$$\Delta(1900) \ 1/2^{-1}$$

 $I(J^P) = \frac{3}{2}(\frac{1}{2})$ Status: ***

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

Δ (1900) POLE POSITION

REAL PARI							
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT			
1830 to 1900 (\approx 1865) OUR ESTIMATE							
1845 ± 20	SOKHOYAN	15A	DPWA	Multichannel			
$1865 \pm 35 \pm 19$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$			
1870 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$			
\bullet \bullet \bullet We do not use the following	data for averages	s, fits,	limits, e	tc. ● ● ●			
1957	HUNT	19	DPWA	Multichannel			
1845 ± 20	GUTZ	14	DPWA	Multichannel			
1845 ± 25	ANISOVICH	12A	DPWA	Multichannel			
1795	VRANA	00	DPWA	Multichannel			
1780	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$			
1 Fit to the amplitudes of HOEH	LER 79.						
-2×IMAGINARY PART							
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT			
180 to 300 (≈ 240) OUR ESTIMA	TE						
295 ± 35	SOKHOYAN	15A	DPWA	Multichannel			
$187 \pm 50 \pm 19$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$			
180 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$			
\bullet \bullet \bullet We do not use the following	ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$ $ullet$						
447	HUNT	19	DPWA	Multichannel			
295 ± 35	GUTZ	14	DPWA	Multichannel			
300±45	ANISOVICH	12A	DPWA	Multichannel			
58	VRANA	00	DPWA	Multichannel			
1							

¹ Fit to the amplitudes of HOEHLER 79.

△(1900) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
8 to 14 (\approx 11) OUR ESTIMATE						
11 ± 2	SOKHOYAN	15A	DPWA	Multichannel		
$11\pm4\pm2$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$		
10±3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$		
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						
11 ± 2	GUTZ	14	DPWA	Multichannel		
10±3	ANISOVICH	12A	DPWA	Multichannel		

¹ Fit to the amplitudes of HOEHLER 79.

https://pdg.lbl.gov

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

PHASE θ						
VALUE (°)	DOCUMENT ID		TECN	COMMENT		
-115 ± 20	SOKHOYAN	15A	DPWA	Multichannel		
$20 \pm 27 \pm 19$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$		
$+ 20 \pm 40$	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$		
\bullet \bullet \bullet We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●		
-115 ± 20	GUTZ	14	DPWA	Multichannel		
-125 ± 20	ANISOVICH	12A	DPWA	Multichannel		
1 Fit to the amplitudes of HOEHLER 79.						

△(1900) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized re	sidue in $N\pi \rightarrow \Delta($	1900) $\rightarrow \Sigma k$	(
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT		
0.07 ± 0.02	-50 ± 30	ANISOVICH	12A	DPWA	Multichannel		
Normalized residue in $N\pi ightarrow \Delta(1900) ightarrow \Delta\pi$, <i>D</i> -wave							
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT		
0.18 ± 0.10	105 ± 25	SOKHOYAN	15A	DPWA	Multichannel		
• • • We do no	t use the following data	for averages, fit	ts, lim	its, etc.	• • •		
$0.12\substack{+0.08 \\ -0.05}$	110 ± 20	ANISOVICH	12A	DPWA	Multichannel		
Normalized residue in $N\pi \rightarrow \Delta(1900) \rightarrow \Delta(1232)\eta$							
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT		
0.013 ± 0.006	undefined	GUTZ	14	DPWA	Multichannel		
Normalized re	sidue in $N\pi ightarrow \Delta($	1900) $\rightarrow N(1)$	L440)	π			
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT		
0.11 ± 0.06	115 ± 30	SOKHOYAN	15A	DPWA	Multichannel		
Normalized residue in $N\pi \rightarrow \Delta(1900) \rightarrow N(1520)\pi$							
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT		
0.06±0.03	undefined	SOKHOYAN	15A	DPWA	Multichannel		

△(1900) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1840 to 1920 (\approx 1860) OUR ESTIN	MATE			
1989±22	¹ HUNT	19	DPWA	Multichannel
1840 ± 20	SOKHOYAN	15A	DPWA	Multichannel
$1890\!\pm\!50$	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1908 ± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
1840 ± 20	GUTZ	14	DPWA	Multichannel
$1840\!\pm\!30$	ANISOVICH	12A	DPWA	Multichannel
1868 ± 12	¹ SHRESTHA	12A	DPWA	Multichannel
1802 ± 87	VRANA	00	DPWA	Multichannel
https://pdg.lbl.gov	Page 2		Creat	ed: 4/29/2024 18:55

 $^1\,\mathrm{Statistical}$ error only.

△(1900) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
180 to 320 (≈ 250) OUR ESTIMA	TE			
457±60	¹ HUNT	19	DPWA	Multichannel
295 ± 30	SOKHOYAN	15A	DPWA	Multichannel
170 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
140 ± 40	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$\bullet \bullet \bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
295 ± 30	GUTZ	14	DPWA	Multichannel
300 ± 45	ANISOVICH	12A	DPWA	Multichannel
234±27	¹ SHRESTHA	12A	DPWA	Multichannel
48±45	VRANA	00	DPWA	Multichannel
1 Statistical error only.				

△(1900) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
Г1	Νπ	4–12%
Γ2	ΣΚ	seen
Γ ₃	$N\pi\pi$	> 52%
Γ ₄	$arDelta(1232)\pi$, D -wave	30–70%
Γ ₅	$N \rho$	22–60 %
Г ₆	N $ ho$, S=1/2, S-wave	11-35%
Γ ₇	N $ ho$, S=3/2, D-wave	11–25%
Г ₈	$N(1440)\pi$	3–32%
Г9	$N(1520)\pi$	2–10%
Γ ₁₀	$\Delta(1232)\eta$	< 2%
Γ_{11}	N γ , helicity=1/2	0.06–0.43 %

△(1900) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN COMMENT		
4–12% OUR ESTIMATE					
$3.7\pm$ 0.8	¹ HUNT	19	DPWA	Multichannel	
7 ± 2	SOKHOYAN	15A	DPWA	Multichannel	
10 ± 3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
8 ± 4	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
• • We do not use the following	g data for average	s, fits,	limits, e	etc. ● ● ●	
7 ± 2	GUTZ	14	DPWA	Multichannel	
7 ± 3	ANISOVICH	12A	DPWA	Multichannel	
8 ± 1	¹ SHRESTHA	12A	DPWA	Multichannel	
33 ±10	VRANA	00	DPWA	Multichannel	
1 Statistical error only.					
https://pdg.lbl.gov	Page 3		Creat	ed: 4/29/2024	18:55

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

$\Gamma(\Delta(1232)\pi, D$ -wave)/ Γ_{total}					
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
30–70% OUR ESTIMATE					
42± 8	¹ HUNT	19	DPWA	Multichannel	
50±20	SOKHOYAN	15A	DPWA	Multichannel	
• • • We do not use the following	g data for average	s, fits,	limits, e	etc. ● ● ●	
15^{+50}_{-10}	ANISOVICH	12A	DPWA	Multichannel	
56± 6	¹ SHRESTHA	12A	DPWA	Multichannel	
28 ± 1	VRANA	00	DPWA	Multichannel	
¹ Statistical error only.					
$\Gamma(N, \alpha, S=1/2, S, wave)/\Gamma$	_				Г./Г

$\Gamma(N\rho, S=1/2, S-wave)/\Gamma_{total}$					Г ₆ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
11–35% OUR ESTIMATE					
23±12	¹ HUNT	19	DPWA	Multichannel	
\bullet \bullet \bullet We do not use the follow	ing data for average	es, fits,	limits, e	tc. ● ● ●	
$12\pm$ 4	¹ SHRESTHA	12A	DPWA	Multichannel	
$30\pm$ 2	VRANA	00	DPWA	Multichannel	
¹ Statistical error only.					

 $\Gamma(N\rho, S=3/2, D-wave)/\Gamma_{total}$ Γ_7/Γ VALUE (%) DOCUMENT ID TECN COMMENT 11-25% OUR ESTIMATE ¹ HUNT 18 ± 7 DPWA Multichannel 19 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet ¹ SHRESTHA 23 ± 5 12A DPWA Multichannel VRANA 5 ± 1 00 DPWA Multichannel ¹ Statistical error only.

$\Gamma(N(1440)\pi)/\Gamma_{total}$					Г ₈ /Г		
VALUE (%)	DOCUMENT ID	DOCUMENT ID		COMMENT	-		
3–32% OUR ESTIMATE							
12± 9	¹ HUNT	19	DPWA	Multichannel			
20±12	SOKHOYAN	15A	DPWA	Multichannel			
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
< 1	¹ SHRESTHA	12A	DPWA	Multichannel			
$4\pm$ 1	VRANA	00	DPWA	Multichannel			
¹ Statistical error only.							
$\Gamma(N(1520)\pi)/\Gamma_{total}$					٦/٩		
VALUE (%)	DOCUMENT ID		TECN	COMMENT			
2–10% OUR ESTIMATE							
6±4	SOKHOYAN	15A	DPWA	Multichannel			
$\Gamma(\Lambda(1232)_n)/\Gamma$					F 10/ F		
			TECN	COMMENT	· 10/ ·		
	DOCUMENT ID		TECN	COMMENT			
2% OUR ESTIMATE 1±1	GUTZ	14	DPWA	Multichannel			

https://pdg.lbl.gov

Created: 4/29/2024 18:55

Δ (1900) PHOTON DECAY AMPLITUDES AT THE POLE

Δ (1900) $\rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

MODULUS (GeV ^{-1/2})	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.064±0.015	60 ± 20	SOKHOYAN 15	5A DPWA	Multichannel

△(1900) BREIT-WIGNER PHOTON DECAY AMPLITUDES

Δ (1900) $\rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
0.212 ± 0.029	¹ HUNT	19	DPWA	Multichannel
0.065 ± 0.015	SOKHOYAN	15A	DPWA	Multichannel
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. • • •
0.057 ± 0.014	GUTZ	14	DPWA	Multichannel
-0.082 ± 0.009	¹ SHRESTHA	12A	DPWA	Multichannel
1 Statistical error only.				

Δ (1900) REFERENCES

For early references, see Physics Letters **111B** 1 (1982).

HUNT	19	PR C99 055205	B.C. Hunt, D.M. Manley	
SOKHOYAN	15A	EPJ A51 95	V. Sokhoyan <i>et al.</i>	(CBELSA/TAPS Collab.)
GUTZ	14	EPJ A50 74	E. Gutz <i>et al.</i>	(CBELSA/TAPS Collab.)
PDG	14	CP C38 070001	K. Olive <i>et al.</i>	(PDG Collab.)
SVARC	14	PR C89 045205	A. Svarc <i>et al.</i>	(RBI Zagreb, UNI Tuzla)
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSU)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H.	Lee (PITT, ANL)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMÜ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al.</i>	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP