neurips.cc/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
http://doi.org/10.1145/3326362
http://doi.org/10.1145/3326362
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00813
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00813
https://proceedings.mlr.press/v70/gilmer17a.html
https://arxiv.org/abs/1809.06166
http://doi.org/10.1140/epjc/s10052-019-7113-9
http://doi.org/10.1140/epjc/s10052-019-7113-9
http://dx.doi.org/10.1140/epjc/s10052-019-7113-9
http://doi.org/10.1088/2632-2153/abbf9a
http://doi.org/10.1088/2632-2153/abbf9a
http://doi.org/10.1088/2632-2153/abbf9a
https://doi.org/10.1088/2632-2153/abbf9a
http://proceedings.mlr.press/v32/rezende14.html
http://proceedings.mlr.press/v32/rezende14.html
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://arxiv.org/abs/1511.06434
http://proceedings.mlr.press/v37/rezende15.html
https://arxiv.org/abs/1410.8516
https://openreview.net/forum?id=HkpbnH9lx

71 41. Machine Learning

[256] I. Kobyzev, S. Prince and M. Brubaker, IEEE Transactions on Pattern Analysis and Machine
Intelligence (2020).

[257] M. Arjovsky and L. Bottou, in “5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings,” OpenRe-
view.net (2017), URL https://openreview.net/forum?id=Hk4_qw5xe.

[258] M. Wiatrak and S. V. Albrecht, arXiv preprint arXiv:1910.00927 (2019).
[259] D. J. Rezende et al., in “International Conference on Machine Learning,” 8083–8092, PMLR

(2020).
[260] M. C. Gemici, D. Rezende and S. Mohamed, arXiv preprint arXiv:1611.02304 (2016).
[261] A. van den Oord, O. Vinyals and K. Kavukcuoglu, in I. Guyon et al., editors, “Advances

in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,” 6306–6315 (2017).

[262] T. Karras et al., in “6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,” OpenRe-
view.net (2018), URL https://openreview.net/forum?id=Hk99zCeAb.

[263] T. Karras, S. Laine and T. Aila, in “IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,” 4401–4410, Com-
puter Vision Foundation / IEEE (2019), URL http://openaccess.thecvf.com/content_
CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_
Adversarial_Networks_CVPR_2019_paper.html.

[264] M. Lucic et al., in S. Bengio et al., editors, “Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada,” 698–707 (2018).

[265] A. A. Alemi et al., in J. G. Dy and A. Krause, editors, “Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018,” volume 80 of Proceedings of Machine Learning Research, 159–168, PMLR
(2018), URL http://proceedings.mlr.press/v80/alemi18a.html.

[266] M. E. Tipping and C. M. Bishop, Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 61, 3, 611 (1999), URL https://rss.onlinelibrary.wiley.com/doi/abs/
10.1111/1467-9868.00196.

[267] M. Arjovsky, S. Chintala and L. Bottou, arXiv preprint arXiv:1701.07875 (2017).
[268] L. Mescheder, S. Nowozin and A. Geiger, in I. Guyon et al., editors, “Ad-

vances in Neural Information Processing Systems,” volume 30, Curran Asso-
ciates, Inc. (2017), URL https://proceedings.neurips.cc/paper/2017/file/
4588e674d3f0faf985047d4c3f13ed0d-Paper.pdf.

[269] G. Papamakarios, I. Murray and T. Pavlakou, in “Advances in Neural Information Processing
Systems,” 2335–2344 (2017).

[270] C. Durkan et al., in H. M. Wallach et al., editors, “Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada,” 7509–7520 (2019).

[271] W. Grathwohl et al., in “7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019,” OpenReview.net (2019), URL https:
//openreview.net/forum?id=rJxgknCcK7.

[272] A. van den Oord et al., arXiv:1609.03499 (2016), [arXiv:1609.03499], URL http://arxiv.
org/abs/1609.03499.

1st December, 2021

https://openreview.net/forum?id=Hk4_qw5xe
https://openreview.net/forum?id=Hk99zCeAb
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
http://proceedings.mlr.press/v80/alemi18a.html
http://doi.org/10.1111/1467-9868.00196
http://doi.org/10.1111/1467-9868.00196
http://doi.org/10.1111/1467-9868.00196
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00196
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00196
https://proceedings.neurips.cc/paper/2017/file/4588e674d3f0faf985047d4c3f13ed0d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/4588e674d3f0faf985047d4c3f13ed0d-Paper.pdf
https://openreview.net/forum?id=rJxgknCcK7
https://openreview.net/forum?id=rJxgknCcK7
https://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499

72 41. Machine Learning

[273] A. van den Oord et al., in D. D. Lee et al., editors, “Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain,” 4790–4798 (2016), URL https://proceedings.neurips.cc/
paper/2016/hash/b1301141feffabac455e1f90a7de2054-Abstract.html.

[274] A. Hyvärinen and P. Dayan, Journal of Machine Learning Research 6, 4 (2005).
[275] Y. Song and S. Ermon, in Wallach et al. [358], 11895–11907, URL https://proceedings.

neurips.cc/paper/2019/hash/3001ef257407d5a371a96dcd947c7d93-Abstract.html.
[276] Y. Song et al., CoRR abs/2011.13456 (2020), [arXiv:2011.13456], URL https://arxiv.

org/abs/2011.13456.
[277] S. Mandt, M. D. Hoffman and D. M. Blei, J. Mach. Learn. Res. 18, 134:1 (2017), URL

http://jmlr.org/papers/v18/17-214.html.
[278] D. P. Kingma and J. Ba, arXiv e-prints arXiv:1412.6980 (2014), [arXiv:1412.6980].
[279] Y. LeCun et al., Efficient backprop, 9–48, Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer
Verlag (2012), ISBN 9783642352881, copyright: Copyright 2021 Elsevier B.V., All rights
reserved.

[280] Y. Yao, L. Rosasco and A. Caponnetto, Constructive Approximation 26, 2, 289 (2007).
[281] L. Prechelt, in “Neural Networks: Tricks of the trade,” 55–69, Springer (1998).
[282] A. Krizhevsky, I. Sutskever and G. Hinton, Neural Information Processing Systems 25 (2012).
[283] X. Glorot and Y. Bengio, in Y. W. Teh and M. Titterington, editors, “Proceedings of the

Thirteenth International Conference on Artificial Intelligence and Statistics,” volume 9 of
Proceedings of Machine Learning Research, 249–256, PMLR, Chia Laguna Resort, Sardinia,
Italy (2010), URL http://proceedings.mlr.press/v9/glorot10a.html.

[284] S. Ioffe and C. Szegedy, CoRR abs/1502.03167 (2015), [arXiv:1502.03167], URL http:
//arxiv.org/abs/1502.03167.

[285] J. L. Ba, J. R. Kiros and G. E. Hinton, “Layer normalization,” (2016), [arXiv:1607.06450].
[286] D. Ulyanov, A. Vedaldi and V. Lempitsky, “Instance normalization: The missing ingredient

for fast stylization,” (2017), [arXiv:1607.08022].
[287] Y. Wu and K. He, “Group normalization,” (2018), [arXiv:1803.08494].
[288] T.-Y. Lin et al., in D. Fleet et al., editors, “Computer Vision – ECCV 2014,” 740–755,

Springer International Publishing, Cham (2014), ISBN 978-3-319-10602-1.
[289] O. Russakovsky et al., International Journal of Computer Vision (IJCV) 115, 3, 211 (2015).
[290] M. Cordts et al., in “Proc. of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR),” (2016).
[291] L. Yi et al., SIGGRAPH Asia (2016).
[292] A. Radford et al. (2018), URL https://s3-us-west-2.amazonaws.com/openai-assets/

research-covers/language-unsupervised/language_understanding_paper.pdf.
[293] L. Fei-Fei, R. Fergus and P. Perona, IEEE Transactions on Pattern Analysis and Machine

Intelligence 28, 4, 594 (2006).
[294] H. Larochelle, D. Erhan and Y. Bengio, in “Proceedings of the 23rd National Confer-

ence on Artificial Intelligence - Volume 2,” AAAI’08, 646–651, AAAI Press (2008), ISBN
9781577353683.

1st December, 2021

https://proceedings.neurips.cc/paper/2016/hash/b1301141feffabac455e1f90a7de2054-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/b1301141feffabac455e1f90a7de2054-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3001ef257407d5a371a96dcd947c7d93-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3001ef257407d5a371a96dcd947c7d93-Abstract.html
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2011.13456
http://jmlr.org/papers/v18/17-214.html
https://arxiv.org/abs/1412.6980
http://doi.org/10.1145/3065386
http://doi.org/10.1145/3065386
http://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1803.08494
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.1007/s11263-015-0816-y
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
http://doi.org/10.1109/TPAMI.2006.79
http://doi.org/10.1109/TPAMI.2006.79
http://doi.org/10.1109/TPAMI.2006.79

73 41. Machine Learning

[295] M. Palatucci et al., in Y. Bengio et al., editors, “Advances in Neural Information Processing
Systems,” volume 22, Curran Associates, Inc. (2009), URL https://proceedings.neurips.
cc/paper/2009/file/1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf.

[296] R. Socher et al., in “Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 1,” NIPS’13, 935–943, Curran Associates Inc., Red Hook, NY,
USA (2013).

[297] T. Dorigo and P. De Castro Manzano (2020), [arXiv:2007.09121].
[298] R. Barate et al. (ALEPH), Phys. Lett. B 412, 173 (1997).
[299] G. Louppe, M. Kagan and K. Cranmer, in I. Guyon et al., editors, “Ad-

vances in Neural Information Processing Systems,” volume 30, Curran Asso-
ciates, Inc. (2017), [arXiv:1611.01046], URL https://papers.nips.cc/paper/2017/hash/
48ab2f9b45957ab574cf005eb8a76760-Abstract.html.

[300] H. Edwards and A. Storkey, arXiv preprint arXiv:1511.05897 (2015).
[301] Y. Ganin and V. Lempitsky, in “International conference on machine learning,” 1180–1189,

PMLR (2015).
[302] H. Ajakan et al., ArXiv e-prints (2014), [arXiv:1412.4446].
[303] G. Kasieczka and D. Shih, Phys. Rev. Lett. 125, 12, 122001 (2020), [arXiv:2001.05310].
[304] C. Shimmin et al., Phys. Rev. D96, 7, 074034 (2017), [arXiv:1703.03507].
[305] J. Stevens and M. Williams, JINST 8, P12013 (2013), [arXiv:1305.7248].
[306] J. Dolen et al., JHEP 05, 156 (2016), [arXiv:1603.00027].
[307] I. Moult, B. Nachman and D. Neill, JHEP 05, 002 (2018), [arXiv:1710.06859].
[308] L. Bradshaw et al. (2019), [arXiv:1908.08959].
[309] ATL-PHYS-PUB-2018-014 (2018), URL http://cds.cern.ch/record/2630973.
[310] L.-G. Xia, Nucl. Instrum. Meth. A930, 15 (2019), [arXiv:1810.08387].
[311] C. Englert et al., Eur. Phys. J. C79, 1, 4 (2019), [arXiv:1807.08763].
[312] S. Wunsch et al. (2019), [arXiv:1907.11674].
[313] A. Rogozhnikov et al., JINST 10, 03, T03002 (2015), [arXiv:1410.4140].
[314] C. Collaboration, Machine Learning: Science and Technology (2020).
[315] J. M. Clavijo, P. Glaysher and J. M. Katzy (2020), [arXiv:2005.00568].
[316] G. Kasieczka et al. (2020), [arXiv:2007.14400].
[317] O. Kitouni et al. (2020), [arXiv:2010.09745].
[318] A. Ghosh and B. Nachman (2021), [arXiv:2109.08159].
[319] P. Baldi et al., Eur. Phys. J. C76, 5, 235 (2016), [arXiv:1601.07913].
[320] A. Ghosh, B. Nachman and D. Whiteson (2021), [arXiv:2105.08742].
[321] W. L. Oberkampf et al., Reliability Engineering & System Safety 85, 1, 11 (2004),

ISSN 0951-8320, alternative Representations of Epistemic Uncertainty, URL https://www.
sciencedirect.com/science/article/pii/S0951832004000493.

[322] A. O’Hagan and J. E. Oakley, Reliability Engineering & System Safety 85, 1, 239 (2004),
ISSN 0951-8320, alternative Representations of Epistemic Uncertainty, URL https://www.
sciencedirect.com/science/article/pii/S0951832004000638.

[323] E. Hüllermeier and W. Waegeman, CoRR abs/1910.09457 (2019), URL http://arxiv.
org/abs/1910.09457.

1st December, 2021

https://proceedings.neurips.cc/paper/2009/file/1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf
https://arxiv.org/abs/2007.09121
http://doi.org/10.1016/S0370-2693(97)01112-X
http://doi.org/10.1016/S0370-2693(97)01112-X
https://arxiv.org/abs/1611.01046
https://papers.nips.cc/paper/2017/hash/48ab2f9b45957ab574cf005eb8a76760-Abstract.html
https://papers.nips.cc/paper/2017/hash/48ab2f9b45957ab574cf005eb8a76760-Abstract.html
https://arxiv.org/abs/1412.4446
http://doi.org/10.1103/PhysRevLett.125.122001
http://doi.org/10.1103/PhysRevLett.125.122001
https://arxiv.org/abs/2001.05310
http://doi.org/10.1103/PhysRevD.96.074034
http://doi.org/10.1103/PhysRevD.96.074034
https://arxiv.org/abs/1703.03507
http://doi.org/10.1088/1748-0221/8/12/P12013
http://doi.org/10.1088/1748-0221/8/12/P12013
https://arxiv.org/abs/1305.7248
http://doi.org/10.1007/JHEP05(2016)156
http://doi.org/10.1007/JHEP05(2016)156
https://arxiv.org/abs/1603.00027
http://doi.org/10.1007/JHEP05(2018)002
http://doi.org/10.1007/JHEP05(2018)002
https://arxiv.org/abs/1710.06859
https://arxiv.org/abs/1908.08959
http://cds.cern.ch/record/2630973
http://doi.org/10.1016/j.nima.2019.03.088
http://doi.org/10.1016/j.nima.2019.03.088
https://arxiv.org/abs/1810.08387
http://doi.org/10.1140/epjc/s10052-018-6511-8
http://doi.org/10.1140/epjc/s10052-018-6511-8
https://arxiv.org/abs/1807.08763
https://arxiv.org/abs/1907.11674
http://doi.org/10.1088/1748-0221/10/03/T03002
http://doi.org/10.1088/1748-0221/10/03/T03002
https://arxiv.org/abs/1410.4140
http://doi.org/10.1088/2632-2153/ab9023
https://arxiv.org/abs/2005.00568
https://arxiv.org/abs/2007.14400
https://arxiv.org/abs/2010.09745
https://arxiv.org/abs/2109.08159
http://doi.org/10.1140/epjc/s10052-016-4099-4
http://doi.org/10.1140/epjc/s10052-016-4099-4
https://arxiv.org/abs/1601.07913
https://arxiv.org/abs/2105.08742
http://doi.org/https://doi.org/10.1016/j.ress.2004.03.002
http://doi.org/https://doi.org/10.1016/j.ress.2004.03.002
https://www.sciencedirect.com/science/article/pii/S0951832004000493
https://www.sciencedirect.com/science/article/pii/S0951832004000493
http://doi.org/https://doi.org/10.1016/j.ress.2004.03.014
http://doi.org/https://doi.org/10.1016/j.ress.2004.03.014
https://www.sciencedirect.com/science/article/pii/S0951832004000638
https://www.sciencedirect.com/science/article/pii/S0951832004000638
http://arxiv.org/abs/1910.09457
http://arxiv.org/abs/1910.09457

74 41. Machine Learning

[324] A. Kendall and Y. Gal, in I. Guyon et al., editors, “Advances in Neural Information Processing
Systems,” volume 30, Curran Associates, Inc. (2017), URL https://proceedings.neurips.
cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf.

[325] A. D. Kiureghian and O. Ditlevsen, Structural Safety 31, 2, 105 (2009), ISSN 0167-4730, risk
Acceptance and Risk Communication, URL https://www.sciencedirect.com/science/
article/pii/S0167473008000556.

[326] Y. Yao et al., Bayesian Analysis 13, 3 (2018), ISSN 1936-0975, URL http://dx.doi.org/
10.1214/17-BA1091.

[327] J. Snoek et al., in Wallach et al. [358], 13969–13980, URL https://proceedings.neurips.
cc/paper/2019/hash/8558cb408c1d76621371888657d2eb1d-Abstract.html.

[328] Y. Gal and Z. Ghahramani, in M. Balcan and K. Q. Weinberger, editors, “Proceedings of the
33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016,” volume 48 of JMLR Workshop and Conference Proceedings, 1050–1059,
JMLR.org (2016), URL http://proceedings.mlr.press/v48/gal16.html.

[329] B. Lakshminarayanan, A. Pritzel and C. Blundell, in I. Guyon et al., editors, “Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA,” 6402–6413 (2017), URL https://proceedings.neurips.cc/paper/2017/hash/
9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html.

[330] D. P. Kingma, T. Salimans and M. Welling, CoRR abs/1506.02557 (2015), URL http:
//arxiv.org/abs/1506.02557.

[331] G. C. Strong (2020), [arXiv:2002.01427].
[332] V. V. Gligorov and M. Williams, JINST 8, P02013 (2013), [arXiv:1210.6861].
[333] D. W. III et al. (2017), URL https://dl4physicalsciences.github.io/files/nips_

dlps_2017_3.pdf.
[334] D. Bourgeois, C. Fitzpatrick and S. Stahl (2018), [arXiv:1808.00711].
[335] J. Alimena, Y. Iiyama and J. Kieseler (2020), [arXiv:2004.10744].
[336] C. Balázs et al. (DarkMachines High Dimensional Sampling Group) (2021),

[arXiv:2101.04525].
[337] F. Rehm et al. (2021), [arXiv:2103.10142].
[338] C. Mahesh et al., in “34th Conference on Neural Information Processing Systems,” (2021),

[arXiv:2104.06622].
[339] S. Amrouche et al. (2021), [arXiv:2105.01160].
[340] P. Goncharov et al., in “24th International Scientific Conference of Young Scientists and

Specialists,” (2021), [arXiv:2109.08982].
[341] J. Duarte et al., JINST 13, 07, P07027 (2018), [arXiv:1804.06913].
[342] J. Ngadiuba et al., Mach. Learn.: Sci. Tech. 2, 1, 015001 (2020), [arXiv:2003.06308].
[343] S. Summers et al., JINST 15, 05, P05026 (2020), [arXiv:2002.02534].
[344] J. Krupa et al. (2020), [arXiv:2007.10359].
[345] L. R. M. Mohan et al. (2020), [arXiv:2008.09210].
[346] S. Carrazza, J. M. Cruz-Martinez and M. Rossi (2020), [arXiv:2009.06635].
[347] D. S. Rankin et al., 2020 IEEE/ACM International Workshop on Heterogeneous High-

performance Reconfigurable Computing (H2RC) 38 (2020), [arXiv:2010.08556].

1st December, 2021

https://proceedings.neurips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
http://doi.org/https://doi.org/10.1016/j.strusafe.2008.06.020
http://doi.org/https://doi.org/10.1016/j.strusafe.2008.06.020
https://www.sciencedirect.com/science/article/pii/S0167473008000556
https://www.sciencedirect.com/science/article/pii/S0167473008000556
http://doi.org/10.1214/17-ba1091
http://doi.org/10.1214/17-ba1091
http://dx.doi.org/10.1214/17-BA1091
http://dx.doi.org/10.1214/17-BA1091
https://proceedings.neurips.cc/paper/2019/hash/8558cb408c1d76621371888657d2eb1d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/8558cb408c1d76621371888657d2eb1d-Abstract.html
http://proceedings.mlr.press/v48/gal16.html
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
http://arxiv.org/abs/1506.02557
http://arxiv.org/abs/1506.02557
https://arxiv.org/abs/2002.01427
http://doi.org/10.1088/1748-0221/8/02/P02013
http://doi.org/10.1088/1748-0221/8/02/P02013
https://arxiv.org/abs/1210.6861
https://dl4physicalsciences.github.io/files/nips_dlps_2017_3.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_3.pdf
https://arxiv.org/abs/1808.00711
https://arxiv.org/abs/2004.10744
https://arxiv.org/abs/2101.04525
https://arxiv.org/abs/2103.10142
https://arxiv.org/abs/2104.06622
https://arxiv.org/abs/2105.01160
https://arxiv.org/abs/2109.08982
http://doi.org/10.1088/1748-0221/13/07/P07027
http://doi.org/10.1088/1748-0221/13/07/P07027
https://arxiv.org/abs/1804.06913
http://doi.org/10.1088/2632-2153/aba042
http://doi.org/10.1088/2632-2153/aba042
https://arxiv.org/abs/2003.06308
http://doi.org/10.1088/1748-0221/15/05/P05026
http://doi.org/10.1088/1748-0221/15/05/P05026
https://arxiv.org/abs/2002.02534
https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2008.09210
https://arxiv.org/abs/2009.06635
http://doi.org/10.1109/H2RC51942.2020.00010
http://doi.org/10.1109/H2RC51942.2020.00010
http://doi.org/10.1109/H2RC51942.2020.00010
https://arxiv.org/abs/2010.08556

75 41. Machine Learning

[348] M. Rossi, S. Carrazza and J. M. Cruz-Martinez (2020), [arXiv:2012.08221].
[349] T. Aarrestad et al. (2021), [arXiv:2101.05108].
[350] B. Hawks et al. (2021), [arXiv:2102.11289].
[351] T. Teixeira, L. Andrade and J. M. de Seixas (2021), [arXiv:2103.12467].
[352] T. M. Hong et al. (2021), [arXiv:2104.03408].
[353] G. Di Guglielmo et al. (2021), [arXiv:2105.01683].
[354] M. Migliorini et al. (2021), [arXiv:2105.04428].
[355] E. Govorkova et al. (2021), [arXiv:2108.03986].
[356] V. Kuznetsov, L. Giommi and D. Bonacorsi (2020), [arXiv:2007.14781].
[357] O. Sunneborn Gudnadottir et al., EPJ Web Conf. 251, 02054 (2021), [arXiv:2109.00264].
[358] H. M. Wallach et al., editors, Advances in Neural Information Processing Systems 32: Annual

Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-
14, 2019, Vancouver, BC, Canada (2019), URL https://proceedings.neurips.cc/paper/
2019.

1st December, 2021

https://arxiv.org/abs/2012.08221
https://arxiv.org/abs/2101.05108
https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/2103.12467
https://arxiv.org/abs/2104.03408
https://arxiv.org/abs/2105.01683
https://arxiv.org/abs/2105.04428
https://arxiv.org/abs/2108.03986
https://arxiv.org/abs/2007.14781
http://doi.org/10.1051/epjconf/202125102054
http://doi.org/10.1051/epjconf/202125102054
https://arxiv.org/abs/2109.00264
https://proceedings.neurips.cc/paper/2019
https://proceedings.neurips.cc/paper/2019

	Machine Learning
	Introduction
	A gentle introduction with a representative example

	Fundamental concepts
	Loss, risk, empirical risk
	Generalization

	Common tasks and their associated loss functions
	Supervised learning
	Regression
	A note on regularization
	Classification

	Unsupervised learning
	Density estimation
	Representation learning, compression, and auto-encoders
	Clustering

	Optimal control, reinforcement learning, and active learning
	Reinforcement learning
	Multi-arm bandits
	Bayesian optimization
	Connection to experimental design
	Active learning

	Anomaly detection and out-of-distribution detection
	Simulation-based inference
	Differentiable simulations
	Unfolding as an inverse problem

	Data representations, inductive bias, and example applications
	Flavors of ML models
	Support vector machines and kernel machines
	Maximum-margin classifiers
	Soft margins and slack variables
	The dual problem
	The kernel trick
	Support vector regression
	Kernel ridge regression
	Gaussian Process Regression (krigging)

	Decision trees
	Tree-based models
	Ensemble methods
	Bagging
	Random forests
	AdaBoost
	Gradient boosting

	Neural networks
	Feed-forward multi-layer perceptron
	Activation functions
	Softmax
	The rise of deep learning
	Convolutional neural networks
	Pooling
	CNN architectures for image analysis
	Region Convolutional Neural Network
	U-Net

	Residual networks and skip connections
	Recurrent neural networks
	LSTM and GRU
	Attention
	Scaled dot-product attention
	Transformer and multi-head attention
	Graph networks and geometric deep learning

	Deep generative models
	Variational auto-encoders
	Generative adversarial networks
	Normalizing flows, autoregressive models, and score based models

	Learning algorithms
	Gradient-based optimization
	Stochastic gradient descent
	Optimization algorithms
	Automatic differentiation and back propagation
	The vanishing and exploding gradient problems
	Early stopping
	Initialization of model parameters
	Input normalization
	Batch normalization
	Transfer learning: pre-training and fine-tuning
	Zero, one, and a few shot learning

	Incorporating uncertainty
	Propagation of errors
	Domain adaptation
	Parameterized models
	Data augmentation
	Aleatoric and epistemic uncertainty
	Model averaging and Bayesian machine learning
	Connection to probabilistic machine learning

	Infrastructure for deployment in experiments

