$I(J^P) = 0(\frac{7}{2})$ Status: ****

Most of the results published before 1973 are now obsolete and have been omitted. They may be found in our 1982 edition Physics Letters **111B** 1 (1982).

This entry only includes results from partial-wave analyses. Parameters of peaks seen in cross sections and in invariant-mass distributions around 2100 MeV used to be listed in a separate entry immediately following. It may be found in our 1986 edition Physics Letters **170B** 1 (1986).

*N***(2100) POLE POSITION**

REAL PART						
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
2040±14	SARANTSEV	19	DPWA	K N multichannel		
\bullet \bullet \bullet We do not use the following c	lata for averages	, fits,	limits, e	tc. ● ● ●		
2023	ZHANG	13A	DPWA	Multichannel		
-2×IMAGINARY PART						
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
215±29	SARANTSEV	19	DPWA	$\overline{K}N$ multichannel		
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						
239	ZHANG	13A	DPWA	Multichannel		

A(2100) POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized	residue in $N\overline{K}$ -	$\rightarrow \Lambda(2100) \rightarrow N\overline{K}$		
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.28±0.06	-40 ± 10	SARANTSEV 19	DPWA	$\overline{K}N$ multichannel
Normalized	residue in $N\overline{K}$ -	$\rightarrow \Lambda(2100) \rightarrow \Sigma \pi$		
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.09±0.02	-35 ± 15	SARANTSEV 19	DPWA	$\overline{K}N$ multichannel
Normalized	residue in $N\overline{K}$ –	$\rightarrow \Lambda(2100) \rightarrow \Sigma(138)$	$(5)\pi$, L)-wave
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.04±0.03		SARANTSEV 19	DPWA	K N multichannel
Normalized	residue in $N\overline{K}$ –	$\rightarrow \Lambda(2100) \rightarrow \Sigma(138)$	85) π , (
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.06±0.03	-45 ± 15	SARANTSEV 19	DPWA	K N multichannel

https://pdg.lbl.gov

Normalized r	esidue in $N\overline{K} \rightarrow$	$\Lambda(2100) \rightarrow N\overline{K}^*($	892), <i>S</i> e	=3/2, <i>D</i> -wave
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.11±0.06	-30 ± 30	SARANTSEV 19	DPWA	$\overline{K}N$ multichannel

Л(2100) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2090 to 2110 (\approx 2100) OUR ESTIN	IATE			
2090 ± 15	SARANTSEV	19	DPWA	K N multichannel
2086± 6	ZHANG	13A	DPWA	Multichannel
2104 ± 10	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
2106 ± 30	DEBELLEFON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
2110 ± 10	GOPAL	77	DPWA	K N multichannel
2105 ± 10	HEMINGWAY	75	DPWA	$K^- p \rightarrow \overline{K} N$
$2115\!\pm\!10$	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
\bullet \bullet \bullet We do not use the following (data for averages	, fits,	limits, e	tc. ● ● ●
2094	BACCARI	77	DPWA	$K^- p \rightarrow \Lambda \omega$
2094	DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$
2110 or 2089	¹ NAKKASYAN	75	DPWA	$K^- p \rightarrow \Lambda \omega$

Л(2100) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
100 to 250 (≈ 200) OUR ESTIMA	ΓE			
290±30	SARANTSEV	19	DPWA	K N multichannel
305 ± 16	ZHANG	13A	DPWA	Multichannel
157 ± 40	DEBELLEFON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
250 ± 30	GOPAL	77	DPWA	K N multichannel
241±30	HEMINGWAY	75	DPWA	$K^- p \rightarrow \overline{K} N$
152 ± 15	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
98	BACCARI	77	DPWA	$K^- p \rightarrow \Lambda \omega$
250	DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$
244 or 302	¹ NAKKASYAN	75	DPWA	$K^- p \rightarrow \Lambda \omega$

A(2100) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Г1	NK	25–35 %
Г2	$\Sigma \pi$	\sim 5 %
Г ₃	$\Lambda\eta$	<3 %
Γ ₄	ΞK	<3 %
Г ₅	$\Lambda\omega$	<8 %

https://pdg.lbl.gov

Г ₆	$\Sigma(1385)\pi$, D -wave	
Г ₇	$\Sigma(1385)\pi$, <i>G</i> -wave	(1.0 ± 1.0) %
Г ₈	N K *(892)	10-20 %
Г9	$N\overline{K}^{*}(892)$, $S\!\!=\!\!3/2$, $D\!\!-\!\mathrm{wave}$	(4.0±2.0) %
Γ ₁₀	$N\overline{K}^{*}(892)$, $S\!\!=\!\!1/2$, $G\!\!-\!\mathrm{wave}$	
Γ ₁₁	<i>N</i> K *(892), <i>S</i> =3/2, <i>G</i> -wave	

A(2100) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on \varLambda and \varSigma Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.25 to 0.35 (\approx 0.30) OUR ESTIMA	TE			
0.24 ± 0.05	SARANTSEV	19	DPWA	K N multichannel
0.23 ± 0.01	ZHANG	13A	DPWA	Multichannel
0.34 ± 0.03	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
0.24 ± 0.06	DEBELLEFON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
$0.31 {\pm} 0.03$	HEMINGWAY	75	DPWA	$K^- p \rightarrow \overline{K} N$
• • • We do not use the following d	ata for averages	, fits,	limits, e	tc. ● ● ●
0.29	DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$
0.30 ± 0.03	GOPAL	77	DPWA	See GOPAL 80
$\Gamma(\Sigma\pi)/\Gamma_{total}$				Γ2/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.030±0.015	SARANTSEV	19	DPWA	KN multichannel
$\Gammaig(\Sigma(1385) \pi$, <i>D</i> -wave ig) / $\Gamma_{ m total}$				Г ₆ /Г
VALUE	DOCUMENT ID		TECN	COMMENT
<0.01	SARANTSEV	19	DPWA	KN multichannel
$\Gamma(\Sigma(1385)\pi, G-wave)/\Gamma_{total}$				Г ₇ /Г
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
0.01±0.01	SARANISEV	19	DPWA	K N multichannel
$\Gamma(N\overline{K}^*(892), S=3/2, D-wave)$	/Γ _{total}			Г9/Г
VALUE	DOCUMENT ID		TECN	COMMENT
0.04±0.02	SARANTSEV	19	DPWA	<u><i>K</i></u> <i>N</i> multichannel
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(210)$	$(00) \rightarrow \Sigma \pi$			(Г ₁ Г ₂) ^½ /Г
VALUE	DOCUMENT ID		TECN	COMMENT
$+0.03 \pm 0.01$	ZHANG	13A	DPWA	Multichannel
$+0.12 \pm 0.04$	GOPAL	77	DPWA	K N multichannel
$+0.11\pm0.01$	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Lambda(210)^{1/2}$	$00) \rightarrow \Lambda \eta$		TECN	(Γ ₁ Γ ₃) ^{1/2} /Γ
		72		
-0.050 ± 0.020	KADEK	13	WPVVA	$h p \rightarrow \Lambda \eta$
https://pdg.lbl.gov	Page 3		Creat	ed: 4/29/2024 18:55

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

$()^{1/2}$				
$(I_i I_f)^2 / I_{\text{total}} \text{ in } NK \rightarrow \Lambda(2)$	$(100) \rightarrow = K$		TECN	(1 4)' ² /
0.025 ± 0.019		71		K^{-} p $\rightarrow = K$
0.035 ± 0.016	LIICHFIELD		UP VVA	$h p \rightarrow \equiv h$
• • • We do not use the following	g data for averages	s, mus,	innits, e	
0.003	MULLER	69 B	DPWA	$K^- p \rightarrow \Xi K$
0.05	TRIPP	67	RVUE	$K^- p \rightarrow \Xi K$
$(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total}$ in $N\overline{K} \to \Lambda(2)$	(100) $\rightarrow \Lambda \omega$			([1[5) ^½ /[
VALUE	DOCUMENT ID		TECN	COMMENT
-0.070	² BACCARI	77	DPWA	GDaz wave
+0.011	² BACCARI	77	DPWA	GG17 wave
+0.008	² BACCARI	77	DPWA	GG ₂₇ wave
0.122 or 0.154	¹ NAKKASYAN	75	DPWA	$K^- p \rightarrow \Lambda \omega$
$\frac{(\Gamma_i \Gamma_f)^{\frac{1}{2}}}{VALUE} \wedge \Lambda(2)$	$100) \rightarrow N\overline{K}^{*}(8)$	392),	S=3/2	, D-wave (Г ₁ Г ₉) ^½ /Г
$+0.16 \pm 0.02$	ZHANG	13A	DPWA	Multichannel
$+0.21\pm0.04$	CAMERON	78 B	DPWA	$K^- p \rightarrow N \overline{K}^*$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(2)$	$(100) \rightarrow N\overline{K}^*(8)$	392),	<i>S</i> =1/2	, G-wave (Γ ₁ Γ ₁₀) ^{1⁄2} /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
-0.03 ± 0.02	ZHANG	13A	DPWA	Multichannel
-0.04 ± 0.03	³ CAMERON	78 B	DPWA	$K^- p \rightarrow N \overline{K}^*$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(2)$	$(100) \rightarrow N\overline{K}^*$	392),	<i>S</i> =3/2	, G-wave (Γ ₁ Γ ₁₁) ^{1/2} /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
$+0.08\pm0.02$	ZHANG	13A	DPWA	Multichannel

 $+0.08 \pm 0.02$

A(2100) FOOTNOTES

 1 The NAKKASYAN 75 values are from the two best solutions found. Each has the $\Lambda(2100)$ and one additional resonance $(P_3 \text{ or } F_5).$

² Note that the three for BACCARI 77 entries are for three different waves. ³ The published sign has been changed to be in accord with the baryon-first convention. The upper limit on the G_3 wave is 0.03.

A(2100) REFERENCES

SARANTSEV	19	EPJ A55 180	A.V. Sarantsev <i>et al.</i>	(BONN, PNPI)
ZHANG	13A	PR C88 035205	H. Zhang <i>et al.</i>	(KSU)
PDG	86	PL 170B 1	M. Aguilar-Benitez et al.	(CERN, ČIT+)
PDG	82	PL 111B 1	M. Roos <i>et al.</i>	(HELS, CIT, CERN)
GOPAL	80	Toronto Conf. 159	G.P. Gopal	(RHEL) IJP
CAMERON	78B	NP B146 327	W. Cameron <i>et al.</i>	(RHEL, LOIC) IJP
DEBELLEFON	78	NC 42A 403	A. de Bellefon <i>et al.</i>	(CDEF, SACL) IJP
BACCARI	77	NC 41A 96	B. Baccari <i>et al.</i>	(SACL, CDEF) IJP
DECLAIS	77	CERN 77-16	Y. Declais <i>et al.</i>	(ČAEN, CERN) IJP

https://pdg.lbl.gov

GOPAL	77	NP B119 362	G.P. Gopal <i>et al.</i>	(LOIC, RHEL) IJP
HEMINGWAY	75	NP B91 12	R.J. Hemingway et al.	(CERN, HÈIDH, MPIM) IJP
NAKKASYAN	75	NP B93 85	A. Nakkasyan	(CERN) IJP
KANE	74	LBL-2452	D.F. Kane	(LBL) IJP
RADER	73	NC 16A 178	R.K. Rader <i>et al.</i>	(SACL, HEID, CERN+)
LITCHFIELD	71	NP B30 125	P.J. Litchfield et al.	(RHEL, CDEF, SACL) IJP
MULLER	69B	Thesis UCRL 19372	R.A. Muller	(LRL)
TRIPP	67	NP B3 10	R.D. Tripp et al.	(LRL, SLAC, CERN+)

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update