$$a_1(1260)$$

$$I^{G}(J^{PC}) = 1^{-}(1^{++})$$

See also our review under the $a_1(1260)$ in PDG 06, Journal of Physics **G33** 1 (2006).

a₁(1260) T-MATRIX POLE \sqrt{s}

Note that $\Gamma = -2 \operatorname{Im}(\sqrt{s})$.

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
$(1209^{+13}_{-10}) - i(288^{+45}_{-12})$ OUR ESTIN	ATE		
$(1209 \pm 4^{+12}_{-9}) - i \ (288 \pm 6^{+45}_{-10})$	MIKHASENKO 18	RVUE	$\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_\tau$

a1(1260) MASS

VALUE (MeV)		EVTS		DOCUMENT ID		TECN	COMMENT
1230	±40	OUR ES	TIMA	ΓE				
1 299	+12 - 28		46M	1	AGHASYAN	18B	COMP	$190 \begin{array}{c} \pi^{-} p \rightarrow \\ \pi^{-} \pi^{+} \pi^{-} p \end{array}$
• • • \	We do n	ot use the	e follow	ing da	ata for averages	, fits,	limits, e	tc. ● ● ●
1195.0	5 ± 1.09	5± 6.33	894k		AAIJ	18AI	LHCB	$D^0 \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp}$
1225	\pm 9	± 20	7k	2	DARGENT	17	RVUE	$D^0 \rightarrow \pi^- \pi^+ \pi^- \pi^+$
1255	± 6	$^{+}_{-17}$	420k	3	ALEKSEEV	10	COMP	$190 \begin{array}{c} \pi^{-} Pb \rightarrow \\ \pi^{-} \pi^{-} \pi^{+} Pb' \end{array}$
1243	± 12	± 20		4	AUBERT	07 AU	BABR	$10.6 e^+ e^- \rightarrow 0 e^\pm \pi^\pm \gamma$
1230–1	270		6360	5	LINK	07A	FOCS	$D^0 \xrightarrow{\rho} \pi^- \pi^+ \pi^- \pi^+$
1203	\pm 3			6	GOMEZ-DUM.	.04	RVUE	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu_{\tau}$
1330	± 24		90k		SALVINI	04	OBLX	$\overline{p}p \rightarrow 2\pi^+ 2\pi^-$
1331	± 10	± 3	37k	7	ASNER	00	CLE2	$\begin{array}{ccc} 10.6 \ e^{+} \ e^{-} \to \ \tau^{+} \ \tau^{-}, \\ \tau^{-} \to \ \pi^{-} \ \pi^{0} \ \pi^{0} \ \nu_{\tau} \end{array}$
1255	\pm 7	\pm 6	5904	8	ABREU	98 G	DLPH	e ⁺ e ⁻ '
1207	\pm 5	± 8	5904	9	ABREU	98 G	DLPH	e ⁺ e ⁻
1196	\pm 4	\pm 5	5904	10,11	ABREU	98 G	DLPH	e ⁺ e ⁻
1240	± 10				BARBERIS	98 B		450 $pp \rightarrow$
1000				8 12		075	0041	$p_f \pi^+ \pi^- \pi^0 p_s$
1262	± 9	\pm (0,12	ACKERSTAFF	97R	OPAL	$E_{\rm Cm}^{\rm cm} = 88-94, \tau \rightarrow 3\pi v$
1210	\pm 7	\pm 2		9,12	ACKERSTAFF	97 R	OPAL	$E_{\rm cm}^{ee} = 88-94, \tau \rightarrow 3\pi\nu$
1211	\pm 7	$^{+50}_{-0}$		9	ALBRECHT	93 C	ARG	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
1121	\pm 8			13	ANDO	92	SPEC	$8 \pi^- p \rightarrow \pi^+ \pi^- \pi^0 n$
1242	± 37			14	IVANOV	91	RVUE	$\tau \rightarrow \pi^+ \pi^+ \pi^- \nu$
1260	± 14			15	IVANOV	91	RVUE	$\tau \rightarrow \pi^+ \pi^+ \pi^- \nu$
1250	\pm 9			16	IVANOV	91	RVUE	$\tau \rightarrow \pi^+ \pi^+ \pi^- \nu$
1208	± 15				ARMSTRONG	90	OMEG	$300.0pp \rightarrow pp\pi^{+}\pi^{-}\pi^{0}$

https://pdg.lbl.gov

1220	+15		17 ISCUR	80	R\/IIF	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \mu$
1220	<u> </u>		18	05		
1260	± 25		10 BOWLER	88	RVUE	
1166	± 18	± 11	BAND	87	MAC	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
1164	± 41	± 23	BAND	87	MAC	$\tau^+ \rightarrow \pi^+ \pi^0 \pi^0 \nu$
1250	± 40		¹⁷ TORNQVIST	87	RVUE	
1046	± 11		ALBRECHT	86 B	ARG	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
1056	± 20	± 15	RUCKSTUHL	86	DLCO	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
1194	± 14	± 10	SCHMIDKE	86	MRK2	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
1255	± 23		BELLINI	85	SPEC	40 $\pi^{-}A \rightarrow$
			10			$\pi^-\pi^+\pi^-A$
1240	± 80		¹⁹ DANKOWY	81	SPEC	$8.45 \ \pi^- p \rightarrow n3\pi$
1280	± 30		¹⁹ DAUM	81 B	CNTR	63,94 $\pi^- p \rightarrow p 3\pi$
1041	± 13		²⁰ GAVILLET	77	HBC	4.2 $K^- p \rightarrow \Sigma 3\pi$

¹Statistical error negligible.

²Reanalysis of CLEO data using Breit-Wigner parameterization.

³Superseded by AGHASYAN 2018B.

⁴ The $\rho^{\pm}\pi^{\mp}$ state can be also due to the $\pi(1300)$.

⁵Using the Breit-Wigner parameterization; strong correlation between mass and width.

⁶Using the data of BARATE 98R.

⁷ From a fit to the 3π mass spectrum including the $K\overline{K}^*(892)$ threshold.

⁸ Uses the model of KUHN 90. ⁹ Uses the model of ISGUR 89. ¹⁰ Includes the effect of a possible a'_1 state.

 11 Uses the model of FEINDT 90. $^{12}_{12}$ Supersedes AKERS 95P.

¹³ Average and spread of values using 2 variants of the model of BOWLER 75.

¹⁴ Reanalysis of RUCKSTUHL 86.

¹⁵ Reanalysis of SCHMIDKE 86.

¹⁶ Reanalysis of ALBRECHT 86B.

¹⁷ From a combined reanalysis of ALBRECHT 86B, SCHMIDKE 86, and RUCKSTUHL 86.

¹⁸ From a combined reanalysis of ALBRECHT 86B and DAUM 81B.

¹⁹ Uses the model of BOWLER 75. ²⁰ Produced in K^- backward scattering.

a1(1260) WIDTH

VALUE	(Me	eV)			EVTS	DOCUMENT ID		TECN	COMMENT
250 380	to ±	600 80	OU	R ESTI	MATE 46M	¹ AGHASYAN	18B	COMP	$\frac{190 \ \pi^- p \rightarrow}{\pi^- \pi^+ \pi^- p}$
• • •	We	e do	not ı	use the	following	data for averages,	fits, l	imits, et	C. ● ● ●
422.03 430	$1\pm\pm$	2.1 24	±0.	12.72 31	894k	AAIJ ² DARGENT	18AI 17	LHCB RVUE	$ \begin{array}{ccc} D^0 \rightarrow & K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp} \\ D^0 \rightarrow & \pi^{-} \pi^{+} \pi^{-} \pi^{+} \end{array} $
367	±	9	+ -	28 25	420k	³ ALEKSEEV	10	СОМР	$190 \begin{array}{c} \pi^- Pb \rightarrow \\ \pi^- \pi^- \pi^+ Pb' \end{array}$
410	±	31	±	30		⁴ AUBERT	07 AU	BABR	$10.6 e^+ e^- \rightarrow \rho^0 \rho^\pm \pi^\pm \gamma$
520–6	80				6360	⁵ LINK	07A	FOCS	$D^{0'} \rightarrow \pi^{-}\pi^{+}\pi^{-}\pi^{+}$
480	\pm	20				⁶ GOMEZ-DUM.	.04	RVUE	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu_{\tau}$
580	\pm	41			90k	SALVINI	04	OBLX	$\overline{p}p \rightarrow 2\pi^+ 2\pi^-$
460	±	85			205	⁷ DRUTSKOY	02	BELL	$B \rightarrow D^{(*)} K^- K^{*0}$
https	://	pdg	.lbl.	gov		Page 2		Create	d: 4/29/2024 18:56

814	± 36	\pm 13	37k	8	ASNER	00	CLE2	$10.6 \ e^+ e^- \rightarrow \\ \tau^+ \tau^-, \tau^- \rightarrow \\ 0 - 0 \dots$
450	± 50		22k	9	AKHMETSHIN	99E	CMD2	$1.05-1.38 \ e^+ e^- \rightarrow$
570	\pm 10			10	BONDAR	99	RVUE	$e^+e^- \rightarrow 4\pi, \tau \rightarrow$
587 478 425 400	$egin{array}{cccc} \pm & 27 \\ \pm & 3 \\ \pm & 14 \\ \pm & 35 \end{array}$	$egin{array}{ccc} \pm & 21 \ \pm & 15 \ \pm & 8 \end{array}$	5904 5904 5904	11 12 13,14	ABREU ABREU ABREU BARBERIS	98G 98G 98G 98B	DLPH DLPH DLPH	$ \begin{array}{c} 5\pi\nu_{\tau}\\ e^{+}e^{-}\\ e^{+}e^{-}\\ e^{+}e^{-}\\ 450\ pp \rightarrow\\ p_{c}\pi^{+}\pi^{-}\pi^{0}p \end{array} $
621	\pm 32	\pm 58		11,15	ACKERSTAFF	97 R	OPAL	$E_{\rm cm}^{ee} = 88-94, \ \tau \rightarrow$
457	\pm 15	\pm 17		12,15	ACKERSTAFF	97 R	OPAL	$ \begin{array}{l} 3\pi\nu\\ E_{\rm cm}^{ee} = 88-94, \ \tau \rightarrow\\ 3\pi\nu \end{array} $
446	\pm 21	$^{+140}_{-0}$		12	ALBRECHT	93 C	ARG	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
239	\pm 11				ANDO	92	SPEC	$8 \pi^- p \rightarrow + - 0$
266	\pm 13	± 4		16	ANDO	92	SPEC	$ \begin{array}{c} \pi^{+} \pi^{-} \pi^{0} n \\ 8 \pi^{-} p \rightarrow \\ \pi^{+} \pi^{-} \pi^{0} n \end{array} $
465	$^{+228}_{-143}$			17	IVANOV	91	RVUE	$\tau \rightarrow \pi^+ \pi^+ \pi^- \nu$
298	$^{+}_{-}$ 40			18	IVANOV	91	RVUE	$\tau \rightarrow \pi^+ \pi^+ \pi^- \nu$
488 430	\pm 32 \pm 50			19	IVANOV ARMSTRONG	91 90	RVUE OMEG	$\tau \rightarrow \pi^{+}\pi^{+}\pi^{-}\nu$ $300.0pp \rightarrow \qquad \qquad$
420 396	\pm 40 \pm 43			20 21	ISGUR BOWLER	89 88	RVUE RVUE	$\tau^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-} \nu$
405	\pm 75	± 25			BAND	87	MAC	$\begin{array}{ccc} \tau^+ \to & \pi^+ \pi^- \pi^- \nu \\ + & \pm & 0 & 0 \end{array}$
419	± 108	\pm 57			BAND	87	MAC	$\begin{array}{cccc} \tau^+ \rightarrow & \pi^+ & \pi^0 & \pi^0 \nu \\ + & + & + & - \end{array}$
521	± 27				ALBRECHI	86B	ARG	$\tau^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-} \nu$
476	+132 - 120	\pm 54			RUCKSTUHL	86	DLCO	$\tau^+ \to \pi^+ \pi^+ \pi^- \nu$
462 292	$egin{array}{ccc} \pm & 56 \ \pm & 40 \end{array}$	± 30			SCHMIDKE BELLINI	86 85	MRK2 SPEC	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$ $40 \pi^- A \rightarrow$
380 300 230	$\pm 100 \\ \pm 50 \\ \pm 50$			22 22 23	DANKOWY DAUM GAVILLET	81 81в 77	SPEC CNTR HBC	$\pi^{-}\pi^{+}\pi^{-}A$ 8.45 $\pi^{-}p \rightarrow n3\pi$ 63,94 $\pi^{-}p \rightarrow p3\pi$ 4.2 $K^{-}p \rightarrow \Sigma^{3}\pi$

¹Statistical error negligible.

²Reanalysis of CLEO data using Breit-Wigner parameterization.

³Superseded by AGHASYAN 2018B.

⁴ The $\rho^{\pm}\pi^{\mp}$ state can be also due to the $\pi(1300)$.

⁵ Using the Breit-Wigner parameterization; strong correlation between mass and width.

⁶ Using the data of BARATE 98R. ⁷ From a fit of the $K^- K^{*0}$ distribution assuming $m_{a_1} = 1230$ MeV and purely resonant production of the $K^- K^{*0}$ system. ⁸ From a fit to the 3π mass spectrum including the $K\overline{K}^*(892)$ threshold. ⁹ Using the $a_1(1260)$ mass of 1230 MeV.

¹⁰ From AKHMETSHIN 99E and ASNER 00 data using the $a_1(1260)$ mass of 1230 MeV.

https://pdg.lbl.gov

Page 3 Created: 4/29/2024 18:56

 $\frac{11}{12}$ Uses the model of KUHN 90.

¹² Uses the model of ISGUR 89. ¹³ Includes the effect of a possible a'_1 state.

14 Uses the model of FEINDT 90. 15 Supersedes AKERS 95P.

 16 Average and spread of values using 2 variants of the model of BOWLER 75.

¹⁷ Reanalysis of RUCKSTUHL 86.

¹⁸ Reanalysis of SCHMIDKE 86.

¹⁹ Reanalysis of ALBRECHT 86B.

²⁰ From a combined reanalysis of ALBRECHT 86B, SCHMIDKE 86, and RUCKSTUHL 86.

²¹ From a combined reanalysis of ALBRECHT 86B and DAUM 81B.

 $^{22}_{22}$ Uses the model of BOWLER 75.

²³ Produced in K^- backward scattering.

Mode Fraction (Γ_i/Γ) Γ_1 3π seen Γ_2 $(\rho\pi)_{S-wave}, \ \rho \rightarrow \pi\pi$ seen Γ₃ $(\rho\pi)_{D-\text{wave}}, \ \rho \to \ \pi\pi$ seen $(\rho(1450)\pi)_{S-wave}, \ \rho \rightarrow \ \pi\pi$ Γ_4 seen $(\rho(1450)\pi)_{D-\text{wave}}, \ \rho \rightarrow \ \pi\pi$ Γ_5 seen $f_0(500)\pi, f_0 \to \pi\pi$ Γ_6 seen $f_0(980)\pi$, $f_0 \rightarrow \pi\pi$ Γ_7 seen $f_0(1370)\pi, f_0 \to \pi\pi$ Γ₈ seen $f_2(1270)\pi, f_2 \to \pi\pi$ Γg seen $\pi^+\pi^-\pi^0$ Γ₁₀ seen $\pi^{0}\pi^{0}\pi^{0}$ Γ_{11} not seen $KK\pi$ Γ_{12} seen K*(892)K Γ_{13} seen Γ_{14} $\pi \gamma$ seen

a1(1260) DECAY MODES

a1(1260) PARTIAL WIDTHS

$\Gamma(\pi \gamma)$					Γ ₁₄
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
640±246	ZIELINSKI	84C	SPEC	$200 \ \pi^+ Z \rightarrow \ Z 3 \pi$	

D-wave/S-wave AMPLITUDE RATIO IN DECAY OF $a_1(1260) \rightarrow \rho \pi$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.062±0.020 OUR AVERA	GE Error includes	scale	factor o	of 2.3. See the ideogram
below.				-
$-0.043\!\pm\!0.009\!\pm\!0.005$	LINK	07A	FOCS	$D^0 \rightarrow \pi^- \pi^+ \pi^- \pi^+$
$-0.14 \pm 0.04 \pm 0.07$	¹ CHUNG	02	B852	18.3 $\pi^- p \rightarrow \pi^+ \pi^- \pi^- p$
$-0.10 \ \pm 0.02 \ \pm 0.02$	^{2,3} ACKERSTAFF	97 R	OPAL	$E_{ m cm}^{ee}=$ 88–94, $ au ightarrow 3\pi u$
-0.11 ± 0.02	² ALBRECHT	93C	ARG	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$

https://pdg.lbl.gov

¹ From a fit to the Dalitz plot.

¹The $a_1(1260)^- \rightarrow f_0(980)\pi^-$ decay mode via the Triangle Singularity mechanism from MIKHASENKO 15 and ACETI 16 explains the $a_1(1420)^-$ signal observed by ADOLPH 15c.

https://pdg.lbl.gov

³ From a fit to the 3π mass spectrum including the $K\overline{K}^*(892)$ threshold.

⁴Assuming $a_1(1260)$ dominance and taking $B(\tau \rightarrow a_1(1260)\nu_{\tau})$ from BUSKULIC 96.

a₁(1260) REFERENCES

ALEXEEV	21	PRL 127 082501	G.D. Alexeev et al.	(COMPASS Collab.)
AAIJ	18AI	EPJ C78 443	R. Aaij <i>et al.</i>	(LHCb Collab.)
AGHASYAN	18B	PR D98 092003	M. Aghasyan <i>et al.</i>	(COMPASS Collab.)
MIKHASENKO	18	PR D98 096021	M. Mikhasenko <i>et al.</i>	(JPAC Collab.)
DARGENT	17	JHEP 1705 143	P. dArgent <i>et al.</i>	(HEID, BRIS)
ACETI	16	PR D94 096015	F. Aceti, L.R. Dai, E. O	Oset (IFIC, LNUDA)
ADOLPH	15C	PRL 115 082001	C. Adolph <i>et al.</i>	(COMPASS Collab.)
MIKHASENKO	15	PR D91 094015	M. Mikhasenko, B. Ketz	er, A. Sarantsev (BONN+)
ALEKSEEV	10	PRL 104 241803	M.G. Alekseev et al.	(COMPASS Collab.)
AUBERT	07AU	PR D76 092005	B. Aubert <i>et al.</i>	(BABAR Collab.)
LINK	07A	PR D75 052003	J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
PDG	06	JP G33 1	WM. Yao <i>et al.</i>	(PDG Collab.)
COAN	04	PRL 92 232001	T.E. Coan <i>et al.</i>	(CLEO Collab.)
GOMEZ-DUM	. 04	PR D69 073002	D. Gomez Dumm, A. Pi	ich, J. Portoles
SALVINI	04	EPJ C35 21	P. Salvini <i>et al.</i>	(OBELIX Collab.)
BRIERE	03	PRL 90 181802	R. A. Briere <i>et al.</i>	(CLEO Collab.)
CHUNG	02	PR D65 072001	S.U. Chung <i>et al.</i>	(BNL E852 Collab.)
DRUTSKOY	02	PL B542 171	A. Drutskoy <i>et al.</i>	(BELLE Collab.)
BARBERIS	01	PL B507 14	D. Barberis <i>et al.</i>	
ASNER	00	PR D61 012002	D.M. Asner <i>et al.</i>	(CLEO Collab.)
AKHMETSHIN	99E	PL B466 392	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
BARATE	99R	EPJ C11 599	R. Barate <i>et al.</i>	(ALEPH Collab.)
BONDAR	99	PL B466 403	A.E. Bondar <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
ABREU	98G	PL B426 411	P. Abreu <i>et al.</i>	DELPHI Collab.
BARATE	98R	EPJ C4 409	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARBERIS	98B	PI B422 399	D Barberis <i>et al</i>	(WA 102 Collab.)
ACKERSTAFE	97R	7PHY C75 593	K Ackerstaff <i>et al</i>	(OPAL Collab.)
BUSKULIC	96	ZPHY C70 579	D Buskulic <i>et al</i>	(ALEPH Collab.)
AKERS	95P	ZPHY C67 45	R Akers et al	(OPAL Collab.)
ALAM	94	PR D50 43	MS Alam et al	(CLEQ Collab.)
ALBRECHT	930	7PHY C58 61	H Albrecht <i>et al</i>	(ARGUS Collab.)
DECKER	030	7PHY C58 445	R Decker et al	
	92	PL B201 406	A Ando et al	(KEK KYOT NIRS SAGA+)
KUHN	02	7DHV (56 661	I H Kubn E Mirkos	(RER, RTOT, MRS, SAGA+)
	92 01	ZPHV C40 563	V P Ivanov A A Osinov	MK Volkov (INP)
	91	ZETTE C49 303 ZDHV C48 213	TA Armstrong M Bon	W, W.R. Volkov (JIMA)
	90	ZETTE C40 213	M Equals	
	90		M. Feindl	
	90		J.H. Kunn <i>et al.</i>	(MENN) (TNTO)
	89	PR D39 1357	N. Isgur, C. Worningstar	, C. Reader (TNTO)
BOWLER	88	PL B209 99	M.G. Bowler	
BAND	87	PL B198 297	H.R. Band <i>et al.</i>	
TORNQVIST	87	ZPHY C36 695	N.A. Tornqvist	(HELS)
ALBRECHI	86B	ZPHY C33 7	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
RUCKSTUHL	86	PRL 56 2132	W. Ruckstuhl <i>et al.</i>	(DELCO Collab.)
SCHMIDKE	86	PRL 57 527	W.B. Schmidke <i>et al.</i>	(Mark II Collab.)
BELLINI	85	SJNP 41 781	D. Bellini <i>et al.</i>	
	0.16	Iranslated from YAF 41	1223.	
ZIELINSKI	84C	PRL 52 1195	M. Zielinski <i>et al.</i>	(ROCH, MINN, FNAL)
LONGACRE	82	PR D26 82	R.S. Longacre	(BNL)
DANKOWY	81	PKL 40 580	J.A. Dankowych <i>et al.</i>	(INTO, BNL, CARL+)
DAUM	Ω1R	NP B182 209	C. Daum <i>et al.</i>	(AMST, CERN, CRAC, MPIM+)
DAUM	80	PL 89B 281	C. Daum <i>et al.</i>	(AMST, CERN, CRAC, MPIM+) JP
GAVILLEI	17	PL 69B 119	P. Gavillet <i>et al.</i>	(AMST, CERN, NIJM+) JP
ROMFEK	75	NP B97 227	M.G. Bowler <i>et al.</i>	(OXFTP, DARE)