Heavy Charged Lepton Searches

Charged Heavy Lepton MASS LIMITS

Sequential Charged Heavy Lepton (L^{\pm}) MASS LIMITS

These experiments assumed that a fourth generation L^{\pm} decayed to a fourth generation ν_L (or L^0) where ν_L was stable, or that L^{\pm} decays to a light ν_ℓ via mixing.

See the "Quark and Lepton Compositeness, Searches for" Listings for limits on radiatively decaying excited leptons, *i.e.* $\ell^* \rightarrow \ell \gamma$. See the "WIMPs and other Particle Searches" section for heavy charged particle search limits in which the charged particle could be a lepton.

VALUE (GeV)	CL%	DOCUMENT ID T	TECN O	COMMENT
>100.8	95	ACHARD 01B L	_3 [Decay to $ u W$
>101.9	95	ACHARD 01B L	.3 1	$m_{L} - m_{10} > 15 \text{ GeV}$
• • • We do no	t use the	following data for average		E
> 81.5	95	ACKERSTAFF 98c C		Assumed $m_{L^{\pm}} - m_{L^0} > 8.4$ GeV
> 80.2	95	ACKERSTAFF 98c C)PAL <i>i</i>	$m_{L^0} > m_{L^{\pm}}$ and $L^{\pm} \rightarrow \nu W$
< 48 or $>$ 61	95	¹ ACCIARRI 96g L		
> 63.9	95	ALEXANDER 96P C)PAL [Decay to massless $ u$'s
> 63.5	95	BUSKULIC 96s A	ALEP <i>i</i>	$m_L - m_{10} > 7 \text{ GeV}$
> 65	95		ALEP [Decay to massless $ u$'s
none 10-225		² AHMED 94 C	CNTR I	H1 Collab. at HERA
none 12.6-29.6	95	KIM 91B A	۱ YM	Massless $ u$ assumed
> 44.3	95	AKRAWY 90G C)PAL	
none 0.5–10	95	³ RILES 90 N	MRK2	For $(m_{10} - m_{10}) > 0.25 - 0.4 \text{GeV}$
> 8		⁴ STOKER 89 N	MRK2 F	For $(m_{l^+} - m_{l^0}) = 0.4$ GeV
> 12				For $m_{10} = 0.9$ GeV
none 18.4–27.6	95		/NS	-
> 25.5	95	⁶ ADACHI 88B T	ΓΟΡΖ	
none 1.5-22.0	95		CELL	
> 41	90	⁷ ALBAJAR 87B U	JA1	
> 22.5	95	⁸ ADEVA 85 N	MRKJ	
> 18.0	95		IADE	
none 4–14.5	95	¹⁰ BERGER 81B F	۲UL	
> 15.5	95		ΓASS	
> 13.		¹² AZIMOV 80		
> 16.	95	¹³ BARBER 80B C	INTR	
> 0.490		¹⁴ ROTHE 69 F	RVUE	
1				

 $^{1}\,\text{ACCIARRI}$ 96G assumes LEP result that the associated neutral heavy lepton mass > 40 $^{\circ}\,\text{GeV}.$

² The AHMED 94 limits are from a search for neutral and charged sequential heavy leptons at HERA via the decay channels $L^- \rightarrow e\gamma$, $L^- \rightarrow \nu W^-$, $L^- \rightarrow eZ$; and $L^0 \rightarrow \nu \gamma$, $L^0 \rightarrow e^- W^+$, $L^- \rightarrow \nu Z$, where the W decays to $\ell \nu_{\ell}$, or to jets, and Z decays to $\ell^+ \ell^-$ or jets.

³ RILES 90 limits were the result of a special analysis of the data in the case where the mass difference $m_{L^-} - m_{L^0}$ was allowed to be quite small, where L^0 denotes the neutrino

into which the sequential charged lepton decays. With a slightly reduced $m_{L^{\pm}}$ range, the mass difference extends to about 4 GeV.

- ⁴STOKER 89 (Mark II at PEP) gives bounds on charged heavy lepton (L^+) mass for the generalized case in which the corresponding neutral heavy lepton (L^0) in the SU(2) doublet is not of negligible mass.
- $^5\,{\rm ABE}$ 88 search for L^+ and $L^ \to$ hadrons looking for acoplanar jets. The bound is valid for m_ν < 10 GeV.
- ⁶ ADACHI 88B search for hadronic decays giving acoplanar events with large missing energy. $E_{cm}^{ee} = 52$ GeV.

⁷Assumes associated neutrino is approximately massless.

 8 ADEVA 85 analyze one-isolated-muon data and sensitive to $\tau~<10$ nanosec. Assume B(lepton) = 0.30. $E_{\rm cm}$ = 40–47 GeV.

⁹BARTEL 83 limit is from PETRA e^+e^- experiment with average $E_{cm} = 34.2$ GeV.

¹⁰ BERGER 81B is DESY DORIS and PETRA experiment. Looking for $e^+e^- \rightarrow L^+L^-$. ¹¹ BRANDELIK 81 is DESY-PETRA experiment. Looking for $e^+e^- \rightarrow L^+L^-$.

¹² AZIMOV 80 estimated probabilities for M + N type events in $e^+e^- \rightarrow L^+L^-$ deducing semi-hadronic decay multiplicities of L from e^+e^- annihilation data at $E_{cm} = (2/3)m_L$. Obtained above limit comparing these with e^+e^- data (BRANDELIK 80).

¹³ BARBER 80B looked for $e^+e^- \rightarrow L^+L^-$, $L \rightarrow \nu_L^+$ X with MARK-J at DESY-PETRA.

 $^{14}\,{\rm ROTHE}$ 69 examines previous data on μ pair production and π and K decays.

Stable Charged Heavy Lepton (L^{\pm}) MASS LIMITS

VALUE (GeV)	CL%	DOCUMENT ID		TECN		
>102.6	95	ACHARD	01 B	L3		
$\bullet \bullet \bullet$ We do not use the	e following o	lata for averages	s, fits,	limits, etc. \bullet \bullet		
> 28.2	95 ¹⁵	⁵ ADACHI	90 C	TOPZ		
none 18.5–42.8	95	AKRAWY	900	OPAL		
> 26.5	95	DECAMP	90F	ALEP		
none m_μ –36.3	95	SODERSTROM	/ 90	MRK2		

¹⁵ ADACHI 90C put lower limits on the mass of stable charged particles with electric charge Q satisfying 2/3 < Q/e < 4/3 and with spin 0 or 1/2. We list here the special case for a stable charged heavy lepton.

Charged Long-Lived Heavy Lepton MASS LIMITS

VALUE (GeV)	CL%	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not i	use the f	ollowing data for av	erages	s, fits, lir	nits, e	tc. ● ● ●
>574	95	CHATRCHYAN	13 AB	CMS		Leptons singlet model
>102.0	95	ABBIENDI	03L	OPAL		pair produced in e^+e^-
> 0.1		¹⁶ ANSORGE	73 B	HBC	_	Long-lived
none 0.55–4.5		¹⁷ BUSHNIN	73	CNTR	_	Long-lived
none 0.2–0.92		¹⁸ BARNA	68	CNTR	_	Long-lived
none 0.97-1.03		¹⁸ BARNA	68	CNTR	_	Long-lived

¹⁶ANSORGE 73B looks for electron pair production and electron-like Bremsstrahlung.

 17 BUSHNIN 73 is SERPUKHOV 70 GeV p experiment. Masses assume mean life above 7×10^{-10} and 3×10^{-8} respectively. Calculated from cross section (see "Charged Quasi-Stable Lepton Production Differential Cross Section" below) and 30 GeV muon pair production data.

¹⁸ BARNA 68 is SLAC photoproduction experiment.

Doubly-Charged Heavy Lepton MASS LIMITS

VALUE (GeV)	CL%	DOCUMENT ID		TECN	CHG	
$\bullet \bullet \bullet$ We do not use the	following	data for averages	, fits,	limits,	etc. •	• •
none 1–9 GeV	90	¹⁹ CLARK	81	SPEC	++	

 19 CLARK 81 is FNAL experiment with 209 GeV muons. Bounds apply to μ_P which couples with full weak strength to muon. See also section on "Doubly-Charged Lepton Production Cross Section."

Doubly-Charged Lepton Production Cross Section $(\mu N \text{ Scattering})$

VALUE (cm ²)	EVTS	DOCUMENT	ID	TECN	CHG
$\bullet \bullet \bullet$ We do not use th	e following	g data for avera	ges, fits,	limits,	etc. ● ● ●
$< 6. \times 10^{-38}$	0	²⁰ CLARK	81	SPEC	++
²⁰ CLARK 81 is FNAL	experimer	nt with 209 Ge\	/ muon.	Looked	for μ^+ nucleon $\rightarrow \overline{\mu}_P^0 X$,
$\overline{\mu}_{P}^{0} \rightarrow \mu^{+} \mu^{-} \overline{\nu}_{\mu}$ a	nd μ^+ n –	$\rightarrow \mu_{P}^{++} X, \mu_{P}^{+-}$	$^+ \rightarrow 2 \mu$	$\mu^+ \nu_{\mu}$. A	Above limits are for $\sigma \times BR$

taken from their mass-dependence plot figure 2.

REFERENCES FOR Heavy Charged Lepton Searches

Also		JHEP 1307 122 JHEP 2211 149 (errat.)		(CMS Collab.) (CMS Collab.)
ABBIENDI	03L	PL B572 8	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ACHARD	01B	PL B517 75	P. Achard <i>et al.</i>	(L3 Collab.)
ACKERSTAFF	98C	EPJ C1 45	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ACCIARRI	96G	PL B377 304	M. Acciarri <i>et al.</i>	(L3 Collab.)
ALEXANDER	96P	PL B385 433	G. Alexander <i>et al.</i>	(OPAL Collab.)
BUSKULIC	96S	PL B384 439	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
AHMED	94 01 D	PL B340 205	T. Ahmed <i>et al.</i>	(H1 Collab.)
KIM	91B	IJMP A6 2583	G.N. Kim <i>et al.</i>	(AMY Collab.)
ADACHI	90C	PL B244 352	I. Adachi <i>et al.</i>	(TOPAZ Collab.)
AKRAWY	90G 90O	PL B240 250	M.Z. Akrawy <i>et al.</i>	(OPAL Collab.)
AKRAWY	900 90F	PL B252 290	M.Z. Akrawy <i>et al.</i>	(OPAL Collab.)
DECAMP RILES	90F 90	PL B236 511 PR D42 1	D. Decamp <i>et al.</i> K. Riles <i>et al.</i>	(ALEPH Collab.)
SODERSTROM		PR D42 1 PRL 64 2980	E. Soderstrom <i>et al.</i>	(Mark II Collab.) (Mark II Collab.)
STOKER	89	PRL 04 2960 PR D39 1811	D.P. Stoker <i>et al.</i>	(Mark II Collab.)
ABE	88 88	PR 039 1811 PRL 61 915	K. Abe <i>et al.</i>	(VENUS Collab.)
ADACHI	88B	PR D37 1339	I. Adachi <i>et al.</i>	(TOPAZ Collab.)
BEHREND	88C	ZPHY C41 7	H.J. Behrend <i>et al.</i>	(CELLO Collab.)
ALBAJAR	87B	PL B185 241	C. Albajar <i>et al.</i>	(UA1 Collab.)
ADEVA	85	PL 152B 439	B. Adeva <i>et al.</i>	(Mark-J Collab.)
Also	05	PRPL 109 131	B. Adeva <i>et al.</i>	(Mark-J Collab.)
BARTEL	83	PL 123B 353	W. Bartel <i>et al.</i>	(JADE Collab.)
BERGER	81B	PL 99B 489	C. Berger <i>et al.</i>	(PLUTO Collab.)
BRANDELIK	81	PL 99B 163	R. Brandelik <i>et al.</i>	(TASSO Collab.)
CLARK	81	PRL 46 299	A.R. Clark <i>et al.</i>	(UCB, LBL, FNAL+)
Also	-	PR D25 2762	W.H. Smith <i>et al.</i>	(LBL, FNAL, PRIN)
AZIMOV	80	JETPL 32 664	Y.I. Azimov, V.A. Khoze	(PNPI)
		Translated from ZETFP		(*****)
BARBER	80B	PRL 45 1904	D.P. Barber <i>et al.</i>	(Mark-J Collab.)
BRANDELIK	80	PL 92B 199	R. Brandelik <i>et al.</i>	(TASSO Collab.)
ANSORGE	73B	PR D7 26	R.E. Ansorge <i>et al.</i>	(CAVE)
BUSHNIN	73	NP B58 476	Y.B. Bushnin <i>et al.</i>	(SERP)
Also		PL 42B 136	S.V. Golovkin <i>et al.</i>	(SERP)
ROTHE	69	NP B10 241	K.W. Rothe, A.M. Wolsky	(PENN)
BARNA	68	PR 173 1391	A. Barna <i>et al.</i>	(SLAC, STAN)

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

M.L. Perl

----- OTHER RELATED PAPERS ------

PERL 81 SLAC-PUB-2752 Physics in Collision Conference. (SLAC)