b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b)

b-baryon ADMIXTURE MEAN LIFE

Each measurement of the *b*-baryon mean life is an average over an admixture of various *b* baryons which decay weakly. Different techniques emphasize different admixtures of produced particles, which could result in a different *b*-baryon mean life. More *b*-baryon flavor specific channels are not included in the measurement.

$VALUE (10^{-12} \text{ s})$	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use t	he following	g data for averages	, fits,	limits, e	etc. • • •
$1.218 {+0.130\atop -0.115} \pm 0.042$		¹ ABAZOV	07 S	D0	Repl. by ABAZOV 12U
$1.22 \ ^{+ 0.22}_{- 0.18} \ \pm 0.04$		¹ ABAZOV	05 C	D0	Repl. by ABAZOV 07S
$1.16\ \pm0.20\ \pm0.08$		² ABREU	99W	DLPH	$e^+e^- ightarrow Z$
$1.19 \pm 0.14 \pm 0.07$		³ ABREU	99W	DLPH	$e^+e^- ightarrow Z$
$1.14 \pm 0.08 \pm 0.04$		⁴ ABREU	99W	DLPH	$e^+e^- ightarrow Z$
$1.11 \ ^{+ 0.19}_{- 0.18} \ \pm 0.05$		⁵ ABREU	99W	DLPH	$e^+e^- ightarrow Z$
$1.29 \ ^{+ 0.24}_{- 0.22} \ \pm 0.06$		⁵ ACKERSTAFF	98 G	OPAL	$e^+e^- ightarrow Z$
$1.20\ \pm0.08\ \pm0.06$		⁶ BARATE	98D	ALEP	$e^+e^- ightarrow Z$
1.21 ± 0.11		⁵ BARATE	98 D	ALEP	$e^+e^- ightarrow Z$
$1.32 \pm 0.15 \pm 0.07$		⁷ ABE	96M	CDF	p p at 1.8 TeV
$1.46 \begin{array}{c} +0.22 & +0.07 \\ -0.21 & -0.09 \end{array}$		ABREU	96 D	DLPH	Repl. by ABREU 99W
$1.10 \ ^{+ 0.19}_{- 0.17} \ \pm 0.09$		⁵ ABREU	96 D	DLPH	$e^+e^- ightarrow Z$
$1.16 \ \pm 0.11 \ \pm 0.06$		⁵ AKERS	96	OPAL	$e^+e^- ightarrow Z$
$1.27 \ ^{+ 0.35}_{- 0.29} \ \pm 0.09$		ABREU	95 S	DLPH	Repl. by ABREU 99W
$1.05 \ ^{+ 0.12}_{- 0.11} \ \pm 0.09$	290	BUSKULIC	95L	ALEP	Repl. by BARATE 98D
$1.04 ^{+ 0.48}_{- 0.38} \pm 0.10$	11	⁸ ABREU	93F	DLPH	Excess $\Lambda\mu^-$, decay lengths
$1.05 \ ^{+0.23}_{-0.20} \ \pm 0.08$	157	⁹ AKERS	93	OPAL	Excess $\Lambda \ell^-$, decay lengths
$1.12 \ ^{+0.32}_{-0.29} \ \pm 0.16$	101	¹⁰ BUSKULIC	921	ALEP	Excess $\Lambda \ell^-$, impact parameters

 $^{^1\,\}mathrm{Measured}$ mean life using fully reconstructed $\varLambda_b^0\,\to\,\,J/\psi\,\varLambda$ decays.

Created: 4/29/2024 18:59

 $^{^2}$ Measured using $\Lambda\ell^-$ decay length.

 $^{^3}$ Measured using $p\ell^-$ decay length.

⁴ This ABREU 99W result is the combined result of the $\Lambda\ell^-$, $p\ell^-$, and excess $\Lambda\mu^-$ impact parameter measurements.

 $^{^5\,\}mathrm{Measured}$ using $\varLambda_{\mathcal{C}}\,\ell^-$ and $\varLambda\ell^+\,\ell^-.$

 $^{^6\,\}mathrm{Measured}$ using the excess of $\Lambda\ell^-$, lepton impact parameter.

⁷ Measured using $\Lambda_c \ell^-$.

⁸ ABREU 93F superseded by ABREU 96D.

b-baryon ADMIXTURE DECAY MODES $(\Lambda_b, \Xi_b, \Omega_b)$

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the b-baryon production fraction B($b \rightarrow b$ -baryon).

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one

	Mode	Fraction (Γ_i/Γ)	Scale factor
$\overline{\Gamma_1}$	$p\mu^-\overline{ u}$ anything	$(5.8^{+}_{-}\ \frac{2.3}{2.0})\%$	
Γ_2	$ ho \ell \overline{ u}_\ell$ anything	(5.6± 1.2) %	
Γ_3	<i>p</i> anything	(70 ±22) %	
Γ_4	$arLambda \ell^- \overline{ u}_\ell$ anything	$(3.8\pm~0.6)~\%$	
Γ_5	$arLambda\ell^+ u_\ell$ anything	(3.2± 0.8) %	
Γ_6	arLambdaanything	$(39~\pm~7~)~\%$	
Γ_7	$ar{arXi}^-\ell^-\overline{ u}_\ell$ anything	$(4.6 \pm 1.4) \times 10^{-3}$	1.2

b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b) BRANCHING RATIOS

Γ (ρμ $^ \overline{\nu}$ anything)/ Γ_{total} Γ_1/Γ VALUE (%) EVTS DOCUMENT ID TECN COMMENT5.8 $^+$ 2.2 $_1$ 9 ± 0.8 125 1 ABREU 95S DLPH $e^+e^- \rightarrow Z$

$\Gamma(p\ell\overline{\nu}_{\ell} \text{ anything})/\Gamma_{\text{total}}$ Γ_2/Γ $\Gamma_$

Created: 4/29/2024 18:59

⁹ AKERS 93 superseded by AKERS 96.

¹⁰ BUSKULIC 921 superseded by BUSKULIC 95L.

 $^{^1}$ ABREU 95S reports [\Gamma(b-baryon $\to p\mu^-\overline{\nu}$ anything)/ $\Gamma_{total}]\times [B(\overline{b}\to b\text{-baryon})] = 0.0049 \pm 0.0011^{+0.0015}_{-0.0011}$ which we divide by our best value $B(\overline{b}\to b\text{-baryon}) = (8.4 \pm 1.1)\times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^{1}}$ BARATE 98V reports $[\Gamma(b\text{-baryon}\to p\ell\overline{\nu}_{\ell}\,\text{anything})/\Gamma_{\text{total}}]\times[B(\overline{b}\to b\text{-baryon})]=(4.72\pm0.66\pm0.44)\times10^{-3}$ which we divide by our best value $B(\overline{b}\to b\text{-baryon})=(8.4\pm1.1)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\ell\overline{\nu}_{\ell}\text{ anything})/\Gamma(p\text{ anything})$

 Γ_2/Γ_3

VALUE (%)	DOCUMENT ID	TE	CN	COMMENT	
8.0±1.2±1.4	BARATE	98V AL	EP	$e^+e^- \rightarrow Z$	

 $\Gamma(\Lambda \ell^- \overline{\nu}_\ell \text{ anything}) / \Gamma_{\text{total}}$

 Γ_4/Γ

The values and averages in this section serve only to show what values result if one assumes our $B(b \to b\text{-baryon})$. They cannot be thought of as measurements since the underlying product branching fractions were also used to determine $B(b \to b\text{-baryon})$ as described in the note on "Production and Decay of b-Flavored Hadrons."

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
3.8±0.6 OUR AVERA	GE				
$3.9 \pm 0.5 \pm 0.5$		$^{ m 1}$ BARATE	98D	ALEP	$e^+e^- ightarrow Z$
$3.5 \pm 0.4 \pm 0.5$		² AKERS	96	OPAL	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$
$3.6 \pm 0.9 \pm 0.5$	262	³ ABREU	95 S	DLPH	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$
$7.3\!\pm\!1.4\!\pm\!1.0$	290	⁴ BUSKULIC	95L	ALEP	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$
• • • We do not use	the follow	ing data for averag	ges, fit	s, limits	, etc. • • •
seen	157	⁵ AKERS	93	OPAL	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$
$8.3 \pm 2.5 \pm 1.1$	101	⁶ BUSKULIC	921	ALEP	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$

 $^{^1}$ BARATE 98D reports $[\Gamma(b\text{-baryon}\to \Lambda\ell^-\overline{\nu}_\ell\,\text{anything})/\Gamma_{\text{total}}]\times[B(\overline{b}\to b\text{-baryon})]$ $=0.00326\pm0.00016\pm0.00039$ which we divide by our best value $B(\overline{b}\to b\text{-baryon})$ $=(8.4\pm1.1)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Measured using the excess of $\Lambda\ell^-$, lepton impact parameter.

$\Gamma(\Lambda \ell^+ \nu_{\ell} \text{ anything}) / \Gamma(\Lambda \text{ anything})$

 Γ_5/Γ_6

Created: 4/29/2024 18:59

$VALUE$ (units 10^{-2})	DOCUMENT ID	TECN	COMMENT
8.0±1.2±0.8	ABBIENDI 99L	OPAL	$e^+e^- \rightarrow Z$

• • We do not use the following data for averages, fits, limits, etc.

 $7.0\pm1.2\pm0.7$ ACKERSTAFF 97N OPAL Repl. by ABBIENDI 99L

² AKERS 96 reports $[\Gamma(b\text{-baryon} \to \Lambda \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})] = 0.00291 \pm 0.00023 \pm 0.00025$ which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ ABREU 95s reports [$\Gamma(b\text{-baryon} \to \Lambda \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$] \times [B($\overline{b} \to b\text{-baryon}$)] = 0.0030 \pm 0.0006 \pm 0.0004 which we divide by our best value B($\overline{b} \to b\text{-baryon}$) = (8.4 \pm 1.1) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ BUSKULIC 95L reports [$\Gamma(b\text{-baryon} \to \Lambda \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$] \times [B($\overline{b} \to b\text{-baryon}$)] = 0.0061 \pm 0.0006 \pm 0.0010 which we divide by our best value B($\overline{b} \to b\text{-baryon}$) = (8.4 \pm 1.1) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁵ AKERS 93 superseded by AKERS 96.

⁶ BUSKULIC 92I reports $[\Gamma(b\text{-baryon} \to \Lambda \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})]$ = 0.0070 \pm 0.0010 \pm 0.0018 which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Superseded by BUSKULIC 95L.

$\Gamma(\Lambda \text{anything})/\Gamma_{\text{total}}$				
VALUE (%)	DOCUMENT ID	TECN	COMMENT	

39± 7 OUR AVERAGE	-		
42± 6±5	¹ ABBIENDI	99L OPAL	$e^+e^- ightarrow Z$
$27^{+15}_{0}\pm3$	² ABREU	95c DLPH	$e^+e^- ightarrow~Z$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $47\pm~7\pm6$ 3 ACKERSTAFF 97N OPAL Repl. by ABBIENDI 99L

- ¹ ABBIENDI 99L reports $[\Gamma(b\text{-baryon} \to \Lambda \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})]$ = 0.035 ± 0.0032 ± 0.0035 which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- the systematic error from using our best value.
 ²ABREU 95C reports $0.28^{+0.17}_{-0.12}$ from a measurement of $[\Gamma(b\text{-baryon} \to \Lambda \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})]$ assuming $B(\overline{b} \to b\text{-baryon}) = 0.08 \pm 0.02$, which we rescale to our best value $B(\overline{b} \to b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ³ ACKERSTAFF 97N reports $[\Gamma(b\text{-baryon} \to \Lambda \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})]$ = 0.0393 \pm 0.0046 \pm 0.0037 which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Xi^-\ell^-\overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_7/Γ

Created: 4/29/2024 18:59

 Γ_6/Γ

VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT
4.6±1.4 OUR AVERAGE	Error includes scale fact	or of 1.2.	
$3.6 \pm 1.2 \pm 0.5$	¹ ABDALLAH 0!	c DLPH	$e^+e^- ightarrow~Z^0$
$6.4\!\pm\!1.6\!\pm\!0.8$	² BUSKULIC 90	T ALEP	Excess $\Xi^-\ell^-$ over $\Xi^-\ell^+$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $7.0\pm2.8\pm0.9$ 3 ABREU 95V DLPH Repl. by ABDALLAH 05C

- ¹ ABDALLAH 05C reports $[\Gamma(b\text{-baryon} \to \overline{\Xi}^-\ell^-\overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})] = (3.0 \pm 1.0 \pm 0.3) \times 10^{-4}$ which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ² BUSKULIC 96T reports $[\Gamma(b\text{-baryon} \to \Xi^-\ell^-\overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})] = (5.4 \pm 1.1 \pm 0.8) \times 10^{-4}$ which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ³ ABREU 95V reports $[\Gamma(b\text{-baryon} \to \Xi^-\ell^-\overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})] = (5.9 \pm 2.1 \pm 1.0) \times 10^{-4}$ which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

b-baryon ADMIXTURE (\varLambda_b , \varXi_b , \varOmega_b) REFERENCES

Created: 4/29/2024 18:59