New Heavy Bosons (W', Z', leptoquarks, etc.), Searches for

We list here various limits on charged and neutral heavy vector bosons (other than W's and Z's), heavy scalar bosons (other than Higgs bosons), vector or scalar leptoquarks, and axigluons. The latest unpublished results are described in "W' Searches" and "Z'Searches" reviews. For recent searches on scalar bosons which could be identified as Higgs bosons, see the listings in the Higgs boson section.

CONTENTS:

```
Mass Limits for W' (Heavy Charged Vector Boson Other Than W) in Hadron Collider
W_R (Right-Handed W Boson) Mass Limits
Limit on W_I-W_R Mixing Angle \zeta
Mass Limits for Z' (Heavy Neutral Vector Boson Other Than Z)
     \begin{array}{l} - \text{ Limits for } Z_{\text{SM}}^{'} \\ - \text{ Limits for } Z_{LR}^{'} \end{array}
     - Limits for Z
     - Limits for Z
     - Limits for Z_{\psi}
- Limits for Z_{\eta}
     - Limits for other Z'
     - Searches for Z' with Lepton-Flavor-Violating decays
Indirect Constraints on Kaluza-Klein Gauge Bosons
Mass Limits for Leptoquarks from Pair Production
Mass Limits for Leptoquarks from Single Production
Indirect Limits for Leptoquarks
Mass Limits for Diquarks
Mass Limits for g_A (axigluon) and Other Color-Octet Gauge Bosons
Mass Limits for Color-Octet Scalar Bosons
X^0 (Heavy Boson) Searches in Z Decays
Mass Limits for a Heavy Neutral Boson Coupling to e^+e^-
Search for X^0 Resonance in e^+e^- Collisions
Search for X^0 Resonance in ep Collisions
Search for X^0 Resonance in Two-Photon Process
Search for X^0 Resonance in e^+e^- \rightarrow X^0 \gamma
Search for X^0 Resonance in Z \rightarrow f f X^0
Search for X^0 Resonance in WX^0 final state
```

See the related review(s):

Search for X^0 Resonance in Quarkonium Decays

W'-Boson Searches

MASS LIMITS for W' (Heavy Charged Vector Boson Other Than W) in Hadron Collider Experiments

Couplings of W' to quarks and leptons are taken to be identical with those of W. The following limits are obtained from $p\overline{p}$ or $pp \to W'X$ with W' decaying to the mode

indicated in the comments. New decay channels (e.g., $W' \to WZ$) are assumed to be suppressed. The most recent preliminary results can be found in the "W'-boson searches" review above.

value (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
	95%) OUR LIMI	T		
>2500	95	¹ AAD	23AH ATLS	$W' \rightarrow WZ$
none 500–4600	95	² AAD	23CC ATLS	
>1200	95	³ AAD	23L ATLS	_
none 400–3300	95	⁴ AAD	230 ATLS	
>4400	95	⁵ TUMASYAN	23AP CMS	$W' \rightarrow WZ$
>4000	95	⁶ TUMASYAN	23AP CMS	$W' \rightarrow WH$
none 600-4800	95	⁷ TUMASYAN	23AW CMS	$W' \rightarrow \tau \nu$
>5700	95	⁸ TUMASYAN	22AC CMS	$W' ightarrow e u$, μu
>3900	95	⁹ TUMASYAN	22D CMS	$W' \rightarrow WZ$
>4000	95	⁹ TUMASYAN	22D CMS	$W' \rightarrow WH$
none 1000–4000		¹⁰ TUMASYAN	22J CMS	$W' \rightarrow WZ$
none 500–2000	95	¹¹ TUMASYAN	22R CMS	$W' \rightarrow WZ$
none 1000–3400		¹² SIRUNYAN	21Y CMS	$W' \rightarrow tb$
>3200	95	¹³ AAD	20AJ ATLS	
>4300	95	¹⁴ AAD	20AT ATLS	_
none 1100–4000		15 AAD	20T ATLS	
none 1800–3600		¹⁶ SIRUNYAN	20AI CMS	$W' \rightarrow q \overline{q}$
none 1200–3800		¹⁷ SIRUNYAN	20Q CMS	$W' \rightarrow WZ$
none 500–3250	95	¹⁸ AABOUD	19E ATLS	
>6000	95	19 AAD	19C ATLS	
none 1300–3600		20 AAD	190 ATLS	_ ·
none 400–4000	95	²¹ SIRUNYAN	19AY CMS	$W' \rightarrow \tau \nu$
>4300	95 95	²² SIRUNYAN	19CP CMS	$W' \rightarrow V' \rightarrow WZ, WH, \ell\nu$
>2600	95 95	²³ SIRUNYAN	19ci CMS	$W' \rightarrow WE, WH, \ell\nu$ $W' \rightarrow WH$
none 1000–3000		²⁴ AABOUD	18AF ATLS	
none 500–2820	95 95	²⁵ AABOUD	18AL ATLS	
none 300–2020	95 95	²⁶ AABOUD	18AK ATLS	
none 800–3200	95 95	27 AABOUD	18AL ATLS	
>5100	95 95	²⁸ AABOUD	18BG ATLS	
none 250–2460	95 95	²⁹ AABOUD	18CH ATLS	
none 1200–3300		30 AABOUD	18F ATLS	
none 500–3700	95 95	31 AABOUD	18K ATLS	
none 1000–3600		³² SIRUNYAN	18 CMS	$W' \rightarrow T \nu$ $W' \rightarrow t b$
none 1000–3000		33 SIRUNYAN	18AX CMS	$W' \rightarrow UD$ $W' \rightarrow WZ$
none 400–5200	95 95	³⁴ SIRUNYAN	18AZ CMS	$W' ightarrow VVZ \ W' ightarrow e u, ~\mu u$
none 1000–3400		35 SIRUNYAN	18BK CMS	$W' \rightarrow e \nu, \ \mu \nu$ $W' \rightarrow W Z$
none 600–3300	95 95	³⁶ SIRUNYAN	18BO CMS	$W' \rightarrow WZ$ $W' \rightarrow q \overline{q}$
		37 SIRUNYAN	18DJ CMS	$W' \rightarrow qq$ $W' \rightarrow WZ$
none 800–2330	95 or	38 SIRUNYAN		$W' \rightarrow W Z$ $W' \rightarrow W H$
>2800	95	39 SIRUNYAN	18ED CMS	$W' \rightarrow WH$ $W' \rightarrow WZ$
none 1200–3200 3300–3600			18P CMS	
>3600	95	40 AABOUD	17AK ATLS	
none 1100–2500		41 AABOUD	17AO ATLS	
>2220	95	⁴² AABOUD	17B ATLS	$W' \rightarrow WH$

```
43 KHACHATRY...17」 CMS
                                                                                    W' \rightarrow N_{\tau} \tau \rightarrow \tau \tau j j
>2300
                              95
                                         44 KHACHATRY...17W CMS
                                                                                    W' \rightarrow q \overline{q}
none 600-2700
                              95
                                         <sup>45</sup> KHACHATRY...17Z CMS
                                                                                    W' \rightarrow e \nu, \mu \nu
>4100
                              95
                                         <sup>46</sup> SIRUNYAN
                                                                                    W' \rightarrow WZ
>2200
                              95
                                                                  17A CMS
                                         <sup>47</sup> SIRUNYAN
                              95
                                                                  17AK CMS
                                                                                    W' \rightarrow WZ, WH
>2300
                                         <sup>48</sup> SIRUNYAN
                              95
                                                                 17H CMS
                                                                                    W' \rightarrow \tau N
>2900
                                         <sup>49</sup> SIRUNYAN
                              95
                                                                 171
                                                                        CMS
                                                                                    W' \rightarrow
>2600
                                                                                             t b
                                         <sup>50</sup> SIRUNYAN
                              95
                                                                 17R CMS
                                                                                    W' \rightarrow WH
>2450
                                         <sup>50</sup> SIRUNYAN
none 2780-3150
                              95
                                                                  17R CMS
                                                                                    W' \rightarrow WH
                                         <sup>51</sup> AABOUD
                              95
                                                                 16AE ATLS
                                                                                    W' \rightarrow WZ
>2600
                                         <sup>52</sup> AABOUD
                              95
                                                                  16V ATLS
                                                                                    W' \rightarrow e \nu, \mu \nu
>4070
                              95
                                         <sup>53</sup> AAD
                                                                  16R ATLS
                                                                                    W' \rightarrow
                                                                                             WZ
>1810
                                         <sup>54</sup> AAD
                                                                                    W' \rightarrow q \overline{q}
                              95
>2600
                                                                  16S ATLS
                                                                                    W' \rightarrow tb
                              95
                                         <sup>55</sup> KHACHATRY...16A0 CMS
>2150
                                         <sup>56</sup> KHACHATRY...16AP CMS
                                                                                    W' \rightarrow
                              95
                                                                                             WH
none 1000-1600
                                         <sup>57</sup> KHACHATRY...16BD CMS
                              95
                                                                                             WH \rightarrow b\overline{b}\ell\nu
none 800-1500
                                         <sup>58</sup> KHACHATRY...16K CMS
                                                                                   W' \rightarrow q \overline{q}
none 1500-2600
                              95
                                         <sup>59</sup> KHACHATRY...16L CMS
                                                                                    W' \rightarrow
none 500-1600
                              95
                                                                                             q \overline{q}
                                         <sup>60</sup> KHACHATRY...160 CMS
                                                                                    W' \rightarrow \tau \nu
none 300-2700
                              95
                                         61 AAD
none 400-1590
                              95
                                                                 15AU ATLS
                                                                                   W' \rightarrow
                                                                                             WZ
                                         62 AAD
none 1500-1760
                              95
                                                                 15AV ATLS
                                                                                    W' \rightarrow tb
                                         63 AAD
none 300-1490
                              95
                                                                 15AZ ATLS
                                                                                   W' \rightarrow
                                                                                             WZ
                                         <sup>64</sup> AAD
none 1300-1500
                              95
                                                                 15CP ATLS
                                                                                   W' \rightarrow WZ
                                         <sup>65</sup> AAD
none 500-1920
                              95
                                                                 15R ATLS
                                                                                   W' \rightarrow
                                                                                             t b
                                         66 AAD
                                                                                   W' \rightarrow q \overline{q}
none 800-2450
                              95
                                                                 15V ATLS
                                         67 KHACHATRY...15C CMS
                                                                                    W' \rightarrow WZ
                              95
>1470
                                         <sup>68</sup> KHACHATRY...15T CMS
                                                                                    W' \rightarrow e \nu, \mu \nu
>3710
                              95
                                         <sup>69</sup> KHACHATRY...140 CMS
none 1000-3010
                              95
                                                                                    W' \rightarrow N\ell \rightarrow \ell\ell i i
• • We do not use the following data for averages, fits, limits, etc.
                                         70 AAD
                                                                                    W' \rightarrow WZ' \rightarrow \ell \nu q \overline{q}
                                                                  23BF ATLS
                                         71 AAD
                                                                                    W' \rightarrow N\ell \rightarrow \ell\ell jj
                                                                  23CG ATLS
                                         72_{AAD}
                                                                                   W' \rightarrow XH
                                                                 23CK ATLS
                                         <sup>73</sup> AAD
                                                                                   W' \rightarrow W \gamma
                                                                  23U ATLS
                                         <sup>74</sup> TUMASYAN
                                                                                    W' \rightarrow WR \rightarrow WWW
                                                                 22
                                                                         CMS
                                         <sup>75</sup> TUMASYAN
                                                                 22AL CMS
                                                                                    W' \rightarrow tB, bT
                                         <sup>76</sup> TUMASYAN
                                                                 22B CMS
                                         <sup>77</sup> TUMASYAN
                                                                                    W' \rightarrow WR \rightarrow WWW
                                                                 221
                                                                        CMS
                                         <sup>78</sup> TUMASYAN
                                                                  22P CMS
                                                                                    W' \rightarrow N\ell \rightarrow \ell\ell jj
                                         79 AAD
                                                                                   W' \rightarrow JJ
                                                                  20AD ATLS
                                         80 AAD
                                                                                   W' \rightarrow WZ' \rightarrow \ell \nu q \overline{q}
                                                                  20W ATLS
                                         <sup>81</sup> AABOUD
                                                                                    W' \rightarrow N\ell \rightarrow \ell\ell jj
                                                                  19B ATLS
                                         <sup>82</sup> AABOUD
                                                                                   W' \rightarrow N\ell \rightarrow i\ell\ell
                                                                  19BB ATLS
                                         <sup>83</sup> SIRUNYAN
                                                                                    W' \rightarrow Bt, Tb
                                                                  19V CMS
                                         <sup>84</sup> AABOUD
                                                                  18AA ATLS
                                                                                   W' \rightarrow W \gamma
                                         <sup>85</sup> AABOUD
                                                                                   W' \rightarrow HX
                                                                  18AD ATLS
>4500
                              95
                                         <sup>86</sup> AABOUD
                                                                  18CJ ATLS
                                                                                    W' \rightarrow WZ, WH, \ell\nu
                                         <sup>87</sup> SIRUNYAN
                                                                  18cv CMS
                                                                                    W' \rightarrow N\ell \rightarrow \ell\ell i i
none 900-4400
                              95
                                         <sup>88</sup> KHACHATRY...17U CMS
                                                                                    W' \rightarrow WH
                                         <sup>89</sup> AAD
                                                                  15BB ATLS
                                                                                   W' \rightarrow WH
```

none 300-880	95		AALTONEN	15 C	CDF	W' o	t b
none 1200–1900 and 2000–2200	95	91	KHACHATRY	.15∨	CMS	$W' \rightarrow$	q q
>3240	95		AAD	14AI	ATLS	W' o	e ν , $\mu\nu$
		92	AAD	14 AT	ATLS	W' o	$W\gamma$
none 200-1520	95		AAD	14 S	ATLS	W' o	•
none 1000-1700	95	94	KHACHATRY	.14	CMS	W' o	WZ
			KHACHATRY		CMS	$W' \rightarrow$	WZ
none 500-950	95		AAD		ATLS	$W' \rightarrow$	WZ
none 1100-1680	95		AAD	13 D	ATLS	${\it W'} \rightarrow$	q q
none 1000-1920	95		CHATRCHYAN	13A	CMS	W' o	q q
		97	CHATRCHYAN	13 AJ	CMS	W' o	WZ
>2900	95		CHATRCHYAN			W' o	e ν , $\mu \nu$
none 800-1510	95	99	CHATRCHYAN	13E	CMS	W' o	t b
none 700-940	95	100	CHATRCHYAN	13 U	CMS	W' o	WZ
none 700-1130	95	101	AAD	12AV	ATLS	W' o	t b
none 200-760	95	102	AAD	12 BB	ATLS	W' o	WZ
		103	AAD	12CK	ATLS	W' o	$\overline{t}q$
>2550	95	104	AAD	12CR	ATLS	W' o	$e\nu$, $\mu\nu$
		105	AAD	12M	ATLS		$N\ell \rightarrow \ell\ell jj$
		106	AALTONEN	12N	CDF	W' o	t q
none 200-1143	95		CHATRCHYAN	12AF	CMS	W' o	WZ
		107	CHATRCHYAN	12 AR	CMS	W' o	$\overline{t}q$
			CHATRCHYAN			W' o	$N\ell ightarrow \ell\ell jj$
>1120	95		AALTONEN	11 C	CDF	W' o	$e\nu$
none 180-690	95	109	ABAZOV	11H	D0	W' o	WZ
none 600-863	95	110	ABAZOV	11L	D0	W' o	t b
none 285-516	95	111	AALTONEN	10N	CDF	W' o	WZ
none 280-840	95	112	AALTONEN	09 AC	CDF	W' o	9 9
>1000	95		ABAZOV	08C	D0	W' o	$e\nu$
none 300-800	95		ABAZOV	04C	D0	W' o	9 9
none 225-536	95	113	ACOSTA	03 B	CDF	W' o	t b
none 200-480	95	114	AFFOLDER	0 2C	CDF	W' o	WZ
> 786	95		AFFOLDER	01ı	CDF	W' o	e ν , $\mu \nu$
none 300-420	95	116	ABE	97G	CDF	W' o	9 9
> 720	95	117	ABACHI	96c	D0	W' o	$e\nu$
> 610	95		ABACHI	95E	D0	W' o	e ν , $ au u$
none 260-600	95	119	RIZZO	93	RVUE	$\mathcal{W'} \rightarrow$	

¹ AAD 23AH search for resonances produced through Drell-Yan and vector-boson-fusion processes in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 7 and Fig. 8 for limits on $\sigma \cdot B$. The quoted limit is for heavy-vector-triplet W' with $g_V=3$ produced mainly via Drell-Yan.

Drell-Yan. ² AAD 23CC search for resonances decaying to $t\,b$ in $p\,p$ collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for right-handed W' assuming a W' coupling equal to the SM W coupling. The limit becomes $M_{W'}>4200$ GeV for left-handed W'. See their Figs. 12 and 13 for limits on $\sigma \cdot B$.

³ AAD 23L perform a generic search for resonances with events containing a Z decaying into e^+e^- or $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=13$ TeV. See their Figs. 6, 7, 8 for model independent limits on $\sigma\cdot B$ for Gaussian-shaped resonances. The limit above is for heavy-vector-triplet W' decaying to WZ with $g_V=3$ as well as with $g_V=1$.

- ⁴ AAD 230 search for resonances decaying to HW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>2950$ GeV for $g_V=1$.
- ⁵ TUMASYAN 23AP search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>4.8$ TeV assuming $M_{W'}=M_{Z'}$ and combining $W'\to WZ$, $W'\to WH$, $Z'\to WW$, $Z'\to ZH$ channels.
- ⁶ TUMASYAN 23AP search for resonances decaying to WH in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>4.8$ TeV assuming $M_{W'}=M_{Z'}$ and combining $W'\to WZ$, $W'\to WH$, $Z'\to WW$, $Z'\to ZH$ channels.
- ⁷ TUMASYAN 23AW search for SSM W' resonance decaying to $\tau \nu$ in pp collisions at \sqrt{s} = 13 TeV. W-W' intereference and bosonic decays of W' are not included. See their Fig. 6 for limits on $\sigma \cdot B$.
- ⁸ TUMASYAN 22AC search for W' with SM-like couplings in pp collisions at $\sqrt{s}=13$ TeV. The diboson decays of W' are assumed to be suppressed. See their Fig. 5 for limits on $\sigma \cdot B$.
- 9 TUMASYAN 22D search for resonances produced through Drell-Yan and vector-boson-fusion processes in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 8 for limits on $\sigma \cdot B$. The quoted limit is for heavy-vector-triplet W' with $g_V=3$ produced mainly via Drell-Yan.
- ¹⁰ TUMASYAN 22J search for resonances produced through Drell-Yan and vector-boson-fusion processes in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$, produced mainly via Drell-Yan. See their Fig. 9 for limits on $\sigma \cdot B$.
- ¹¹ TUMASYAN 22R search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' produced mainly via Drell-Yan. See their Fig. 8 for limits on $\sigma \cdot B$.
- ¹² SIRUNYAN 21Y search for resonances decaying to tb in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 2 for limits on $\sigma \cdot B(W' \to tb)$.
- 13 AAD 20AJ search for resonances decaying to HW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes M $_{W'}>2900$ GeV for $g_V=1$. See their Fig. 6 for limits on $\sigma \cdot B$.
- ¹⁴ AAD 20AT search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>3900$ GeV for $g_V=1$. See their Fig. 13 for limits on $\sigma \cdot B$.
- ¹⁵ AAD 20T search for W' with SM-like couplings in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 4(c) for limits on the product of the cross section, acceptance, and branching fraction.
- 16 SIRUNYAN 20AI limit is for W' with SM-like coupling using pp collisions at $\sqrt{s}=13$ TeV.
- ¹⁷ SIRUNYAN 20Q search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$.
- 18 AABOUD 19E search for right-handed W' in $p\,p$ collisions at $\sqrt{s}=$ 13 TeV. See their Fig. 8 for limit on on $\sigma\cdot B.$
- ¹⁹ AAD 19C search for W' with SM-like couplings in $p\,p$ collisions at $\sqrt{s}=13$ TeV. Bosonic decays and W-W' interference are neglected. The limits on e and μ separately are 6.0 and 5.1 TeV respectively. See their Fig. 2 for limits on $\sigma \cdot B$.
- 20 AAD 19D search for resonances decaying to WZ in $p\,p$ collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>3400$ GeV for $g_V=1$. If we assume $M_{W'}=M_{Z'}$, the limit increases $M_{W'}>3800$

- GeV and $M_{W'}>3500$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig. 9 for limits on $\sigma\cdot B$.
- ²¹ SIRUNYAN 19AY limits shown for W' with SM-like coupling using pp collisions at \sqrt{s} = 13 TeV. W-W' interference and bosonic decays of W' are not included. See their Fig. 5 for limits on $\sigma \cdot B$. Limits in the context of a nonuniversal gauge interaction are shown in Fig. 7. Model independent limits on $\sigma B A \epsilon$ can be seen in Fig. 8.
- ²² SIRUNYAN 19CP present a statistical combinations of searches for W' decaying to pairs of bosons or leptons in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. If we assume $M_{W'}=M_{Z'}$, the limit becomes $M_{W'}>4500$ GeV for $g_V=3$ and $M_{W'}>5000$ GeV for $g_V=1$. See their Figs. 2 and 3 for limits on $\sigma \cdot B$.
- ²³ SIRUNYAN 191 search for resonances decaying to HW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>2800$ GeV if we assume $M_{W'}=M_{Z'}$.
- ²⁴ AABOUD 18AF give the limit above for right-handed W' using pp collisions at $\sqrt{s}=13$ TeV. These limits also exclude W bosons with left-handed couplings with masses below 2.9 TeV, at the 95% confidence level. $W' \to \ell \nu_R$ is assumed to be forbidden. See their Fig.5 for limits on $\sigma \cdot B$ for both cases of left- and right-handed W'.
- 25 AABOUD 18AI search for resonances decaying to HW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>2670$ GeV for $g_V=1$. If we assume $M_{W'}=M_{Z'}$, the limit increases $M_{W'}>2930$ GeV and $M_{W'}>2800$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig. 5 for limits on $\sigma\cdot B$.
- AABOUD 18AK search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>2800$ GeV for $g_V=1$.
- 27 AABOUD 18AL search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet W' with $g_{V}=3$. The limit becomes $M_{W'}~>2900$ GeV for $g_{V}=1$.
- ²⁸ AABOUD 18BG limit is for W' with SM-like couplings using pp collisions at $\sqrt{s}=13$ TeV. Bosonic decays of W' and W-W' interference are neglected. See Fig. 2 for limits on $\sigma \cdot B$.
- AABOUD 18CH search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>2260$ GeV for $g_V=1$.
- 30 AABOUD 18F search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>3000$ GeV for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the limit increases $M_{W'}>3500$ GeV and $M_{W'}>3100$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig.5 for limits on $\sigma\cdot B$.
- ³¹ AABOUD 18K limit is for W' with SM-like coupling using pp collisions at $\sqrt{s}=13$ TeV. W-W' interference and bosonic decays of W' are not included. See their Fig. 4 for limit on $\sigma \cdot B$.
- ³² SIRUNYAN 18 limit is for right-handed W' using pp collisions at $\sqrt{s}=13$ TeV. $W'\to \ell\nu_R$ decay is assumed to be forbidden. The limit becomes $M_{W'}>3.4$ TeV if $M_{\nu_R}\ll M_{W'}$. See their Fig. 5 for exclusion limits on W' models having both left- and right-handed couplings.
- ³³ SIRUNYAN 18AX search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. See their Fig.6 for limits on $\sigma \cdot B$.

- ³⁴ SIRUNYAN 18AZ limit is derived for W' with SM-like coupling using pp collisions at \sqrt{s} = 13 TeV. No interference with SM W process is considered. The bosonic decays are assumed to be negligible. See their Fig.6 for limits on $\sigma \cdot B$.
- 35 SIRUNYAN 18BK search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet W' with $g_V=3$. The limit becomes ${\rm M_{IM/I}}>3100$ GeV for $g_V=1$.
- 36 SIRUNYAN 18B0 limit is for W' with SM-like coupling using pp collisions at $\sqrt{s}=13$ TeV.
- 37 SIRUNYAN 18DJ search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>2270$ GeV for $g_V=1$.
- 38 SIRUNYAN 18ED search for resonances decaying to HW in pp collisions at $\sqrt{s}=13$ TeV. The limit above is for heavy-vector-triplet W' with $g_V=3$. If we assume $M_{W'}=M_{Z'}$, the limit increases $M_{W'}>2900$ GeV and $M_{W'}>2800$ GeV for $g_V=3$ and $g_V=1$, respectively.
- ³⁹ SIRUNYAN 18P give this limit for a heavy-vector-triplet W' with $g_V=3$. If they assume $M_{Z'}=M_{W'}$, the limit increases to $M_{W'}>3800$ GeV.
- ⁴⁰ AABOUD 17AK search for a new resonance decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV. The limit above is for a W' boson having axial-vector SM couplings and decaying to quarks with 75% branching fraction.
- ⁴¹ AABOUD 17AO search for resonances decaying to HW in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a W' in the heavy-vector-triplet model with $g_V=3$. See their Fig.4 for limits on $\sigma \cdot B$.
- 42 AABOUD 17B search for resonances decaying to HW ($H\to b\overline{b}, c\overline{c}; W\to \ell\nu$) in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>1750$ GeV for $g_V=1$. If we assume $M_{W'}=M_{Z'}$, the limit increases $M_{W'}>2310$ GeV and $M_{W'}>1730$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig.3 for limits on $\sigma\cdot B$.
- ⁴³ KHACHATRYAN 17J search for right-handed W_R in pp collisions at $\sqrt{s}=13$ TeV. W_R is assumed to decay into τ and hypothetical heavy neutrino N_{τ} , with N_{τ} decaying into τjj . The quoted limit is for $M_{N_{\tau}}=M_{W_R}/2$. The limit becomes $M_{W_R}>2350$ GeV (1630 GeV) for $M_{W_R}/M_{N_{\tau}}=0.8$ (0.2). See their Fig. 4 for excluded regions in the $M_{W_R}-M_{N_{\tau}}$ plane.
- ⁴⁴ KHACHATRYAN 17W search for resonances decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV.
- ⁴⁵ KHACHATRYAN 17z limit is for W' with SM-like coupling using pp collisions at \sqrt{s} = 13 TeV. The bosonic decays of W' and the interference with SM W process are neglected.
- ⁴⁶ SIRUNYAN 17A search for resonances decaying to WZ with $WZ \to \ell \nu q \overline{q}$, $q \overline{q} q \overline{q}$ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>2000$ GeV for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the limit increases $M_{W'}>2400$ GeV and $M_{W'}>2300$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig.6 for limits on $\sigma \cdot B$.
- ⁴⁷ SIRUNYAN 17AK search for resonances decaying to WZ or HW in pp collisions at $\sqrt{s}=8$ and 13 TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>2300$ GeV for $g_V=1$. If we assume $M_{W'}=M_{Z'}$, the limit increases $M_{W'}>2400$ GeV for both $g_V=3$ and $g_V=1$. See their Fig.1 and 2 for limits on $\sigma\cdot B$.
- 48 SIRUNYAN 17H search for right-handed W' in pp collisions at $\sqrt{s}=13$ TeV. W' is assumed to decay into τ and a heavy neutrino N, with N decaying to $\tau\,q\,\overline{q}$. The limit above assumes ${\rm M}_N={\rm M}_{W'}/2$.

- 49 SIRUNYAN 17I limit is for a right-handed W' using pp collisions at $\sqrt{s}=13$ TeV. The limit becomes $M_{W'}~>$ 2400 GeV for $M_{\nu_R}~\ll~M_{W'}$
- 50 SIRUNYAN 17R search for resonances decaying to HW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. Mass regions $M_{W'}<2370$ GeV and $2870 < M_{W'}<2970$ GeV are excluded for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the excluded mass regions are $1000 < M_{W'}<2500$ GeV and $2760 < M_{W'}<3300$ GeV for $g_V=3$; $1000 < M_{W'}<2430$ GeV and $2810 < M_{W'}<3130$ GeV for $g_{V}=1$. See their Fig.5 for limits on $\sigma \cdot B$.
- ⁵¹ AABOUD 16AE search for resonances decaying to VV (V=W or Z) in pp collisions at $\sqrt{s}=13$ TeV. Results from $\nu\nu qq$, $\nu\ell qq$, $\ell\ell qq$ and qqqq final states are combined. The quoted limit is for a heavy-vector-triplet W' with $g_V=3$ and $M_{W'}=M_{Z'}$.
- ⁵² AABOUD 16V limit is for W' with SM-like coupling using pp collisions at $\sqrt{s}=13$ TeV. The bosonic decays of W' and the interference with SM W process are neglected.
- ⁵³ AAD 16R search for $W' \to WZ$ in pp collisions at $\sqrt{s} = 8$ TeV. $\ell \nu \ell' \ell'$, $\ell \ell q \overline{q}$, $\ell \nu q \overline{q}$, and all hadronic channels are combined. The quoted limit assumes $g_{W'WZ}/g_{WWZ}$ = $(M_W/M_{W'})^2$.
- ⁵⁴ AAD 16S search for a new resonance decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a W' having SM-like couplings to quarks.
- ⁵⁵ KHACHATRYAN 16AO limit is for a SM-like right-handed W' using pp collisions at \sqrt{s} = 8 TeV. The quoted limit combines $t \to qqb$ and $t \to \ell \nu b$ events.
- ⁵⁶ KHACHATRYAN 16AP search for a resonance decaying to HW in pp collisions at \sqrt{s} = 8 TeV. Both H and W are assumed to decay to fat jets. The quoted limit is for heavy-vector-triplet W' with $g_V = 3$.
- ⁵⁷ KHACHATRYAN 16BD search for resonance decaying to HW in pp collisions at $\sqrt{s}=8$ TeV. The quoted limit is for heavy-vector-triplet (HVT) W' with $g_V=3$. The HVT model $m_{W'}=m_{Z'}>1.8$ TeV is also obtained by combining $W'/Z'\to WH/ZH\to\ell\nu\,bb,\,q\,q\,\tau\,\tau,\,q\,q\,b\,b$, and $q\,q\,q\,q\,q\,q$ channels.
- 58 KHACHATRYAN 16K search for resonances decaying to dijets in pp collisions at $\sqrt{s}=$ 13 TeV.
- ⁵⁹ KHACHATRYAN 16L search for resonances decaying to dijets in pp collisions at \sqrt{s} = 8 TeV with the data scouting technique, increasing the sensitivity to the low mass resonances.
- 60 KHACHATRYAN 160 limit is for W' having universal couplings. Interferences with the SM amplitudes are assumed to be absent.
- 61 AAD 15AU search for W' decaying into the WZ final state with $W \to q \overline{q}'$, $Z \to \ell^+ \ell^-$ using $p \, p$ collisions at $\sqrt{s} = 8$ TeV. The quoted limit assumes $g_{W'} \,_W \,_Z / g_W \,_W \,_Z = (M_W/M_{W'})^2$.
- ⁶² AAD 15AV limit is for a SM like right-handed W' using pp collisions at $\sqrt{s}=8$ TeV. $W'\to\ell\nu$ decay is assumed to be forbidden.
- ⁶³ AAD 15AZ search for W' decaying into the WZ final state with $W \to \ell \nu$, $Z \to q \overline{q}$ using pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $g_{W'} _{W} _{Z} / g_{W} _{W} _{Z} = (M_W/M_{W'})^2$.
- 64 AAD 15CP search for W' decaying into the WZ final state with $W \to q\overline{q}$, $Z \to q\overline{q}$ using pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $g_{W'}WZ/g_{W}WZ=(M_W/M_{W'})^2$.
- ⁶⁵ AAD 15R limit is for a SM like right-handed W' using pp collisions at $\sqrt{s}=8$ TeV. $W'\to\ell\nu$ decay is assumed to be forbidden.
- 66 AAD 15V search for new resonance decaying to dijets in pp collisions at $\sqrt{s}=8$ TeV.

- ⁶⁷ KHACHATRYAN 15C search for W' decaying via WZ to fully leptonic final states using pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $g_{W'}_{WZ}/g_{WWZ}=M_W$ $M_Z/M_{W'}^2$.
- ⁶⁸ KHACHATRYAN 15T limit is for W' with SM-like coupling which interferes the SM W boson constructively using pp collisions at $\sqrt{s}=8$ TeV. For W' without interference, the limit becomes > 3280 GeV.
- 69 KHACHATRYAN 140 search for right-handed W_R in pp collisions at $\sqrt{s}=8$ TeV. W_R is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying into ℓjj . The quoted limit is for $M_{\nu_e R}=M_{\nu_{\mu}R}=M_{W_R}/2$. See their Fig. 3 and Fig. 5 for excluded regions in the $M_{W_R}-M_{\nu}$ plane.
- 70 AAD 23BF search for W' decaying to WZ' in pp collisions at $\sqrt{s}=13$ TeV. The mass difference between W' and Z' is assumed to be 250 GeV. See their Fig. 9(a) for limits on $\sigma \cdot B$ as a function of $M_{W'}$.
- 71 AAD 23CG search for right-handed W_R in pp collisions at $\sqrt{s}=13$ TeV. W_R is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying into ℓjj . See their Fig. 9 for limits in $m_N-m_{W_R}$ plane.
- ⁷² AAD 23CK search for a new resonance decaying to HX ($H \rightarrow b\overline{b}$, $X \rightarrow q\overline{q}'$) in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 12 for limits on $\sigma \cdot B$.
- ⁷³ AAD 23U search for a narrow charged vector boson decaying to $W\gamma$. See their Fig. 8(d) for the exclusion limit in $m_{W'} \sigma \cdot B$ plane.
- ⁷⁴ TUMASYAN 22 search for KK excited W decaying in cascade to three W via a scalar radion R. See their Fig. 4 for limits in $M_{W'}-M_R$ plane.
- ⁷⁵ TUMASYAN 22AL search for resonances decaying to tB or bT with vector-like quarks B (T) subsequently decaying to bH or bZ (tH or tZ). See their Fig. 7 for limits on $\sigma \cdot B$.
- ⁷⁶ TUMASYAN 22B search for a narrow charged vector boson decaying to $W\gamma$. See their Fig. 5 for limits on $\sigma \cdot B$.
- ⁷⁷ TUMASYAN 221 search for KK excited W decaying in cascade to three W via a scalar radion R. See their Fig. 10 for limits in $M_{W'}-M_R$ plane.
- 78 TUMASYAN 22P search for right handed W_R in pp collisions at $\sqrt{s}=13$ TeV. W_R is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying to ℓjj . See their Fig. 7 for excluded regions in $M_{W_R}-M_N$ plane.
- 79 AAD 20AD search for a narrow resonance decaying to a pair of large-radius-jets J_1 and J_2 employing a machine-learning procedure. See their Fig. 3 for limits on $\sigma \cdot B$ depending on assumptions about invariant masses for J_1 , J_2 , and $J_1 J_2$.
- 80 AAD 20W search for W' decaying to WZ' in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 5(b) for limits on $\sigma \cdot B$ as a function of $m_{Z'}$. The $W' \to WZ'$ branching fraction was chosen to be 0.5 and the mass difference between the W' and Z' was set to 250 GeV.
- 81 AABOUD 19B search for right-handed W_R in pp collisions at $\sqrt{s}=13$ TeV. W_R is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying to ℓjj . See their Figs. 7 and 8 for excluded regions in $M_{W_R}-M_N$ plane.
- ⁸² AABOUD 19BB search for right handed W_R in pp collisions at $\sqrt{s}=13$ TeV. W_R is assumed to decay into ℓ and a boosted hypothetical heavy neutrino N, with N decaying to ℓ and a large radius jet $j=q\overline{q}$. See their Fig. 7 for excluded regions in $M_{W_R}-M_N$ plane.
- ⁸³ SIRUNYAN 19V search for a new resonance decaying to a top quark and a heavy vector-like bottom partner B decaying to Hb (or a bottom quark and a heavy vector-like top partner T decaying to Ht) in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 8 for limits on $\sigma \cdot B$.

- ⁸⁴ AABOUD 18AA search for a narrow charged vector boson decaying to $W\gamma$. See their Fig. 9 for the exclusion limit in $M_{W'}-\sigma B$ plane.
- ⁸⁵ AABOUD 18AD search for resonances decaying to HX ($H \rightarrow b\overline{b}$, $X \rightarrow q\overline{q}'$) in pp collisions at $\sqrt{s}=13$ TeV. See their Figs. 3–5 for limits on $\sigma \cdot B$.
- ⁸⁶ AABOUD 18CJ search for heavy-vector-triplet W' in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for model with $g_V=3$ assuming $M_{W'}=M_{Z'}$. The limit becomes $M_{W'}>5500$ GeV for model with $g_V=1$.
- 87 SIRUNYAN 18CV search for right-handed W_R in pp collisions at $\sqrt{s}=13$ TeV. W_R is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying to ℓjj . The quoted limit is for $M_N=M_{W_R}/2$. See their Fig. 6 for excluded regions in the $M_{W_R}-M_N$ plane.
- ⁸⁸ KHACHATRYAN 170 search for resonances decaying to HW ($H \to b \, \overline{b}; W \to \ell \nu$) in pp collisions at $\sqrt{s}=13$ TeV. The limit on the heavy-vector-triplet model is $M_{Z'}=M_{W'}>2$ TeV for $g_V=3$, in which constraints from the $Z'\to HZ$ ($H\to b \, \overline{b}; Z\to \ell^+\ell^-, \nu\overline{\nu}$) are combined. See their Fig.3 and Fig.4 for limits on $\sigma\cdot B$.
- ⁸⁹ AAD 15BB search for W' decaying into WH with $W \to \ell \nu$, $H \to b\overline{b}$. See their Fig. 4 for the exclusion limits in the heavy vector triplet benchmark model parameter space.
- ⁹⁰ AALTONEN 15C limit is for a SM-like right-handed W' assuming $W' \to \ell \nu$ decays are forbidden, using $p \overline{p}$ collisions at \sqrt{s} =1.96 TeV. See their Fig. 3 for limit on $g_{W'}/g_W$.
- ⁹¹ KHACHATRYAN 15V search new resonance decaying to dijets in pp collisions at $\sqrt{s}=8$ TeV.
- 92 AAD 14AT search for a narrow charged vector boson decaying to $W\gamma$. See their Fig. 3a for the exclusion limit in $m_{W'}-\sigma B$ plane.
- ⁹³ AAD 14S search for W' decaying into the WZ final state with $W \to \ell \nu$, $Z \to \ell \ell$ using pp collisions at \sqrt{s} =8 TeV. The quoted limit assumes $g_{W'WZ}/g_{WWZ} = (M_W/M_{W'})^2$.
- ⁹⁴ KHACHATRYAN 14 search for W' decaying into WZ final state with $W \to q\overline{q}$, $Z \to q\overline{q}$ using pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $g_{W'}WZ/g_WWZ=(M_W/M_{W'})^2$.
- ⁹⁵ KHACHATRYAN 14A search for W' decaying into the WZ final state with $W \to \ell \nu$, $Z \to q \overline{q}$, or $W \to q \overline{q}$, $Z \to \ell \ell$. pp collisions data at $\sqrt{s}{=}8$ TeV are used for the search. See their Fig. 13 for the exclusion limit on the number of events in the mass—width plane.
- ⁹⁶ AAD 13AO search for W' decaying into the WZ final state with $W \to \ell \nu$, $Z \to 2j$ using pp collisions at \sqrt{s} =7 TeV. The quoted limit assumes $g_{W'WZ}/g_{WWZ} = (M_W/M_{W'})^2$.
- ⁹⁷ CHATRCHYAN 13AJ search for resonances decaying to WZ pair, using the hadronic decay modes of W and Z, in pp collisions at \sqrt{s} =7 TeV. See their Fig. 7 for the limit on the cross section.
- 98 CHATRCHYAN 13AQ limit is for W' with SM-like coupling which interferes with the SM W boson using pp collisions at \sqrt{s} =7 TeV.
- ⁹⁹ CHATRCHYAN 13E limit is for W' with SM-like coupling which intereferes with the SM W boson using pp collisions at \sqrt{s} =7 TeV. For W' with right-handed coupling, the bound becomes >1850 GeV (>1910 GeV) if W' decays to both leptons and quarks (only to quarks). If both left- and right-handed couplings are present, the limit becomes >1640 GeV.
- 100 CHATRCHYAN 13U search for W' decaying to the WZ final state, with W decaying into jets, in pp collisions at \sqrt{s} =7 TeV. The quoted limit assumes $g_{W'}WZ/g_WWZ = (M_W/M_{W'})^2$.

- ¹⁰¹ The AAD 12AV quoted limit is for a SM-like right-handed W' using pp collisions at \sqrt{s} =7 TeV. $W' \rightarrow \ell \nu$ decay is assumed to be forbidden.
- ¹⁰² AAD 12BB use pp collisions data at \sqrt{s} =7 TeV. The quoted limit assumes $g_{W'WZ}/g_{WWZ} = (M_W/M_{W'})^2$.
- ¹⁰³ AAD 12CK search for $pp \to tW'$, $W' \to \overline{t}q$ events in pp collisions. See their Fig. 5 for the limit on $\sigma \cdot B$.
- 104 AAD 12CR use pp collisions at $\sqrt{s}{=}7$ TeV.
- ¹⁰⁵ AAD 12M search for right-handed W_R in pp collisions at $\sqrt{s}=7$ TeV. W_R is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying into ℓjj . See their Fig. 4 for the limit in the $m_N m_{N'}$ plane.
- ¹⁰⁶ AALTONEN 12N search for $p\overline{p} \to tW'$, $W' \to \overline{t}d$ events in $p\overline{p}$ collisions. See their Fig. 3 for the limit on $\sigma \cdot B$.
- ¹⁰⁷ CHATRCHYAN 12AR search for $pp \to tW'$, $W' \to \overline{t}d$ events in pp collisions. See their Fig. 2 for the limit on $\sigma \cdot B$.
- ¹⁰⁸ CHATRCHYAN 12BG search for right-handed W_R in pp collisions $\sqrt{s}=7$ TeV. W_R is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying into ℓjj . See their Fig. 3 for the limit in the $m_N-m_{M'}$ plane.
- 109 ABAZOV 11H use data from $p\overline{p}$ collisions at \sqrt{s} =1.96 TeV. The quoted limit is obtained assuming W'WZ coupling strength is the same as the ordinary WWZ coupling strength in the Standard Model.
- ABAZOV 11L limit is for W' with SM-like coupling which interferes with the SM W boson, using $p\overline{p}$ collisions at \sqrt{s} =1.96 TeV. For W' with right-handed coupling, the bound becomes >885 GeV (>890 GeV) if W' decays to both leptons and quarks (only to quarks). If both left- and right-handed couplings present, the limit becomes >916 GeV.
- ¹¹¹ AALTONEN 10N use $p\overline{p}$ collision data at \sqrt{s} =1.96 TeV. The quoted limit assumes $g_{W'WZ}/g_{WWZ}=(M_W/M_{W'})^2$. See their Fig. 4 for limits in mass-coupling plane.
- ¹¹² AALTONEN 09AC search for new particle decaying to dijets using $p\overline{p}$ collisions at \sqrt{s} =1.96 TeV.
- 113 The ACOSTA 03B quoted limit is for $M_{W'} \gg M_{\nu_R}$, using $p \overline{p}$ collisions at $\sqrt{s}{=}1.8$ TeV. For $M_{W'} < M_{\nu_R}$, $M_{W'}$ between 225 and 566 GeV is excluded.
- 114 The quoted limit is obtained assuming W'WZ coupling strength is the same as the ordinary WWZ coupling strength in the Standard Model, using $p\overline{p}$ collisions at \sqrt{s} =1.8 TeV. See their Fig. 2 for the limits on the production cross sections as a function of the W' width.
- 115 AFFOLDER 01I combine a new bound on $W' \to e\nu$ of 754 GeV, using $p\overline{p}$ collisions at \sqrt{s} =1.8 TeV, with the bound of ABE 00 on $W' \to \mu\nu$ to obtain quoted bound.
- ¹¹⁶ ABE 97G search for new particle decaying to dijets using $p\overline{p}$ collisions at \sqrt{s} =1.8 TeV.
- 117 For bounds on W_R with nonzero right-handed mass, see Fig. 5 from ABACHI 96C.
- ¹¹⁸ ABACHI 95E assume that the decay $W' \to WZ$ is suppressed and that the neutrino from W' decay is stable and has a mass significantly less $m_{W'}$.
- 119 RIZZO 93 analyses CDF limit on possible two-jet resonances. The limit is sensitive to the inclusion of the assumed K factor.

W_R (Right-Handed W Boson) MASS LIMITS

Assuming a light right-handed neutrino, except for BEALL 82, LANGACKER 89B, and COLANGELO 91. $g_R=g_L$ assumed. [Limits in the section MASS LIMITS for W' below are also valid for W_R if $m_{\nu_R}\ll m_{W_R}$.] Some limits assume manifest left-right symmetry, *i.e.*, the equality of left- and right Cabibbo-Kobayashi-Maskawa matrices. For a comprehensive review, see LANGACKER 89B. Limits on the W_L - W_R

mixing angle ζ are found in the next section. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

VALUE (GeV)	CL%	DOCUMENT ID TECN COMMENT
> 592	90	1 BUENO 11 TWST μ decay
> 715	90	² CZAKON 99 RVUE Electroweak
• • • We do not use	e the follo	owing data for averages, fits, limits, etc. ● ●
> 235	90	3 PRIEELS 14 PIE3 μ decay
> 245	90	4 WAUTERS 10 CNTR 60 Co 3 decay
>2500		⁵ ZHANG 08 THEO $m_{K_L^0} - m_{K_S^0}$
> 180	90	⁶ MELCONIAN 07 CNTR 37 K 2 decay
> 290.7	90	⁷ SCHUMANN 07 CNTR Polarized neutron decay
[> 3300]	95	⁸ CYBURT 05 COSM Nucleosynthesis; light ν_R
> 310	90	⁹ THOMAS 01 CNTR β^+ decay
> 137	95	10 ACKERSTAFF 99D OPAL $ au$ decay
>1400	68	¹¹ BARENBOIM 98 RVUE Electroweak, Z-Z' mixing
> 549	68	12 BARENBOIM 97 RVUE μ decay
> 220	95	13 STAHL 97 RVUE $ au$ decay
> 220	90	14 ALLET 96 CNTR β^+ decay
> 281	90	15 KUZNETSOV 95 CNTR Polarized neutron decay
> 282	90	¹⁶ KUZNETSOV 94B CNTR Polarized neutron decay
> 439	90	¹⁷ BHATTACH 93 RVUE <i>Z-Z</i> mixing
> 250	90	18 SEVERIJNS 93 CNTR eta^+ decay
		¹⁹ IMAZATO 92 CNTR K^+ decay
> 475	90	POLAK 92B RVUE μ decay
> 240	90	21 AQUINO 91 RVUE Neutron decay
> 496	90	21 AQUINO 91 RVUE Neutron and muon decay
> 700		²² COLANGELO 91 THEO $m_{\kappa_L^0} - m_{\kappa_S^0}$
> 477	90	POLAK 91 RVUE μ decay
[none 540-23000]		24 BARBIERI 89B ASTR SN 1987A; light ν_R
> 300	90	²⁵ LANGACKER 89B RVUE General
> 160	90	²⁶ BALKE 88 CNTR $\mu \rightarrow e \nu \overline{\nu}$
> 406	90	27 JODIDIO 86 ELEC Any ζ
> 482	90	27 JODIDIO 86 ELEC $\zeta = 0$
> 800		MOHAPATRA 86 RVUE $SU(2)_L \times SU(2)_R \times U(1)$
> 400	95	28 STOKER 85 ELEC Any ζ
> 475	95	28 STOKER 85 ELEC ζ <0.041
		29 BERGSMA 83 CHRM $ u_{\mu}$ $e ightarrow \mu u_{e}$
> 380	90	30 CARR 83 ELEC μ^+ decay
>1600		31 BEALL 82 THEO $m_{\kappa_L^0} - m_{\kappa_S^0}$
		$\kappa_L \kappa_{\tilde{S}}$

¹ The quoted limit is for manifest left-right symmetric model.

 $^{^{2}}$ CZAKON 99 perform a simultaneous fit to charged and neutral sectors.

³ PRIEELS 14 limit is from $\mu^+ \to e^+ \nu \overline{\nu}$ decay parameter ξ'' , which is determined by the positron polarization measurement.

 $^{^4}$ WAUTERS 10 limit is from a measurement of the asymmetry parameter of polarized 60 Co β decays. The listed limit assumes no mixing.

⁵ ZHANG 08 limit uses a lattice QCD calculation of the relevant hadronic matrix elements, while BEALL 82 limit used the vacuum saturation approximation.

- ⁶ MELCONIAN 07 measure the neutrino angular asymmetry in β^+ -decays of polarized 37 K, stored in a magneto-optical trap. Result is consistent with SM prediction and does not constrain the $W_I W_R$ mixing angle appreciably.
- ⁷ SCHUMANN 07 limit is from measurements of the asymmetry $\langle \vec{p}_{\nu} \cdot \sigma_{n} \rangle$ in the β decay of polarized neutrons. Zero mixing is assumed.
- 8 CYBURT 05 limit follows by requiring that three light ν_R 's decouple when $T_{dec} >$ 140 MeV. For different T_{dec} , the bound becomes $M_{W_R} >$ 3.3 TeV ($T_{dec} /$ 140 MeV) $^{3/4}$.
- ⁹ THOMAS 01 limit is from measurement of β^+ polarization in decay of polarized ¹²N. The listed limit assumes no mixing.
- 10 ACKERSTAFF 99D limit is from au decay parameters. Limit increase to 145 GeV for zero mixing.
- 11 BARENBOIM 98 assumes minimal left-right model with Higgs of SU(2) $_R$ in SU(2) $_L$ doublet. For Higgs in SU(2) $_L$ triplet, $m_{\sl W_R} > \! 1100$ GeV. Bound calculated from effect of corresponding Z_{LR} on electroweak data through $Z\!-\!Z_{LR}$ mixing.
- ¹² The quoted limit is from μ decay parameters. BARENBOIM 97 also evaluate limit from K_L - K_S mass difference.
- 13 STAHL 97 limit is from fit to au-decay parameters.
- 14 ALLET 96 measured polarization-asymmetry correlation in 12 N β^+ decay. The listed limit assumes zero L-R mixing.
- ¹⁵ KUZNETSOV 95 limit is from measurements of the asymmetry $\langle \vec{p}_{\nu} \cdot \sigma_{n} \rangle$ in the β decay of polarized neutrons. Zero mixing assumed. See also KUZNETSOV 94B.
- ¹⁶ KUZNETSOV 94B limit is from measurements of the asymmetry $\langle \vec{p}_{\nu} \cdot \sigma_{n} \rangle$ in the β decay of polarized neutrons. Zero mixing assumed.
- 17 BHATTACHARYYA 93 uses $Z\text{-}Z^{\bar{I}}$ mixing limit from LEP '90 data, assuming a specific Higgs sector of SU(2) $_L\times$ SU(2) $_R\times$ U(1) gauge model. The limit is for m_t =200 GeV and slightly improves for smaller m_t .
- $^{18}\,\text{SEVERIJNS}$ 93 measured polarization-asymmetry correlation in $^{107}\,\text{ln}\,\beta^+$ decay. The listed limit assumes zero L-R mixing. Value quoted here is from SEVERIJNS 94 erratum.
- $^{19}\, \rm IMAZATO$ 92 measure positron asymmetry in $K^+ \to \mu^+ \nu_\mu$ decay and obtain $\xi P_\mu > 0.990$ (90% CL). If W_R couples to $u\overline{s}$ with full weak strength ($V_{us}^R = 1$), the result corresponds to $m_{W_R} > \!\! 653$ GeV. See their Fig. 4 for m_{W_R} limits for general $|V_{us}^R|^2 = 1 |V_{ud}^R|^2$.
- ²⁰ POLAK 92B limit is from fit to muon decay parameters and is essentially determined by JODIDIO 86 data assuming ζ =0. Supersedes POLAK 91.
- 21 AQUINO 91 limits obtained from neutron lifetime and asymmetries together with unitarity of the CKM matrix. Manifest left-right symmetry assumed. Stronger of the two limits also includes muon decay results.
- ²²COLANGELO 91 limit uses hadronic matrix elements evaluated by QCD sum rule and is less restrictive than BEALL 82 limit which uses vacuum saturation approximation. Manifest left-right symmetry assumed.
- ²³ POLAK 91 limit is from fit to muon decay parameters and is essentially determined by JODIDIO 86 data assuming ζ =0. Superseded by POLAK 92B.
- $^{24}\,\mathrm{BARBIERI}$ 89B limit holds for $m_{\nu_R} \leq 10$ MeV.
- ²⁵ LANGACKER 89B limit is for any ν_R mass (either Dirac or Majorana) and for a general class of right-handed quark mixing matrices.
- 26 BALKE 88 limit is for $m_{\nu_{eR}}=0$ and $m_{\nu_{\mu R}}\leq 50$ MeV. Limits come from precise measurements of the muon decay asymmetry as a function of the positron energy.
- ²⁷ JODIDIO 86 is the same TRIUMF experiment as STOKER 85 (and CARR 83); however, it uses a different technique. The results given here are combined results of the two techniques. The technique here involves precise measurement of the end-point e^+ spectrum in the decay of the highly polarized μ^+ .

 $^{29}\,\mathrm{BERGSMA}$ 83 set limit $m_{\ensuremath{W_2}}/m_{\ensuremath{W_1}}\ > 1.9$ at CL = 90% .

³¹ BEALL 82 limit is obtained assuming that W_R contribution to $K_L^0 - K_S^0$ mass difference is smaller than the standard one, neglecting the top quark contributions. Manifest left-right symmetry assumed.

Limit on W_L - W_R Mixing Angle ζ

Lighter mass eigenstate $W_1 = W_L \cos \zeta - W_R \sin \zeta$. Light ν_R assumed unless noted. Values in brackets are from cosmological and astrophysical considerations.

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use th	e following	g data for averages,	fits, limits, e	etc. • • •
-0.020 to 0.017	90	BUENO 1	11 TWST	$\mu ightarrow \mathrm{e} u \overline{ u}$
< 0.022	90	MACDONALD 0	08 TWST	$\mu ightarrow e u \overline{ u}$
< 0.12	95	¹ ACKERSTAFF 9	99D OPAL	au decay
< 0.013	90	_		Electroweak
< 0.0333		³ BARENBOIM 9	97 RVUE	μ decay
< 0.04	90		92 CCFR	u N scattering
-0.0006 to 0.0028	90		91 RVUE	
[none 0.00001-0.02]		⁶ BARBIERI 8	B9B ASTR	SN 1987A
< 0.040	90	$\frac{7}{2}$ JODIDIO 8	B6 ELEC	μ decay
-0.056 to 0.040	90	⁷ JODIDIO 8	B6 ELEC	μ decay

 $^{^1}$ ACKERSTAFF 99D limit is from au decay parameters.

See the related review(s):

Z'-Boson Searches

 $^{^{28}}$ STOKER 85 is same TRIUMF experiment as CARR 83. Here they measure the decay e^+ spectrum asymmetry above 46 MeV/c using a muon-spin-rotation technique. Assumed a light right-handed neutrino. Quoted limits are from combining with CARR 83.

 $^{^{30}}$ CARR 83 is TRIUMF experiment with a highly polarized μ^+ beam. Looked for deviation from V-A at the high momentum end of the decay e^+ energy spectrum. Limit from previous world-average muon polarization parameter is $m_{W_R} > 240$ GeV. Assumes a light right-handed neutrino.

 $^{^2}$ CZAKON 99 perform a simultaneous fit to charged and neutral sectors.

³ The quoted limit is from μ decay parameters. BARENBOIM 97 also evaluate limit from K_I - K_S mass difference.

 $^{^4}$ MISHRA 92 limit is from the absence of extra large-x, large-y $\overline{\nu}_{\mu}$ N $\rightarrow~\overline{\nu}_{\mu}$ X events at Tevatron, assuming left-handed ν and right-handed $\overline{\nu}$ in the neutrino beam. The result gives $\zeta^2(1-2m_{W_1}^2/m_{W_2}^2)\!\!<$ 0.0015. The limit is independent of ν_R mass.

⁵ AQUINO 91 limits obtained from neutron lifetime and asymmetries together with unitarity of the CKM matrix. Manifest left-right asymmetry is assumed.

 $^{^6\,\}mathrm{BARBIERI}$ 89B limit holds for $m_{\nu_R} \leq 10$ MeV.

⁷ First JODIDIO 86 result assumes $m_{W_R} = \infty$, second is for unconstrained m_{W_R} .

MASS LIMITS for Z' (Heavy Neutral Vector Boson Other Than Z)

Limits for $Z'_{\rm SM}$

 Z'_{SM} is assumed to have couplings with quarks and leptons which are identical to those of Z, and decays only to known fermions. The most recent preliminary results can be found in the "Z'-boson searches" review above.

VALUE (GeV)		DOCUMENT ID TECN COMMENT
>5150 (CL = 95	5%) OUF	RLIMIT
none 1800–2400	95	1 TUMASYAN 23AF CMS $pp;Z'_{SM} o b\overline{b}$
>4400	95	² TUMASYAN 22AE CMS $pp; Z_{SM}^{f} \rightarrow e^{+}e^{-}, \mu^{+}\mu^{-}$
>5150	95	³ SIRUNYAN 21N CMS $pp; Z_{SM}^{i} \rightarrow e^+e^-, \mu^+\mu^-$
none 1133-2700	95	⁴ AAD 20T ATLS $pp, Z_{SM}^{\prime} \rightarrow b\overline{b}$
none 1800-2900, 3100-3300	95	5 SIRUNYAN 20AI CMS pp; $Z_{SM}^{\overline{p}} ightarrow q\overline{q}$
none 250-5100	95	6 AAD 19L ATLS $pp; Z'_{SM} \rightarrow e^+e^-, \mu^+\mu^-$
none 600-2000	95	⁷ AABOUD 18AB ATLS $pp; Z_{SM}^{\widetilde{p}} \rightarrow b\overline{b}$
>2420	95	⁸ AABOUD 18G ATLS pp; $Z_{SM}^{\prime} ightarrow au^+ au^-$
none 200-4500	95	⁹ SIRUNYAN 18BB CMS $pp; Z_{SM}^{fM} \rightarrow e^+e^-, \mu^+\mu^-$
none 600-2700	95	¹⁰ SIRUNYAN 1880 CMS $pp; Z_{SM}^{7} \rightarrow q\overline{q}$
>4500	95	11 AABOUD 17AT ATLS $pp; Z_{SM}^{j} \rightarrow e^+e^-, \mu^+\mu^-$
>2100	95	12 KHACHATRY17H CMS $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$
>3370	95	¹³ KHACHATRY17T CMS $pp; Z_{SM}^{jM} \rightarrow e^+e^-, \mu^+\mu^-$
none 600–2100, 2300–2600	95	14 KHACHATRY17W CMS $pp; Z_{SM}^{7} ightarrow q\overline{q}$
>3360	95	15 AABOUD 160 ATLS $pp; Z'_{SM} \rightarrow e^+e^-, \mu^+\mu^-$
>2900	95	¹⁶ KHACHATRY15AE CMS $pp; Z_{SM}^{7} \rightarrow e^+e^-, \mu^+\mu^-$
none 1200-1700	95	17 KHACHATRY15V CMS $_{pp}$; $Z_{SM}^{ ilde{f}} ightarrow q \overline{q}$
>2900	95	18 AAD 14V ATLS $pp; Z_{SM}^{PM} \rightarrow e^+e^-, \mu^+\mu^-$
• • • We do not	use the	following data for averages, fits, limits, etc. • • •
		19 BOBOVNIKOV 18 RVUE pp, $Z'_{SM} ightarrow W^+W^-$
>1900	95	²⁰ AABOUD 16AA ATLS $pp; Z_{SM}^{OM} ightarrow au^+ au^-$
>2020	95	21 AAD 15AMATLS $pp; Z'_{SM} \rightarrow \tau^+ \tau^-$
>1400	95	²² AAD 13s ATLS $pp; Z_{SM}^{OM} \rightarrow \tau^+ \tau^-$
>1470	95	²³ CHATRCHYAN 13A CMS $pp; Z_{SM}^{OM} ightarrow q\overline{q}$
>2590	95	²⁴ CHATRCHYAN 13AF CMS $pp; Z_{SM}^{OM} \rightarrow e^+e^-, \mu^+\mu^-$
>2220	95	25 AAD 12cc ATLS $pp; Z_{SM}^{OM} \rightarrow e^+e^-, \mu^+\mu^-$
>1400	95	26 CHATRCHYAN 120 CMS $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$
>1071	95	²⁷ AALTONEN 111 CDF $p\overline{p}$; $Z_{SM}^{OM} ightarrow \mu^{+}\mu^{-}$
>1023	95	²⁸ ABAZOV 11A D0 $p \overline{p}, Z_{SM}^{OM} \rightarrow e^+ e^-$
none 247-544	95	²⁹ AALTONEN 10N CDF $Z' \rightarrow WW$
none 320-740	95	30 AALTONEN 09AC CDF $Z' ightarrow q \overline{q}$
> 963	95	²⁸ AALTONEN 09T CDF $p\overline{p}, Z'_{SM} \rightarrow e^+e^-$
>1403	95	31 ERLER 09 RVUE Electroweak
>1305	95	32 ABDALLAH 06C DLPH $^{+}$ $^{-}$

> 399	95	³³ ACOSTA	05 R	CDF	\overline{p} p: $Z_{SM}' o au^+ au^-$
none 400-640	95	ABAZOV	04C	D0	$p\overline{p}: Z_{SM}^{r} \rightarrow q\overline{q}$
>1018	95	³⁴ ABBIENDI	04G	OPAL	e^+e^-
> 670	95	³⁵ ABAZOV	01 B	D0	$p\overline{p}, Z'_{SM} ightarrow e^+e^-$
>1500	95	³⁶ CHEUNG	01 B		Electroweak
> 710	95	³⁷ ABREU	00 S	DLPH	e^+e^-
> 898	95	³⁸ BARATE	001	ALEP	e^+e^-
> 809	95	³⁹ ERLER	99	RVUE	Electroweak
> 690	95	⁴⁰ ABE	97 S	CDF	$p\overline{p}$; $Z'_{SM} \rightarrow e^+e^-$, $\mu^+\mu^-$
> 398	95	⁴¹ VILAIN			$ u_{\mu}{ m e} ightarrow \overline{ u}_{\mu}{ m e} \ { m and} \ \overline{ u}_{\mu}{ m e} ightarrow \ \overline{ u}_{\mu}{ m e}$
> 237	90	⁴² ALITTI	93	UA2	$p\overline{p}; Z'_{SM} \rightarrow q\overline{q}$
none 260-600	95	⁴³ RIZZO	93	RVUE	$p\overline{p}; Z_{SM}^{\gamma m} \rightarrow q\overline{q}$
> 426	90	⁴⁴ ABE	90F	VNS	e^+e^-

- ¹ TUMASYAN 23AF search for resonance decaying to $b\overline{b}$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 4 for limits on $\sigma \cdot B$.
- 2 TUMASYAN 22AE set limits on Z' from the measurements of the forward-backward asymmetry in $e^+\,e^-$ and $\mu^+\,\mu^-$ events in $p\,p$ collisions at $\sqrt{s}=13$ TeV. The quoted limit is for the sequential SM Z'. See their Fig. 6 for limits in mass-coupling plane.
- ³SIRUNYAN 21N search for resonance decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at \sqrt{s} = 13 TeV.
- ⁴ AAD 20T search for resonances decaying to $b\overline{b}$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 7(b) for limits on the product of the cross section, acceptance, b-tagging efficiency, and branching fraction.
- 5 SIRUNYAN 20AI search for resonances decaying into dijets in pp collisions at $\sqrt{s}=13$ TeV.
- ⁶AAD 19L search for resonances decaying to $\ell^+\ell^-$ in $p\,p$ collisions at $\sqrt{s}=13$ TeV.
- ⁷ AABOUD 18AB search for resonances decaying to $b\overline{b}$ in pp collisions at $\sqrt{s}=13$ TeV.
- ⁸ AABOUD 18G search for resonances decaying to $\tau^+\tau^-$ in pp collisions at $\sqrt{s}=13$ TeV.
- 9 SIRUNYAN 18BB search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig.5 for limits on the Z' coupling strengths with light quarks.
- $^{10}\, \rm SIRUNYAN$ 18BO search for resonances decaying to dijets in $p\,p$ collisions at $\sqrt{s}=13$ TeV.
- 11 AABOUD 17AT search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV.
- 12 KHACHATRYAN 17H search for resonances decaying to $\tau^+\tau^-$ in pp collisions at \sqrt{s} . = 13 TeV.
- ¹³ KHACHATRYAN 17T search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=8$, 13 TeV.
- ¹⁴ KHACHATRYAN 17W search for resonances decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV.
- ¹⁵ AABOUD 16U search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV.
- 16 KHACHATRYAN 15AE search for resonances decaying to $e^+\,e^-$, $\mu^+\,\mu^-$ in $p\,p$ collisions at $\sqrt{s}=8$ TeV.
- 17 KHACHATRYAN 15V search for resonances decaying to dijets in $p\,p$ collisions at $\sqrt{s}=8$ TeV.
- ¹⁸ AAD 14V search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=8$ TeV.
- ¹⁹ BOBOVNIKOV 18 use the ATLAS limits on $\sigma(pp \to Z') \cdot B(Z' \to W^+W^-)$ to constrain the Z Z' mixing parameter ξ . See their Fig. 11 for limits in $M_{Z'} \xi$ plane.
- ²⁰ AABOUD 16AA search for resonances decaying to $\tau^+\tau^-$ in pp collisions at $\sqrt{s}=13$ TeV.

- ²¹ AAD 15AM search for resonances decaying to $\tau^+\tau^-$ in pp collisions at $\sqrt{s}=8$ TeV.
- ²² AAD 13S search for resonances decaying to $\tau^+\tau^-$ in pp collisions at $\sqrt{s}=7$ TeV.
- ²³CHATRCHYAN 13A use pp collisions at \sqrt{s} =7 TeV.
- ²⁴CHATRCHYAN 13AF search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=7$ TeV and 8 TeV.
- 25 AAD 12CC search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=7$
- ²⁶ CHATRCHYAN 120 search for resonances decaying to $\tau^+\tau^-$ in pp collisions at $\sqrt{s}=$
- 27 AALTONEN 111 search for resonances decaying to $\mu^+\mu^-$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$
- ²⁸ ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L search for resonances decaying to e^+e^- in $p\overline{p}$ collisions at $\sqrt{s}=1.96\,\text{TeV}$.
- ²⁹ The quoted limit assumes $g_{WWZ'}/g_{WWZ} = (M_W/M_{Z'})^2$. See their Fig. 4 for limits in mass-coupling plane.
- ³⁰ AALTONEN 09AC search for new particle decaying to dijets.
- 31 ERLER 09 give 95% CL limit on the Z-Z' mixing $-0.0026 < \theta < 0.0006$.
- 32 ABDALLAH 06C use data $\sqrt{s}=130$ –207 GeV.
- ³³ ACOSTA 05R search for resonances decaying to tau lepton pairs in $\overline{p}p$ collisions at \sqrt{s}
- 34 ABBIENDI 04G give 95% CL limit on Z-Z $^\prime$ mixing -0.00422 < heta < 0.00091. $\sqrt{s} = 91$
- to 207 GeV. 35 ABAZOV 01B search for resonances in $p\overline{p} \to e^+e^-$ at $\sqrt{s}{=}1.8$ TeV. They find σ . $B(Z' \rightarrow ee) < 0.06 \text{ pb for } M_{Z'} > 500 \text{ GeV}.$
- 36 CHEUNG 01B limit is derived from bounds on contact interactions in a global electroweak analysis.
- 37 ABREU 00S uses LEP data at \sqrt{s} =90 to 189 GeV.
- 38 BARATE 001 search for deviations in cross section and asymmetries in $e^+e^-
 ightarrow$ fermions at \sqrt{s} =90 to 183 GeV. Assume θ =0. Bounds in the mass-mixing plane are shown in their Figure 18.
- 39 ERLER 99 give 90%CL limit on the Z-Z' mixing $-0.0041 < \theta < 0.0003$. $ho_0=1$ is
- assumed. 40 ABE 97S find $\sigma(Z')\times {\rm B}(e^+e^-,\mu^+\mu^-)<$ 40 fb for $m_{Z'}>$ 600 GeV at $\sqrt{s}=$ 1.8 TeV.
- $^{41}\,\mathrm{VILAIN}$ 94B assume $m_t=150$ GeV.
- 42 ALITTI 93 search for resonances in the two-jet invariant mass. The limit assumes B(Z' ightarrow $q\,\overline{q})$ =0.7. See their Fig. 5 for limits in the $m_{\,7'}-{\sf B}(q\,\overline{q})$ plane.
- $^{
 m 43}$ RIZZO 93 analyses CDF limit on possible two-jet resonances.
- ⁴⁴ ABE 90F use data for *R*, $R_{\ell\ell}$, and $A_{\ell\ell}$. They fix $m_W=80.49\pm0.43\pm0.24$ GeV and $m_7 = 91.13 \pm 0.03$ GeV.

Limits for Z_{LR}

 Z_{IR} is the extra neutral boson in left-right symmetric models. $g_I = g_R$ is assumed unless noted. Values in parentheses assume stronger constraint on the Higgs sector, usually motivated by specific left-right symmetric models (see the Note on the W'). Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino. Direct search bounds assume decays to Standard Model fermions only, unless noted.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>1162	95	¹ DEL-AGUILA	10	RVUE	Electroweak
> 630	95	² ABE	97 S	CDF	p \overline{p} ; $Z_{IR}^{'} ightarrow e^{+}e^{-}$, $\mu^{+}\mu^{-}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

					pp; $Z'_{LR} ightarrow \ N\overline{N}, \ N ightarrow$
		⁴ BOBOVNIKOV	′ 18	RVUE	$^{\ell q \overline{q}'}_{ ho ho, Z'_{LR} o W^+ W^-}$
> 998	95	⁵ ERLER	09		Electroweak
> 600	95	SCHAEL	07A	ALEP	e^+e^-
> 455	95	⁶ ABDALLAH			
> 518	95	⁷ ABBIENDI	04 G	OPAL	e^+e^-
> 860	95	⁸ CHEUNG	01 B	RVUE	Electroweak
> 380	95	⁹ ABREU		DLPH	e^+e^-
> 436	95	¹⁰ BARATE	001	ALEP	Repl. by SCHAEL 07A
> 550	95	¹¹ CHAY	00	RVUE	Electroweak
		¹² ERLER	00	RVUE	Cs
		¹³ CASALBUONI	99	RVUE	
(> 1205)	90	¹⁴ CZAKON	99	RVUE	Electroweak
> 564	95	¹⁵ ERLER	99	RVUE	Electroweak
(> 1673)	95	¹⁶ ERLER	99	RVUE	Electroweak
(> 1700)	68	¹⁷ BARENBOIM	98	RVUE	Electroweak
> 244	95	¹⁸ CONRAD	98	RVUE	$ u_{\mu}$ N scattering
> 253	95	¹⁹ VILAIN	94 B		$\stackrel{'}{ u_{\mu}}$ e $ ightarrow$ $\stackrel{'}{ u_{\mu}}$ e and $\overline{ u}_{\mu}$ e $ ightarrow$ $\overline{ u}_{\mu}$ e
none 200-600	95	²⁰ RIZZO	93	RVUE	$p\overline{p}; Z_{IR} \rightarrow q\overline{q}$
[> 2000]		WALKER	91	COSM	Nucleosynthesis; light ν_R
none 200-500		²¹ GRIFOLS	90	ASTR	SN 1987A; light ν_R
none 350-2400		²² BARBIERI			SN 1987A; light ν_R

 $^{^{1}}$ DEL-AGUILA 10 give 95% CL limit on the Z-Z' mixing $-0.0012 < \theta < 0.0004$.

² ABE 97S find $\sigma(Z') \times B(e^+e^-, \mu^+\mu^-) <$ 40 fb for $m_{Z'} >$ 600 GeV at $\sqrt{s} = 1.8$ TeV.

³ TUMASYAN 23BE search for pair production of heavy Majorana neutrinos via the decay of a Z' boson in a final state with $\ell^+\ell^-$ and at least two jets. For cases with $m_N=M_{Z'}/4$, their 95% CL limits are $M_{Z'}>3.59$ TeV (> 4.10 TeV) in the dielectron (dimuon) channel. See their Fig. 5 for limits on $\sigma \cdot B$.

⁴BOBOVNIKOV 18 use the ATLAS limits on $\sigma(pp \to Z') \cdot B(Z' \to W^+W^-)$ to constrain the $Z \cdot Z'$ mixing parameter ξ . See their Fig. 10 for limits in $M_{Z'} - \xi$ plane.

⁵ ERLER 09 give 95% CL limit on the Z-Z' mixing $-0.0013 < \theta < 0.0006$.

 $^{^6}$ ABDALLAH 06C give 95% CL limit $\left|\theta\right|<$ 0.0028. See their Fig. 14 for limit contours in the mass-mixing plane.

 $^{^7}$ ABBIENDI 04G give 95% CL limit on Z-Z' mixing $-0.00098 < \theta < 0.00190$. See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt{s} = 91$ to 207 GeV.

 $^{^{8}}$ CHEUNG 01B limit is derived from bounds on contact interactions in a global electroweak analysis.

⁹ ABREU 00S give 95% CL limit on Z-Z' mixing $|\theta| < 0.0018$. See their Fig. 6 for the limit contour in the mass-mixing plane. \sqrt{s} =90 to 189 GeV.

¹⁰ BARATE 00I search for deviations in cross section and asymmetries in $e^+e^- \rightarrow$ fermions at \sqrt{s} =90 to 183 GeV. Assume θ =0. Bounds in the mass-mixing plane are shown in their Figure 18.

 $^{^{11}\,\}mathrm{CHAY}$ 00 also find $-0.0003 < \theta < 0.0019.$ For g_R free, $m_{Z'} >$ 430 GeV.

¹² ERLER 00 discuss the possibility that a discrepancy between the observed and predicted values of $Q_W(Cs)$ is due to the exchange of Z'. The data are better described in a certain class of the Z' models including Z_{LR} and Z_{χ} .

- 13 CASALBUONI 99 discuss the discrepancy between the observed and predicted values of $Q_W(\text{Cs})$. It is shown that the data are better described in a class of models including the Z_{IR} model.
- ¹⁴ CZAKON 99 perform a simultaneous fit to charged and neutral sectors. Assumes manifest left-right symmetric model. Finds $|\theta| < 0.0042$.
- 15 ERLER 99 give 90% CL limit on the Z-Z' mixing $-0.0009 < \theta < 0.0017$.
- 16 ERLER 99 assumes 2 Higgs doublets, transforming as 10 of SO(10), embedded in E_6 .
- 17 BARENBOIM 98 also gives 68% CL limits on the Z-Z' mixing $-0.0005 < \theta < 0.0033$. Assumes Higgs sector of minimal left-right model.
- 18 CONRAD 98 limit is from measurements at CCFR, assuming no Z-Z' mixing.
- 19 VILAIN 94B assume $m_t=150$ GeV and $\theta=0$. See Fig. 2 for limit contours in the mass-mixing plane.
- ²⁰ RIZZO 93 analyses CDF limit on possible two-jet resonances.
- 21 GRIFOLS 90 limit holds for $m_{\nu_R}\lesssim 1$ MeV. A specific Higgs sector is assumed. See also GRIFOLS 90D, RIZZO 91.
- $^{22}\, \rm BARBIERI~89B$ limit holds for $m_{\nu_R} \le 10$ MeV. Bounds depend on assumed supernova core temperature.

Limits for Z_{χ}

 Z_χ is the extra neutral boson in ${\rm SO}(10) \to {\rm SU}(5) \times {\rm U}(1)_\chi$. $g_\chi = e/{\rm cos}\theta_W$ is assumed unless otherwise stated. We list limits with the assumption $\rho=1$ but with no further constraints on the Higgs sector. Values in parentheses assume stronger constraint on the Higgs sector motivated by superstring models. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

VALUE (GeV)	CL%	DOCUMENT ID	T	ECN	COMMENT
>4800 (CL = 95%) OUR LIM	IIT			
none 250-4800	95	¹ AAD	19L A	TLS	$pp; Z'_{\gamma} \rightarrow e^{+}e^{-}, \mu^{+}\mu^{-}$
>4100	95				$pp; Z_{\chi}^{\lambda} \rightarrow e^+e^-, \mu^+\mu^-$

• • • We do not use the following data for averages, fits, limits, etc. • • •

		³ BOBOVNIKOV	′ 18	RVUE	pp, $Z'_{\gamma} \rightarrow W^+W^-$
>3050	95	⁴ AABOUD			$pp; Z_{\gamma}^{\prime} \rightarrow e^+e^-, \mu^+\mu^-$
>2620	95	⁵ AAD	14V	ATLS	$pp, Z_{\chi}^{\prime} \rightarrow e^+e^-, \mu^+\mu^-$
>1970	95	⁶ AAD	12 CC	ATLS	$pp, Z_{\chi}^{\uparrow} \rightarrow e^+e^-, \mu^+\mu^-$
> 930	95	⁷ AALTONEN	111		$p\overline{p}; Z_{\chi}^{\gamma} \rightarrow \mu^{+}\mu^{-}$
> 903	95	⁸ ABAZOV	11A	D0	$p\overline{p}, Z_{\gamma}^{\prime} \rightarrow e^+e^-$
>1022	95	⁹ DEL-AGUILA	10	RVUE	Electroweak
> 862	95	⁸ AALTONEN	09т	CDF	$p\overline{p}, Z'_{\gamma} \rightarrow e^+e^-$
> 892	95	¹⁰ AALTONEN	09V	CDF	Repl. by AALTONEN 111
>1141	95	¹¹ ERLER	09	RVUE	Electroweak
> 822	95	⁸ AALTONEN	07н	CDF	Repl. by AALTONEN 09T
> 680	95	SCHAEL	07A	ALEP	e^+e^-
> 545	95	¹² ABDALLAH	06 C	DLPH	e^+e^-
> 740		⁸ ABULENCIA	06L	CDF	Repl. by AALTONEN 07H
> 690	95	¹³ ABULENCIA	05A	CDF	$p\overline{p}$; $Z'_{\gamma} \rightarrow e^+e^-$, $\mu^+\mu^-$
> 781	95	14 ABBIENDI	04G	OPAL	$e^+e^{-\lambda}$
>2100		¹⁵ BARGER	03 B	COSM	Nucleosynthesis; light ν_R

> >	680 440 533 554	95 95 95 95	16 CHEUNG 17 ABREU 18 BARATE 19 CHO 20 ERLER	01B 00S 00I 00	RVUE DLPH ALEP RVUE RVUE	Repl. by SCHAEL 07A Electroweak
(>	545 1368) 215 595	95 95 95 95	21 ROSNER 22 ERLER 23 ERLER 24 CONRAD 25 ABE	00 99 99 98 97S	RVUE RVUE RVUE	Cs Electroweak Electroweak
> [>1 > [>	190 262 470] 231 1140] 2100]	95 95 90	26 ARIMA 27 VILAIN 28 FARAGGI 29 ABE 30 GONZALEZ 31 GRIFOLS	97 94B 91 90F 90D 90	VNS CHM2 COSM VNS COSM	Λ.

¹ AAD 19L search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV.

 2 AABOUD 17AT search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV.

³BOBOVNIKOV 18 use the ATLAS limits on $\sigma(pp \to Z') \cdot B(Z' \to W^+W^-)$ to constrain the $Z \cdot Z'$ mixing parameter ξ . See their Fig. 9 for limits in $M_{Z'} - \xi$ plane.

⁴ AABOUD 16U search for resonances decaying to $\ell^+\ell^-$ in $p\,p$ collisions at $\sqrt{s}=$ 13 TeV.

⁵ AAD 14V search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=8$ TeV.

⁶ AAD 12CC search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=7$ TeV.

 7 AALTONEN 111 search for resonances decaying to $\mu^+\,\mu^-$ in $p\,\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.

⁸ ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L search for resonances decaying to e^+e^- in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.

 9 DEL-AGUILA 10 give 95% CL limit on the Z-Z' mixing $-0.0011 < \theta < 0.0007$.

 10 AALTONEN 09V search for resonances decaying to $\mu^+\mu^-$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV

 11 ERLER 09 give 95% CL limit on the Z-Z' mixing $-0.0016 < \theta < 0.0006$.

 12 ABDALLAH 06C give 95% CL limit $|\theta| <$ 0.0031. See their Fig. 14 for limit contours in the mass-mixing plane.

¹³ ABULENCIA 05A search for resonances decaying to electron or muon pairs in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV.

 14 ABBIENDI 04G give 95% CL limit on Z-Z' mixing $-0.00099 < \theta < 0.00194.$ See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt{s} = 91$ to 207 GeV.

 15 BARGER 03B limit is from the nucleosynthesis bound on the effective number of light neutrino $\delta N_{\nu} < \! 1.$ The quark-hadron transition temperature $T_{c} \! = \! \! 150$ MeV is assumed. The limit with $T_{c} \! = \! 400$ MeV is $> \! \! 4300$ GeV.

16 CHEUNG 01B limit is derived from bounds on contact interactions in a global electroweak analysis.

¹⁷ ABREU 00S give 95% CL limit on Z-Z' mixing $|\theta| < 0.0017$. See their Fig. 6 for the limit contour in the mass-mixing plane. \sqrt{s} =90 to 189 GeV.

¹⁸ BARATE 00I search for deviations in cross section and asymmetries in $e^+e^- \rightarrow$ fermions at \sqrt{s} =90 to 183 GeV. Assume θ =0. Bounds in the mass-mixing plane are shown in their Figure 18.

¹⁹ CHO 00 use various electroweak data to constrain Z' models assuming m_H =100 GeV. See Fig. 3 for limits in the mass-mixing plane.

- 20 ERLER 00 discuss the possibility that a discrepancy between the observed and predicted values of $Q_W(\text{Cs})$ is due to the exchange of Z'. The data are better described in a certain class of the Z' models including Z_{LR} and Z_{χ} .
- ²¹ ROSNER 00 discusses the possibility that a discrepancy between the observed and predicted values of $Q_W(Cs)$ is due to the exchange of Z'. The data are better described in a certain class of the Z' models including Z_{χ} .
- 22 ERLER 99 give 90% CL limit on the Z-Z' mixing $-0.0020 < \theta < 0.0015$.
- ²³ ERLER 99 assumes 2 Higgs doublets, transforming as 10 of SO(10), embedded in E_6 .
- ²⁴ CONRAD 98 limit is from measurements at CCFR, assuming no Z-Z' mixing.
- ²⁵ ABE 97S find $\sigma(Z') \times B(e^+e^-, \mu^+\mu^-) < 40$ fb for $m_{Z'} > 600$ GeV at $\sqrt{s} = 1.8$ TeV.
- 26 Z-Z' mixing is assumed to be zero. $\sqrt{s}=$ 57.77 GeV.
- 27 VILAIN 94B assume $m_t=150$ GeV and $\theta=0$. See Fig. 2 for limit contours in the mass-mixing plane.
- 28 FARAGGI 91 limit assumes the nucleosynthesis bound on the effective number of neutrinos $\Delta N_{\nu}~<~0.5$ and is valid for $m_{\nu_R}~<1$ MeV.
- ²⁹ ABE 90F use data for R, $R_{\ell\ell}$, and $A_{\ell\ell}$. ABE 90F fix $m_W=80.49\pm0.43\pm0.24$ GeV and $m_Z=91.13\pm0.03$ GeV.
- ³⁰ Assumes the nucleosynthesis bound on the effective number of light neutrinos ($\delta N_{\nu} < 1$) and that ν_{R} is light ($\lesssim 1$ MeV).
- and that ν_R is light (\lesssim 1 MeV). 31 GRIFOLS 90 limit holds for $m_{\nu_R} \lesssim$ 1 MeV. See also GRIFOLS 90D, RIZZO 91.

Limits for Z_{ψ}

 Z_{ψ} is the extra neutral boson in E $_6 o SO(10) imes U(1)_{\psi}$. $g_{\psi} = e/\cos\theta_W$ is assumed unless otherwise stated. We list limits with the assumption $\rho=1$ but with no further constraints on the Higgs sector. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>4560 (CL = 95%)	OUR LIN	ИIT			
>4560	95	¹ SIRUNYAN	21N	CMS	$pp; Z'_{\eta j} \rightarrow e^+e^-, \mu^+\mu^-$
none 250-4500	95	² AAD	19L	ATLS	$pp; Z_{\psi}^{\gamma} \rightarrow e^+e^-, \mu^+\mu^-$
none 200-3900	95	³ SIRUNYAN	18 BB	CMS	$pp; Z_{\psi}^{7} \rightarrow e^{+}e^{-}, \mu^{+}\mu^{-}$
>3800	95	⁴ AABOUD	17 AT	ATLS	pp; $Z_{\psi}^{7} \rightarrow e^{+}e^{-}$, $\mu^{+}\mu^{-}$
>2820	95	⁵ KHACHATRY	.17T	CMS	pp; $Z_{\psi}^{\prime} \rightarrow e^+e^-, \mu^+\mu^-$
>1100	95	⁶ CHATRCHYAN	120	CMS	$pp, Z_{\eta}^{\prime} \rightarrow \tau^{+}\tau^{-}$

• • • We do not use the following data for averages, fits, limits, etc. • •

		⁷ BOBOVNIKOV	18	RVUE	pp, $Z'_{\psi} ightarrow W^+W^-$
>2740	95				$pp; Z_{\psi}^{T} \rightarrow e^{+}e^{-}, \mu^{+}\mu^{-}$
>2570	95	⁹ KHACHATRY	.15AE	CMS	pp; $Z_{\psi}^{\prime} \rightarrow e^+e^-, \mu^+\mu^-$
>2510	95	¹⁰ AAD	14∨	ATLS	pp, $Z_{\psi}^{\prime} \rightarrow e^+e^-$, $\mu^+\mu^-$
>2260	95				pp, $Z_{\psi}^{\prime} \rightarrow e^+e^-$, $\mu^+\mu^-$
>1790	95	¹² AAD	12 CC	ATLS	$pp, Z_{\psi}^{\prime} \rightarrow e^+e^-, \mu^+\mu^-$
>2000	95	¹³ CHATRCHYAN	12M	CMS	Repl. by CHA-
> 917	95	¹⁴ AALTONEN	111	CDF	TRCHYAN 13AF $p\overline{p}; Z'_{\psi} \rightarrow \mu^{+}\mu^{-}$
> 891	95	¹⁵ ABAZOV	11A	D0	$ ho \overline{p}$, $Z_{\psi}^{\prime} ightarrow e^+ e^-$

https://pdg.lbl.gov

Page 21

>	476	95	¹⁶ DEL-AGUILA	10	RVUE	Electroweak
>	851	95	¹⁵ AALTONEN	09т	CDF	$p\overline{p}, Z'_{\psi} \rightarrow e^+e^-$
>	878	95	¹⁷ AALTONEN	09V	CDF	Repl. by AALTONEN 111
>	147	95	¹⁸ ERLER	09	RVUE	Electroweak
>	822	95	¹⁵ AALTONEN	07H	CDF	Repl. by AALTONEN 09T
>	410	95	SCHAEL	07A	ALEP	e^+e^-
>	475	95	¹⁹ ABDALLAH	06 C	DLPH	e^+e^-
>	725		¹⁵ ABULENCIA	06L	CDF	Repl. by AALTONEN 07H
>	675	95	²⁰ ABULENCIA	05A	CDF	Repl. by AALTONEN 111 and AALTONEN 09T
>	366	95	²¹ ABBIENDI	04 G	OPAL	e^+e^-
>	600		²² BARGER	03 B	COSM	Nucleosynthesis; light $ u_R$
>	350	95	²³ ABREU	00 S	DLPH	e^+e^-
>	294	95	²⁴ BARATE	001	ALEP	Repl. by SCHAEL 07A
>	137	95	²⁵ CHO	00	RVUE	Electroweak
>	146	95	²⁶ ERLER	99	RVUE	Electroweak
>	54	95	²⁷ CONRAD	98	RVUE	$ u_{\mu}$ N scattering
>	590	95	²⁸ ABE	97 S	CDF	$p\overline{\overline{p}}; Z'_{\psi} \rightarrow e^+e^-, \mu^+\mu^-$
>	135	95	²⁹ VILAIN	94 B	CHM2	$ u_{\mu} e \stackrel{'}{\rightarrow} \nu_{\mu} e; \overline{\nu}_{\mu} e \rightarrow \overline{\nu}_{\mu} e$
>	105	90	³⁰ ABE	90F	VNS	e^+e^-
[>	160]		³¹ GONZALEZ	90 D	COSM	Nucleosynthesis; light $ u_R$
-	2000]		³² GRIFOLS	90 D		SN 1987A; light ν_R
L.						, 5 //

 $^{^1}$ SIRUNYAN 21N search for resonance decaying to $e^+\,e^-,\,\mu^+\,\mu^-$ in $p\,p$ collisions at \sqrt{s} = 13 TeV.

²AAD 19L search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV.

 $^{^3}$ SIRUNYAN 18BB search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV.

⁴ AABOUD 17AT search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$

⁵ KHACHATRYAN 17T search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=8$, 13 TeV.

 $^{^6}$ CHATRCHYAN 120 search for resonances decaying to $\tau^+\tau^-$ in pp collisions at $\sqrt{s}=7$ TeV.

⁷ TeV.
7 BOBOVNIKOV 18 use the ATLAS limits on $\sigma(pp \to Z') \cdot B(Z' \to W^+W^-)$ to constrain the Z-Z' mixing parameter ξ . See their Fig. 10 for limits in $M_{Z'} - \xi$ plane.

⁸ AABOUD 16U search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV.

⁹ KHACHATRYAN 15AE search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=8$ TeV.

 $^{^{10}}$ AAD 14V search for resonances decaying to $e^+\,e^-$, $\mu^+\,\mu^-$ in $p\,p$ collisions at $\sqrt{s}=8$ TeV.

¹¹ CHATRCHYAN 13AF search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=7$ TeV and 8 TeV.

 $^{^{12}}$ AAD 12CC search for resonances decaying to $e^+\,e^-$, $\mu^+\,\mu^-$ in $p\,p$ collisions at $\sqrt{s}=7$ TaV

¹³ CHATRCHYAN 12M search for resonances decaying to e^+e^- or $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=7$ TeV.

 $^{^{14}}$ AALTONEN 11 search for resonances decaying to $\mu^+\mu^-$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV

¹⁵ ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L search for resonances decaying to e^+e^- in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.

 $^{^{16}}$ DEL-AGUILA 10 give 95% CL limit on the Z-Z $^\prime$ mixing -0.0019 < heta < 0.0007.

- ¹⁷ AALTONEN 09V search for resonances decaying to $\mu^+\mu^-$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.
- ¹⁸ ERLER 09 give 95% CL limit on the Z-Z' mixing $-0.0018 < \theta < 0.0009$.
- 19 ABDALLAH 06C give 95% CL limit $\left|\theta\right|<$ 0.0027. See their Fig. 14 for limit contours in the mass-mixing plane.
- ²⁰ ABULENCIA 05A search for resonances decaying to electron or muon pairs in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV.
- ²¹ ABBIENDI 04G give 95% CL limit on Z-Z' mixing $-0.00129 < \theta < 0.00258$. See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt{s} = 91$ to 207 GeV.
- $^{22}\, \rm BARGER$ 03B limit is from the nucleosynthesis bound on the effective number of light neutrino δN_{ν} <1. The quark-hadron transition temperature $T_c{=}150$ MeV is assumed. The limit with $T_c{=}400$ MeV is ${>}1100$ GeV.
- ²³ ABREU 00S give 95% CL limit on Z-Z' mixing $|\theta| < 0.0018$. See their Fig. 6 for the limit contour in the mass-mixing plane. \sqrt{s} =90 to 189 GeV.
- ²⁴ BARATE 00I search for deviations in cross section and asymmetries in $e^+e^- \rightarrow$ fermions at \sqrt{s} =90 to 183 GeV. Assume θ =0. Bounds in the mass-mixing plane are shown in their Figure 18.
- ²⁵ CHO 00 use various electroweak data to constrain Z' models assuming m_H =100 GeV. See Fig. 3 for limits in the mass-mixing plane.
- 26 ERLER 99 give 90% CL limit on the Z-Z' mixing $-0.0013 < \theta < 0.0024$.
- 27 CONRAD 98 limit is from measurements at CCFR, assuming no Z- Z^\prime mixing.
- ²⁸ ABE 97S find $\sigma(Z') \times B(e^+e^-, \mu^+\mu^-) <$ 40 fb for $m_{Z'} >$ 600 GeV at $\sqrt{s} = 1.8$ TeV.
- 29 VILAIN 94B assume $m_t=150$ GeV and $\theta=0$. See Fig. 2 for limit contours in the mass-mixing plane.
- 30 ABE 90F use data for R, $R_{\ell\ell}$, and $A_{\ell\ell}$. ABE 90F fix $m_W=80.49\pm0.43\pm0.24$ GeV and $m_Z=91.13\pm0.03$ GeV.
- 31 Assumes the nucleosynthesis bound on the effective number of light neutrinos ($\delta N_{\nu} < 1$) and that ν_{R} is light ($\lesssim 1$ MeV).
- and that ν_R is light (\lesssim 1 MeV). $^{32}\,\rm GRIFOLS$ 90D limit holds for m_{ν_R} \lesssim 1 MeV. See also RIZZO 91.

Limits for Z_{η}

 Z_{η} is the extra neutral boson in E $_6$ models, corresponding to $Q_{\eta}=\sqrt{3/8}~Q_{\chi}-\sqrt{5/8}~Q_{\psi}$. $g_{\eta}=e/\cos\theta_W$ is assumed unless otherwise stated. We list limits with the assumption $\rho=1$ but with no further constraints on the Higgs sector. Values in parentheses assume stronger constraint on the Higgs sector motivated by superstring models. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>3900	95	$^{ m 1}$ AABOUD	17AT ATLS	pp; $Z'_n \rightarrow e^+e^-, \mu^+\mu^-$

• • • We do not use the following data for averages, fits, limits, etc. • • •

		² BOBOVNIKO\	/ 18 F	RVUE	$pp, Z'_n \rightarrow W^+W^-$
>2810	95	³ AABOUD	16U A	ATLS	$pp; Z_n'' \to e^+e^-, \mu^+\mu^-$
>1870	95	⁴ AAD	12cc <i>A</i>	ATLS	$pp, Z_{\eta}^{\prime\prime} \rightarrow e^{+}e^{-}, \mu^{+}\mu^{-}$ $p\overline{p}; Z_{\eta}^{\prime} \rightarrow \mu^{+}\mu^{-}$
> 938	95	⁵ AALTONEN	111 (CDF	$p\overline{p}; Z_n'' \rightarrow \mu^+\mu^-$
> 923	95	⁶ ABAZOV	11A [D0	$p\overline{p}, Z''_n \rightarrow e^+e^-$
> 488	95	⁷ DEL-AGUILA	10 F	RVUE	Electroweak
> 877	95	⁶ AALTONEN	09T (CDF	$ ho \overline{ ho}$, $Z'_{\eta} ightarrow e^+ e^-$
> 904	95	⁸ AALTONEN	09V (CDF	Repl. by AALTONEN 111
> 427	95	⁹ ERLER	09 F	RVUE	Electroweak

https://pdg.lbl.gov

Page 23

>	891	95	⁶ AALTONEN	07н	CDF	Repl. by AALTONEN 09T
>	350	95	SCHAEL	07A	ALEP	e^+e^-
>	360	95	¹⁰ ABDALLAH	06 C	DLPH	e^+e^-
>	745		⁶ ABULENCIA	06L	CDF	Repl. by AALTONEN 07H
>	720	95	¹¹ ABULENCIA	05A	CDF	Repl. by AALTONEN 111 and AALTONEN 09T
>	515	95	¹² ABBIENDI	04 G	OPAL	e^+e^-
>	1600		¹³ BARGER	03 B	COSM	Nucleosynthesis; light $ u_R$
>	310	95	¹⁴ ABREU	00 S	DLPH	e^+e^-
>	329	95	¹⁵ BARATE	001	ALEP	Repl. by SCHAEL 07A
>	619	95	¹⁶ CHO	00	RVUE	Electroweak
>	365	95	¹⁷ ERLER	99	RVUE	Electroweak
>	87	95	¹⁸ CONRAD	98	RVUE	$ u_{\mu}$ N scattering
>	620	95	¹⁹ ABE	97 S	CDF	$p\overline{p}; Z'_{\eta} \rightarrow e^+e^-, \mu^+\mu^-$
>	100	95	²⁰ VILAIN	94 B	CHM2	$ u_{\mu} \mathrm{e} \stackrel{\cdot}{\rightarrow} \nu_{\mu} \mathrm{e}; \overline{\nu}_{\mu} \mathrm{e} \rightarrow \overline{\nu}_{\mu} \mathrm{e}$
>	125	90	²¹ ABE	90F	VNS	e^+e^-
[>	820]		²² GONZALEZ	90 D	COSM	Nucleosynthesis; light $ u_R$
[>	3300]		²³ GRIFOLS	90	ASTR	SN 1987A; light ν_R
[>	1040]		²² LOPEZ	90	COSM	Nucleosynthesis; light $ u_R$
	-					

 1 AABOUD 17AT search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$

 2 BOBOVNIKOV 18 use the ATLAS limits on $\sigma(pp o Z') \cdot \mathsf{B}(Z' o W^+W^-)$ to constrain the Z-Z' mixing parameter ξ . See their Fig. 9 for limits in $M_{Z'}-\xi$ plane.

 3 AABOUD 16U search for resonances decaying to $\ell^+\ell^-$ in $p\,p$ collisions at $\sqrt{s}=$ 13 TeV.

⁴ AAD 12CC search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=7$

⁵ AALTONEN 111 search for resonances decaying to $\mu^+\mu^-$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$

⁶ ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L search for resonances decaying to e^+e^- in $p\overline{p}$ collisions at $\sqrt{s}=1.96\,\text{TeV}$.

 7 DEL-AGUILA 10 give 95% CL limit on the $Z\text{-}Z^\prime$ mixing $-0.0023 < \theta < 0.0027$.

⁸ AALTONEN 09V search for resonances decaying to $\mu^+\mu^-$ in $p\overline{p}$ collisions at $\sqrt{s}=$ $_{9}^{1.96\,\text{TeV}.}$ ERLER 09 give 95% CL limit on the $\emph{Z-Z'}$ mixing $-0.0047 < \theta < 0.0021.$

 10 ABDALLAH 06C give 95% CL limit | heta| < 0.0092. See their Fig. 14 for limit contours in the mass-mixing plane.

¹¹ ABULENCIA 05A search for resonances decaying to electron or muon pairs in $p \bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV.

 12 ABBIENDI 04G give 95% CL limit on Z-Z' mixing -0.00447 < heta < 0.00331. See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt{s} = 91$ to 207 GeV.

 13 BARGER 03B limit is from the nucleosynthesis bound on the effective number of light neutrino δN_{ν} <1. The quark-hadron transition temperature T_c =150 MeV is assumed. The limit with T_c =400 MeV is >3300 GeV.

 14 ABREU 00S give 95% CL limit on Z-Z' mixing | heta|< 0.0024. See their Fig. 6 for the limit contour in the mass-mixing plane. \sqrt{s} =90 to 189 GeV.

 15 BARATE 001 search for deviations in cross section and asymmetries in $e^+e^ightarrow$ fermions at \sqrt{s} =90 to 183 GeV. Assume θ =0. Bounds in the mass-mixing plane are shown in their Figure 18.

 16 CHO 00 use various electroweak data to constrain Z' models assuming m_H =100 GeV. See Fig. 3 for limits in the mass-mixing plane.

 17 ERLER 99 give 90% CL limit on the Z-Z' mixing $-0.0062 < \theta < 0.0011$.

 18 CONRAD 98 limit is from measurements at CCFR, assuming no Z-Z' mixing.

Limits for other Z'

Limits for other Z' VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
		1 AAD		-	$Z' \rightarrow ZH$
none 300–3200	95	² TUMASYAN	230 /		$Z' \rightarrow ZH$ $Z' \rightarrow b\overline{b}$
none 1800–2400	95		23AF (
none 1300-3100, 3300-3500	95	³ TUMASYAN	23AP (CMS	$Z' \rightarrow WW$
>3900	95	⁴ TUMASYAN	23AP (CMS	$Z' \rightarrow ZH$
>4000	95	⁵ TUMASYAN	22D (CMS	$Z' \rightarrow WW$
none 800-3700	95	⁶ SIRUNYAN	21X (CMS	$Z' \rightarrow HZ$
>2650	95	⁷ AAD	20AJ /	ATLS	$Z' \rightarrow HZ$
>3900	95	⁸ AAD	20AM	ATLS	$Z' \rightarrow t \overline{t}$
>3900	95	⁹ AAD	20AT /	ATLS	$Z' \rightarrow WW$
none 1200-3500	95	¹⁰ SIRUNYAN	20Q (CMS	$Z' \rightarrow WW$
none 580-3100	95	¹¹ AABOUD	19AS /	ATLS	$Z' \rightarrow t \overline{t}$
none 1300-3100	95	¹² AAD	19 D /	ATLS	$Z' \rightarrow WW$
>3800	95	¹³ SIRUNYAN	19AA (CMS	$Z' \rightarrow t \overline{t}$
>3700	95	¹⁴ SIRUNYAN	19CP (CMS	$Z' \rightarrow WW, HZ, \ell^+\ell^-$
>1800	95	¹⁵ SIRUNYAN	191 (CMS	$Z' \rightarrow HZ$
none 600-2100	95	¹⁶ AABOUD	18AB /	ATLS	$Z' \rightarrow b \overline{b}$
none 500-2830	95	¹⁷ AABOUD	18AI /	ATLS	$Z' \rightarrow HZ$
none 300-3000	95	¹⁸ AABOUD	18AK /	ATLS	$Z' \rightarrow WW$
>1300	95	¹⁹ AABOUD	18B /	ATLS	$Z' \rightarrow WW$
none 400-3000	95	²⁰ AABOUD	18BI /	ATLS	$Z' \rightarrow t \overline{t}$
none 1200-2800	95	²¹ AABOUD	18F /	ATLS	$Z' \rightarrow WW$
>2300	95	²² SIRUNYAN	18ED (CMS	$Z' \rightarrow HZ$
none 1200-2700	95	²³ SIRUNYAN	18P (CMS	$Z' \rightarrow WW$
>2900	95	²⁴ AABOUD	17AK /	ATLS	$Z' \rightarrow q \overline{q}$
none 1100-2600	95	²⁵ AABOUD	17A0 /	ATLS	$Z' \rightarrow HZ$
>2300	95	²⁶ SIRUNYAN	17AK (CMS	$Z' \rightarrow WW, HZ$
>2500	95	²⁷ SIRUNYAN	17Q (CMS	$Z' \rightarrow t \overline{t}$
>1190	95	²⁸ SIRUNYAN	17R ($Z' \rightarrow HZ$
none 1210-2260	95	²⁸ SIRUNYAN	17R ($Z' \rightarrow HZ$
\A/ I			c·.	11 11	

• • • We do not use the following data for averages, fits, limits, etc. • •

```
^{29} AAD ^{23}BF ATLS DM simplified Z' ^{30} AAD ^{23}W ATLS dark Higgs Z' ^{31} AAD ^{23}X ATLS L_{\mu}-L_{\tau} ^{32} ADACHI ^{23}B BEL2 L_{\mu}-L_{\tau} ^{33} ADACHI ^{23}F BEL2 L_{\mu}-L_{\tau} ^{34} HAYRAPETY...23D CMS Z' \rightarrow \mu^+\mu^- ^{35} HAYRAPETY...23G CMS Z' \rightarrow \mu^+\mu^-
```

 $^{^{19}}$ ABE 97S find $\sigma(Z')\times {\rm B}(e^+\,e^-,\mu^+\,\mu^-)<$ 40 fb for $m_{Z'}>$ 600 GeV at $\sqrt{s}=$ 1.8 TeV.

 $^{^{20}}$ VILAIN 94B assume $m_t=150$ GeV and $\theta=0$. See Fig. 2 for limit contours in the mass-mixing plane.

²¹ ABE 90F use data for R, $R_{\ell\ell}$, and $A_{\ell\ell}$. ABE 90F fix $m_W=80.49\pm0.43\pm0.24$ GeV and $m_Z=91.13\pm0.03$ GeV.

These authors claim that the nucleosynthesis bound on the effective number of light neutrinos ($\delta N_{\nu} < 1$) constrains Z' masses if ν_R is light ($\lesssim 1$ MeV).

 $^{^{23}}$ GRIFOLS 90 limit holds for $m_{\nu_R} \lesssim$ 1 MeV. See also GRIFOLS 90D, RIZZO 91.

```
36 LI
                                                                       231
                                                                              ASTR
                                                                                         Steller cooling
                                            <sup>37</sup> MANZARI
                                                                                          DM mediator Z'
                                                                       23
                                             38 AAD
                                                                                         pp \rightarrow b\overline{b}Z' \rightarrow b\overline{b}b\overline{b}
                                                                       22
                                                                              ATLS
                                             <sup>39</sup> AAD
                                                                       22D ATLS
                                                                                          DM mediator Z'
                                             <sup>40</sup> ANDREEV
                                                                       22
                                                                              CALO
                                                                                         electron beam dump
                                             <sup>41</sup> BONET
                                                                       22
                                                                                        \nu-nucleus scattring
                                                                              HPGE
                                             <sup>42</sup> COLOMA
                                                                       22
                                                                              RVUE
                                                                                        \nu-nucleus scattering
                                             <sup>43</sup> COLOMA
                                                                       22A RVUE
                                                                                        \nu-e scattering
                                             44 CZANK
                                                                                          e^+e^- \rightarrow \mu^+\mu^- Z'(\rightarrow
                                                                       22
                                                                              BELL
                                                                                              \mu^{+}\mu^{-}
                                             <sup>45</sup> TUMASYAN
                                                                                          Z'	o \mathsf{SVJs}
                                                                       22AA CMS
                                            ^{46} AAD
                                                                                          pp, \ell^{+}\ell^{-}\ell^{+}\ell^{-}
                                                                       21AQ ATLS
                                             <sup>47</sup> AAD
                                                                       21AZ ATLS
                                                                                          DM mediator Z'
                                             <sup>48</sup> AAD
                                                                       21BB ATLS
                                                                                          Z' \rightarrow AH
                                             <sup>49</sup> AAD
                                                                       21D ATLS
                                                                                         dark Higgs Z'
                                             <sup>50</sup> AAD
                                                                       21K ATLS
                                                                                          Z' \rightarrow \chi \chi
                                             <sup>51</sup> BURAS
                                                                       21
                                                                              RVUE
                                                                                        leptophilic Z'
                                             <sup>52</sup> CADEDDU
                                                                       21
                                                                              RVUE
                                                                                         \nu-nucleus scattering
                                             <sup>53</sup> COLARESI
                                                                       21
                                                                              HPGE \nu-nucleus scattering
                                             <sup>54</sup> KRIBS
                                                                       21
                                                                              RVUE ep scattering
                                             <sup>55</sup> TUMASYAN
                                                                                          Z' \rightarrow \chi \chi
                                                                       21D CMS
                                             <sup>56</sup> AAD
                                                                       20AF ATLS
                                                                                          Z' \rightarrow H\gamma
                                             <sup>57</sup> AAD
                                                                       20T ATLS
                                                                                          DM simplified Z'
                                             <sup>58</sup> AAD
                                                                                          DM simplified Z'
                                                                       20w ATLS
                                             <sup>59</sup> AAIJ
                                                                       20AL LHCB
                                                                                          Z' \rightarrow \mu^+ \mu^-
                                                                                          e^+e^- \rightarrow \mu^+\mu^- Z'
                                             <sup>60</sup> ADACHI
                                                                              BEL2
                                                                                              e^{\pm}\mu^{\mp}Z'
                                             <sup>61</sup> SIRUNYAN
                                                                                          Z' \rightarrow q \overline{q}
                                                                       20AI CMS
                                             <sup>62</sup> SIRUNYAN
                                                                       20AQ CMS
                                                                                          Z' \rightarrow \mu^+ \mu^-
                                             <sup>63</sup> SIRUNYAN
                                                                       20м CMS
                                                                                          Z' \rightarrow q \overline{q}
                                             <sup>64</sup> AABOUD
                                                                       19AJ ATLS
                                                                                          Z' \rightarrow q \overline{q}
                                             <sup>65</sup> AABOUD
                                                                       19D ATLS
                                                                                          Z' \rightarrow q \overline{q}
                                             <sup>66</sup> AABOUD
                                                                       19V ATLS
                                                                                          DM simplified Z'
                                            <sup>67</sup> AAD
                                                                       19L ATLS
                                                                                          Z' \rightarrow e^+e^-, \mu^+\mu^-
                                            <sup>68</sup> LONG
                                                                       19
                                                                              RVUE Electroweak
                                             <sup>69</sup> PANDEY
                                                                              RVUE neutrino NSI
                                                                       19
                                             <sup>70</sup> SIRUNYAN
                                                                                          Z' \rightarrow tT, T \rightarrow Ht,
                                                                       19AL CMS
                                                                                              Zt, Wb
                                             <sup>71</sup> SIRUNYAN
                                                                       19AN CMS
                                                                                          DM simplified Z'
                                             <sup>72</sup> SIRUNYAN
                                                                                          Z' \rightarrow q \overline{q}
                                                                       19CB CMS
                                             <sup>73</sup> SIRUNYAN
                                                                                          Z' \rightarrow q \overline{q}
                                                                       19CD CMS
                                             <sup>74</sup> SIRUNYAN
                                                                       19D CMS
                                                                                          Z' \rightarrow H\gamma
                                             <sup>75</sup> AABOUD
                                                                                          Z' \rightarrow H\gamma
                                                                       18AA ATLS
                                             <sup>76</sup> AABOUD
                                                                                          Z' \rightarrow WW, HZ, \ell^+\ell^-
                                 95
                                                                       18CJ ATLS
>4500
                                                                                          Z' \rightarrow q \overline{q}
                                             <sup>77</sup> AABOUD
                                                                       18N ATLS
                                             <sup>78</sup> AAIJ
                                                                       18AQ LHCB
                                                                                         Z' \rightarrow \mu^+ \mu^-
                                             <sup>79</sup> SIRUNYAN
                                                                                          Z' \rightarrow \mu^+ \mu^-
                                                                       18DR CMS
                                             <sup>80</sup> SIRUNYAN
                                                                                          Z' \rightarrow q \overline{q}
                                                                       18G CMS
                                             <sup>81</sup> SIRUNYAN
                                                                                          Z' \rightarrow b\overline{b}
                                                                       18ı CMS
```

https://pdg.lbl.gov

Page 26

>1580	95				$Z' \rightarrow HZ$
		⁸³ KHACHATRY			$Z' \rightarrow \ell\ell\ell\ell$
		⁸⁴ KHACHATRY	. 17 U	CMS	$Z' \rightarrow HZ$
>1700	95		17A	CMS	$Z' \rightarrow WW$
			17 AP	CMS	$Z' \rightarrow HA$
			17T	CMS	$Z' \rightarrow q \overline{q}$
			17V	CMS	$Z' \rightarrow Tt$
none 1100–1500	95	⁸⁹ AABOUD	16	ATLS	$Z' \rightarrow b\overline{b}$
		⁹⁰ AAD	16L	ATLS	$Z' \rightarrow a\gamma$, $a \rightarrow \gamma\gamma$
none 1500-2600	95	⁹¹ AAD	16 S		$Z' \rightarrow q \overline{q}$
none 1000–1100, none 1300–1500	95	⁹² KHACHATRY	. 16 AP	CMS	$Z' \rightarrow HZ$
>2400	95	⁹³ KHACHATRY	.16E	CMS	$Z' \rightarrow t \overline{t}$
			15 AO	ATLS	$Z' \rightarrow t \overline{t}$
		⁹⁵ AAD	15AT	ATLS	monotop
		⁹⁶ AAD	15 CD	ATLS	$H \rightarrow ZZ', Z'Z';$
		07			$Z' ightarrow \ell^+ \ell^-$
		⁹⁷ KHACHATRY			monotop
		98 KHACHATRY			$Z' \rightarrow HZ$
				ATLS	$Z' \rightarrow Z\gamma$
		100 KHACHATRY			$Z' \rightarrow VV$
					Electroweak
none 500–1740	95		-		$Z' \rightarrow t \overline{t}$
>1320 or 1000-1280	95			ATLS	$Z' \rightarrow t \overline{t}$
> 915	95				$Z' \rightarrow t \overline{t}$
>1300	95	104 CHATRCHYAN			$Z' \rightarrow t \overline{t}$
>2100	95	¹⁰³ CHATRCHYAN	13 BM	CMS	$Z' \rightarrow t \overline{t}$
			12 BV	ATLS	$Z' \rightarrow t \overline{t}$
				ATLS	$Z' \rightarrow t \overline{t}$
		¹⁰⁷ AALTONEN	12 AR	CDF	Chromophilic
			12N	CDF	$Z' \rightarrow \overline{t}u$
> 835	95			D0	$Z' \rightarrow t \overline{t}$
		¹¹⁰ CHATRCHYAN			$Z' \rightarrow t \overline{u}$
		¹¹¹ CHATRCHYAN			$Z' \rightarrow t \overline{t}$
>1490	95	¹⁰³ CHATRCHYAN	12 BL	CMS	$Z' \rightarrow t \overline{t}$
		¹¹² AALTONEN	11 AD	CDF	$Z' \rightarrow t \overline{t}$
		¹¹³ AALTONEN		CDF	$Z' \rightarrow t \overline{t}$
		¹¹⁴ CHATRCHYAN	110	CMS	$pp \rightarrow tt$
				CDF	$Z' \rightarrow t \overline{t}$
		¹¹⁵ AALTONEN	08Y	CDF	$Z' \rightarrow t \overline{t}$
		¹¹⁵ ABAZOV		D0	$Z' \rightarrow t \overline{t}$
		110	04A		Repl. by ABAZOV 08AA
		¹¹⁷ BARGER			Nucleosynthesis; light ν_R
		¹¹⁸ CHO	00	RVUE	E_6 -motivated
		¹¹⁹ CHO	98	RVUE	•
		¹²⁰ ABE			$Z' \rightarrow \overline{q}q$
			-		, ,

 $^{^1}$ AAD 230 search for resonances decaying to HZ in $p\,p$ collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>2800$ GeV for $g_V=1$.

- ² TUMASYAN 23AF search for resonance decaying to $b\overline{b}$ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet Z' with $g_V=1$. See their Fig. 4 for limits on $\sigma \cdot B$.
- ³TUMASYAN 23AP search for resonances decaying to WW in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>4.8$ TeV assuming $M_{W'}=M_{Z'}$ and combining $W'\to WZ$, $W'\to WH$, $Z'\to WW$, $Z'\to ZH$ channels.
- ⁴ TUMASYAN 23AP search for resonances decaying to ZH in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>4.8$ TeV assuming $M_{W'}=M_{Z'}$ and combining $W'\to WZ,\ W'\to WH,\ Z'\to WW,\ Z'\to ZH$ channels.
- ⁵ TUMASYAN 22D search for resonances produced through Drell-Yan and vector-boson-fusion processes in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 8 for limits on $\sigma \cdot B$. The quoted limit is for heavy-vector-triplet W' with $g_V=3$ produced mainly via Drell-Yan.
- ⁶ SIRUNYAN 21X search for resonances decaying to HZ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>3500$ GeV for $g_V=1$.
- ⁷ AAD 20AJ search for resonances decaying to HZ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>2200$ GeV for $g_V=1$. See their Fig. 6 for limits on $\sigma \cdot B$.
- ⁸ AAD 20AM search for a resonance decaying to $t\bar{t}$ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for a leptophobic top-color Z' with $\Gamma_{Z'}/M_{Z'}=0.01$. The limit becomes $M_{Z'}>4700$ GeV for $\Gamma_{Z'}/M_{Z'}=0.03$.
- ⁹ AAD 20AT search for resonances decaying to WW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>3500$ GeV for $g_V=1$. See their Fig. 14 for limits on $\sigma \cdot B$.
- ¹⁰ SIRUNYAN 20Q search for resonances decaying to WW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$.
- ¹¹ AABOUD 19AS search for a resonance decaying to $t\bar{t}$ in $p\bar{p}$ collisions at $\sqrt{s}=13$ TeV. The quoted limit is for a top-color Z' with $\Gamma_{Z'}/M_{Z'}=0.01$. Limits are also set on Z' masses in simplified Dark Matter models.
- 12 AAD 19D search for resonances decaying to WW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>2900$ GeV for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the limit increases $M_{Z'}>3800$ GeV and $M_{Z'}>3500$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig. 9 for limits on $\sigma \cdot B$.
- ¹³ SIRUNYAN 19AA search for a resonance decaying to $t\bar{t}$ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for a leptophobic top-color Z' with $\Gamma_{Z'}/M_{Z'}=0.01$.
- 14 SIRUNYAN 19CP present a statistical combinations of searches for Z' decaying to pairs of bosons or leptons in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. If we assume $M_{Z'}=M_{W'}$, the limit becomes $M_{Z'}>4500$ GeV for $g_V=3$ and $M_{Z'}>5000$ GeV for $g_V=1$. See their Figs. 2 and 3 for limits on $\sigma \cdot B$.
- ¹⁵ SIRUNYAN 19I search for resonances decaying to ZW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>2800$ GeV if we assume $M_{Z'}=M_{W'}$.
- ¹⁶ AABOUD 18AB search for resonances decaying to $b\overline{b}$ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a leptophobic Z' with SM-like couplings to quarks. See

- their Fig. 6 for limits on $\sigma \cdot B$. Additional limits on a Z' axial-vector mediator in a simplified dark-matter model are shown in Fig. 7.
- 17 AABOUD 18AI search for resonances decaying to HZ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>2650$ GeV for $g_V=1$. If we assume $M_{W'}=M_{Z'}$, the limit increases $M_{Z'}>2930$ GeV and $M_{Z'}>2800$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig. 5 for limits on $\sigma \cdot B$.
- ¹⁸ AABOUD 18AK search for resonances decaying to WW in pp collisions at $\sqrt{s}=1$ 3 TeV. The limit quoted above is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>2750$ GeV for $g_V=1$.
- ¹⁹ AABOUD 18B search for resonances decaying to WW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=1$. See their Fig.11 for limits on $\sigma \cdot B$.
- ²⁰ AABOUD 18BI search for a resonance decaying to $t\bar{t}$ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for a top-color assisted TC Z' with $\Gamma_{Z'}/M_{Z'}=0.01$. The limits for wider resonances are available. See their Fig. 14 for limits on $\sigma \cdot B$.
- 21 AABOUD 18F search for resonances decaying to WW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>2200$ GeV for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the limit increases $M_{Z'}>3500$ GeV and $M_{Z'}>3100$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig.5 for limits on $\sigma\cdot B$.
- ²² SIRUNYAN 18ED search for resonances decaying to HZ in pp collisions at $\sqrt{s}=13$ TeV. The limit above is for heavy-vector-triplet Z' with $g_V=3$. If we assume $M_{Z'}=M_{W'}$, the limit increases $M_{Z'}>2900$ GeV and $M_{Z'}>2800$ GeV for $g_V=3$ and $g_V=1$, respectively.
- ²³ SIRUNYAN 18P give this limit for a heavy-vector-triplet Z' with $g_V=3$. If they assume $M_{Z'}=M_{W'}$, the limit increases to $M_{Z'}>3800$ GeV.
- 24 AABOUD 17aK search for a new resonance decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a leptophobic Z' boson having axial-vector coupling strength with quarks $g_q=0.2.$ The limit is 2100 GeV if $g_q=0.1.$
- ²⁵ AABOUD 17AO search for resonances decaying to HZ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a Z' in the heavy-vector-triplet model with $g_V=3$. See their Fig.4 for limits on $\sigma \cdot B$.
- 26 SIRUNYAN 17AK search for resonances decaying to WW or HZ in pp collisions at $\sqrt{s}=8$ and 13 TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>2200$ GeV for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the limit increases $M_{Z'}>2400$ GeV for both $g_V=3$ and $g_V=1$. See their Fig.1 and 2 for limits on $\sigma\cdot B$.
- ²⁷ SIRUNYAN 17Q search for a resonance decaying to $t\overline{t}$ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a resonance with relative width $\Gamma_{Z'}$ / $M_{Z'}=0.01$. Limits for wider resonances are available. See their Fig.6 for limits on $\sigma \cdot B$.
- 28 SIRUNYAN 17R search for resonances decaying to HZ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. Mass regions $M_{Z'}<1150$ GeV and 1250 GeV $< M_{Z'}<1670$ GeV are excluded for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the excluded mass regions are $1000 < M_{Z'}<2500$ GeV and $2760 < M_{Z'}<3300$ GeV for $g_V=3$; $1000 < M_{Z'}<2430$ GeV and $2810 < M_{Z'}<3130$ GeV for $g_V=1$. See their Fig.5 for limits on $\sigma \cdot B$.
- ²⁹ AAD 23BF search for a Dark Matter (DM) simplified Z' produced in association with W in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 9(c) for limits on $\sigma \cdot B$ as a function of $M_{Z'}$.

- 30 AAD 23W set limits on a dark Higgs model with a spin-1 mediator Z' and a dark Higgs s. Dark Higgs s is assumed to decay into WW. See their Fig. 9 for limits in $M_{Z'}-M_{S}$ plane.
- ³¹ AAD 23X set limits on $L_{\mu}-L_{\tau}$ of Z' using four-muon final states in $p\,p$ collisions at $\sqrt{s}=13$ TeV. See their Fig. 7 for limits in mass-coupling plane.
- ³² ADACHI 23B search for Z' produced in association with $\mu^+\mu^-$ and decaying invisibly in e^+e^- collisions at $\sqrt{s}=10.58$ GeV. See their Fig. 3 and Fig. 4 for limits in mass-coupling plane.
- ³³ ADACHI 23F search for resonances decaying to $\tau^+\tau^-$ in $\mu^+\mu^-\tau^+\tau^-$ events in e^+e^- collisions at $\sqrt{s}=10.58$ GeV. See their Fig. 3 for limits on $\sigma \cdot B$.
- ³⁴ HAYRAPETYAN 23D search for $\mu^+\mu^-$ resonance produced in association with one or more *b*-jets in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 8 for limits in the mass-coupling plane of the B_3 – L_2 Z' model.
- ³⁵ HAYRAPETYAN 23G search for spin-0 and spin-1 resonances decaying to $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=13$ TeV in the mass ranges of 1.1–2.6 GeV and 4.2–7.9 GeV. See their Fig. 5 for limits on $\sigma \cdot B$.
- 36 LI 23I limits on light Z' couplings are dervied from the steller cooling bounds in the mass range of 10^4 – 10^6 eV. See their Fig. 4 for limits on dark photon, B–L, L_{μ} – L_{τ} , and L_e – $L_{\mu(\tau)}$ models.
- 37 MANZARI 23 study supernova cooling induced by the emission of light dark fermions χ assumed to couple with leptons via a new massive vector boson Z'. See their Figs. 4 and 5 for limits in mass-coupling plane.
- ³⁸ AAD 22 search for $b\overline{b}Z'$ productions in pp collisions at $\sqrt{s}=13$ TeV. Z' is assumed to decay into $b\overline{b}$. See their Fig.4 for limits on $\sigma \cdot B$.
- ³⁹AAD 22D search for DM mediator Z' produced in association with a Z boson in pp collisions at $\sqrt{s}=13$ TeV. Z' is assumed to decay invisibly $Z'\to \chi\chi$. See their Fig. 4 for limits in $M_{Z'}-M_{\chi}$ plane.
- ⁴⁰ ANDREEV 22 search for missing energy in CERN NA64-e experiment. See their Fig. 7 for limits on couplings of U(1) gauge $L_{\mu}-L_{\tau}$ Z' models, in the mass range of 1 MeV $< M_{Z'} <$ 600 MeV with the kinetic $Z'-\gamma$ mixing being determined by μ and τ loops.
- ⁴¹ BONET 22 obtain limits on Z' coupling from ν -nucleus scattering data collected by the CONUS experiment at the nuclear power plant in Brokdorf. See their Fig. 5 for limits in mass-coupling plane.
- 42 COLOMA 22 set limits on Z' coupling from $\nu\text{-nucleus}$ and $\nu\text{-}e$ scattering data collected by a Ge detector at the Dresden-II power reactor and the COHERENT experiment. See their Fig. 6 for limits in mass-coupling plane in the mass range of 1 keV $< M_{Z'} < 5$ GeV.
- 43 COLOMA 22A use Borexino Phase-II spectral data to constrain Z^\prime couplings. See their Fig. 5 for limits in mass-coupling plane in the mass range of 10 keV $< M_{Z^\prime} < 100$ MeV
- ⁴⁴ CZANK 22 search for Z' produced in association with $\mu^+\mu^-$ in e^+e^- collisions at and near Υ resonances. Z' is assumed to decay into $\mu^+\mu^-$. See their Fig. 8 for limits on $Z'\mu\mu$ couplings.
- ⁴⁵ TUMASYAN 22AA search for Z' production in pp collisions at $\sqrt{s}=13$ TeV. Z' is assumed to decay into two "semivisible" jets (SVJ), i.e., collimated mixtures of visible and invisible particles. See their Fig. 7 and 8 for limits on $\sigma \cdot B$.
- 46 AAD 21AQ limits are for a B-L gauge boson model derived from their measurements on four-lepton differential cross sections. See their Fig. 13 for exclusion limits on the B-L breaking Higgs boson mass.
- 47 AAD 21AZ search for DM mediator Z' produced in association with a SM Higgs boson in pp collisions at $\sqrt{s}=13$ TeV. Z' is assumed to decay invisibly $Z'\to\chi\chi$. See their Fig.7 for limits in $M_{Z'}-M_\chi$ plane.

- ⁴⁸ AAD 21BB search for Z' productions in pp collisions at $\sqrt{s}=13$ TeV. Z' is assumed to decay into a SM Higgs boson H and an invisible particle A. See their Fig.7 for limits in $M_{Z'}-M_A$ plane.
- 49 AAD 21D set limits on a dark Higgs model with a spin-1 mediator Z^\prime and a scalar dark Higgs boson s. Dark Higgs s is assumed to decay into WW or ZZ. See their Fig.4 for limits in $M_{Z^\prime}-M_{\rm S}$ plane.
- 50 AAD 21K search for $\gamma+E_T$ events in pp collision at $\sqrt{s}=13$ TeV. See their Fig. 5 for limits on Z' particle invisibly decaying to $\chi\chi$.
- 51 BURAS 21 performed global fit to leptophilic Z' models using a large number of observables.
- ⁵² CADEDDU 21 obtain limits on Z' coupling $g_{Z'}$ from coherent ν -nucleus scattering data collected by COHERENT experiment. For limits in the $M_{Z'}-g_{Z'}$ plane, see their Figures 3 and 4 for the universal Z' model and Figures 5 and 6 for the B-L model.
- 53 COLARESI 21 obtain limits on Z' coupling from coherent ν -nucleus scattering data collected by a Ge detector at the Dresden-II power reactor. See their Fig.7 for limits in mass-coupling plane.
- 54 KRIBS 21 set decay-agnostic limits on kinetic mixing parameter between U(1) $_Y$ field and new heavy abelian vector boson (dark photon) field using the HERA ep collision data. See their Fig. 3 for limits in mass-mixing plane.
- 55 TUMASYAN 21D search for energetic jets $+ \not\!\!E_T$ events in pp collisions at $\sqrt{s}=13$ TeV. Z' is assumed to decay into a pair of invisible particles $\chi\chi$. See their Fig. 7 for limits on signal strength in $M_{Z'}-M_\chi$ plane, and Fig. 8 for limits on signal strength in quark and dark matter coupling vs mediator mass.
- 56 AAD 20AF search for resonances decaying to $H\gamma$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 1c for limits on $\sigma \cdot B$ for the mass range 0.7 < $m_{7'}$ < 4 TeV.
- 57 AAD 20T search for Dark Matter mediator Z' decaying invisibly or decaying to $q\overline{q}$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 5 for limits in $M_{Z'}-g_q$ plane from the inclusive category. See their Fig. 7(a) for limits on the product of the cross section, acceptance, b-tagging efficiency, and branching fraction from the 2 b-tag category.
- ⁵⁸ AAD 20W search for a Dark Matter (DM) simplified model Z' produced in association with W in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 5 for limits on Z' production cross section.
- AAIJ 20AL search for spin-0 and spin-1 resonances decaying to $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=13$ TeV in the mass regions M $_{Z'}<60$ GeV, with non-negligible widths considered above 20 GeV. See their Figs. 7, 8, and 9 for limits on $\sigma\cdot B$.
- ⁶⁰ ADACHI 20 search for production of Z' in e^+e^- collisions. The Z' is assume to decay invisibly. See their Fig. 3 and Fig. 5 for limits on Z' coupling and $\sigma(e^+e^- \to e^\pm \mu^\mp Z')$.
- ⁶¹ SIRUNYAN 20AI search for broad resonances decaying into dijets in pp collisions at \sqrt{s} = 13 TeV. See their Fig. 11 for exclusion limits in mass-coupling plane.
- ⁶² SIRUNYAN 20AQ search for a narrow resonance lighter than 200 GeV decaying to $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 3 for limits on Z' kinetic mixing coefficient.
- 63 SIRUNYAN 20M search for a narrow resonance with a mass between 350 and 700 GeV in pp collisions at $\sqrt{s}=13$ TeV. See their Fig.3 for exclusion limits in mass-coupling plane.
- AABOUD 19AJ search in pp collisions at $\sqrt{s}=13$ TeV for a new resonance decaying to $q\overline{q}$ and produced in association with a high p_T photon. For a leptophobic axial-vector Z' in the mass region 250 GeV $< M_{Z'} < 950$ GeV, the Z' coupling with quarks g_q is constrained below 0.18. See their Fig.2 for limits in $M_{Z'}-g_q$ plane.
- 65 AABOUD 19D search in pp collisions at $\sqrt{s}=13$ TeV for a new resonance decaying to $q\overline{q}$ and produced in association with a high-p_T photon or jet. For a leptophobic

- axial-vector Z' in the mass region 100 GeV $< M_{Z'} <$ 220 GeV, the Z' coupling with quarks g_a is constrained below 0.23. See their Fig. 6 for limits in $M_{Z'} g_a$ plane.
- ⁶⁶ AABOUD 19V search for Dark Matter simplified Z' decaying invisibly or decaying to fermion pair in pp collisions at $\sqrt{s}=13$ TeV.
- ⁶⁷ AAD 19L search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 4 for limits in the heavy vector triplet model couplings.
- 68 LONG 19 uses the weak charge data of Cesium and proton to constrain mass of Z' in the 3-3-1 models.
- ⁶⁹ PANDEY 19 obtain limits on Z' induced neutrino non-standard interaction (NSI) parameter ϵ from LHC and IceCube data. See their Fig.2 for limits in $M_{Z'} \epsilon$ plane, where $\epsilon = g_q \ g_{\nu} \ v^2 \ / \ (2 \ M_{Z'}^2)$.
- $70\,\mathrm{SIRUNYAN}$ 19AL search for a new resonance decaying to a top quark and a heavy vector-like top partner in $p\,p$ collisions at $\sqrt{s}=13\,\mathrm{TeV}$. See their Fig. 8 for limits on Z' production cross section.
- 71 SIRUNYAN 19AN search for a Dark Matter (DM) simplified model Z^\prime decaying to H DM DM in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 7 for limits on the signal strength modifiers.
- ⁷² SIRUNYAN 19CB search in pp collisions at $\sqrt{s}=13$ TeV for a new resonance decaying to $q\overline{q}$. For a leptophobic Z' in the mass region 50–300 GeV, the Z' coupling with quarks g'_q is constrained below 0.2. See their Figs. 4 and 5 for limits on g'_q in the mass range $50 < M_{Z'} < 450$ GeV.
- ⁷³ SIRUNYAN 19CD search in pp collisions at \sqrt{s} =13 TeV for a leptophobic Z' produced in association of high p_T ISR photon and decaying to $q\overline{q}$. See their Fig. 2 for limits on the Z' coupling strength g'_q to $q\overline{q}$ in the mass range between 10 and 125 GeV.
- ⁷⁴ SIRUNYAN 19D search for a narrow neutral vector resonance decaying to $H\gamma$. See their Fig. 3 for exclusion limit in $M_{Z'}-\sigma\cdot B$ plane. Upper limits on the production of $H\gamma$ resonances are set as a function of the resonance mass in the range of 720–3250 GeV.
- 75 AABOUD 18AA search for a narrow neutral vector boson decaying to $H\gamma.$ See their Fig. 10 for the exclusion limit in M $_{7'}$ σB plane.
- 76 AABOUD 18CJ search for heavy-vector-triplet Z' in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for model with $g_V=3$ assuming $M_{Z'}=M_{W'}$. The limit becomes $M_{Z'}>5500$ GeV for model with $g_V=1$.
- ⁷⁷ AABOUD 18N search for a narrow resonance decaying to $q\overline{q}$ in pp collisions at $\sqrt{s}=13$ TeV using trigger level analysis to improve the low mass region sensitivity. See their Fig. 5 for limits in the mass-coupling plane in the Z' mass range 450–1800 GeV.
- ⁷⁸ AAIJ 18AQ search for spin-0 and spin-1 resonances decaying to $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=7$ and 8 TeV in the mass region near 10 GeV. See their Figs. 4 and 5 for limits on $\sigma \cdot B$.
- on $\overset{\circ}{\sigma}\cdot B$. 79 SIRUNYAN 18DR searches for $\mu^+\mu^-$ resonances produced in association with b-jets in the $p\,p$ collision data with $\sqrt{s}=8$ TeV and 13 TeV. An excess of events near $m_{\mu\,\mu}=28$ GeV is observed in the 8 TeV data. See their Fig. 3 for the measured fiducial signal cross sections at $\sqrt{s}=8$ TeV and the 95% CL upper limits at $\sqrt{s}=13$ TeV.
- ⁸⁰ SIRUNYAN 18G search for a new resonance decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV in the mass range 50–300 GeV. See their Fig.7 for limits in the mass-coupling plane.
- 81 SIRUNYAN 181 search for a narrow resonance decaying to $b\overline{b}$ in pp collisions at $\sqrt{s}=8$ TeV using dedicated b-tagged dijet triggers to improve the sensitivity in the low mass region. See their Fig. 3 for limits on $\sigma \cdot B$ in the Z' mass range 325–1200 GeV.
- 82 AABOUD 17B search for resonances decaying to HZ ($H\to b\overline{b},\,c\overline{c};\,Z\to \ell^+\ell^-,\,\nu\overline{\nu}$) in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>1490$ GeV for $g_V=1$. If we assume $M_{Z'}=M_{W'},$

- the limit increases $M_{Z'}>2310$ GeV and $M_{Z'}>1730$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig.3 for limits on $\sigma\cdot B$.
- ⁸³ KHACHATRYAN 17AX search for lepto-phobic resonances decaying to four leptons in pp collisions at $\sqrt{s}=8$ TeV.
- ⁸⁴ KHACHATRYAN 17U search for resonances decaying to HZ ($H \rightarrow b\overline{b}$; $Z \rightarrow \ell^+\ell^-$, $\nu\overline{\nu}$) in pp collisions at $\sqrt{s}=13$ TeV. The limit on the heavy-vector-triplet model is $M_{Z'}=M_{W'}>2$ TeV for $g_V=3$, in which constraints from the $W'\rightarrow HW$ ($H\rightarrow b\overline{b}$; $W\rightarrow \ell\nu$) are combined. See their Fig.3 and Fig.4 for limits on $\sigma\cdot B$.
- 85 SIRUNYAN 17A search for resonances decaying to $W\,W$ with $W\,W\to\ell\nu\,q\overline{q},\,q\overline{q}\,q\overline{q}$ in $p\,p$ collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>1600$ GeV for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the limit increases $M_{Z'}>2400$ GeV and $M_{Z'}>2300$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig.6 for limits on $\sigma\cdot B$.
- ⁸⁶ SIRUNYAN 17AP search for resonances decaying into a SM-like Higgs scalar H and a light pseudo scalar A. A is assumed to decay invisibly. See their Fig.9 for limits on $\sigma \cdot B$.
- 87 SIRUNYAN 17T search for a new resonance decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV in the mass range 100–300 GeV. See their Fig.3 for limits in the mass-coupling plane.
- 88 SIRUNYAN 17V search for a new resonance decaying to a top quark and a heavy vector-like top partner T in pp collisions at $\sqrt{s}=13$ TeV. See their table 5 for limits on the Z' production cross section for various values of $M_{Z'}$ and M_T in the range of $M_{Z'}=1500-2500$ GeV and $M_T=700-1500$ GeV.
- ⁸⁹ AABOUD 16 search for a narrow resonance decaying into $b\overline{b}$ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a leptophobic Z' with SM-like couplings to quarks. See their Fig.6 for limits on $\sigma \cdot B$.
- ⁹⁰ AAD 16L search for $Z' \to a\gamma$, $a \to \gamma\gamma$ in pp collisions at $\sqrt{s}=8$ TeV. See their Table 6 for limits on $\sigma \cdot B$.
- ⁹¹ AAD 16S search for a new resonance decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a leptophobic Z' having coupling strength with quark $g_q=0.3$ and is taken from their Figure 3.
- ⁹² KHACHATRYAN 16AP search for a resonance decaying to HZ in pp collisions at \sqrt{s} = 8 TeV. Both H and Z are assumed to decay to fat jets. The quoted limit is for heavy-vector-triplet Z' with $g_{V'}=3$.
- 93 KHACHATRYAN 16E search for a leptophobic top-color Z' decaying to $t\overline{t}$ using pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes that $\Gamma_{Z'}/m_{Z'}=0.012.$ Also $m_{Z'}<2.9$ TeV is excluded for wider topcolor Z' with $\Gamma_{Z'}/m_{Z'}=0.1.$
- ⁹⁴AAD 15AO search for narrow resonance decaying to $t\bar{t}$ using pp collisions at $\sqrt{s}=8$ TeV. See Fig. 11 for limit on σB .
- ⁹⁵ AAD 15AT search for monotop production plus large missing E_T events in pp collisions at $\sqrt{s}=8$ TeV and give constraints on a Z' model having Z' $u\bar{t}$ coupling. Z' is assumed to decay invisibly. See their Fig. 6 for limits on $\sigma \cdot B$.
- ⁹⁶ AAD 15CD search for decays of Higgs bosons to 4 ℓ states via Z' bosons, $H \to ZZ' \to 4\ell$ or $H \to Z'Z' \to 4\ell$. See Fig. 5 for the limit on the signal strength of the $H \to ZZ' \to 4\ell$ process and Fig. 16 for the limit on $H \to Z'Z' \to 4\ell$.
- 97 KHACHATRYAN 15F search for monotop production plus large missing E_T events in $p\,p$ collisions at $\sqrt{s}=8$ TeV and give constraints on a Z' model having $Z'\,u\,\overline{t}$ coupling. Z' is assumed to decay invisibly. See Fig. 3 for limits on σB .
- ⁹⁸ KHACHATRYAN 150 search for narrow Z' resonance decaying to ZH in pp collisions at $\sqrt{s}=8$ TeV. See their Fig. 6 for limit on σB .
- ⁹⁹ AAD 14AT search for a narrow neutral vector boson decaying to $Z\gamma$. See their Fig. 3b for the exclusion limit in $m_{7'}-\sigma B$ plane.

- ¹⁰⁰ KHACHATRYAN 14A search for new resonance in the WW ($\ell\nu q\overline{q}$) and the ZZ ($\ell\ell q\overline{q}$) channels using pp collisions at \sqrt{s} =8 TeV. See their Fig.13 for the exclusion limit on the number of events in the mass-width plane.
- 101 MARTINEZ 14 use various electroweak data to constrain the Z^\prime boson in the 3-3-1 models.
- 102 AAD 13AQ search for a leptophobic top-color Z' decaying to $t\bar{t}$. The quoted limit assumes that $\Gamma_{Z'}/m_{Z'}=0.012$.
- ¹⁰³ CHATRCHYAN 13BM search for top-color Z' decaying to $t\overline{t}$ using pp collisions at \sqrt{s} =8 TeV. The quoted limit is for $\Gamma_{Z'}/m_{Z'}=0.012$.
- ¹⁰⁴ CHATRCHYAN 13AP search for top-color leptophobic Z' decaying to $t\overline{t}$ using pp collisions at \sqrt{s} =7 TeV. The quoted limit is for $\Gamma_{Z'}/m_{Z'}=0.012$.
- ¹⁰⁵ AAD 12BV search for narrow resonance decaying to $t\overline{t}$ using pp collisions at \sqrt{s} =7 TeV. See their Fig. 7 for limit on $\sigma \cdot B$.
- ¹⁰⁶ AAD 12K search for narrow resonance decaying to $t\bar{t}$ using pp collisions at \sqrt{s} =7 TeV. See their Fig. 5 for limit on $\sigma \cdot B$.
- ¹⁰⁷ AALTONEN 12AR search for chromophilic Z' in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV. See their Fig. 5 for limit on $\sigma \cdot B$.
- ¹⁰⁸ AALTONEN 12N search for $p\overline{p} \to tZ'$, $Z' \to \overline{t}u$ events in $p\overline{p}$ collisions. See their Fig. 3 for the limit on $\sigma \cdot B$.
- 109 ABAZOV 12R search for top-color Z' boson decaying exclusively to $t\bar{t}$. The quoted limit is for $\Gamma_{Z'}/m_{Z'}=0.012$.
- ¹¹⁰ CHATRCHYAN 12AI search for $pp \to tt$ events and give constraints on a Z' model having $Z'\overline{u}t$ coupling. See their Fig. 4 for the limit in mass-coupling plane.
- ¹¹¹ Search for resonance decaying to $t\overline{t}$. See their Fig. 6 for limit on $\sigma \cdot B$.
- ¹¹² Search for narrow resonance decaying to $t\overline{t}$. See their Fig. 4 for limit on $\sigma \cdot B$.
- ¹¹³ Search for narrow resonance decaying to $t\overline{t}$. See their Fig. 3 for limit on $\sigma \cdot B$.
- ¹¹⁴ CHATRCHYAN 110 search for same-sign top production in pp collisions induced by a hypothetical FCNC Z' at $\sqrt{s}=7$ TeV. See their Fig. 3 for limit in mass-coupling plane.
- 115 Search for narrow resonance decaying to $t\overline{t}$. See their Fig. 3 for limit on $\sigma \cdot \mathrm{B}$.
- ¹¹⁶ Search for narrow resonance decaying to $t\overline{t}$. See their Fig. 2 for limit on $\sigma \cdot B$.
- ¹¹⁷BARGER 03B use the nucleosynthesis bound on the effective number of light neutrino δN_{ν} . See their Figs. 4–5 for limits in general E_6 motivated models.
- ¹¹⁸CHO 00 use various electroweak data to constrain Z' models assuming m_H =100 GeV. See Fig. 2 for limits in general E_6 -motivated models.
- 119 CHO 98 study constraints on four-Fermi contact interactions obtained from low-energy electroweak experiments, assuming no Z-Z' mixing.
- ¹²⁰ Search for Z' decaying to dijets at \sqrt{s} =1.8 TeV. For Z' with electromagnetic strength coupling, no bound is obtained.

Searches for Z' with Lepton-Flavor-Violating decays

The following limits are obtained from $p\overline{p}$ or $pp \to Z'X$ with Z' decaying to the mode indicated in the comments.

DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • ¹ CABARCAS 24 RVUE $Z' \rightarrow \mu \tau$ ² AAD 23CB ATLS $Z'
ightarrow e \mu$, e au, μau ³ TUMASYAN 23H CMS $Z' \rightarrow e\mu, e\tau, \mu\tau$ ⁴ AABOUD 18CM ATLS $Z' \rightarrow e\mu, e\tau, \mu\tau$ ⁵ SIRUNYAN 18AT CMS $Z' \rightarrow e \mu$ ⁶ AABOUD 16P ATLS $Z' \rightarrow e\mu, e\tau, \mu\tau$

⁷ KHACHATRY.	16BE CMS	Z' o	$e\mu$
⁸ AAD	150 ATLS	Z' o	$e\mu$, $e au$, μau
⁹ AAD	11H ATLS	Z' o	$e\mu$
¹⁰ AAD	11z ATLS		
¹¹ ABULENCIA	06м CDF	Z' ightarrow	$e \mu$

- ¹ CABARCAS 24 use constraints on the non-standard neutrino interactions reported by ANTARES and IceCube expreriments to constrain Z' models with $\mu\tau$ coupling. See their Figs. 1 and 2 for limits in mass-coupling plane.
- ² AAD 23CB search for a new particle with lepton-flavor violating decay in pp collisions at $\sqrt{s}=13$ TeV. See their Figs.4, 5, and 6 for limits on $\sigma \cdot B$.
- ³ TUMASYAN 23H search for a new particle with lepton-flavor violating decay in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 4 for limits on $\sigma \cdot B$.
- ⁴ AABOUD 18CM search for a new particle with lepton-flavor violating decay in pp collisions at $\sqrt{s}=13$ TeV. See their Figs. 4, 5, and 6 for limits on $\sigma \cdot B$.
- ⁵ SIRUNYAN 18AT search for a narrow resonance Z' decaying into $e\mu$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig.5 for limit on $\sigma \cdot B$ in the range of 600 GeV $< M_{Z'} < 5000$ GeV.
- 6 AABOUD 16P search for new particle with lepton flavor violating decay in pp collisions _ at $\sqrt{s}=$ 13 TeV. See their Figs.2, 3, and 4 for limits on $\sigma \cdot B.$
- 7 KHACHATRYAN 16BE search for new particle Z' with lepton flavor violating decay in $p\,p$ collisions at $\sqrt{s}=8$ TeV in the range of 200 GeV < M $_{Z'}<$ 2000 GeV. See their Fig.4 for limits on $\sigma\cdot B$ and their Table 5 for bounds on various masses.
- ⁸ AAD 150 search for new particle Z' with lepton flavor violating decay in pp collisions at $\sqrt{s}=8$ TeV in the range of 500 GeV < M $_{Z'}$ < 3000 GeV. See their Fig. 2 for limits on σB
- g on σB . AAD 11H search for new particle Z' with lepton flavor violating decay in pp collisions at $\sqrt{s}=7$ TeV in the range of 700 GeV < M $_{Z'}$ < 1000 GeV. See their Fig. 3 for limits on $\sigma \cdot B$
- on $\sigma \cdot B$. $10\,\mathrm{AAD}\ 11\mathrm{Z}$ search for new particle Z' with lepton flavor violating decay in $p\,p$ collisions at $\sqrt{s}=7\,\mathrm{TeV}$ in the range 700 GeV $<\mathrm{M}_{Z'}<2000$ GeV. See their Fig. 3 for limits on $\sigma \cdot B$.
- $\sigma \cdot B$. 11 ABULENCIA 06M search for new particle Z' with lepton flavor violating decay in $p\overline{p}$ collisions at $\sqrt{s}=1.96\,\text{TeV}$ in the range of 100 GeV < M $_{Z'}$ < 800 GeV. See their Fig. 4 for limits in the mass-coupling plane.

Indirect Constraints on Kaluza-Klein Gauge Bosons

Bounds on a Kaluza-Klein excitation of the Z boson or photon in d=1 extra dimension. These bounds can also be interpreted as a lower bound on 1/R, the size of the extra dimension. Unless otherwise stated, bounds assume all fermions live on a single brane and all gauge fields occupy the 4+d-dimensional bulk. See also the section on "Extra Dimensions" in the "Searches" Listings in this *Review*.

VALU	<i>IE</i> (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
• •	• We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •
>	4.7		$^{ m 1}$ MUECK	02	RVUE	Electroweak
>	3.3	95	² CORNET	00	RVUE	$e \nu q q'$
>50	000		³ DELGADO	00	RVUE	$\epsilon_{\pmb{K}}$
>	2.6	95	⁴ DELGADO	00	RVUE	Electroweak
>	3.3	95	⁵ RIZZO	00	RVUE	Electroweak
>	2.9	95	⁶ MARCIANO	99	RVUE	Electroweak
>	2.5	95	⁷ MASIP	99	RVUE	Electroweak
>	1.6	90	⁸ NATH	99	RVUE	Electroweak
>	3.4	95	⁹ STRUMIA	99	RVUE	Electroweak

https://pdg.lbl.gov

Page 35

² Bound is derived from limits on $e\nu qq'$ contact interaction, using data from HERA and the Tevatron.

the Tevatron. ³ Bound holds only if first two generations of quarks lives on separate branes. If quark mixing is not complex, then bound lowers to 400 TeV from Δm_K .

- $^4\,\mathrm{See}$ Figs. 1 and 2 of DELGADO 00 for several model variations. Special boundary conditions can be found which permit KK states down to 950 GeV and that agree with the measurement of $Q_W(\mathrm{Cs}).$ Quoted bound assumes all Higgs bosons confined to brane; placing one Higgs doublet in the bulk lowers bound to 2.3 TeV.
- ⁵ Bound is derived from global electroweak analysis assuming the Higgs field is trapped on the matter brane. If the Higgs propagates in the bulk, the bound increases to 3.8 TeV.
- 6 Bound is derived from global electroweak analysis but considering only presence of the $_$ KK W bosons.
- ⁷ Global electroweak analysis used to obtain bound independent of position of Higgs on brane or in bulk.
- ⁸ Bounds from effect of KK states on G_F , α , M_W , and M_Z . Hard cutoff at string scale determined using gauge coupling unification. Limits for d=2,3,4 rise to 3.5, 5.7, and 7.8 TeV.
- ⁹ Bound obtained for Higgs confined to the matter brane with m_H =500 GeV. For Higgs in the bulk, the bound increases to 3.5 TeV.

See the related review(s):

Leptoquarks

MASS LIMITS for Leptoquarks from Pair Production

These limits rely only on the color or electroweak charge of the leptoquark.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>1300	95	$^{ m 1}$ AAD	23BJ ATLS	Scalar LQ. B $(c au)=1$
>1460	95	² AAD	23CF ATLS	Scalar LQ. $B(b\tau) = 1$
>1910	95	³ AAD	23CF ATLS	Vector LQ. $\kappa=1$, B($b au$) = 1
>1460	95	⁴ AAD	23F ATLS	Scalar LQ. B($t\nu$)=B($b\mu$)=0.5
>1440	95	⁵ AAD	23F ATLS	Scalar LQ. B($t\nu$)=B(be)=0.5
>1370	95	⁶ AAD	23F ATLS	Scalar LQ. B($t\mu$)=B($b\nu$)=0.5
>1390	95	⁷ AAD	23F ATLS	Scalar LQ. B(te)=B($b\nu$)=0.5
>1980	95	⁸ AAD	23F ATLS	Vector LQ. $\kappa=1$, B($t\nu$) = B($b\mu$) = 0.5
>1900	95	⁹ AAD	23F ATLS	Vector LQ. $\kappa = 1$, B($t\nu$) = B(be) = 0.5
>1340	95	¹⁰ TUMASYAN	22H CMS	Scalar LQ. B(te) = 1
>1420	95	11 TUMASYAN	22H CMS	Scalar LQ. $B(t\mu) = 1$
>1120	95	¹² TUMASYAN	22H CMS	Scalar LQ. $B(t\tau)=1$
>1480	95	¹³ AAD	21AG ATLS	Scalar LQ. $B(te) = 1$
>1470	95	¹⁴ AAD	21AG ATLS	Scalar LQ. B $(t\mu)=1$
>1190	95	¹⁵ AAD	21AW ATLS	Scalar LQ. B $(b au)=1$
>1030	95	¹⁶ AAD	21AW ATLS	Scalar LQ. B $(t\tau)=1$
>1760	95	¹⁷ AAD	21AW ATLS	Vector LQ. $\kappa=1$. B($b au$) = 1
>1260	95	¹⁸ AAD	21s ATLS	Scalar LQ. B $(b\nu)=1$
>1430	95	¹⁹ AAD	21T ATLS	Scalar LQ. B $(t\tau)=1$
> 950	95	²⁰ SIRUNYAN	21J CMS	Scalar LQ. B($t\tau$)=B($b\nu$)=0.5
>1650	95	²¹ SIRUNYAN	21J CMS	Vector LQ. κ =1, B($t\nu$) = B($b\tau$) = 0.5

¹ MUECK 02 limit is 2σ and is from global electroweak fit ignoring correlations among observables. Higgs is assumed to be confined on the brane and its mass is fixed. For scenarios of bulk Higgs, of brane-SU(2)_L, bulk-U(1)_Y, and of bulk-SU(2)_L, brane-U(1)_Y, the corresponding limits are > 4.6 TeV, > 4.3 TeV and > 3.0 TeV, respectively.

```
<sup>22</sup> aad
>1800
                     95
                                                   20AK ATLS
                                                                  Scalar LQ. B(eq) = 1
                              <sup>23</sup> AAD
>1700
                     95
                                                   20AK ATLS
                                                                  Scalar LQ. B(\mu q) = 1
                              <sup>24</sup> AAD
                     95
                                                   20s ATLS
                                                                  Scalar LQ. B(t\nu) = 1
>1240
                              <sup>25</sup> SIRUNYAN
                     95
                                                   20A CMS
                                                                  Scalar LQ. B(\nu b) = 1
>1185
                              <sup>26</sup> SIRUNYAN
>1140
                     95
                                                   20A CMS
                                                                  Scalar LQ. B(\nu t) = 1
                              <sup>27</sup> SIRUNYAN
                                                   20A CMS
                     95
                                                                  Scalar LQ. B(\nu q) = 1 with q
>1140
                                                                     = u, d, s, c
                              <sup>28</sup> SIRUNYAN
                                                   20A CMS
                                                                  Vector LQ. \kappa=1. B(\nu b) = 1
>1925
                     95
                              <sup>29</sup> SIRUNYAN
>1825
                     95
                                                   20A CMS
                                                                  Vector LQ. \kappa = 1. B(\nu t) = 1
                              <sup>30</sup> SIRUNYAN
                                                                  Vector LQ. \kappa = 1. B(\nu q) = 1
>1980
                     95
                                                   20A CMS
                                                                     with q = u, d, s, c
                              <sup>31</sup> AABOUD
                     95
                                                   19AX ATLS
>1400
                                                                  Scalar LQ. B(eq) = 1
                              <sup>32</sup> AABOUD
                     95
                                                   19AX ATLS
>1560
                                                                  Scalar LQ. B(\mu q) = 1
                              <sup>33</sup> AABOUD
                     95
                                                   19X ATLS
>1000
                                                                  Scalar LQ. B(t\nu) = 1
                              <sup>34</sup> AABOUD
>1030
                     95
                                                   19X ATLS
                                                                  Scalar LQ. B(b\tau) = 1
                              <sup>35</sup> AABOUD
                     95
                                                   19X ATLS
                                                                  Scalar LQ. B(b\nu) = 1
> 970
                              <sup>36</sup> AABOUD
                     95
                                                   19x ATLS
                                                                  Scalar LQ. B(t\tau) = 1
> 920
                              <sup>37</sup> SIRUNYAN
>1530
                     95
                                                   19BI CMS
                                                                  Scalar LQ. B(\mu q)+B(\nu q)=1
                     95
                              <sup>38</sup> SIRUNYAN
                                                   19BJ CMS
>1435
                                                                  Scalar LQ. B(eq)+B(\nu q)=1
                              <sup>39</sup> SIRUNYAN
                     95
                                                                  Scalar LQ. B(\tau b) = 1
                                                   19Y CMS
>1020
                              <sup>40</sup> SIRUNYAN
                                                   18cz CMS
                                                                  Scalar LQ. B(\tau t) = 1
none 300-900
                     95
                              <sup>41</sup> SIRUNYAN
                     95
                                                   18EC CMS
                                                                  Scalar LQ. B(\mu t) = 1
>1420
                              <sup>42</sup> SIRUNYAN
                     95
                                                   18EC CMS
                                                                  Vector LQ. \mu t, \tau t, \nu b
>1190
                              <sup>43</sup> SIRUNYAN
                     95
                                                                  Scalar LQ. B(\nu b) = 1
>1100
                                                   18U CMS
                              <sup>44</sup> SIRUNYAN
> 980
                     95
                                                   18U
                                                        CMS
                                                                  Scalar LQ. B(\nu q) = 1 with q
                                                                      = u,d,s,c
                              <sup>45</sup> SIRUNYAN
                     95
                                                   18U CMS
>1020
                                                                  Scalar LQ. B(\nu t) = 1
                              <sup>46</sup> SIRUNYAN
                     95
                                                   18U
                                                        CMS
                                                                  Vector LQ. \kappa=1. LQ\rightarrow b\nu
>1810
                              <sup>47</sup> SIRUNYAN
                                                                  Vector LQ. \kappa=1. LQ\rightarrow q\nu
                     95
                                                   18U
                                                        CMS
>1790
                                                                     with q = u,d,s,c
                              <sup>48</sup> SIRUNYAN
                                                   18U CMS
>1780
                     95
                                                                  Vector LQ. \kappa=1. LQ\rightarrow t\nu
                              <sup>49</sup> KHACHATRY...17J
> 740
                     95
                                                         CMS
                                                                  Scalar LQ. B(\tau b) = 1
                              <sup>50</sup> SIRUNYAN
                                                                  Scalar LQ. B(\tau b) = 1
                     95
                                                   17H CMS
> 850
                              <sup>51</sup> AAD
                                                   16G ATLS
>1050
                     95
                                                                  Scalar LQ. B(eq) = 1
                              52 AAD
>1000
                     95
                                                   16G
                                                        ATLS
                                                                  Scalar LQ. B(\mu q) = 1
                              <sup>53</sup> AAD
                                                                  Scalar LQ. B(\nu b) = 1
> 625
                     95
                                                   16G ATLS
                              <sup>54</sup> AAD
                     95
                                                   16G ATLS
                                                                  Scalar LQ. B(\nu t) = 1
none 200-640
                              <sup>55</sup> KHACHATRY...16AF CMS
>1010
                     95
                                                                  Scalar LQ. B(eq) = 1
                     95
                              <sup>56</sup> KHACHATRY...16af CMS
                                                                  Scalar LQ. B(\mu q) = 1
>1080
                              <sup>57</sup> KHACHATRY...15AJ CMS
> 685
                     95
                                                                  Scalar LQ. B(\tau t) = 1
                              <sup>58</sup> KHACHATRY...14T CMS
                     95
> 740
                                                                  Scalar LQ. B(\tau b) = 1
• • • We do not use the following data for averages, fits, limits, etc. • • •
                              <sup>59</sup> SIRUNYAN
                                                                  Scalar LQ (\rightarrow \mu q) LQ (\rightarrow X)
                                                   19BC CMS
                                                                     + DM)
                              60 AAD
> 534
                     95
                                                   13AE ATLS
                                                                  Third generation
                              <sup>61</sup> CHATRCHYAN 13M CMS
> 525
                     95
                                                                  Third generation
                              <sup>62</sup> AAD
> 660
                     95
                                                   12H ATLS
                                                                  First generation
                              63 AAD
> 685
                     95
                                                   120 ATLS
                                                                  Second generation
                              <sup>64</sup> CHATRCHYAN 12AG CMS
> 830
                     95
                                                                  First generation
                              <sup>65</sup> CHATRCHYAN 12AG CMS
                     95
                                                                  Second generation
> 840
                              <sup>66</sup> CHATRCHYAN 12BO CMS
> 450
                     95
                                                                  Third generation
                     95
                              <sup>67</sup> AAD
                                                   11D ATLS
> 376
                                                                  Superseded by AAD 12H
                              <sup>68</sup> AAD
                                                   11D ATLS
                     95
                                                                  Superseded by AAD 120
> 422
                                                                 Created: 4/29/2024 18:59
https://pdg.lbl.gov
                                        Page 37
```

> 326	95	⁶⁹ ABAZOV	11v	D0	First generation
> 339	95	70 CHATRCHYAN		CMS	Superseded by CHA-
/ 333	55			CIVIS	TRCHYAN 12AG
> 384	95	⁷¹ KHACHATRY		CMS	Superseded by CHA- TRCHYAN 12AG
> 394	95	⁷² KHACHATRY	.11E	CMS	Superseded by CHA- TRCHYAN 12AG
> 247	95	⁷³ ABAZOV	10L	D0	Third generation
> 316	95	⁷⁴ ABAZOV	09	D0	Second generation
> 299	95	⁷⁵ ABAZOV	09AF	D0	Superseded by ABAZOV 11V
		⁷⁶ AALTONEN	08P	CDF	Third generation
> 153	95	⁷⁷ AALTONEN	08Z	CDF	Third generation
> 205	95	⁷⁸ ABAZOV	08AD	D0	All generations
> 210	95	⁷⁷ ABAZOV	08an		Third generation
> 229	95	⁷⁹ ABAZOV	07J	D0	Superseded by ABAZOV 10L
> 251	95	⁸⁰ ABAZOV	06A	D0	Superseded by ABAZOV 09
> 136	95	81 ABAZOV	06L	D0	Superseded by ABAZOV 08AD
> 226	95	82 ABULENCIA	06T	CDF	Second generation
> 256	95	83 ABAZOV	05H	D0	First generation
> 117	95	⁷⁸ ACOSTA	051	CDF	First generation
> 236	95	84 ACOSTA	05P	CDF	First generation
> 99	95	85 ABBIENDI	03R	OPAL	First generation
> 100	95	85 ABBIENDI	03R	OPAL	Second generation
> 98	95	85 ABBIENDI	03R	OPAL	Third generation
> 98	95	86 ABAZOV	02	D0	All generations
> 225	95	87 ABAZOV	01D	D0	First generation
> 85.8	95	88 ABBIENDI	-	OPAL	Superseded by ABBIENDI 03R
~	95	88 ABBIENDI		OPAL	Superseded by ABBIENDI 03R
	95	88 ABBIENDI		OPAL	Superseded by ABBIENDI 03R
	95	89 ABBOTT	00M	D0	Second generation
	95	90 AFFOLDER	00C	CDF	_
> 123 > 148	95	91 AFFOLDER	00K	CDF	Second generation
		92 ABBOTT		D0	Third generation
> 160 > 225	95 95	93 ABBOTT	99J 98E	D0	Second generation First generation
	95 95	94 ABBOTT	98J	D0	Third generation
		95 ABE		CDF	•
> 202	95	96 GROSS-PILCH.	98s	CDF	Second generation
> 242	95	97 ABE		CDE	First generation
> 99	95	98 ABE	97F	CDF	Third generation
> 213	95	99,100 ABREU			First generation
> 45.5	95	101 ABREU	93J	DLPH	First + second generation
> 44.4	95	101 ADRIANI	93M		First generation
> 44.5	95	101 ADRIANI	93M		Second generation
> 45	95	101 DECAMP	92	ALEP	Third generation
none 8.9–22.6	95	102 KIM	90	AMY	First generation
none 10.2–23.2	95	102 KIM	90	AMY	Second generation
none 5–20.8	95	103 BARTEL		JADE	
none 7–20.5	95	¹⁰⁴ BEHREND	86 B	CELL	

 $^{^1}$ AAD 23BJ search for scalar leptoquarks decaying to $c\tau$ in pp collisions at $\sqrt{s}=$ 13 TeV. See their Fig. 8 for exclusion limit on σ as function of M_{LQ} .

²AAD 23CF search for scalar and vector leptoquarks decaying to $b\tau$. The limit quoted above is for scalar leptoquark. See their Fig. 9 for limits on leptoquark pair production cross sections.

- 3 AAD 23CF search for scalar and vector leptoquarks decaying to $b\tau$. The limit quoted above is for vector leptoquark with $\kappa=1$. The limit becomes $M_{LQ}>1650$ for vector leptoquark with $\kappa=0$. See their Fig. 9 for limits on leptoquark pair production cross sections.
- ⁴ AAD 23F search for scalar leptoquarks decaying to $t\nu$ and $b\mu$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 9 for exclusion contour in $B(b\mu)-M_{LQ}$ plane.
- ⁵ AAD 23F search for scalar leptoquarks decaying to $t\nu$ and be in pp collisions at $\sqrt{s}=$ 13 TeV. See their Fig. 9 for exclusion contour in B(be)- M_{LO} plane.
- ⁶ AAD 23F search for scalar leptoquarks decaying to $t\mu$ and $b\nu$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 9 for exclusion contour in B($t\mu$)- M_{LQ} plane.
- ⁷ AAD 23F search for scalar leptoquarks decaying to te and $b\nu$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 9 for exclusion contour in B(te)- M_{LO} plane.
- ⁸ AAD 23F search for $\kappa=1$ (YM coupling) vector leptoquarks decaying to $t\nu$ and $b\mu$ in $p\,p$ collisions at $\sqrt{s}=13$ TeV. If $\kappa=0$ (minimal coupling) is assumed, the limit becomes $M_{LQ}>1710$ GeV. See their Fig. 10 for exclusion contour in $B(b\mu)-M_{LQ}$ plane.
- 9 AAD 23F search for $\kappa=1$ (YM coupling) vector leptoquarks decaying to $t\nu$ and be in pp collisions at $\sqrt{s}=13$ TeV. If $\kappa=0$ (minimal coupling) is assumed, the limit becomes $M_{LQ}>1620$ GeV. See their Fig. 10 for exclusion contour in ${\rm B}(be)-M_{LQ}$ plane.
- 10 TUMASYAN 22H search for scalar leptoquarks decaying to te. See their Fig. 27 for exclusion limit on leptoquark pair production cross section as function of M_{LO} .
- ¹¹ TUMASYAN 22H search for scalar leptoquarks decaying to $t\mu$. See their Fig. 27 for exclusion limit on leptoquark pair production cross section as function of M_{LO} .
- ¹² TUMASYAN 22H search for scalar leptoquarks decaying to $t\tau$. See their Fig. 27 for exclusion limit on leptoquark pair production cross section as function of M_{LQ} .
- 13 AAD 21AG search for scalar leptoquarks decaying to te. See their Fig. 6 for exclusion limit on B(te) as function of $M_{LO}.$
- 14 AAD 21AG search for scalar leptoquarks decaying to $t\mu$. See their Fig. 6 for exclusion limit on B($t\mu$) as function of M_{LQ} .
- 15 AAD 21AW search for scalar leptoquarks decaying to $b\tau$. See their Fig. 9 for exclusion contour in B $(b\tau)-M_{LO}$ plane.
- 16 AAD 21AW search for scalar leptoquarks decaying to t au. See their Fig. 9 for exclusion contour in B $(t au)-M_{LQ}$ plane.
- ¹⁷ AAD 21AW search for $\kappa=1$ vector leptoquarks decaying to $b\tau$. See their Fig. 10 for exclusion contour in B($b\tau$)- M_{LQ} plane and for limit on $\kappa=0$ vector leptoquarks.
- ¹⁸ AAD 21S search for scalar leptoquarks decaying to $b\nu$ in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes $B(b\nu)=1$. For $B(b\nu)=0.05$, the limit becomes 400 GeV.
- ¹⁹ AAD 21T search for scalar leptoquarks decaying to $t\tau$ in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes B $(t\tau)=1$. For B $(t\tau)=0.5$, the limit becomes 1220 GeV. See their Fig. 15b for limits on B $(t\tau)$ as a function of leptoquark mass.
- 20 SIRUNYAN 21J search for scalar leptoquarks decaying to $t\tau$ and $b\nu$ in pp collisions at $\sqrt{s}=$ 13 TeV.
- 21 SIRUNYAN 21 J search for vector leptoquarks decaying to $t\nu$ and $b\tau$ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above assumes $\kappa=1$. If we assume $\kappa=0$, the limit becomes $M_{LO}>1290$ GeV.
- ²² AAD 20AK search for scalar leptoquarks decaying to eq, eb, ec, μq , μb , μc . The quoted limit assumes B(eq) = 1. See their Fig. 9 for limits on B(eq), B(eb), B(ec), B(μq), B(μb), B(μc) as a function of leptoquark mass.
- ²³ AAD 20AK search for scalar leptoquarks decaying to eq, eb, ec, μq , μb , μc . The quoted limit assumes B(μq) = 1. See their Fig. 9 for limits on B(eq), B(eb), B(ec), B(μq), B(μb), B(μc) as a function of leptoquark mass.
- ²⁴ AAD 20S search for scalar leptoquarks decaying to $t\nu$ in pp collisions at $\sqrt{s}=13$ TeV.

- ²⁵ SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$ (q=u,d,s,c). The limit quoted above assumes scalar leptoquark with B(νb) = 1.
- ²⁶ SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$ (q=u,d,s,c). The limit quoted above assumes scalar leptoquark with $B(\nu t)=1$.
- ²⁷ SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$ (q = u, d, s, c). The limit quoted above assumes scalar leptoquark with B(νq) = 1.
- 28 SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$ ($q=u,\ d,\ s,\ c$). The limit quoted above assumes vector leptoquark with B($\nu\,b$) = 1 and $\kappa=1$. If we assume $\kappa=0$, the limit becomes $M_{LQ}>1560$ GeV.
- ²⁹ SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$ ($q=u,\ d,\ s,\ c$). The limit quoted above assumes vector leptoquark with B(νt) = 1 and $\kappa=1$. If we assume $\kappa=0$, the limit becomes $M_{LO}>1475$ GeV.
- 30 SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$ (q=u,~d,~s,~c). The limit quoted above assumes vector leptoquark with B($\nu\,q$) = 1 and $\kappa=1$. If we assume $\kappa=0$, the limit becomes $M_{LQ}>1560$ GeV.
- ³¹ AABOUD 19AX search for leptoquarks using eejj events in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes B(eq)=1.
- ³² AABOUD 19AX search for leptoquarks using $\mu\mu jj$ events in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes $B(\mu q)=1$.
- ³³ AABOUD 19X search for scalar leptoquarks decaying to $t\nu$ in pp collisions at $\sqrt{s}=13$ TeV.
- ³⁴ AABOUD 19X search for scalar leptoquarks decaying to $b\tau$ in pp collisions at $\sqrt{s}=13$ TeV.
- ³⁵ AABOUD 19X search for scalar leptoquarks decaying to $b\nu$ in pp collisions at $\sqrt{s}=13$ TeV.
- 36 AABOUD 19X search for scalar leptoquarks decaying to $t\tau$ in pp collisions at $\sqrt{s}=13$ TeV.
- 37 SIRUNYAN 19BI search for a pair of scalar leptoquarks decaying to $\mu\mu jj$ and to $\mu\nu jj$ final states in pp collisions at $\sqrt{s}=13$ TeV. Limits are shown as a function of β where β is the branching fraction to a muon and a quark. For $\beta=1.0$ (0.5) LQ masses up to 1530 (1285) GeV are excluded. See Fig. 9 for exclusion limits in the plane of β and LQ mass.
- 38 SIRUNYAN 19BJ search for a pair of scalar leptoquarks decaying to $e\,e\,jj$ and $e\,\nu\,jj$ final states in $p\,p$ collisions at $\sqrt{s}=13$ TeV. Limits are shown as a function of the branching fraction β to an electron and a quark. For $\beta=1.0$ (0.5) LQ masses up to 1435 (1270) GeV are excluded. See Fig. 9 for exclusion limits in the plane of β and LQ mass.
- ³⁹ SIRUNYAN 19Y search for a pair of third generation scalar leptoquarks, each decaying to τ and a jet. Assuming B(τ b) = 1, leptoquark masses below 1.02 TeV are excluded.
- ⁴⁰ SIRUNYAN 18CZ search for scalar leptoquarks decaying to τt in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes B(τt) = 1.
- ⁴¹ SIRUNYAN 18EC set limits for scalar and vector leptoquarks decaying to μt , τt , and νb . The limit quoted above assumes scalar leptoquark with B(μt) = 1.
- ⁴² SIRUNYAN 18EC set limits for scalar and vector leptoquarks decaying to μt , τt , and νb . The limit quoted above assumes vector leptoquark with all possible combinations of branching fractions to μt , τt , and νb .
- ⁴³ SIRUNYAN 18U set limits for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$. The limit quoted above assumes scalar leptoquark with B($b\nu$) = 1. Vector leptoquarks with $\kappa=1$ are excluded below masses of 1810 GeV.
- 44 SIRUNYAN 18U set limits for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$. The limit quoted above assumes scalar leptoquark with $B(q\nu)=1$. Vector leptoquarks with $\kappa=1$ are excluded below masses of 1790 GeV.
- ⁴⁵ SIRUNYAN 18U set limits for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$. The limit quoted above assumes scalar leptoquark with B(νt) = 1. Vector leptoquarks with $\kappa = 1$ are excluded below masses of 1780 GeV.
- ⁴⁶ SIRUNYAN 18U set limits for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$. $\kappa=1$ and LQ $\rightarrow b\nu$ are assumed.

- ⁴⁷ SIRUNYAN 18U set limits for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$. $\kappa=1$ and LQ $\to q\nu$ with q=u,d,s,c are assumed.
- ⁴⁸ SIRUNYAN 18U set limits for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$. $\kappa=1$ and LQ $\to t\nu$ are assumed.
- ⁴⁹ KHACHATRYAN 17J search for scalar leptoquarks decaying to τb using pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes $B(\tau b)=1$.
- ⁵⁰ SIRUNYAN 17H search for scalar leptoquarks using $\tau \tau bb$ events in pp collisions at \sqrt{s} = 8 TeV. The limit above assumes B(τb) = 1.
- ⁵¹ AAD 16G search for scalar leptoquarks using eejj events in collisions at $\sqrt{s}=8$ TeV. The limit above assumes B(eq)=1.
- ⁵² AAD 16G search for scalar leptoquarks using $\mu\mu jj$ events in collisions at $\sqrt{s}=8$ TeV. The limit above assumes $B(\mu q)=1$.
- ⁵³ AAD 16G search for scalar leptoquarks decaying to $b\nu$. The limit above assumes $B(b\nu)$
- ⁵⁴ AAD 16G search for scalar leptoquarks decaying to $t\nu$. The limit above assumes $B(t\nu) = 1$.
- ⁵⁵ KHACHATRYAN 16AF search for scalar leptoquarks using eejj and $e\nu jj$ events in pp collisions at $\sqrt{s}=8$ TeV. The limit above assumes B(eq)=1. For B(eq)=0.5, the limit becomes 850 GeV.
- 56 KHACHATRYAN 16AF search for scalar leptoquarks using $\mu\mu jj$ and $\mu\nu jj$ events in pp collisions at $\sqrt{s}=8$ TeV. The limit above assumes $B(\mu q)=1$. For $B(\mu q)=0.5$, the limit becomes 760 GeV.
- ⁵⁷ KHACHATRYAN 15AJ search for scalar leptoquarks using $\tau\tau tt$ events in pp collisions at $\sqrt{s}=8$ TeV. The limit above assumes $B(\tau t)=1$.
- ⁵⁸ KHACHATRYAN 14T search for scalar leptoquarks decaying to τb using pp collisions at $\sqrt{s}=8$ TeV. The limit above assumes B(τb) = 1. See their Fig. 5 for the exclusion limit as function of B(τb).
- 59 SIRUNYAN 19BC search for scalar leptoquark (LQ) pair production in pp collisions at $\sqrt{s}=13$ TeV. One LQ is assumed to decay to $\mu\,q$, while the other decays to dark matter pair and SM particles. See their Fig. 4 for limits in $M_{\rm LQ}-M_{\rm DM}$ plane.
- ⁶⁰ AAD 13AE search for scalar leptoquarks using $\tau \tau bb$ events in pp collisions at $E_{\rm cm} = 7$ TeV. The limit above assumes B(τb) = 1.
- ⁶¹ CHATRCHYAN 13M search for scalar and vector leptoquarks decaying to τb in pp collisions at $E_{\rm cm}=7$ TeV. The limit above is for scalar leptoquarks with B(τb) = 1.
- 62 AAD 12H search for scalar leptoquarks using $e\,e\,j\,j$ and $e\,\nu\,j\,j$ events in $p\,p$ collisions at $E_{\rm cm}=7$ TeV. The limit above assumes ${\sf B}(e\,q)=1$. For ${\sf B}(e\,q)=0.5$, the limit becomes 607 GeV.
- 63 AAD 120 search for scalar leptoquarks using $\mu\mu jj$ and $\mu\nu jj$ events in pp collisions at $E_{\rm cm}=7$ TeV. The limit above assumes ${\sf B}(\mu\,q)=1$. For ${\sf B}(\mu\,q)=0.5$, the limit becomes 594 GeV
- ⁶⁴CHATRCHYAN 12AG search for scalar leptoquarks using $e\,e\,j\,j$ and $e\,\nu\,j\,j$ events in $p\,p$ collisions at $E_{\rm cm}=7$ TeV. The limit above assumes B($e\,q$) = 1. For B($e\,q$) = 0.5, the limit becomes 640 GeV.
- 65 CHATRCHYAN 12AG search for scalar leptoquarks using $\mu\mu jj$ and $\mu\nu jj$ events in pp collisions at $E_{\rm cm}=7$ TeV. The limit above assumes $B(\mu q)=1$. For $B(\mu q)=0.5$, the limit becomes 650 GeV.
- ⁶⁶ CHATRCHYAN 12BO search for scalar leptoquarks decaying to $\nu \, b$ in $p \, p$ collisions at \sqrt{s} = 7 TeV. The limit above assumes B($\nu \, b$) = 1.
- 67 AAD 11D search for scalar leptoquarks using eejj and $e\nu jj$ events in pp collisions at $E_{\rm cm}=7$ TeV. The limit above assumes B(eq)=1. For B(eq)=0.5, the limit becomes 319 GeV.
- ⁶⁸ AAD 11D search for scalar leptoquarks using $\mu\mu jj$ and $\mu\nu jj$ events in pp collisions at $E_{\rm cm}=7$ TeV. The limit above assumes B(μq) = 1. For B(μq) = 0.5, the limit becomes 362 GeV.
- ⁶⁹ ABAZOV 11V search for scalar leptoquarks using $e\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The limit above assumes B(eq) = 0.5.

- 70 CHATRCHYAN 11N search for scalar leptoquarks using $e\nu jj$ events in pp collisions at $E_{\rm cm}=7$ TeV. The limit above assumes B(eq) = 0.5.
- ⁷¹ KHACHATRYAN 11D search for scalar leptoquarks using eejj events in pp collisions at $E_{cm} = 7$ TeV. The limit above assumes B(eq) = 1.
- ⁷² KHACHATRYAN 11E search for scalar leptoquarks using $\mu \mu jj$ events in pp collisions at $E_{\rm cm}=7$ TeV. The limit above assumes $B(\mu q)=1$.
- ⁷³ ABAZOV 10L search for pair productions of scalar leptoquark state decaying to νb in $p \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. The limit above assumes $B(\nu b) = 1$.
- ⁷⁴ ABAZOV 09 search for scalar leptoquarks using $\mu\mu jj$ and $\mu\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm Cm}=1.96$ TeV. The limit above assumes B(μq) = 1. For B(μq) = 0.5, the limit becomes 270 GeV.
- ⁷⁵ ABAZOV 09AF search for scalar leptoquarks using eejj and $e\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The limit above assumes B(eq)=1. For B(eq)=0.5 the bound becomes 284 GeV.
- ⁷⁶ AALTONEN 08P search for vector leptoquarks using $\tau^+\tau^-b\overline{b}$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. Assuming Yang-Mills (minimal) couplings, the mass limit is >317 GeV (251 GeV) at 95% CL for B(τb) = 1.
- ⁷⁷ Search for pair production of scalar leptoquark state decaying to τb in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. The limit above assumes $B(\tau b) = 1$.
- ⁷⁸ Search for scalar leptoquarks using $\nu \nu jj$ events in $\overline{p}p$ collisions at $E_{\rm cm}=1.96$ TeV. The limit above assumes B(νq) = 1.
- 79 ABAZOV 07J search for pair productions of scalar leptoquark state decaying to $\nu\,b$ in $p\,\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The limit above assumes ${\rm B}(\nu\,b)=1.$
- ⁸⁰ ABAZOV 06A search for scalar leptoquarks using $\mu\mu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV and 1.96 TeV. The limit above assumes B(μq) = 1. For B(μq) = 0.5, the limit becomes 204 GeV.
- 81 ABAZOV 06L search for scalar leptoquarks using $\nu\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV and at 1.96 TeV. The limit above assumes B(νq) = 1.
- ⁸² ABULENCIA 06T search for scalar leptoquarks using $\mu\mu jj$, $\mu\nu jj$, and $\nu\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted limit assumes B(μq) = 1. For B(μq) = 0.5 or 0.1, the bound becomes 208 GeV or 143 GeV, respectively. See their Fig. 4 for the exclusion limit as a function of B(μq).
- ⁸³ ABAZOV 05H search for scalar leptoquarks using eejj and $e\nu jj$ events in $\overline{p}p$ collisions at $E_{\rm cm}=1.8$ TeV and 1.96 TeV. The limit above assumes B(eq)=1. For B(eq)=0.5 the bound becomes 234 GeV.
- 84 ACOSTA 05P search for scalar leptoquarks using eejj, $e\nu jj$ events in $\overline{p}p$ collisions at $E_{\rm cm}=1.96{\rm TeV}$. The limit above assumes B(eq) = 1. For B(eq) = 0.5 and 0.1, the bound becomes 205 GeV and 145 GeV, respectively.
- ⁸⁵ ABBIENDI 03R search for scalar/vector leptoquarks in e^+e^- collisions at $\sqrt{s}=189$ –209 GeV. The quoted limits are for charge -4/3 isospin 0 scalar-leptoquark with B(ℓq) = 1. See their table 12 for other cases.
- ⁸⁶ ABAZOV 02 search for scalar leptoquarks using $\nu\nu jj$ events in $\overline{p}p$ collisions at $E_{\rm cm}=1.8$ TeV. The bound holds for all leptoquark generations. Vector leptoquarks are likewise constrained to lie above 200 GeV.
- ABAZOV 01D search for scalar leptoquarks using $e\nu jj$, eejj, and $\nu\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. The limit above assumes B(eq)=1. For B(eq)=0.5 and 0, the bound becomes 204 and 79 GeV, respectively. Bounds for vector leptoquarks are also given. Supersedes ABBOTT 98E.
- ABBIENDI 00M search for scalar/vector leptoquarks in e^+e^- collisions at \sqrt{s} =183 GeV. The quoted limits are for charge -4/3 isospin 0 scalar-leptoquarks with B(ℓq)=1. See their Table 8 and Figs. 6–9 for other cases.
- ⁸⁹ ABBOTT 00C search for scalar leptoquarks using $\mu\mu jj$, $\mu\nu jj$, and $\nu\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. The limit above assumes B(μq)=1. For B(μq)=0.5 and 0, the bound becomes 180 and 79 GeV respectively. Bounds for vector leptoquarks are also given.

- ⁹⁰ AFFOLDER 00K search for scalar leptoquark using $\nu\nu cc$ events in $p\overline{p}$ collisions at $E_{\rm cm} = 1.8$ TeV. The quoted limit assumes B(νc)=1. Bounds for vector leptoquarks are also given.
- ⁹¹ AFFOLDER 00K search for scalar leptoquark using $\nu\nu\,b\,b$ events in $p\overline{p}$ collisions at $E_{\rm cm}{=}1.8\,{\rm TeV}$. The quoted limit assumes B($\nu\,b$)=1. Bounds for vector leptoquarks are also given.
- ⁹² ABBOTT 99J search for leptoquarks using $\mu\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.8{\rm TeV}$. The quoted limit is for a scalar leptoquark with $B(\mu q)=B(\nu q)=0.5$. Limits on vector leptoquarks range from 240 to 290 GeV.
- 93 ABBOTT 98E search for scalar leptoquarks using $e\nu jj$, eejj, and $\nu\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. The limit above assumes B(eq)=1. For B(eq)=0.5 and 0, the bound becomes 204 and 79 GeV, respectively.
- ⁹⁴ ABBOTT 98J search for charge -1/3 third generation scalar and vector leptoquarks in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. The quoted limit is for scalar leptoquark with B(ν b)=1.
- ⁹⁵ ABE 98S search for scalar leptoquarks using $\mu\mu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. The limit is for B(μq)= 1. For B(μq)=B(νq)=0.5, the limit is > 160 GeV.
- 96 GROSS-PILCHER 98 is the combined limit of the CDF and DØ Collaborations as determined by a joint CDF/DØ working group and reported in this FNAL Technical Memo. Original data published in ABE 97X and ABBOTT 98E.
- ⁹⁷ ABE 97F search for third generation scalar and vector leptoquarks in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. The quoted limit is for scalar leptoquark with B(τ b) = 1.
- ⁹⁸ ABE 97X search for scalar leptoquarks using eejj events in $p\bar{p}$ collisions at $E_{cm}=1.8$ TeV. The limit is for B(eq)=1.
- 99 Limit is for charge -1/3 isospin-0 leptoquark with B(ℓq) = 2/3.
- ¹⁰⁰ First and second generation leptoquarks are assumed to be degenerate. The limit is slightly lower for each generation.
- ¹⁰¹ Limits are for charge -1/3, isospin-0 scalar leptoquarks decaying to $\ell^- q$ or νq with any branching ratio. See paper for limits for other charge-isospin assignments of leptoquarks.
- ¹⁰² KIM 90 assume pair production of charge 2/3 scalar-leptoquark via photon exchange. The decay of the first (second) generation leptoquark is assumed to be any mixture of de^+ and $u\overline{\nu}$ ($s\mu^+$ and $c\overline{\nu}$). See paper for limits for specific branching ratios.
- ¹⁰³ BARTEL 87B limit is valid when a pair of charge 2/3 spinless leptoquarks X is produced with point coupling, and when they decay under the constraint B(X $\rightarrow c\overline{\nu}_{\mu}$) + B(X $\rightarrow s\mu^{+}$) = 1.
- ¹⁰⁴ BEHREND 86B assumed that a charge 2/3 spinless leptoquark, χ , decays either into $s\mu^+$ or $c\overline{\nu}$: B($\chi \to s\mu^+$) + B($\chi \to c\overline{\nu}$) = 1.

MASS LIMITS for Leptoquarks from Single Production

These limits depend on the q- ℓ -leptoquark coupling g_{LQ} . It is often assumed that $g_{LQ}^2/4\pi=1/137$. Limits shown are for a scalar, weak isoscalar, charge -1/3 leptoquark.

VALUE (GeV)	CL%	DOCUMENT ID TECN COMMENT
>1280	95	1 AAD 23BZ ATLS LQ $ ightarrow$ $b au$
> 550	95	² SIRUNYAN 21J CMS Third generation
none 150-740	95	³ SIRUNYAN 18BJ CMS Third generation
>1755	95	⁴ KHACHATRY16AG CMS First generation
> 660	95	⁵ KHACHATRY16AG CMS Second generation
> 304	95	⁶ ABRAMOWICZ12A ZEUS First generation
> 73	95	⁷ ABREU 93J DLPH Second generation

• • • We do not use the following data for averages, fits, limits, etc. • • •

		⁸ AAD	22E	ATLS	$LQ ightarrow ue^-$, $c\mu^-$
		⁹ TUMASYAN	21 D	CMS	First generation
		¹⁰ DEY	16	ICCB	uq ightarrowLQ ightarrow uq
		¹¹ AARON	11A	H1	Lepton-flavor violation
> 300	95	¹² AARON	11 B	H1	First generation
		¹³ ABAZOV	07E	D0	Second generation
> 295	95	¹⁴ AKTAS	05 B	H1	First generation
		¹⁵ CHEKANOV	05A	ZEUS	Lepton-flavor violation
> 298	95	¹⁶ CHEKANOV	03 B	ZEUS	First generation
> 197	95	¹⁷ ABBIENDI	02 B	OPAL	First generation
		¹⁸ CHEKANOV	02	ZEUS	Repl. by CHEKANOV 05A
> 290	95	¹⁹ ADLOFF	01 C	H1	First generation
> 204	95	²⁰ BREITWEG	01	ZEUS	First generation
		²¹ BREITWEG	00E	ZEUS	First generation
> 161	95	²² ABREU	99G	DLPH	First generation
> 200	95	²³ ADLOFF	99	H1	First generation
		²⁴ DERRICK	97	ZEUS	Lepton-flavor violation
> 168	95	²⁵ DERRICK	93	ZEUS	First generation

- 1 AAD 23BZ search for single production of charge 4/3 scalar leptoquarks decaying to $b\tau^-$, and charge 2/3 vector leptoquarks decaying to $\overline{b}\tau^-$ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above assumes a scalar leptoquark with B($b\tau$) = 1 and the leptoquark coupling strength $\lambda=1.0$. The limit becomes $M_{LQ}~>1530$ GeV for $\lambda=2.5$.
- 2 SIRUNYAN 21J search for single production of charge -1/3 scalar leptoquarks decaying to $t\tau^-$ and $b\nu$, and charge 2/3 vector leptoquarks decaying to $t\nu$ and $b\tau^+$ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above assumes a scalar leptoquark with B($t\tau$) = B($b\nu$) = 0.5 and the leptoquark coupling strength $\lambda=1.5$. The limit becomes $M_{LO}>750$ GeV for $\lambda=2.5$.
- ³ SIRUNYAN 18BJ search for single production of charge 2/3 scalar leptoquarks decaying to τb in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes $B(\tau b)=1$ and the leptoquark coupling strength $\lambda=1$.
- ⁴ KHACHATRYAN 16AG search for single production of charge $\pm 1/3$ scalar leptoquarks using $e\,e\,j$ events in $p\,p$ collisions at $\sqrt{s}=8$ TeV. The limit above assumes $\mathsf{B}(e\,q)=1$ and the leptoquark coupling strength $\lambda=1$.
- 5 KHACHATRYAN 16AG search for single production of charge $\pm 1/3$ scalar leptoquarks using $\mu\mu j$ events in pp collisions at $\sqrt{s}=8$ TeV. The limit above assumes ${\rm B}(\mu\,q)=1$ and the leptoquark coupling strength $\lambda=1.$
- 6 ABRAMOWICZ 12A limit is for a scalar, weak isoscalar, charge -1/3 leptoquark coupled with e_R . See their Figs. 12–17 and Table 4 for states with different quantum numbers.
- ⁷ Limit from single production in Z decay. The limit is for a leptoquark coupling of electromagnetic strength and assumes $B(\ell q) = 2/3$. The limit is 77 GeV if first and second leptoquarks are degenerate.
- ⁸ AAD 22E leptoquarks decaying both to $u\,e^-$ and $c\,\mu^-$ are constrained from the comparison of the production cross sections for $e^+\,\mu^-$ and $e^-\,\mu^+$ in $p\,p$ collisions at $\sqrt{s}=13$ TeV. Scalar leptoquarks with $M_{LQ} < 1880$ GeV are excluded for $g^{eu}=g^{\mu\,c}=1$.
- ⁹TUMASYAN 21D search for energetic jets $+ \not\!\! E_T$ events in pp collisions at $\sqrt{s}=13$ TeV. The branching fraction for the decay of the leptoquark into an electron neutrino and up quark is assumed to be 100% ($\beta=0$). See their Fig. 12 for exclusion limits in mass-coupling plane.
- ¹⁰ DEY 16 use the 2010-2012 IceCube PeV energy data set to constrain the leptoquark production cross section through the $\nu q \to LQ \to \nu q$ process. See their Figure 4 for the exclusion limit in the mass-coupling plane.

- ¹¹ AARON 11A search for various leptoquarks with lepton-flavor violating couplings. See their Figs. 2–3 and Tables 1–4 for detailed limits.
- ¹² The quoted limit is for a scalar, weak isoscalar, charge -1/3 leptoquark coupled with e_R . See their Figs. 3–5 for limits on states with different quantum numbers.
- ¹³ ABAZOV 07E search for leptoquark single production through qg fusion process in $p\overline{p}$ collisions. See their Fig. 4 for exclusion plot in mass-coupling plane.
- 14 AKTAS 05B limit is for a scalar, weak isoscalar, charge -1/3 leptoquark coupled with e_R . See their Fig. 3 for limits on states with different quantum numbers.
- ¹⁵ CHEKANOV 05 search for various leptoquarks with lepton-flavor violating couplings. See their Figs.6–10 and Tables 1–8 for detailed limits.
- 16 CHEKANOV 03B limit is for a scalar, weak isoscalar, charge -1/3 leptoquark coupled with e_R . See their Figs. 11–12 and Table 5 for limits on states with different quantum numbers.
- 17 For limits on states with different quantum numbers and the limits in the mass-coupling plane, see their Fig. 4 and Fig. 5.
- ¹⁸ CHEKANOV 02 search for various leptoquarks with lepton-flavor violating couplings. See their Figs. 6–7 and Tables 5–6 for detailed limits.
- ¹⁹ For limits on states with different quantum numbers and the limits in the mass-coupling plane, see their Fig. 3.
- ²⁰ See their Fig. 14 for limits in the mass-coupling plane.
- ²¹ BREITWEG 00E search for F=0 leptoquarks in e^+p collisions. For limits in mass-coupling plane, see their Fig. 11.
- ²² ABREU 99G limit obtained from process $e\gamma \to LQ+q$. For limits on vector and scalar states with different quantum numbers and the limits in the coupling-mass plane, see their Fig. 4 and Table 2.
- ²³ For limits on states with different quantum numbers and the limits in the mass-coupling plane, see their Fig. 13 and Fig. 14. ADLOFF 99 also search for leptoquarks with lepton-flavor violating couplings. ADLOFF 99 supersedes AID 96B.
- ²⁴ DERRICK 97 search for various leptoquarks with lepton-flavor violating couplings. See their Figs. 5–8 and Table 1 for detailed limits.
- ²⁵ DERRICK 93 search for single leptoquark production in ep collisions with the decay eq and νq . The limit is for leptoquark coupling of electromagnetic strength and assumes $B(eq) = B(\nu q) = 1/2$. The limit for B(eq) = 1 is 176 GeV. For limits on states with different quantum numbers, see their Table 3.

Indirect Limits for Leptoquarks

https://pdg.lbl.gov

IIIuirect Lii	11112 101	Leptoquarks			
VALUE (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do	not use	the following data	for av	erages, f	fits, limits, etc. • • •
					u-nucleus scattering
		² TUMASYAN	23AV	v CMS	$q\overline{q}' ightarrow au u$
		³ TUMASYAN	23 S	CMS	pp ightarrow au au
		⁴ CRIVELLIN	21A	RVUE	First generation
		⁵ AEBISCHER	20	RVUE	B decays
		⁶ DEPPISCH	20	RVUE	$K o \pi u u$
> 3.1	95		Z19	ZEUS	First generation
		⁸ MANDAL	19	RVUE	$ au$, μ , e, K
		⁹ ZHANG		RVUE	D decays
		¹⁰ BARRANCO	16	RVUE	D decays
		11 KUMAR	16	RVUE	neutral K mixing, rare K decays
		¹² BESSAA	15	RVUE	$q\overline{q} ightarrow e^+e^-$
> 14	95	¹³ SAHOO	15A	RVUE	$B_{s,d} \rightarrow \mu^+ \mu^-$
		¹⁴ SAKAKI	13	RVUE	$B \rightarrow D^{(*)} \tau \overline{\nu}, B \rightarrow X_{S} \nu \overline{\nu}$
		¹⁵ KOSNIK	12	RVUE	$b \rightarrow s\ell^+\ell^-$

Page 45

>	2.5	95	16 AARON	11 C		First generation
			17 DORSNER	11	RVUE	scalar, weak singlet, charge 4/3
			¹⁸ AKTAS	07A	H1	Lepton-flavor violation
>	0.49	95	¹⁹ SCHAEL	07A	ALEP	$e^+e^- o q \overline{q}$
			²⁰ SMIRNOV	07	RVUE	• •
			²¹ CHEKANOV	05A	ZEUS	Lepton-flavor violation
>	1.7	96	²² ADLOFF	03	H1	First generation
>	46	90	²³ CHANG	03	BELL	Pati-Salam type
			²⁴ CHEKANOV	02	ZEUS	Repl. by CHEKANOV 05A
>	1.7	95	²⁵ CHEUNG	01 B	RVUE	First generation
>	0.39	95	²⁶ ACCIARRI	00 P	L3	$e^+e^- o q q$
>	1.5	95	²⁷ ADLOFF	00	H1	First generation
>	0.2	95	²⁸ BARATE	001	ALEP	Repl. by SCHAEL 07A
			²⁹ BARGER	00	RVUE	Cs
			³⁰ GABRIELLI	00	RVUE	Lepton flavor violation
>	0.74	95	³¹ ZARNECKI	00	RVUE	S_1 leptoquark
			³² ABBIENDI	99	OPAL	-
>	19.3	95	³³ ABE	98V	CDF	$B_{m s} ightarrow e^{\pm} \mu^{\mp}$, Pati-Salam type
			³⁴ ACCIARRI	98J	L3	$e^{+}e^{-} ightarrow q \overline{q}$
			35 ACKERSTAFF	98V	OPAL	$e^+e^- ightarrow q\overline{q}$, $e^+e^- ightarrow b\overline{b}$
>	0.76	95	³⁶ DEANDREA	97	RVUE	R_2 leptoquark
			³⁷ DERRICK	97	ZEUS	Lepton-flavor violation
			³⁸ GROSSMAN	97	RVUE	$B \rightarrow \tau^+ \tau^-(X)$
			³⁹ JADACH	97	RVUE	$e^+e^- \rightarrow q \overline{q}$
>1	200		⁴⁰ KUZNETSOV	95 B	RVUE	Pati-Salam type
			⁴¹ MIZUKOSHI	95	RVUE	Third generation scalar leptoquark
>	0.3	95	⁴² BHATTACH	94	RVUE	Spin-0 leptoquark coupled to $\overline{e}_R t_I$
			⁴³ DAVIDSON	94	RVUE	2
>	18		⁴⁴ KUZNETSOV	94	RVUE	Pati-Salam type
>	0.43	95	⁴⁵ LEURER	94	RVUE	First generation spin-1 leptoquark
>	0.44	95	⁴⁵ LEURER	94 B	RVUE	First generation spin-0 leptoquark
			⁴⁶ MAHANTA	94	RVUE	P and T violation
>	1		⁴⁷ SHANKER	82	RVUE	Nonchiral spin-0 leptoquark
>	125		⁴⁷ SHANKER	82	RVUE	Nonchiral spin-1 leptoquark

 $^{^1}$ CALABRESE 23 obtain limits on leptoquark coupling from coherent $\nu\text{-nucleus}$ scattering data collected by COHERENT experiment. See their Fig. 3 for limits in mass-coupling plane.

²TUMASYAN 23AW search for $\tau\nu$ events mediated by t-channel leptoquark exchange in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 10 for limits in mass-coupling plane.

³ TUMASYAN 23S search for leptoquark induced $b\overline{b}\to \tau^+\tau^-$ process in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 12 for limits on a vector $b\tau$ leptoquark in mass-coupling plane.

⁴ CRIVELLIN 21A set limits on coupling strengths of scalar and vector leptoquarks using $K \to \pi \nu \nu$, $K \to \pi e^+ e^-$, $K^0 - \overline{K}^0$ and $D^0 - \overline{D}^0$ mixings, and weak neutral current measurements. See their Fig. 2 and Fig. 3 for the limits in mass-coupling plane.

⁵ AEBISCHER 20 explain the B decay anomalies using four-fermion operator Wilson coefficients. See their Table 1. These Wilson coefficients may be generated by a U_1 vector leptoquark with U_1 transforming as $(3,1)_{2/3}$ under the SM gauge group. See their Figures 6, 7, 8 for the regions of the LQ parameter space which explains the B anomalies and avoids the indirect low energy constraints.

- ⁶ DEPPISCH 20 limits on the lepton-number-violating higher-dimensional-operators are derived from $K \to \pi \nu \nu$ in the standard model effective field theory. These higher-dimensional-operators may be induced from leptoquark-exchange diagrams.
- 7 ABRAMOWICZ 19 obtain a limit on $\lambda/M_{LQ}>1.16~{\rm TeV}^{-1}$ for weak isotriplet spin-0 leptoquark S_1^L . We obtain the limit quoted above by converting the limit on λ/M_{LQ} for S_1^L assuming $\lambda=\sqrt{4\pi}$. See their Table 5 for the limits of leptoquarks with different quantum numbers. These limits are derived from bounds of eq contact interactions.

⁸ MANDAL 19 give bounds on leptoquarks from τ -decays, leptonic dipole moments, lepton-flavor-violating processes, and K decays.

⁹ZHANG 18A give bounds on leptoquark induced four-fermion interactions from $D \to K\ell\nu$. The authors inform us that the shape parameter of the vector form factor in both the abstract and the conclusions of ZHANG 18A should be $r_{+1}=2.16\pm0.07$ rather than ±0.007 . The numbers listed in their Table 7 are correct.

¹⁰ BARRANCO 16 give bounds on leptoquark induced four-fermion interactions from $D \to K \ell \nu$ and $D_S \to \ell \nu$.

- 11 KUMAR 16 gives bound on SU(2) singlet scalar leptoquark with chrge -1/3 from $K^0-\overline{K}^0$ mixing, $K\to~\pi\nu\overline{\nu},~K^0_L\to~\mu^+\mu^-$, and $K^0_L\to~\mu^\pm\,\mathrm{e}^\mp$ decays.
- ¹² BESSAA 15 obtain limit on leptoquark induced four-fermion interactions from the ATLAS and CMS limit on the \overline{q} $q\overline{e}$ e contact interactions.
- ¹³ SAHOO 15A obtain limit on leptoquark induced four-fermion interactions from $B_{s,d} \to \mu^+\mu^-$ for $\lambda \simeq O(1)$.
- ¹⁴ SAKAKI 13 explain the $B \to D^{(*)} \tau \overline{\nu}$ anomaly using Wilson coefficients of leptoquark-induced four-fermion operators.
- ¹⁵ KOSNIK 12 obtains limits on leptoquark induced four-fermion interactions from $b \to s \ell^+ \ell^-$ decays.
- ¹⁶ AARON 11c limit is for weak isotriplet spin-0 leptoquark at strong coupling $\lambda = \sqrt{4\pi}$. For the limits of leptoquarks with different quantum numbers, see their Table 3. Limits are derived from bounds of eq contact intereractions.
- ¹⁷ DORSNER 11 give bounds on scalar, weak singlet, charge 4/3 leptoquark from K, B, au decays, meson mixings, LFV, g-2 and $Z \to b\overline{b}$.
- ¹⁸ AKTAS 07A search for lepton-flavor violation in *ep* collision. See their Tables 4–7 for limits on lepton-flavor violating four-fermion interactions induced by various leptoquarks.
- 19 SCHAEL 07A limit is for the weak-isoscalar spin-0 left-handed leptoquark with the coupling of electromagnetic strength. For the limits of leptoquarks with different quantum numbers, see their Table 35.
- ²⁰ SMIRNOV 07 obtains mass limits for the vector and scalar chiral leptoquark states from $K \rightarrow e\mu, B \rightarrow e\tau$ decays.
- ²¹ CHEKANOV 05 search for various leptoquarks with lepton-flavor violating couplings. See their Figs.6–10 and Tables 1–8 for detailed limits.
- ²² ADLOFF 03 limit is for the weak isotriplet spin-0 leptoquark at strong coupling $\lambda = \sqrt{4\pi}$. For the limits of leptoquarks with different quantum numbers, see their Table 3. Limits are derived from bounds on $e^{\pm} q$ contact interactions.
- ²³ The bound is derived from B($B^0 \to e^{\pm} \mu^{\mp}$) < 1.7×10^{-7} .
- ²⁴ CHEKANOV 02 search for lepton-flavor violation in *ep* collisions. See their Tables 1–4 for limits on lepton-flavor violating and four-fermion interactions induced by various leptoquarks.
- 25 CHEUNG 01B quoted limit is for a scalar, weak isoscalar, charge -1/3 leptoquark with a coupling of electromagnetic strength. The limit is derived from bounds on contact interactions in a global electroweak analysis. For the limits of leptoquarks with different quantum numbers, see Table 5.
- ²⁶ ACCIARRI 00P limit is for the weak isoscalar spin-0 leptoquark with the coupling of electromagnetic strength. For the limits of leptoquarks with different quantum numbers, see their Table 4.

- ²⁷ ADLOFF 00 limit is for the weak isotriplet spin-0 leptoquark at strong coupling, $\lambda = \sqrt{4\pi}$. For the limits of leptoquarks with different quantum numbers, see their Table 2. ADLOFF 00 limits are from the Q^2 spectrum measurement of $e^+ p \to e^+ X$.
- ²⁸ BARATE 00I search for deviations in cross section and jet-charge asymmetry in $e^+e^- \rightarrow \overline{q}\,q$ due to t-channel exchange of a leptoquark at \sqrt{s} =130 to 183 GeV. Limits for other scalar and vector leptoquarks are also given in their Table 22.
- ²⁹ BARGER 00 explain the deviation of atomic parity violation in cesium atoms from prediction is explained by scalar leptoquark exchange.
- $^{
 m 30}$ GABRIELLI 00 calculate various process with lepton flavor violation in leptoquark models.
- 31 ZARNECKI 00 limit is derived from data of HERA, LEP, and Tevatron and from various low-energy data including atomic parity violation. Leptoquark coupling with electromagnetic strength is assumed.
- ³² ABBIENDI 99 limits are from $e^+e^- \rightarrow q \overline{q}$ cross section at 130–136, 161–172, 183 GeV. See their Fig. 8 and Fig. 9 for limits in mass-coupling plane.
- 33 ABE 98V quoted limit is from B($B_s \to e^{\pm} \mu^{\mp}) < 8.2 \times 10^{-6}$. ABE 98V also obtain a similar limit on $M_{LQ} >$ 20.4 TeV from B($B_d \to e^{\pm} \mu^{\mp}) <$ 4.5 \times 10 $^{-6}$. Both bounds assume the non-canonical association of the b quark with electrons or muons under SU(4).
- ³⁴ ACCIARRI 98J limit is from $e^+e^- \rightarrow q\overline{q}$ cross section at $\sqrt{s}=$ 130–172 GeV which can be affected by the t- and u-channel exchanges of leptoquarks. See their Fig. 4 and Fig. 5 for limits in the mass-coupling plane.
- ³⁵ ACKERSTAFF 98V limits are from $e^+e^- \rightarrow q \overline{q}$ and $e^+e^- \rightarrow b \overline{b}$ cross sections at \sqrt{s} = 130–172 GeV, which can be affected by the *t* and *u*-channel exchanges of leptoquarks. See their Fig. 21 and Fig. 22 for limits of leptoquarks in mass-coupling plane.
- 36 DEANDREA 97 limit is for \widetilde{R}_2 leptoquark obtained from atomic parity violation (APV). The coupling of leptoquark is assumed to be electromagnetic strength. See Table 2 for limits of the four-fermion interactions induced by various scalar leptoquark exchange. DEANDREA 97 combines APV limit and limits from Tevatron and HERA. See Fig. 1–4 for combined limits of leptoquark in mass-coupling plane.
- ³⁷ DERRICK 97 search for lepton-flavor violation in *ep* collision. See their Tables 2–5 for limits on lepton-flavor violating four-fermion interactions induced by various leptoquarks.
- ³⁸ GROSSMAN 97 estimate the upper bounds on the branching fraction $B \to \tau^+ \tau^-(X)$ from the absence of the B decay with large missing energy. These bounds can be used to constrain leptoquark induced four-fermion interactions.
- ³⁹ JADACH 97 limit is from $e^+e^- \rightarrow q \overline{q}$ cross section at \sqrt{s} =172.3 GeV which can be affected by the t- and u-channel exchanges of leptoquarks. See their Fig. 1 for limits on vector leptoquarks in mass-coupling plane.
- ⁴⁰ KUZNETSOV 95B use π , K, B, τ decays and μe conversion and give a list of bounds on the leptoquark mass and the fermion mixing matrix in the Pati-Salam model. The quoted limit is from $K_I \to \mu e$ decay assuming zero mixing.
- ⁴¹ MIZUKOSHI 95 calculate the one-loop radiative correction to the *Z*-physics parameters in various scalar leptoquark models. See their Fig. 4 for the exclusion plot of third generation leptoquark models in mass-coupling plane.
- ⁴²BHATTACHARYYA 94 limit is from one-loop radiative correction to the leptonic decay width of the Z. m_H =250 GeV, $\alpha_s(m_Z)$ =0.12, m_t =180 GeV, and the electroweak strength of leptoquark coupling are assumed. For leptoquark coupled to $\overline{e}_L t_R$, $\overline{\mu} t$, and $\overline{\tau} t$, see Fig. 2 in BHATTACHARYYA 94B erratum and Fig. 3.
- 43 DAVIDSON 94 gives an extensive list of the bounds on leptoquark-induced four-fermion interactions from π , K, D, B, μ , τ decays and meson mixings, etc. See Table 15 of DAVIDSON 94 for detail.
- ⁴⁴ KUZNETSOV 94 gives mixing independent bound of the Pati-Salam leptoquark from the cosmological limit on $\pi^0 \to \overline{\nu}\nu$.
- ⁴⁵ LEURER 94, LEURER 94B limits are obtained from atomic parity violation and apply to any chiral leptoquark which couples to the first generation with electromagnetic strength.

For a nonchiral leptoquark, universality in $\pi_{\ell 2}$ decay provides a much more stringent bound.

46 MAHANTA 94 gives bounds of *P*- and *T*-violating scalar-leptoquark couplings from atomic and molecular experiments.

MASS LIMITS for Diquarks

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT				
>7200 (CL = 95%) OUR LIMIT								
none 600-7200	95	¹ SIRUNYAN 18B0	CMS	E ₆ diquark				
none 600-6900	95	² KHACHATRY17W	CMS	E_6 diquark				
none 1500-6000	95	³ KHACHATRY16K	CMS	E_6 diquark				
none 500-1600	95	⁴ KHACHATRY16L	CMS	E_6 diquark				
none 1200-4700	95	⁵ KHACHATRY15V	CMS	E_6° diquark				
• • • We do not use	the follo	wing data for averages, fi	ts, limits	s, etc. • • •				
>3750	95	⁶ CHATRCHYAN 13A	CMS	E ₆ diquark				
none 1000-4280	95	⁷ CHATRCHYAN 13AS	CMS	Superseded by KHACHA- TRYAN 15V				
>3520	95	⁸ CHATRCHYAN 11Y	CMS	Superseded by CHA- TRCHYAN 13A				
none 970–1080, 1450–1600	95	⁹ KHACHATRY10	CMS	Superseded by CHA- TRCHYAN 13A				
none 290–630	95	10 AALTONEN 09AG	CDF	E ₆ diquark				
none 290-420	95	¹¹ ABE 97G	CDF	E ₆ diquark				
none 15-31.7	95	¹² ABREU 940	DLPH	SUSY E ₆ diquark				

 $^{^{1}}$ SIRUNYAN 18BO search for resonances decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV.

 $^{^{47}}$ From $(\pi \to e \nu)/(\pi \to \mu \nu)$ ratio. SHANKER 82 assumes the leptoquark induced four-fermion coupling $4g^2/M^2$ $(\overline{\nu}_{eL} \ u_R)$ $(\overline{d}_L e_R)$ with $g{=}0.004$ for spin-0 leptoquark and g^2/M^2 $(\overline{\nu}_{eL} \ \gamma_\mu u_L)$ $(\overline{d}_R \ \gamma^\mu e_R)$ with $g{\simeq}$ 0.6 for spin-1 leptoquark.

² KHACHATRYAN 17W search for resonances decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV.

³ KHACHATRYAN 16K search for resonances decaying to dijets in pp collisions at $\sqrt{s} = 13$ TeV

⁴ KHACHATRYAN 16L search for resonances decaying to dijets in pp collisions at \sqrt{s} = 8 TeV with the data scouting technique, increasing the sensitivity to the low mass resonances.

 $^{^{5}}$ KHACHATRYAN 15V search for resonances decaying to dijets in pp collisions at $\sqrt{s}=8$ TeV

⁶ CHATRCHYAN 13A search for new resonance decaying to dijets in pp collisions at \sqrt{s} = 7 TeV.

⁷ CHATRCHYAN 13AS search for new resonance decaying to dijets in pp collisions at \sqrt{s} = 8 TeV.

 $^{^{8}}$ TeV. 8 CHATRCHYAN 11Y search for new resonance decaying to dijets in pp collisions at $\sqrt{s}=7\,\text{TeV}$.

 $^{^9\,\}rm KHACHATRYAN$ 10 search for new resonance decaying to dijets in pp collisions at $\sqrt{s}=7\,\rm TeV.$

 $^{^{10}\,\}text{AALTONEN}$ 09AC search for new narrow resonance decaying to dijets.

 $^{^{11}}$ ABE 97G search for new particle decaying to dijets.

¹² ABREU 940 limit is from $e^+e^- \rightarrow \overline{cs}cs$. Range extends up to 43 GeV if diquarks are degenerate in mass.

MASS LIMITS for g_A (axigluon) and Other Color-Octet Gauge Bosons

DOCUMENT ID

CL%

Axigluons are massive color-octet gauge bosons in chiral color models and have axial-vector coupling to quarks with the same coupling strength as gluons.

TECN COMMENT

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID TECH COMMENT
>6600 (CL = 95%)	OUR LIM	IT
none 1800-6600	95	1 SIRUNYAN 20AI CMS $pp o g_A X$, $g_A o 2j$
none 600-6100	95	2 SIRUNYAN 18BO CMS $pp ightarrow g_A X, g_A ightarrow 2j$
none 600-5500	95	3 KHACHATRY17W CMS $pp \rightarrow g_A X, g_A \rightarrow 2j$
none 1500-5100	95	4 KHACHATRY16K CMS $pp ightarrow g_A X$, $g_A ightarrow 2j$
none 500-1600	95	⁵ KHACHATRY16L CMS $pp \rightarrow g_A X, g_A \rightarrow 2j$
none 1300-3600	95	6 KHACHATRY15V CMS $pp ightarrow g_{A}X, g_{A} ightarrow 2j$
• • • We do not use	the follow	ving data for averages, fits, limits, etc. ● ●
		7 KHACHATRY17Y CMS $pp ightarrow g_{A}g_{A} ightarrow 8j$
		⁸ AAD 16W ATLS $pp \rightarrow g_A X$, $g_A \rightarrow$
		$b\overline{b}b\overline{b}$
>2800	95	9 KHACHATRY16E CMS $pp \xrightarrow{g} g_{KK} X$, $g_{KK} \rightarrow$
		10 KHACHATRY15AV CMS $pp \rightarrow \Theta^0 \Theta^0 \rightarrow b\overline{b}Zg$
		$\sigma ightarrow 2j$
>3360	95	12 CHATRCHYAN 13A CMS $pp ightarrow g_{A}$ X, $g_{A} ightarrow 2j$
none 1000-3270	95	13 CHATRCHYAN 13AS CMS Superseded by KHACHA-
none 250-740	95	TRYAN 15V PP $ ightarrow 2g_{A}X,g_{A} ightarrow 2j$
> 775	95 95	14 CHATRCHYAN 13AU CMS $pp \rightarrow 2g_A X, g_A \rightarrow 2j$ 15 ABAZOV 12R D0 $p\overline{p} \rightarrow g_A X, g_A \rightarrow t\overline{t}$
>2470	95 95	16 CHATRCHYAN 11Y CMS Superseded by CHA-
/2410	93	TRCHYAN 13A
		17 AALTONEN 10L CDF $p\overline{p} \rightarrow g_A X, g_A \rightarrow t\overline{t}$
none 1470-1520	95	18 KHACHATRY10 CMS Superseded by CHA-
none 260-1250	95	TRCHYAN 13A $p\overline{p} o g_{A}X,g_{A} o 2j$
> 910	95	²⁰ CHOUDHURY 07 RVUE $p\overline{p} \rightarrow t\overline{t}X$
> 365	95	²¹ DONCHESKI 98 RVUE $\Gamma(Z \rightarrow \text{hadron})$
none 200–980	95	22 ABE 97G CDF $p\overline{p} \rightarrow g_A X, g_A \rightarrow 2j$
none 200-870	95	23 ABE 95N CDF $p\overline{p} \rightarrow g_{\Lambda}X, g_{\Lambda} \rightarrow q\overline{q}$
none 240-640	95	24 ABE 93G CDF $p\overline{p} \rightarrow g_{\Delta}X, g_{\Delta} \rightarrow 2j$
> 50	95	²⁵ CUYPERS 91 RVUE $\sigma(e^+e^- \rightarrow \text{hadrons})$
none 120-210	95	26 ABE 90H CDF $p\overline{p} \rightarrow g_A X, g_A \rightarrow 2j$
> 29		27 ROBINETT 89 THEO Partial-wave unitarity
none 150-310	95	²⁸ ALBAJAR 88B UA1 $p\overline{p} \rightarrow g_A X, g_A \rightarrow 2j$
> 20		BERGSTROM 88 RVUE $p\overline{p} o \Upsilon X$ via $g_A g$
> 9		29 CUYPERS 88 RVUE Υ decay
> 25		30 DONCHESKI 88B RVUE $ au$ decay
¹ SIRUNYAN 20AI	search for	resonances decaying into dijets in pp collisions at $\sqrt{s} = 13$

¹ SIRUNYAN 20AI search for resonances decaying into dijets in pp collisions at $\sqrt{s}=13$ TeV.

Created: 4/29/2024 18:59

VALUE (GeV)

 $^{^2}$ SIRUNYAN 18BO search for resonances decaying to dijets in $p\,p$ collisions at $\sqrt{s}=13$ TeV.

 $^{^3}$ KHACHATRYAN 17W search for resonances decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV.

 $^{^4}$ KHACHATRYAN 16K search for resonances decaying to dijets in pp collisions at $\sqrt{s}=$ _13 TeV.

⁵ KHACHATRYAN 16L search for resonances decaying to dijets in pp collisions at \sqrt{s} = 8 TeV with the data scouting technique, increasing the sensitivity to the low mass resonances.

- 6 KHACHATRYAN 15V search for resonances decaying to dijets in pp collisions at $\sqrt{s}=8$ TeV.
- ⁷ KHACHATRYAN 17Y search for pair production of color-octet gauge boson g_A each decaying to 4j in pp collisions at $\sqrt{s}=8$ TeV.
- ⁸ AAD 16W search for a new resonance decaying to a pair of b and B_H in pp collisions at $\sqrt{s}=8$ TeV. The vector-like quark B_H is assumed to decay to bH. See their Fig. 3 and Fig. 4 for limits on $\sigma \cdot B$.
- ⁹ KHACHATRYAN 16E search for KK gluon decaying to $t\overline{t}$ in pp collisions at $\sqrt{s}=8$ TeV.
- ¹⁰ KHACHATRYAN 15AV search for pair productions of neutral color-octet weak-triplet scalar particles (Θ^0), decaying to $b\overline{b}$, Zg or γg , in pp collisions at $\sqrt{s}=8$ TeV. The Θ^0 particle is often predicted in coloron (G', color-octet gauge boson) models and appear in the pp collisions through $G' \to \Theta^0 \Theta^0$ decays. Assuming B($\Theta^0 \to b\overline{b}$) = 0.5, they give limits $m_{\Theta^0} > 623$ GeV (426 GeV) for $m_{G'} = 2.3$ m_{Θ^0} ($m_{G'} = 5$ m_{Θ^0}).
- ¹¹ AALTONEN 13R search for new resonance decaying to $\sigma\sigma$, with hypothetical strongly interacting σ particle subsequently decaying to 2 jets, in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV, using data corresponding to an integrated luminosity of 6.6 fb⁻¹. For 50 GeV $< m_{\sigma} < m_{g_A}/2$, axigluons in mass range 150–400 GeV are excluded.
- ¹² CHATRCHYAN 13A search for new resonance decaying to dijets in pp collisions at \sqrt{s} = 7 TeV.
- ¹³ CHATRCHYAN 13AS search for new resonance decaying to dijets in pp collisions at \sqrt{s} = 8 TeV.
- ¹⁴ CHATRCHYAN 13AU search for the pair produced color-octet vector bosons decaying to $q\overline{q}$ pairs in pp collisions. The quoted limit is for B($g_A \rightarrow q\overline{q}$) = 1.
- 15 ABAZOV 12R search for massive color octet vector particle decaying to $t\overline{t}$. The quoted limit assumes g_A couplings with light quarks are suppressed by 0.2.
- $^{16}\,\text{CHATRCHYAN}$ 11Y search for new resonance decaying to dijets in pp collisions at $\sqrt{s}=7\,\text{TeV}.$
- 17 AALTONEN 10L search for massive color octet non-chiral vector particle decaying into $t\overline{t}$ pair with mass in the range 400 GeV < M < 800 GeV. See their Fig. 6 for limit in the mass-coupling plane.
- $^{18}\,\text{KHACHATRYAN}$ 10 search for new resonance decaying to dijets in pp collisions at $\sqrt{s}=7\,\text{TeV}.$
- $^{19}\,\mathring{\text{AALTONEN}}$ 09AC search for new narrow resonance decaying to dijets.
- 20 CHOUDHURY 07 limit is from the $t\bar{t}$ production cross section measured at CDF.
- ²¹ DONCHESKI 98 compare α_s derived from low-energy data and that from $\Gamma(Z \to \text{hadrons})/\Gamma(Z \to \text{leptons})$.
- 22 ABE 97G search for new particle decaying to dijets.
- $^{23}\,\mathrm{ABE}$ 95N assume axigluons decaying to quarks in the Standard Model only.
- ²⁴ ABE 93G assume $\Gamma(g_A) = N\alpha_S m_{g_A}/6$ with N=10.
- $^{25}\,{\rm CUYPERS}$ 91 compare $\alpha_{\it S}$ measured in \varUpsilon decay and that from R at PEP/PETRA energies.
- ²⁶ ABE 90H assumes $\Gamma(g_A) = N\alpha_s m_{g_A}/6$ with N=5 ($\Gamma(g_A)=0.09m_{g_A}$). For N=10, the excluded region is reduced to 120–150 GeV.
- ²⁷ROBINETT 89 result demands partial-wave unitarity of J=0 $t\overline{t} \to t\overline{t}$ scattering amplitude and derives a limit $m_{g_A}>0.5$ m_t . Assumes $m_t>56$ GeV.
- 28 ALBAJAR 88B result is from the nonobservation of a peak in two-jet invariant mass distribution. $\Gamma(g_A) < 0.4~m_{g_A}$ assumed. See also BAGGER 88.
- ²⁹ CUYPERS 88 requires $\Gamma(\Upsilon \to gg_A) < \Gamma(\Upsilon \to ggg)$. A similar result is obtained by DONCHESKI 88.

 30 DONCHESKI 88B requires $\Gamma(\varUpsilon\to g\,q\,\overline{q})/\Gamma(\varUpsilon\to g\,g\,g)<0.25,$ where the former decay proceeds via axigluon exchange. A more conservative estimate of <0.5 leads to $m_{g_A}>21$ GeV.

MASS LIMITS for Color-Octet Scalar Bosons

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use	e the follow	wing data for average	s, fits, limi	ts, etc. • • •
none 1800–3700 none 600–3400	95 95	² SIRUNYAN 18	BBO CMS	$pp ightarrow S_8 X, S_8 ightarrow gg$ $pp ightarrow S_8 X, S_8 ightarrow gg$
none 150-287	95	-		$\begin{array}{ccc} pp \to & \Theta^0 \Theta^0 \to & b\overline{b}Zg \\ pp \to & S_8S_8X, S_8 \to 2 \text{ jets} \end{array}$

¹ SIRUNYAN 20AI search for resonances decaying into dijets in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes S_{8qq} coupling $k_s^2=1/2$.

X^0 (Heavy Boson) Searches in Z Decays

Searches for radiative transition of Z to a lighter spin-0 state X^0 decaying to hadrons, a lepton pair, a photon pair, or invisible particles as shown in the comments. The limits are for the product of branching ratios.

CL% **DOCUMENT ID** TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. ¹ RAINBOLT RVUE $X^0 \rightarrow \ell^+ \ell^-$ ² SIRUNYAN 19AZ CMS $X^0 \rightarrow \mu^+\mu^-$ ³ BARATE 980 ALEP $X^0 \rightarrow \ell \overline{\ell}, q \overline{q}, g g, \gamma \gamma, \nu \overline{\nu}$ ⁴ ACCIARRI $X^0 \rightarrow \text{invisible particle(s)}$ 97Q L3 ⁵ ACTON 93E OPAL $X^0 o \gamma \gamma$ ⁶ ABREU 92D DLPH $X^0 \rightarrow \text{hadrons}$ ⁷ ADRIANI $X^0 \rightarrow \text{hadrons}$ 92F L3 OPAL $X^0 \rightarrow$ anything ⁸ ACTON 91B OPAL $X^0 \rightarrow e^+e^ < 1.1 \times 10^{-4}$ ⁹ ACTON 95 $< 9 \times 10^{-5}$ ⁹ ACTON 91B OPAL $X^0 \rightarrow \mu^+\mu^-$ 95 91B OPAL $X^0 \rightarrow \tau^+ \tau^ < 1.1 \times 10^{-4}$ ⁹ ACTON 95 $X^0 \rightarrow e^+e^ < 2.8 \times 10^{-4}$ ¹⁰ ADEVA 91D L3 95 $< 2.3 \times 10^{-4}$ ¹⁰ ADEVA 91D L3 $X^0 \rightarrow \mu^+ \mu^-$ 95 $< 4.7 \times 10^{-4}$ ¹¹ ADEVA $X^0 \rightarrow \text{hadrons}$ 91D L3 95 $< 8 \times 10^{-4}$ ¹² AKRAWY 90J OPAL $X^0 \rightarrow \text{hadrons}$ 95

² SIRUNYAN 18BO search for color octet scalar boson produced through gluon fusion process in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes S_{8gg} coupling $k_s^2=1/2$.

³ KHACHATRYAN 15AV search for pair productions of neutral color-octet weak-triplet scalar particles (Θ^0), decaying to $b\overline{b}$, Zg or γg , in pp collisions at $\sqrt{s}=8$ TeV. The Θ^0 particle is often predicted in coloron (G', color-octet gauge boson) models and appear in the pp collisions through $G' \to \Theta^0 \Theta^0$ decays. Assuming B($\Theta^0 \to b\overline{b}$) = 0.5, they give limits $m_{\Theta^0} > 623$ GeV (426 GeV) for $m_{G'} = 2.3$ m_{Θ^0} ($m_{G'} = 5$ m_{Θ^0}).

⁴ AAD 13K search for pair production of color-octet scalar particles in pp collisions at \sqrt{s} = 7 TeV. Cross section limits are interpreted as mass limits on scalar partners of a Dirac gluino.

- ¹ RAINBOLT 19 limits are from B($Z \rightarrow \ell^+ \ell^- \ell^+ \ell^-$). See their Figs. 5 and 6 for limits in mass-coupling plane.
- ² SIRUNYAN 19AZ search for $pp \to Z \to X^0 \mu^+ \mu^- \to \mu^+ \mu^- \mu^+ \mu^-$ events in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 5 for limits on $\sigma(pp \to X^0 \mu^+ \mu^-) \cdot \mathsf{B}(X^0 \to \mu^+ \mu^-)$.
- ³ BARATE 98U obtain limits on B($Z \to \gamma X^0$)B($X^0 \to \ell \overline{\ell}, q \overline{q}, g g, \gamma \gamma, \nu \overline{\nu}$). See their Fig. 17.
- ⁴ See Fig. 4 of ACCIARRI 97Q for the upper limit on B($Z \to \gamma X^0$; $E_{\gamma} > E_{\min}$) as a function of E_{\min} .
- ⁵ ACTON 93E give $\sigma(e^+e^- \to X^0\gamma)\cdot \mathrm{B}(X^0 \to \gamma\gamma)<0.4~\mathrm{pb}$ (95%CL) for $m_{\chi^0}=60\pm2.5~\mathrm{GeV}$. If the process occurs via s-channel γ exchange, the limit translates to $\Gamma(X^0)\cdot \mathrm{B}(X^0 \to \gamma\gamma)^2<20~\mathrm{MeV}$ for $m_{\chi^0}=60\pm1~\mathrm{GeV}$.
- ⁶ ABREU 92D give $\sigma_Z \cdot B(Z \to \gamma X^0) \cdot B(X^0 \to \text{hadrons}) < (3-10) \text{ pb for } m_{\chi^0} = 10-78 \text{ GeV}$. A very similar limit is obtained for spin-1 χ^0 .
- ⁷ ADRIANI 92F search for isolated γ in hadronic Z decays. The limit $\sigma_Z \cdot \mathsf{B}(Z \to \gamma X^0) \cdot \mathsf{B}(X^0 \to \mathsf{hadrons}) < (2-10) \, \mathsf{pb} \, (95\% \mathrm{CL})$ is given for $m_{X^0} = 25$ –85 GeV.
- ⁸ ACTON 91 searches for $Z \to Z^* X^0$, $Z^* \to e^+ e^-$, $\mu^+ \mu^-$, or $\nu \overline{\nu}$. Excludes any new scalar X^0 with $m_{X^0} < 9.5$ GeV/c if it has the same coupling to ZZ^* as the MSM Higgs boson.
- $^9\,\mathrm{ACTON}$ 91B limits are for $m_{\chi 0} = 60\text{--}85$ GeV.
- 10 ADEVA 91D limits are for $m_{\chi 0} =$ 30–89 GeV.
- 11 ADEVA 91D limits are for $m_{\chi 0} =$ 30–86 GeV.
- 12 AKRAWY 90J give $\Gamma(Z\to \gamma X^0)\cdot \mathrm{B}(X^0\to \mathrm{hadrons})<1.9$ MeV (95%CL) for $m_{\ensuremath{\chi^0}}=32\text{--}80$ GeV. We divide by $\Gamma(Z)=2.5$ GeV to get product of branching ratios. For nonresonant transitions, the limit is $\mathrm{B}(Z\to \gamma\,q\,\overline{q})<8.2$ MeV assuming three-body phase space distribution.

MASS LIMITS for a Heavy Neutral Boson Coupling to e^+e^-

<i>VALUE</i> (GeV)	CL%	DOCUMENT ID	DOCUMENT ID		COMMENT
• • • We do not	use the fo	llowing data for a	verag	es, fits, I	imits, etc. • • •
none 55-61		¹ ODAKA	89	VNS	$\Gamma(X^0 ightarrow e^+e^-)$.
					$B(X^0 \rightarrow had.) \gtrsim 0.2 \text{ MeV}$
>45	95	² DERRICK	86		$\Gamma(X^0 \rightarrow e^+e^-)=6 \text{ MeV}$
>46.6	95	³ ADEVA	85		$\Gamma(X^0 ightarrow~e^+e^-){=}10~{ m keV}$
>48	95	³ ADEVA	85	MRKJ	$\Gamma(X^0 ightarrow~e^+e^-)=$ 4 MeV
		⁴ BERGER	85 B	PLUT	
none 39.8-45.5		⁵ ADEVA	84		$\Gamma(X^0 ightarrow~e^+e^-){=}10~{ m keV}$
>47.8	95	⁵ ADEVA	84	MRKJ	$\Gamma(X^0 ightarrow~e^+e^-)=$ 4 MeV
none 39.8-45.2		⁵ BEHREND	84C	CELL	
>47	95	⁵ BEHREND	84C	CELL	$\Gamma(X^0 ightarrow~e^+e^-)=$ 4 MeV

 $^{^{1}}$ ODAKA 89 looked for a narrow or wide scalar resonance in $\rm e^{+}\,e^{-} \rightarrow hadrons$ at $\rm \it E_{cm}=55.0-60.8~GeV.$

² DERRICK 86 found no deviation from the Standard Model Bhabha scattering at $E_{\rm cm}=$ 29 GeV and set limits on the possible scalar boson e^+e^- coupling. See their figure 4 for excluded region in the $\Gamma(X^0 \to e^+e^-)$ - m_{X^0} plane. Electronic chiral invariance requires a parity doublet of X^0 , in which case the limit applies for $\Gamma(X^0 \to e^+e^-) = 3$ MeV.

- ³ ADEVA 85 first limit is from 2γ , $\mu^+\mu^-$, hadrons assuming χ^0 is a scalar. Second limit is from e^+e^- channel. $E_{cm}=40$ –47 GeV. Supersedes ADEVA 84.
- ⁴ BERGER 85B looked for effect of spin-0 boson exchange in $e^+e^-
 ightarrow e^+e^-$ and $\mu^+\mu^$ at $E_{\rm cm}=34.7$ GeV. See Fig. 5 for excluded region in the $m_{\chi^0}-\Gamma(\chi^0)$ plane.
- 5 ADEVA 84 and BEHREND 84C have $E_{
 m cm}=39.8$ –45.5 GeV. MARK-J searched X^{0} in $e^+e^- \rightarrow \text{ hadrons, } 2\gamma, \ \mu^+\mu^-, \ e^+e^- \text{ and CELLO}$ in the same channels plus τ pair. No narrow or broad X^0 is found in the energy range. They also searched for the effect of X^0 with $m_{X} > E_{cm}$. The second limits are from Bhabha data and for spin-0 singlet. The same limits apply for $\Gamma(X^0 \to e^+e^-) = 2$ MeV if X^0 is a spin-0 doublet. The second limit of BEHREND 84C was read off from their figure 2. The original papers also list limits in other channels.

Search for X^0 Resonance in e^+e^- Collisions The limit is for $\Gamma(X^0 \to e^+e^-) \cdot B(X^0 \to f)$, where f is the specified final state. Spin 0 is assumed for X^0 .

VALUE (keV)	CL%	DOCUMENT ID)	TECN	COMMENT
• • • We do not	use the followin	ng data for averag	ges, fits,	limits, e	etc. • • •
$< 10^{3}$	95	¹ ABE	93 C	VNS	Г(ее)
<(0.4–10)	95	² ABE	93 C	VNS	$f = \gamma \gamma$
<(0.3–5)	95	^{3,4} ABE	93 D	TOPZ	$f = \gamma \gamma$
<(2-12)	95	^{3,4} ABE	93 D	TOPZ	f = hadrons
<(4-200)	95	^{4,5} ABE	93 D	TOPZ	f = ee
<(0.1–6)	95	^{4,5} ABE	93 D	TOPZ	$f = \mu \mu$
<(0.5–8)	90	⁶ STERNER	93	AMY	$f = \gamma \gamma$
-				_	

¹ Limit is for $\Gamma(X^0 \rightarrow e^+e^-)$ $m_{X^0} = 56$ –63.5 GeV for $\Gamma(X^0) = 0.5$ GeV.

Search for X^0 Resonance in ep Collisions

DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

Search for X^0 Resonance in $e^+e^- \rightarrow X^0\gamma$

VALUE (GeV)	DOCUMENT ID	TECN COMMENT
• • • We do not use the foll	es, fits, limits, etc. • • •	
	¹ ABBIENDI ² ABREU ³ ADAM	03D OPAL $X^0 \to \gamma \gamma$ 00Z DLPH X^0 decaying invisibly 96C DLPH X^0 decaying invisibly
https://pdg.lbl.gov	Page 54	Created: 4/29/2024 18:59

 $^{^2}$ Limit is for $m_{\chi 0} =$ 56–61.5 GeV and is valid for $\Gamma(\chi^0) \ll$ 100 MeV. See their Fig. 5 for

 $_{3}^{\text{limits for }\Gamma}$ limits for $_{X^{0}}^{\text{1,2 GeV}}$.

 $^{^4 \, \}text{Limit}$ is valid for $\Gamma(X^0) \ll 100$ MeV. See paper for limits for $\Gamma = 1$ GeV and those for J=2 resonances.

 $^{^{5}}$ Limit is for $m_{\chi^{0}} = 56.6-60$ GeV.

 $^{^6}$ STERNER 93 limit is for $m_{\chi^0}=$ 57–59.6 GeV and is valid for $\Gamma(\chi^0){<}100$ MeV. See their Fig. 2 for limits for $\Gamma = 1,3$ GeV.

 $^{^{1}}$ CHEKANOV 02B ZEUS X o jj

¹ CHEKANOV 02B search for photoproduction of X decaying into dijets in ep collisions. See their Fig. 5 for the limit on the photoproduction cross section.

- ¹ ABBIENDI 03D measure the $e^+e^- \to \gamma\gamma\gamma$ cross section at \sqrt{s} =181–209 GeV. The upper bound on the production cross section, $\sigma(e^+e^- \to X^0\gamma)$ times the branching ratio for $X^0 \to \gamma\gamma$, is less than 0.03 pb at 95%CL for X^0 masses between 20 and 180 GeV. See their Fig. 9b for the limits in the mass-cross section plane.
- ² ABREU 00Z is from the single photon cross section at \sqrt{s} =183, 189 GeV. The production cross section upper limit is less than 0.3 pb for X^0 mass between 40 and 160 GeV. See their Fig. 4 for the limit in mass-cross section plane.
- ³ ADAM 96C is from the single photon production cross at \sqrt{s} =130, 136 GeV. The upper bound is less than 3 pb for X^0 masses between 60 and 130 GeV. See their Fig. 5 for the exact bound on the cross section $\sigma(e^+e^- \to \gamma X^0)$.

Search for X^0 Resonance in $Z \to f \overline{f} X^0$

The limit is for $B(Z \to f\overline{f}X^0) \cdot B(X^0 \to F)$ where f is a fermion and F is the specified final state. Spin 0 is assumed for X^0 .

<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e following	g data for averages	s, fits,	limits, e	etc. • • •
_		¹ ABREU	96T	DLPH	$f=e,\mu,\tau; F=\gamma\gamma$
$< 3.7 \times 10^{-6}$	95	² ABREU	96T	DLPH	$f=\nu$; $F=\gamma\gamma$
		³ ABREU	96T	DLPH	$f=q; F=\gamma\gamma$
$< 6.8 \times 10^{-6}$	95	² ACTON	93E	OPAL	$f=e,\mu,\tau; F=\gamma\gamma$
$< 5.5 \times 10^{-6}$	95	² ACTON	93E	OPAL	$f=q$; $F=\gamma\gamma$
$< 3.1 \times 10^{-6}$	95	² ACTON	93E	OPAL	$f=\nu$; $F=\gamma\gamma$
$< 6.5 \times 10^{-6}$	95	² ACTON	93E	OPAL	$f=e,\mu; F=\ell \overline{\ell}, q \overline{q}, \nu \overline{\nu}$
$< 7.1 \times 10^{-6}$	95	² BUSKULIC	93F	ALEP	$f=e,\mu; F=\ell \overline{\ell}, q \overline{q}, \nu \overline{\nu}$
		⁴ ADRIANI	92F	L3	$f=q$; $F=\gamma \gamma$

 $^{^1 \, {\}rm ABREU}$ 96T obtain limit as a function of $m_{\chi 0}.$ See their Fig. 6.

Search for X^0 Resonance in WX^0 final state

 VALUE (MeV)
 DOCUMENT ID
 TECN
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc.
 • • •

 1 AALTONEN 13AA CDF $X^{0}
ightarrow jj$ 2 CHATRCHYAN 12BR CMS $X^{0}
ightarrow jj$ 3 ABAZOV 11I D0 $X^{0}
ightarrow jj$ 4 ABE 97W CDF $X^{0}
ightarrow b\overline{b}$

 $^{^2}$ Limit is for $m_{\chi 0}$ around 60 GeV.

³ABREU 96T obtain limit as a function of $m_{\chi 0}$. See their Fig. 15.

 $^{^4}$ ADRIANI 92F give $\sigma_Z\cdot {\rm B}(Z\to q\overline{q}X^0)\cdot \overset{\frown}{\rm B}(X^0\to \gamma\gamma)<$ (0.75–1.5) pb (95%CL) for $m_{\chi0}=$ 10–70 GeV. The limit is 1 pb at 60 GeV.

 $^{^1}$ AALTONEN 13AA search for X^0 production associated with W (or Z) in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The upper limit on the cross section $\sigma(p\overline{p}\to WX^0)$ is 2.2 pb for $M_{X^0}=145$ GeV.

 $^{^2}$ CHATRCHYAN 12BR search for X^0 production associated with W in pp collisions at $E_{\rm cm}=7$ TeV. The upper limit on the cross section is 5.0 pb at 95% CL for $m_{\chi^0}=150$ GeV.

³ABAZOV 11I search for X^0 production associated with W in $p\bar{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The 95% CL upper limit on the cross section ranges from 2.57 to 1.28 pb for X^0 mass between 110 and 170 GeV.

⁴ ABE 97W search for X^0 production associated with W in $p\overline{p}$ collisions at $E_{\rm cm}{=}1.8$ TeV. The 95%CL upper limit on the production cross section times the branching ratio for $X^0 \to b\overline{b}$ ranges from 14 to 19 pb for X^0 mass between 70 and 120 GeV. See their Fig. 3 for upper limits of the production cross section as a function of m_{X^0} .

Search for X^0 Resonance in Quarkonium Decays

Limits are for branching ratios to modes shown. Spin 1 is assumed for X^0 .

VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 3 imes 10 $^{-5}$ -6 imes 10 $^{-3}$ 90 1 BALEST 95 CLE2 $^{\gamma}(1S)
ightarrow X^{0} \overline{X}^{0} \gamma$, $m_{\chi 0} <$ 3.9 GeV

Search for X^0 Resonance in H(125) Decays

Spin 1 is assumed for X^0 . See neutral Higgs search listing for pseudoscalar X^0 .

DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

 1 AAD 2 AABOUD 2 AABOUD 3 AAB

 1 AAD 22J search for X^0 production via $H(125) o X^0 X^0 / Z X^0 o 4\ell$ in pp collisions at $\sqrt{s}=13$ TeV. $X^0 o \ell^+\ell^-$ decay is assumed. See their Fig. 13 and Fig. 17 for limits on $\sigma \cdot B$ in $H(125) o X^0 X^0$ and $H(125) o Z X^0$ channels.

² AABOUD 18AP use pp collision data at $\sqrt{s}=13$ TeV. $X^0 \to \ell^+\ell^-$ decay is assumed. See their Fig. 9 for limits on $\sigma_{H(125)} \cdot \mathsf{B}(ZX^0)$.

³ AABOUD 18AP use pp collision data at $\sqrt{s}=13$ TeV. $X^0\to\ell^+\ell^-$ decay is assumed. See their Fig. 10 for limits on $\sigma_{H(125)}\cdot \mathrm{B}(X^0X^0)$.

REFERENCES FOR Searches for New Heavy Bosons (W', Z', leptoquarks, etc.)

CABARCAS 24	PL B848 138339	J.M. Cabarcas, A. Parada, N. Quinero	o-Poveda (USTA+)
AAD 23/	AH EPJ C83 633	G. Aad et al.	(ATLAS Collab.)
AAD 23I	BF JHEP 2307 202	G. Aad et al.	(ATLAS Collab.)
AAD 23I	BJ JHEP 2306 199	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 231	BZ JHEP 2310 001	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 230	CB JHEP 2310 082	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 230	CC JHEP 2312 073	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 230	CF EPJ C83 1075	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 230	CG EPJ C83 1164	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 230	CK PR D108 052009	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 23F	F JHEP 2306 188	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 23I	L JHEP 2306 036	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 230	O JHEP 2306 016	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 231	U JHEP 2307 125	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 23\	W JHEP 2307 116	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 23X	X JHEP 2307 090	G. Aad <i>et al.</i>	(ATLAS Collab.)
ADACHI 23E	B PRL 130 231801	I. Adachi <i>et al.</i>	(BELLE II Collab.)
ADACHI 23F	F PRL 131 121802	I. Adachi <i>et al.</i>	(BELLE II Collab.)
CALABRESE 23	PR D107 055039	R. Calabrese et al.	(NAPL, NAPLI)
HAYRAPETY 231		A. Hayrapetyan <i>et al.</i>	(CMS Collab.)
HAYRAPETY 230	G JHEP 2312 070	A. Hayrapetyan <i>et al.</i>	(CMS Collab.)

https://pdg.lbl.gov Page 56 Created: 4/29/2024 18:59

¹ BALEST 95 three-body limit is for phase-space photon energy distribution and angular distribution same as for $\Upsilon \to g g \gamma$.

LI MANZARI TUMASYAN TUMASYAN TUMASYAN TUMASYAN TUMASYAN AAD AAD AAD AAD AAD AAD AAD	23I JCAP 2309 009 23 PR D108 103020 23AF PR D108 012009 23AP PL B844 137813 23AW JHEP 2309 051 23BE JHEP 2311 181 23H JHEP 2305 227 23S JHEP 2307 073 22 PR D105 012001 22D PL B829 137066 22E PL B830 137106 22J JHEP 2203 041 22 PR D106 032015	SP. Li, XJ. Xu C.A. Manzari et al. A. Tumasyan et al. G. Aad et al. G. Aad et al. G. Aad et al. G. Aad et al. Yu.M. Andreev et al.	(BHEP) (UCB, LBL, IAC+) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
BONET COLOMA COLOMA CZANK TUMASYAN TUMASYAN	22 JHEP 2205 085 22 JHEP 2205 037 22A JHEP 2207 138 22 PR D106 012003 22 PRL 129 021802 22AA JHEP 2206 156	H. Bonet <i>et al.</i> P. Coloma <i>et al.</i> P. Coloma <i>et al.</i> T. Czank <i>et al.</i> A. Tumasyan <i>et al.</i> A. Tumasyan <i>et al.</i>	(IFT, OSU, STON, ICREA+) (IFT, CNYIT, ICC, ICREA+) (BELLE Collab.) (CMS Collab.) (CMS Collab.)
TUMASYAN TUMASYAN TUMASYAN TUMASYAN TUMASYAN TUMASYAN	22AA JHEP 2200 130 22AC JHEP 2207 067 22AE JHEP 2208 063 22AL JHEP 2209 088 22B PL B826 136888 22D PR D105 032008 22H PR D105 112007	A. Tumasyan et al.	(CMS Collab.)
TUMASYAN TUMASYAN TUMASYAN TUMASYAN AAD AAD	22I PR D106 012002 22J PR D106 012004 22P JHEP 2204 047 22R JHEP 2204 087 21AG EPJ C81 313 21AQ JHEP 2107 005	A. Tumasyan et al. G. Aad et al. G. Aad et al.	(CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.)
AAD AAD AAD AAD AAD AAD	21AW PR D104 112005 21AZ JHEP 2110 013 21BB JHEP 2111 209 21D PRL 126 121802 21K JHEP 2102 226 21S JHEP 2105 093	G. Aad et al.	(ATLAS Collab.)
AAD BURAS CADEDDU COLARESI CRIVELLIN KRIBS	21T JHEP 2106 179 21 JHEP 2106 068 21 JHEP 2101 116 21 PR D104 072003 21A PR D103 115023 21 PRL 126 011801	G. Aad <i>et al.</i> A.J. Buras <i>et al.</i> M. Cadeddu <i>et al.</i> J. Colaresi <i>et al.</i> A. Crivellin, D. Mueller, L G.D. Kribs, D. McKeen, N	
SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN TUMASYAN AAD	21J PL B819 136446 21N JHEP 2107 208 21X EPJ C81 688 21Y PL B820 136535 21D JHEP 2111 153 20AD PRL 125 131801	A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A. Tumasyan et al. G. Aad et al.	(CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (ATLAS Collab.)
AAD AAD AAD AAD AAD AAD AAD	20AF PRL 125 251802 20AJ PR D102 112008 20AK JHEP 2010 112 20AM JHEP 2010 061 20AT EPJ C80 1165 20S EPJ C80 737 20T JHEP 2003 145	G. Aad et al.	(ATLAS Collab.)
AAD AAIJ ADACHI AEBISCHER DEPPISCH SIRUNYAN SIRUNYAN	20W JHEP 2006 151 20AL JHEP 2010 156 20 PRL 124 141801 20 EPJ C80 252 20 JHEP 2012 186 20A EPJ C80 3 20Al JHEP 2005 033	G. Aad et al. R. Aaij et al. I. Adachi et al. J. Aebischer et al. F.F. Deppisch, K. Fridell, A.M. Sirunyan et al. A.M. Sirunyan et al.	(ATLAS Collab.) (LHCb Collab.) (BELLE II Collab.) (TUM, LAPTH, UCSC) J. Harz (LOUC, TUM) (CMS Collab.) (CMS Collab.)
SIRUNYAN SIRUNYAN SIRUNYAN AABOUD AABOUD AABOUD	20AQ PRL 124 131802 20M PL B805 135448 20Q EPJ C80 237 19AJ PL B795 56 19AS PR D99 092004 19AX EPJ C79 733 19B JHEP 1901 016	A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al.	(CMS Collab.) (CMS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
AABOUD	19BB PL B798 134942	M. Aaboud <i>et al.</i>	(ATLAS Collab.)

AADOUD	100	DI D700 216	M A L L , /	(ATLAC C)
AABOUD	19D	PL B788 316	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19E	PL B788 347	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19V	JHEP 1905 142	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19X	JHEP 1906 144	M. Aaboud et al.	(ATLAS Collab.)
AAD	19C	PR D100 052013	G. Aad et al.	(ATLAS Collab.)
AAD	19D	JHEP 1909 091	G. Aad et al.	(ATLAS Collab.)
Also	150	JHEP 2006 042 (errat.)		(ATLAS Collab.)
	101		G. Aad et al.	(ATLAS COIIAD.)
AAD	19L	PL B796 68		(ATLAS Collab.)
ABRAMOWICZ		PR D99 092006	H. Abramowicz et al.	(ZEUS Collab.)
LONG	19	NP B943 114629	H.N. Long et al.	
MANDAL	19	JHEP 1912 089	R. Mandal, A. Pich	(VALE, SIEG)
PANDEY	19	JHEP 1911 046	S. Pandey, S. Karmakar, S. Rakshit	(IITI)
RAINBOLT	19	PR D99 013004	J.L. Rainbolt, M. Schmitt	(NWES)
SIRUNYAN	19AA	JHEP 1904 031	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19AL	EPJ C79 208	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		EPJ C79 280	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		PL B792 107	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		PL B792 345	A.M. Sirunyan et al.	(CMS Collab.)
			•	
SIRUNYAN		PL B795 76	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BI		A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PR D99 052002	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19CB	PR D100 112007	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19CD	PRL 123 231803	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19CP	PL B798 134952	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19D	PRL 122 081804	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19I	JHEP 1901 051	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19V	JHEP 1903 127	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19Y	JHEP 1903 170	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD		PR D98 032015	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
		PR D98 032016	M. Aaboud <i>et al.</i>	
AABOUD		PL B779 24	M. Aaboud <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
AABOUD		PL B781 327		
AABOUD			M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18AI	JHEP 1803 174	M. Aabaud et al.	(ATLAS Collab.)
Also	1041/	JHEP 1811 051 (errat.)		(ATLAS Collab.)
AABOUD		JHEP 1803 042	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		JHEP 1803 009	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		JHEP 1806 166	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18B	EPJ C78 24	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		EPJ C78 401	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18BI	EPJ C78 565	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PL B787 68	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PR D98 052008	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PR D98 092008	M. Aaboud <i>et al</i> .	(ATLAS Collab.)
AABOUD	18F	PL B777 91	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18G	JHEP 1801 055	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18K	PRL 120 161802	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18N	PRL 121 081801	M. Aaboud et al.	(ATLAS Collab.)
AAIJ	18AQ	JHEP 1809 147	R. Aaij et al.	`(LHCb Collab.)
BOBOVNIKOV	18	PR D98 095029	I.D. Bobovnikov, P. Osland, A.A. Panko	
SIRUNYAN	18	PL B777 39	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18AT	JHEP 1804 073	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1805 088	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1806 128	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1806 120	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1807 115	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1807 075	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1808 130	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1805 148	A.M. Sirunyan et al.	(CMS Collab.)
				` '
SIRUNYAN		EPJ C78 707	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1809 101	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1811 161	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		PRL 121 241802	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1811 172	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18G	JHEP 1801 097	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18I	PRL 120 201801	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18P	PR D97 072006	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18U	PR D98 032005	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
ZHANG	18A	EPJ C78 695	J. Zhang, CX. Yue, CH. Li	(LNUDA)
AABOUD		PR D96 052004	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PL B774 494	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	17AT	JHEP 1710 182	M. Aaboud <i>et al.</i>	(ATLAS Collab.)

	L7B	PL B765 32	M. Aaboud et al.	(ATLAS Collab.)
KHACHATRY 1			V. Khachatryan et al.	(CMS Collab.)
KHACHATRY 1		JHEP 1702 048	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY 1 KHACHATRY 1		JHEP 1703 077 PL B768 57	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
KHACHATRY 1		PL B768 137	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY 1			V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY 1		PL B770 257	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY 1		PL B770 278	V. Khachatryan et al.	(CMS Collab.)
	L7A	JHEP 1703 162	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
		PL B774 533 JHEP 1710 180	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
	17A1	JHEP 1707 121	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
	L7I	JHEP 1708 029	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN 1	L7Q	JHEP 1707 001	A.M. Sirunyan et al.	(CMS Collab.)
	L7R	EPJ C77 636	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
	L7T L7V	PRL 119 111802	A.M. Sirunyan et al.	(CMS Collab.)
	17 V 16	JHEP 1709 053 PL B759 229	A.M. Sirunyan <i>et al.</i> M. Aaboud <i>et al.</i>	(CMS Collab.) (ATLAS Collab.)
		EPJ C76 585	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
		JHEP 1609 173	M. Aaboud et al.	(ATLAS Collab.)
	l6P	EPJ C76 541	M. Aaboud et al.	(ATLAS Collab.)
	L6U	PL B761 372	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	l6V l6G	PL B762 334 EPJ C76 5	M. Aaboud <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
	16L	EPJ C76 210	G. Aad et al.	(ATLAS Collab.)
	l6R	PL B755 285	G. Aad et al.	(ATLAS Collab.)
AAD 1	l6S	PL B754 302	G. Aad et al.	(ATLAS Collab.)
	L6W		G. Aad et al.	(ATLAS Collab.)
	16	JP G43 115004	J. Barranco <i>et al.</i>	
DEY 1 KHACHATRY 1	l6 6∆F	JHEP 1604 187 PR D93 032004	U.K. Dey, S. Mohanty V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY 1			V. Khachatryan <i>et al.</i>	(CMS Collab.)
Also		PR D95 039906 (errat.)		(CMS Collab.)
KHACHATRY 1			V. Khachatryan et al.	(CMS Collab.)
KHACHATRY 1			V. Khachatryan et al.	(CMS Collab.)
KHACHATRY 1 KHACHATRY 1			V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
KHACHATRY 1		PR D93 012001	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY 1			V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY 1	l6L	PRL 117 031802	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY 1		PL B755 196	V. Khachatryan et al.	(CMS Collab.)
	16 15 A N A	PR D94 014022 JHEP 1507 157	G. Kumar G. Aad <i>et al.</i>	(ATLAS Callab.)
			G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
			G. Aad et al.	(ATLAS Collab.)
AAD 1	L5AU	ED L C7E 60	C A-1 -+ -1	(ATLAS Collab.)
		EPJ C75 165	G. Aad et al. G. Aad et al.	(ATLAS Collab.)
		LFJ C/3 209	G. Adu et al.	(ATLAS Collab.)
		EPJ C75 370 (errat.) EPJ C75 263	G. Aad <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
		PR D92 092001	G. Aad et al.	(ATLAS Collab.)
		JHEP 1512 055	G. Aad et al.	(ATLAS Collab.)
	150	PRL 115 031801	G. Aad et al.	(ATLAS Collab.)
	L5R	PL B743 235	G. Aad et al.	(ATLAS Collab.)
	l5V l5C	PR D91 052007 PRL 115 061801	G. Aad <i>et al.</i> T. Aaltonen <i>et al.</i>	(ATLAS Collab.) (CDF Collab.)
	L5C	EPJ C75 97	A. Bessaa, S. Davidson	(CDI Collab.)
KHACHATRY 1		JHEP 1504 025	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY 1		JHEP 1507 042	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY 1		JHEP 1509 201	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY 1 KHACHATRY 1		PL B740 83 PRL 114 101801	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
KHACHATRY 1		PL B748 255	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY 1		PR D91 092005	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY 1		PR D91 052009	V. Khachatryan et al.	(CMS Collab.)
	L5A	PR D91 094019	S. Sahoo, R. Mohanta	(ATLAC C-II-L)
	L4AI L4AT	JHEP 1409 037 PL B738 428	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
	L4S	PL B737 223	G. Aad et al.	(ATLAS Collab.)
	L4V	PR D90 052005	G. Aad et al.	(ATLAS Collab.)
				ŕ

KHACHATRY KHACHATRY KHACHATRY KHACHATRY MARTINEZ	14A 14O	JHEP 1408 173 JHEP 1408 174 EPJ C74 3149 PL B739 229 PR D90 015028	V. V. V.	Khachatryan et al. Khachatryan et al. Khachatryan et al. Khachatryan et al. Martinez, F. Ochoa	(CMS (CMS	Collab.) Collab.) Collab.) Collab.)
PRIEELS	14	PR D90 112003		Prieels et al.	(LOUV, ETH	, PSI+)
AAD	13AE	JHEP 1306 033	G.	Aad et al.	` (ATLAS	
AAD		PR D87 112006		Aad et al.	(ATLAS	
AAD	-	PR D88 012004		Aad et al.	(ATLAS	
AAD AAD	13D 13G	JHEP 1301 029 JHEP 1301 116		Aad <i>et al.</i> Aad <i>et al.</i>	(ATLAS (ATLAS	
AAD		EPJ C73 2263		Aad et al.	(ATLAS	
AAD	13S	PL B719 242		Aad et al.	(ATLAS	
AALTONEN	13A	PRL 110 121802		Aaltonen et al.	` (CDF	Collab.)
AALTONEN		PR D88 092004		Aaltonen et al.		Collab.)
AALTONEN	13R			Aaltonen et al.		Collab.)
CHATRCHYAN CHATRCHYAN		JHEP 1301 013 PL B720 63		Chatrchyan et al. Chatrchyan et al.		Collab.) Collab.)
CHATRCHYAN				Chatrchyan et al.		Collab.)
		PR D87 072002		Chatrchyan et al.	``	Collab.)
	-	PR D87 072005	S.	Chatrchyan et al.	(CMS	Collab.)
		PR D87 114015		Chatrchyan et al.		Collab.)
		PRL 110 141802		Chatrohyan et al.		Collab.)
Also	13BIVI	PRL 111 211804 PRL 112 119903 (errat.)		Chatrchyan et al.		Collab.) Collab.)
CHATRCHYAN	13E			Chatrchyan et al.		Collab.)
		PRL 110 081801		Chatrchyan et al.	`	Collab.)
CHATRCHYAN		JHEP 1302 036		Chatrchyan et al.	(CMS	Collab.)
SAKAKI	13	PR D88 094012		Sakaki <i>et al.</i>	(ATL AC	C !! ! \
AAD AAD		PRL 109 081801		Aad <i>et al.</i> Aad <i>et al.</i>	(ATLAS	
AAD		PR D85 112012 JHEP 1209 041		Aad et al.	(ATLAS (ATLAS	
AAD		JHEP 1211 138		Aad et al.	(ATLAS	
AAD		PR D86 091103	_	Aad et al.	(ATLAS	
AAD		EPJ C72 2241		Aad et al.	(ATLAS	
AAD	12H	PL B709 158		Aad et al.	(ATLAS	
Also AAD	12K	PL B711 442 (errat.) EPJ C72 2083		Aad <i>et al.</i> Aad <i>et al.</i>	(ATLAS (ATLAS	
AAD	12M	EPJ C72 2056		Aad et al.	(ATLAS	
AAD	120	EPJ C72 2151		Aad et al.	(ATLAS	
AALTONEN		PR D86 112002		Aaltonen et al.		Collab.)
AALTONEN	12N			Aaltonen <i>et al.</i>		Collab.)
ABAZOV ABRAMOWICZ	12R	PR D85 051101 PR D86 012005		M. Abazov <i>et al.</i> Abramowicz <i>et al.</i>		Collab.) Collab.)
		PRL 109 141801		Chatrohyan et al.	`	Collab.)
		PR D86 052013		Chatrchyan et al.		Collab.)
CHATRCHYAN	12AI	JHEP 1208 110		Chatrchyan et al.	(CMS	Collab.)
	12AQ	JHEP 1209 029		Chatrchyan et al.		Collab.)
Also	12 A D	JHEP 1403 132 (errat.) PL B717 351		Chatrchyan <i>et al.</i> Chatrchyan <i>et al.</i>		Collab.) Collab.)
		PRL 109 261802		Chatrchyan et al.		Collab.)
		JHEP 1212 015		Chatrchyan et al.		Collab.)
		JHEP 1212 055	S.	Chatrchyan et al.		Collab.)
		PRL 109 251801		Chatrchyan et al.	`	Collab.)
CHATRCHYAN CHATRCHYAN		PL B714 158		Chatraham et al.	· · · · · ·	Collab.)
KOSNIK	120	PL B716 82 PR D86 055004		Chatrchyan <i>et al.</i> Kosnik		Collab.) STFN)
AAD	11D	PR D83 112006		Aad <i>et al.</i>	(ATLAS	
AAD	11H	PRL 106 251801	G.	Aad et al.	(ATLAS	
AAD	11Z	EPJ C71 1809		Aad et al.	(ATLAS	
AALTONEN		PR D84 072003		Aaltonen <i>et al.</i>		Collab.)
AALTONEN AALTONEN	11AE	PR D84 072004 PR D83 031102		Aaltonen <i>et al.</i> Aaltonen <i>et al.</i>	(CDF	Collab.) Collab.)
AALTONEN	111	PRL 106 121801		Aaltonen <i>et al.</i>		Collab.)
AARON	11A	PL B701 20	F.	D. Aaron et al.	` .	Collab.)
AARON	11B	PL B704 388		D. Aaron et al.		Collab.)
AARON ABAZOV	11C 11A	PL B705 52		D. Aaron <i>et al.</i> M. Abazov <i>et al.</i>	>	Collab.)
ABAZOV	11A 11H	PL B695 88 PRL 107 011801		M. Abazov <i>et al.</i>		Collab.) Collab.)
ABAZOV	111	PRL 107 011804		M. Abazov <i>et al.</i>		Collab.)
ABAZOV	11L	PL B699 145	V.	M. Abazov <i>et al.</i>	(D0	Collab.)

ABAZOV	11V	PR D84 071104	V.M. Abazov et al.	(D0 Collab.)
BUENO	11 v 11	PR D84 032005	J.F. Bueno <i>et al.</i>	(TWIST Collab.)
Also		PR D85 039908 (errat.)		(TWIST Collab.)
CHATRCHYAN	11N	PL B703 246	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	110	JHEP 1108 005	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN		PL B704 123	S. Chatrchyan et al.	(CMS Collab.)
DORSNER	11	JHEP 1111 002	I. Dorsner <i>et al.</i>	(CMC C II I)
KHACHATRY KHACHATRY		PRL 106 201802 PRL 106 201803	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
AALTONEN	10L	PL B691 183	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	10N	PRL 104 241801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	10L	PL B693 95	V.M. Abazov et al.	`(D0 Collab.)
DEL-AGUILA	10	JHEP 1009 033	F. del Aguila, J. de Blas, M.	. Perez-Victoria (GRAN)
KHACHATRY	10	PRL 105 211801	V. Khachatryan et al.	(CMS Collab.)
Also	10	PRL 106 029902	V. Khachatryan <i>et al.</i>	(CMS Collab.)
WAUTERS AALTONEN	10 00 A C	PR C82 055502 PR D79 112002	F. Wauters <i>et al.</i> T. Aaltonen <i>et al.</i>	(REZ, TAMU) (CDF Collab.)
AALTONEN	09AC	PRL 102 031801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09V	PRL 102 091805	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	09	PL B671 224	V.M. Abazov et al.	` (D0 Collab.)
ABAZOV		PL B681 224	V.M. Abazov et al.	(D0 Collab.)
ERLER	09	JHEP 0908 017	J. Erler <i>et al.</i>	(605.6.4.1.)
AALTONEN	08D 08P	PR D77 051102	T. Aaltonen <i>et al.</i> T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN AALTONEN	08Y	PR D77 091105 PRL 100 231801	T. Aaltonen <i>et al.</i>	(CDF Collab.) (CDF Collab.)
AALTONEN	08Z	PRL 101 071802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV		PL B668 98	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	08AD	PL B668 357	V.M. Abazov et al.	(D0 Collab.)
ABAZOV		PRL 101 241802	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	08C	PRL 100 031804	V.M. Abazov et al.	(D0 Collab.)
MACDONALD ZHANG	08	PR D78 032010 NP B802 247	R.P. MacDonald <i>et al.</i> Y. Zhang <i>et al.</i>	(TWIST Collab.) (PKGU, UMD)
AALTONEN	08 07H	PRL 99 171802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	07E	PL B647 74	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	07J	PRL 99 061801	V.M. Abazov et al.	(D0 Collab.)
AKTAS	07A	EPJ C52 833	A. Aktas <i>et al.</i>	(H1 Collab.)
CHOUDHURY	07	PL B657 69	D. Choudhury et al.	(TDU 145)
MELCONIAN	07	PL B649 370	D. Melconian <i>et al.</i>	(TRIUMF)
SCHAEL SCHUMANN	07A 07	EPJ C49 411 PRL 99 191803	S. Schael <i>et al.</i> M. Schumann <i>et al.</i>	(ALEPH Collab.) (HEID, ILLG, KARL+)
SMIRNOV	07	MPL A22 2353	A.D. Smirnov	(HEID, IEEG, NAME+)
ABAZOV	06A	PL B636 183	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	06L	PL B640 230	V.M. Abazov et al.	(D0 Collab.)
ABDALLAH	06C	EPJ C45 589	J. Abdallah et al.	(DELPHI Collab.)
ABULENCIA	06L	PRL 96 211801	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA ABULENCIA	06M 06T	PRL 96 211802 PR D73 051102	A. Abulencia <i>et al.</i> A. Abulencia <i>et al.</i>	(CDF Collab.) (CDF Collab.)
ABAZOV	05H	PR D71 071104	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABULENCIA	05A	PRL 95 252001	A. Abulencia <i>et al.</i>	(CDF Collab.)
ACOSTA	05I	PR D71 112001	D. Acosta et al.	(CDF Collab.)
ACOSTA	05P	PR D72 051107	D. Acosta et al.	(CDF Collab.)
ACOSTA	05R	PRL 95 131801	D. Acosta <i>et al.</i>	(CDF Collab.)
AKTAS CHEKANOV	05B	PL B629 9 PL B610 212	A. Aktas <i>et al.</i> S. Chekanov <i>et al.</i>	(H1 Collab.) (HERA ZEUS Collab.)
CHEKANOV	05 05A	EPJ C44 463	S. Chekanov <i>et al.</i>	(ZEUS Collab.)
CYBURT	05	ASP 23 313	R.H. Cyburt <i>et al.</i>	(ZZOS CONGS.)
ABAZOV	04A	PRL 92 221801	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	04C	PR D69 111101	V.M. Abazov et al.	(D0 Collab.)
ABBIENDI	04G	EPJ C33 173	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	03D	EPJ C26 331	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI ACOSTA	03R 03B	EPJ C31 281 PRL 90 081802	G. Abbiendi <i>et al.</i> D. Acosta <i>et al.</i>	(OPAL) (CDF Collab.)
ADLOFF	03	PL B568 35	C. Adloff <i>et al.</i>	(H1 Collab.)
BARGER	03B	PR D67 075009	V. Barger, P. Langacker, H.	
CHANG	03	PR D68 111101	MC. Chang et al.	(BELLE Collab.)
CHEKANOV	03B	PR D68 052004	S. Chekanov et al.	(ZEUS Collab.)
ABAZOV	02 02B	PRL 88 191801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABBIENDI AFFOLDER	02B 02C	PL B526 233 PRL 88 071806	G. Abbiendi <i>et al.</i> T. Affolder <i>et al.</i>	(OPAL Collab.) (CDF Collab.)
CHEKANOV	02	PR D65 092004	S. Chekanov <i>et al.</i>	(ZEUS Collab.)
CHEKANOV	02B	PL B531 9	S. Chekanov <i>et al.</i>	(ZEUS Collab.)

MUECK	02	PR D65 085037	A. Mueck, A. Pilaftsis, R. Rueckl	
ABAZOV	02 01B	PRL 87 061802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	01D	PR D64 092004	V.M. Abazov et al.	(D0 Collab.)
ADLOFF	01C	PL B523 234	C. Adloff <i>et al.</i>	(H1 Collab.)
AFFOLDER	011	PRL 87 231803	T. Affolder <i>et al.</i>	(CDF Collab.)
BREITWEG	01	PR D63 052002	J. Breitweg <i>et al.</i>	(ZEUS Collab.)
CHEUNG	01B	PL B517 167	K. Cheung	(=====)
THOMAS	01	NP A694 559	E. Thomas <i>et al.</i>	
ABBIENDI	00M	EPJ C13 15	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBOTT	00C	PRL 84 2088	B. Abbott <i>et al.</i>	(D0 Collab.)
ABE	00	PRL 84 5716	F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	00S	PL B485 45	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	00Z	EPJ C17 53	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	00P	PL B489 81	M. Acciarri et al.	` (L3 Collab.)
ADLOFF	00	PL B479 358	C. Adloff et al.	(H1 Collab.)
AFFOLDER	00K	PRL 85 2056	T. Affolder et al.	(CDF Collab.)
BARATE	001	EPJ C12 183	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARGER	00	PL B480 149	V. Barger, K. Cheung	
BREITWEG	00E	EPJ C16 253	J. Breitweg <i>et al.</i>	(ZEUS Collab.)
CHAY	00	PR D61 035002	J. Chay, K.Y. Lee, S. Nam	
CHO	00	MPL A15 311	G. Cho	
CORNET	00	PR D61 037701	F. Cornet, M. Relano, J. Rico	
DELGADO	00	JHEP 0001 030	A. Delgado, A. Pomarol, M. Quiros	
ERLER	00	PRL 84 212	J. Erler, P. Langacker	
GABRIELLI	00	PR D62 055009	E. Gabrielli	
RIZZO	00	PR D61 016007	T.G. Rizzo, J.D. Wells	
ROSNER	00	PR D61 016006	J.L. Rosner	
ZARNECKI	00	EPJ C17 695	A. Zarnecki	
ABBIENDI	99	EPJ C6 1	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBOTT	99J	PRL 83 2896	B. Abbott <i>et al.</i>	(D0 Collab.)
ABREU	99G	PL B446 62	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACKERSTAFF	99D	EPJ C8 3	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ADLOFF	99	EPJ C11 447	C. Adloff <i>et al.</i>	(H1 Collab.)
Also	00	EPJ C14 553 (errat.)	C. Adloff <i>et al.</i>	(H1 Collab.)
CASALBUONI	99	PL B460 135	R. Casalbuoni <i>et al.</i>	
CZAKON	99	PL B458 355	M. Czakon, J. Gluza, M. Zralek	
ERLER	99	PL B456 68	J. Erler, P. Langacker	
MARCIANO	99	PR D60 093006	W. Marciano	
MASIP NATH	99 99	PR D60 096005	M. Masip, A. Pomarol	
STRUMIA	99	PR D60 116004 PL B466 107	P. Nath, M. Yamaguchi A. Strumia	
ABBOTT	99 98E	PRL 80 2051	B. Abbott <i>et al.</i>	(D0 Collab.)
ABBOTT	98J	PRL 81 38	B. Abbott <i>et al.</i>	(D0 Collab.)
ABE	98S	PRL 81 4806	F. Abe et al.	(CDF Collab.)
ABE	98V	PRL 81 5742	F. Abe <i>et al.</i>	(CDF Collab.)
ACCIARRI	98J	PL B433 163	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACKERSTAFF	98V	EPJ C2 441	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
BARATE	98U	EPJ C4 571	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARENBOIM	98	EPJ C1 369	G. Barenboim	(/1221 // 00/145/)
CHO	98	EPJ C5 155	G. Cho, K. Hagiwara, S. Matsumoto	
CONRAD	98	RMP 70 1341	J.M. Conrad, M.H. Shaevitz, T. Bolt	
DONCHESKI	98	PR D58 097702	M.A. Doncheski, R.W. Robinett	
GROSS-PILCH		hep-ex/9810015	C. Grosso-Pilcher, G. Landsberg, M.	Paterno
ABE	97F	PRL 78 2906	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	97G	PR D55 5263	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	97S	PRL 79 2192	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	97W	PRL 79 3819	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	97X	PRL 79 4327	F. Abe <i>et al.</i>	(CDF Collab.)
ACCIARRI	97Q	PL B412 201	M. Acciarri <i>et al.</i>	(L3 Collab.)
ARIMA	97	PR D55 19	T. Arima <i>et al.</i>	(VENUS Collab.)
BARENBOIM	97	PR D55 4213	G. Barenboim <i>et al.</i>	(VALE, IFIC)
DEANDREA	97	PL B409 277	A. Deandrea	(MARS)
DERRICK	97	ZPHY C73 613	M. Derrick et al.	(ZEUS Collab.)
GROSSMAN	97	PR D55 2768	Y. Grossman, Z. Ligeti, E. Nardi	(REHO, CIT)
JADACH	97	PL B408 281	S. Jadach, B.F.L. Ward, Z. Was	(CERN, INPK+)
STAHL	97 06.C	ZPHY C74 73	A. Stahl, H. Voss	(BONN)
ABACHI	96C	PRL 76 3271	S. Abachi <i>et al.</i>	(DO Collab.)
ABREU ADAM	96T 96C	ZPHY C72 179 PL B380 471	P. Abreu <i>et al.</i> W. Adam <i>et al.</i>	(DELPHI Collab.) (DELPHI Collab.)
AID	96B	PL B369 173	S. Aid <i>et al.</i>	(H1 Collab.)
ALLET	96 96	PL B383 139		EUV, LOUV, WISC)
!	50		(VILL, L	,, , , , , , , , , , , , , , , ,

ABACHI ABE BALEST KUZNETSOV KUZNETSOV	95E 95N 95 95 95B	PL B358 405 PRL 74 3538 PR D51 2053 PRL 75 794 PAN 58 2113 Translated from YAF 58	S. Abachi et al. (D0 Collab F. Abe et al. (CDF Collab R. Balest et al. (CLEO Collab I.A. Kuznetsov et al. (PNPI, KIAE, HARV- A.V. Kuznetsov, N.V. Mikheev	o.) o.) +)
MIZUKOSHI ABREU BHATTACH Also	95 94O 94	NP B443 20 ZPHY C64 183 PL B336 100 PL B338 522 (errat.)	J.K. Mizukoshi, O.J.P. Eboli, M.C. Gonzalez-Garcia P. Abreu <i>et al.</i> (DELPHI Collab G. Bhattacharyya, J. Ellis, K. Sridhar (CERI G. Bhattacharyya, J. Ellis, K. Sridhar (CERI	N)
BHATTACH DAVIDSON KUZNETSOV KUZNETSOV	94B 94 94 94B	PL B338 522 (errat.) ZPHY C61 613 PL B329 295 JETPL 60 315	G. Bhattacharyya, J. Ellis, K. Sridhar (CERI S. Davidson, D. Bailey, B.A. Campbell (CFPA- A.V. Kuznetsov, N.V. Mikheev (YARO I.A. Kuznetsov <i>et al.</i> (PNPI, KIAE, HARV-	+) O)
LEURER LEURER	94 94B	Translated from ZETFP (PR D50 536 PR D49 333 PPI 71 1324	M. Leurer (REHC M. Leurer (REHC	O)
Also MAHANTA SEVERIJNS VILAIN ABE ABE ABE ABREU	94 94 94B 93C 93D 93G 93J	PRL 71 1324 PL B337 128 PRL 73 611 (errat.) PL B332 465 PL B302 119 PL B304 373 PRL 71 2542 PL B316 620	M. Leurer (REHC U. Mahanta (MEHT) N. Severijns et al. (LOUV, WISC, LEUV- P. Vilain et al. (CHARM II Collab K. Abe et al. (YENUS Collab T. Abe et al. (TOPAZ Collab F. Abe et al. (CDF Collab P. Abreu et al. (DELPHI Collab	A) +) o.) o.) o.)
ACTON ADRIANI ALITTI BHATTACH BUSKULIC	93E 93M 93 93 93F	PL B311 391 PRPL 236 1 NP B400 3 PR D47 3693 PL B308 425	P.D. Acton et al. O. Adriani et al. J. Alitti et al. G. Bhattacharyya et al. D. Buskulic et al. (OPAL Collab (L3 Collab (UA2 Collab (CALC, JADA, ICTP-	o.) o.) o.) +) o.)
DERRICK RIZZO SEVERIJNS Also STERNER	93 93 93	PL B306 173 PR D48 4470 PRL 70 4047 PRL 73 611 (errat.) PL B303 385	M. Derrick et al. T.G. Rizzo (ANI N. Severijns et al. N. Severijns et al. K.L. Sterner et al. (ZEUS Collab (ANI (LOUV, WISC, LEUV- (LOUV, WISC, LEUV- (AMY Collab	L) +) +) o.)
ABREU ADRIANI DECAMP IMAZATO MISHRA	92D 92F 92 92 92	ZPHY C53 555 PL B292 472 PRPL 216 253 PRL 69 877 PRL 68 3499	P. Abreu et al. O. Adriani et al. D. Decamp et al. J. Imazato et al. (COLU, CHIC, FNAL-	o.) o.) +)
POLAK ACTON ACTON ADEVA AQUINO	92B 91 91B 91D 91	PR D46 3871 PL B268 122 PL B273 338 PL B262 155 PL B261 280	J. Polak, M. Zralek D.P. Acton et al. D.P. Acton et al. B. Adeva et al. M. Aquino, A. Fernandez, A. Garcia (SILE: (OPAL Collab (L3 Collab (CINV, PUE)	S) o.) o.)
COLANGELO CUYPERS FARAGGI POLAK	91 91 91 91	PL B253 154 PL B259 173 MPL A6 61 NP B363 385	P. Colangelo, G. Nardulli F. Cuypers, A.F. Falk, P.H. Frampton (DURH, HARV-A.E. Faraggi, D.V. Nanopoulos J. Polak, M. Zralek (SILE:	RÍ) +) U) S)
RIZZO WALKER ABE ABE AKRAWY GONZALEZ	91 90F 90H 90J 90D	PR D44 202 APJ 376 51 PL B246 297 PR D41 1722 PL B246 285 PL B240 163	T.G. Rizzo (WISC, ISU T.P. Walker et al. (HSCA, OSU, CHIC- K. Abe et al. (VENUS Collab F. Abe et al. (CDF Collab M.Z. Akrawy et al. (OPAL Collab M.C. Gonzalez-Garcia, J.W.F. Valle (VALI	+) o.) o.)
GRIFOLS GRIFOLS KIM LOPEZ BARBIERI	90 90D 90 90 89B	NP B331 244 PR D42 3293 PL B240 243 PL B241 392 PR D39 1229	J.A. Grifols, E. Masso J.A. Grifols, E. Masso, T.G. Rizzo G.N. Kim et al. J.L. Lopez, D.V. Nanopoulos R. Barbieri, R.N. Mohapatra (BARC, CERN- (AMY Collab (TAMU) (PISA, UMI)	C) +) o.) U)
LANGACKER ODAKA ROBINETT ALBAJAR BAGGER BALKE BERGSTROM	89B 89 89 88B 88	PR D40 1569 JPSJ 58 3037 PR D39 834 PL B209 127 PR D37 1188 PR D37 587 PL B212 386	P. Langacker, S. Uma Sankar S. Odaka et al. R.W. Robinett C. Albajar et al. J. Bagger, C. Schmidt, S. King B. Balke et al. (LBL, UCB, COLO, NWES-L. Bergstrom (STO)	o.) U) o.) T) +)
CUYPERS DONCHESKI DONCHESKI BARTEL	88 88 88B 87B	PRL 60 1237 PL B206 137 PR D38 412 ZPHY C36 15	F. Cuypers, P.H. Frampton (UNCCF M.A. Doncheski, H. Grotch, R. Robinett (PSU M.A. Doncheski, H. Grotch, R.W. Robinett (PSU W. Bartel et al. (JADE Collab	H) U) U)

BEHREND DERRICK Also	86B 86	PL B178 452 PL 166B 463 PR D34 3286	H.J. Behrend <i>et al.</i> M. Derrick <i>et al.</i> M. Derrick <i>et al.</i>	(CELLO Collab.) (HRS Collab.) (HRS Collab.)
JODIDIO Also	86	PR D34 1967 PR D37 237 (errat.)	A. Jodidio <i>et al.</i> A. Jodidio <i>et al.</i>	(LBL, NWES, TRIU) (LBL, NWES, TRIU)
MOHAPATRA	86	PR D34 909 ` ´	R.N. Mohapatra	(UMD)
ADEVA BERGER	85 85B	PL 152B 439 ZPHY C27 341	B. Adeva <i>et al.</i> C. Berger <i>et al.</i>	(Mark-J Collab.) (PLUTO Collab.)
STOKER ADEVA	85	PRL 54 1887 PRL 53 134	D.P. Stoker <i>et al.</i> B. Adeva <i>et al.</i>	(LBL, NWES, TRIU)
BEHREND	84 84C	PL 140B 130	H.J. Behrend <i>et al.</i>	(Mark-J Collab.) (CELLO Collab.)
BERGSMA CARR	83 83	PL 122B 465 PRL 51 627	F. Bergsma <i>et al.</i> J. Carr <i>et al</i> .	(CHARM Collab.) (LBL, NWES, TRIU)
BEALL	82	PRL 48 848	G. Beall, M. Bander, A. Soni	(UCI, UCLA)
SHANKER	82	NP B204 375	O. Shanker	(TRIU)