V_{cb} and V_{ub} CKM Matrix Elements

OMITTED FROM SUMMARY TABLE

See the related review(s):

Semileptonic B Hadron Decays, Determination of V_{cb} and V_{ub}

V_{ch} MEASUREMENTS

For the discussion of V_{cb} measurements, which is not repeated here, see the review on "Determination of $|V_{cb}|$ and $|V_{ub}|$."

The CKM matrix element $|V_{cb}|$ can be determined by studying the rate of the semileptonic decay $B \to D^{(*)} \ell \nu$ as a function of the recoil kinematics of $D^{(*)}$ mesons. Taking advantage of theoretical constraints on the normalization and a linear ω dependence of the form factors $(F(\omega), G(\omega))$ provided by Heavy Quark Effective Theory (HQET), the $|V_{cb}| \times F(\omega)$ and ρ^2 can be simultaneously extracted from data, where ω is the scalar product of the two-meson four velocities, F(1) is the form factor at zero recoil $(\omega=1)$ and ρ^2 is the slope. Using the theoretical input of F(1), a value of $|V_{cb}|$ can be obtained.

$|V_{cb}| \times F(1) \text{ (from } B^0 \rightarrow D^{*-}\ell^+\nu)$

VALUE (units 10⁻²)

DOCUMENT ID

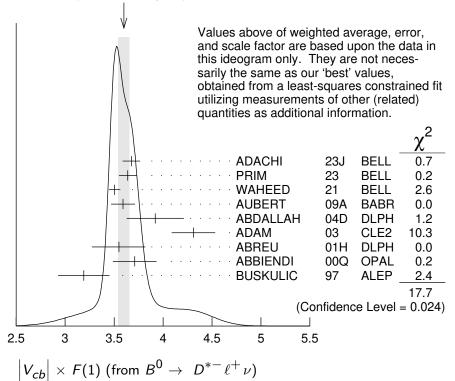
TECN
COMMENT

2 1 1 20 | 0.07

3.534 \pm 0.037 OUR EVALUATION (Produced by HFLAV) with ρ^2 = 1.139 \pm 0.020 and a correlation 0.268. The fitted χ^2 is 63.2 for 27 degrees of freedom.

```
3.60 ±0.06 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below.
```

```
<sup>1</sup> ADACHI
                                                               23J BELL e^+e^- \rightarrow \Upsilon(4S)
3.676 \pm 0.028 \pm 0.086
                                         <sup>2</sup> PRIM
                                                                      BELL e^+e^- \rightarrow \Upsilon(4S)
                                                               23
3.64 \pm 0.09
                                         <sup>3</sup> WAHEED
                                                               21
                                                                      BELL
                                                                                e^+e^- \rightarrow \Upsilon(4S)
3.506 \pm 0.015 \pm 0.056
                                         <sup>4</sup> AUBERT
                                                               09A BABR e^+e^- \rightarrow \Upsilon(4S)
3.59 \pm 0.02 \pm 0.12
                                                               04D DLPH e^+e^- \rightarrow Z^0
                                         <sup>5</sup> ABDALLAH
3.92 \pm 0.18 \pm 0.23
                                         <sup>6</sup> ADAM
                                                                      CLE2
                                                                                e^+e^- \rightarrow \Upsilon(4S)
4.31 \pm 0.13 \pm 0.18
3.55 \pm 0.14 + 0.23
                                         <sup>7</sup> ABREU
                                                               01H DLPH e^+e^- \rightarrow Z
                                         <sup>8</sup> ABBIENDI
                                                               000 OPAL
3.71 \pm 0.10 \pm 0.20
                                         <sup>9</sup> BUSKULIC
                                                                               e^+e^- \rightarrow Z
3.19 \pm 0.18 \pm 0.19
                                                                      ALEP
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                         <sup>3</sup> WAHEED
3.483 \pm 0.015 \pm 0.056
                                                                      BELL Repl. by WAHEED 21
                                        <sup>10</sup> DUNGEL
3.46 \pm 0.02 \pm 0.10
                                                                      BELL
                                                                                Rep. by WAHEED 19
```


Created: 4/29/2024 18:59

```
15_{ABF}
3.54 \pm 0.19 \pm 0.18
                                                     02F BELL Repl. by DUNGEL 10
                                 <sup>16</sup> BRIERE
                                                                   e^+e^- \rightarrow \Upsilon(4S)
4.31 \pm 0.13 \pm 0.18
                                                           CLE2
                                    ACKERSTAFF 97G OPAL Repl. by ABBIENDI 00Q
3.28 \pm 0.19 \pm 0.22
                                 <sup>17</sup> ABREU
3.50 \ \pm 0.19 \ \pm 0.23
                                                     96P DLPH Repl. by ABREU 01H
3.51 \ \pm 0.19 \ \pm 0.20
                                 <sup>18</sup> BARISH
                                                     95
                                                           CLE2
                                                                   Repl. by ADAM 03
                                     BUSKULIC
3.14 \pm 0.23 \pm 0.25
                                                     95N ALEP Repl. by BUSKULIC 97
```

- 1 Measured from differential shapes of exclusive $B\to D^*\ell^-\nu_\ell$ ($\ell=e$ or μ) decays. Using CNL form factor parametrization and the zero-recoil lattice QCD point $F(1)=0.906\pm0.013$ ADACHI 23J finds $|\mathsf{V}_{cb}|_{CNL}=(40.57\pm0.31\pm0.95\pm0.58)\times10^{-3}$ where the last uncertainty is due to the prediction of F(1). Also reports a measurement of $|\mathsf{V}_{cb}|_{BGL}=(40.13\pm0.27\pm0.93\pm0.58)\times10^{-3}$ using BGL form factors parametrization.
- 2 Measured from differential shapes of exclusive $B\to D^*\ell^-\,\nu_\ell$ decays with hadronic tagside reconstruction and extracting the CNL and BGL form factor parameters. PRIM 23 finds $|\mathsf{V}_{cb}|_{CNL}=(40.2\pm0.9)\times10^{-3}$ with the zero-recoil lattice QCD point $\mathit{F}(1)=0.906\pm0.013$. PRIM 23 provides also a measurement of $|\mathsf{V}_{cb}|_{BGL}=(40.7\pm1.0)\times10^{-3}$.
- 3 WAHEED 21 uses fully reconstructed $D^{*-}\,\ell^+\,
 u$ events $(\ell=e$ or $\mu)$ and $\eta_{EW}=1.0066$.
- ⁴ Obtained from a global fit to $B \to D^{(*)} \ell \nu_{\ell}$ events, with reconstructed $D^0 \ell$ and $D^+ \ell$ final states and $\rho^2 = 1.22 \pm 0.02 \pm 0.07$.
- ⁵ Measurement using fully reconstructed D^* sample with a $\rho^2=1.32\pm0.15\pm0.33$.
- ⁶ Average of the $B^0 \to D^*(2010)^- \ell^+ \nu$ and $B^+ \to \overline{D}^*(2007)) \ell^+ \nu$ modes with $\rho^2 = 1.61 \pm 0.09 \pm 0.21$ and $f_{+-} = 0.521 \pm 0.012$.
- 7 ABREU 01H measured using about 5000 partial reconstructed D^* sample with a $\rho^2{=}1.34\,\pm\,0.14\,^{+}0.24_{-}0.22$.
- ⁸ ABBIENDI 00Q: measured using both inclusively and exclusively reconstructed $D^{*\pm}$ samples with a ρ^2 =1.21 \pm 0.12 \pm 0.20. The statistical and systematic correlations between $|V_{ch}| \times F(1)$ and ρ^2 are 0.90 and 0.54 respectively.
- ⁹ BUSKULIC 97: measured using exclusively reconstructed $D^{*\pm}$ with a a^2 =0.31 \pm 0.17 \pm 0.08. The statistical correlation is 0.92.
- ¹⁰ Uses fully reconstructed $D^{*-}\ell^+\nu$ events ($\ell=e$ or μ).
- ¹¹ Measured using the dependence of $B^- \to D^{*0} \, e^- \overline{\nu}_e$ decay differential rate and the form factor description by CAPRINI 98 with $\rho^2 = 1.16 \pm 0.06 \pm 0.08$.
- 12 Measured using fully reconstructed D^* sample and a simultaneous fit to the Caprini-Lellouch-Neubert form factor parameters: $\rho^2=1.191\pm0.048\pm0.028,\,R_1(1)=1.429\pm0.061\pm0.044,$ and $R_2(1)=0.827\pm0.038\pm0.022.$
- 13 Measurement using fully reconstructed D^* sample with a $ho^2=1.29\pm0.03\pm0.27.$
- Combines with previous partial reconstructed D^* measurement with a $ho^2=1.39\pm0.10\pm0.33$
- 15 Measured using exclusive $B^0 \to D^*(892)^- e^+ \nu$ decays with $\rho^2 = 1.35 \pm 0.17 \pm 0.19$ and a correlation of 0.91.
- 16 BRIERE 02 result is based on the same analysis and data sample reported in ADAM 03.
- 17 ABREU 96P: measured using both inclusively and exclusively reconstructed $D^{*\pm}$ samples.
- ¹⁸ BARISH 95: measured using both exclusive reconstructed $B^0 \to D^{*-}\ell^+\nu$ and $B^+ \to D^{*0}\ell^+\nu$ samples. They report their experiment's uncertainties $\pm 0.0019 \pm 0.0018 \pm 0.0008$, where the first error is statistical, the second is systematic, and the third is the uncertainty in the lifetimes. We combine the last two in quadrature.

Created: 4/29/2024 18:59

WEIGHTED AVERAGE 3.60±0.06 (Error scaled by 1.5)

$|V_{cb}| \times G(1)$ (from $B \rightarrow D^- \ell^+ \nu$)

VALUE (units 10^{-2})

DOCUMENT ID TECN COMMENT

Created: 4/29/2024 18:59

4.121 \pm 0.100 OUR EVALUATION (Produced by HFLAV) with ρ^2 = 1.128 \pm 0.033 and a correlation 0.747. The fitted χ^2 is 4.8 for 8 degrees of freedom.

4.22 ± 0.10 OUR AVERAGE

4.229 ± 0.137	$^{ m 1}$ GLATTAUER	16	BELL	$e^+e^- ightarrow$	$\Upsilon(4S)$
$4.23 \pm 0.19 \pm 0.14$	² AUBERT	10	BABR	$e^+e^- ightarrow$	$\Upsilon(4S)$
$4.31 \pm 0.08 \pm 0.23$	³ AUBERT	09A	BABR	$e^+e^- ightarrow$	$\Upsilon(4S)$
$4.16 \pm 0.47 \pm 0.37$	⁴ BARTELT	99	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$2.78 \pm 0.68 \pm 0.65$	⁵ BUSKULIC	97	ALEP	$e^+e^- ightarrow$	Z

• • • We do not use the following data for averages, fits, limits, etc. • • •

4.11
$$\pm 0.44$$
 ± 0.52 6 ABE 02E BELL Repl. by GLATTAUER 16 3.37 ± 0.44 $^{+0.72}_{-0.49}$ 7 ATHANAS 97 CLE2 Repl. by BARTELT 99

 $^{^1}$ Obtained from a fit to the combined partially reconstructed $B o \ \overline D\ell
u_\ell$ sample while tagged by the other fully reconstructed B meson in the event. Also reports fitted ρ^2 1.09 ± 0.05 .

Obtained from a fit to the combined $B o \, \overline{D} \ell^+ \nu_\ell$ sample in which a hadronic decay of the second B meson is fully reconstructed and $\rho^2 = 1.20 \pm 0.09 \pm 0.04$.

³ Obtained from a global fit to $B \to D^{(*)} \ell \nu_{\ell}$ events, with reconstructed $D^0 \ell$ and $D^+ \ell$ final states and $\rho^2 = 1.20 \pm 0.04 \pm 0.07$.

⁴ BARTELT 99: measured using both exclusive reconstructed $B^0 \to D^- \ell^+ \nu$ and $B^+ \to D^- \ell^+ \nu$ $D^0\ell^+\nu$ samples.

⁵ BUSKULIC 97: measured using exclusively reconstructed D^{\pm} with a $a^2=-0.05\pm0.53\pm0.38$. The statistical correlation is 0.99.

⁶ Using the missing energy and momentum to extract kinematic information about the undetected neutrino in the $B^0 \to D^- \ell^+ \nu$ decay.

⁷ ATHANAS 97: measured using both exclusive reconstructed $B^0 \rightarrow D^- \ell^+ \nu$ and $B^+ \rightarrow D^0 \ell^+ \nu$ samples with a $\rho^2 = 0.59 \pm 0.22 \pm 0.12^{+0.59}_{-0}$. They report their experiment's uncertainties $\pm 0.0044 \pm 0.0048^{+0.0053}_{-0.0012}$, where the first error is statistical, the second is systematic, and the third is the uncertainty due to the form factor model variations. We combine the last two in quadrature.

$|V_{cb}|$ (from $D_s^{*-}\mu^+\nu_\mu$)

VALUE (units 10^{-3})DOCUMENT IDTECNCOMMENT41.4 \pm 0.6 \pm 0.9 \pm 1.21 AAIJ20ELHCBpp at 7, 8 TeV

Vub MEASUREMENTS

For the discussion of V_{ub} measurements, which is not repeated here, see the review on "Determination of $|V_{cb}|$ and $|V_{ub}|$."

The CKM matrix element $|V_{ub}|$ can be determined by studying the rate of the charmless semileptonic decay $b \to u\ell\nu$. The relevant branching ratio measurements based on exclusive and inclusive decays can be found in the B Listings, and are not repeated here.

V_{cb} and V_{ub} CKM Matrix Elements REFERENCES

Created: 4/29/2024 18:59

 $^{^1}$ Measured from an inclusive sample of $D_s^- \, \mu^+$ candidates using CNL parameterization of the form factor. AAIJ 20E provides also measurement of $|{\rm V}_{cb}|=$ (42.3 \pm 0.8 \pm 0.9 \pm 1.2) \times 10 $^{-3}$ using BGL parameterization of the form factor. The third uncertainty is due to the external inputs used in the measurement.