Light Quarks (u, d, s)

OMITTED FROM SUMMARY TABLE
See the related review(s):

Quark Masses

u-QUARK MASS

The u-, d-, and s-quark masses are estimates of so-called "current-quark masses," in a mass- independent subtraction scheme such as $\overline{\mathrm{MS}}$. The ratios m_{u} / m_{d} and m_{s} / m_{d} are extracted from pion and kaon masses using chiral symmetry. The estimates of d and u masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the u quark could be essentially massless. The s-quark mass is estimated from $\operatorname{SU}(3)$ splittings in hadron masses.

We have normalized the $\overline{\mathrm{MS}}$ masses at a renormalization scale of $\mu=2$ GeV . Results quoted in the literature at $\mu=1 \mathrm{GeV}$ have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 2 and 3 in the "Quark masses" review.

$\overline{\text { MS }}$ MASS (MeV) CL\% DOCUMENT ID TECN

2.16 ± 0.07 ($\mathrm{CL}=\mathbf{9 0 \%}$) OUR EVALUATION See the ideogram below.

2.6 ± 0.4	1	DOMINGUEZ	19
THEO			
2.130 ± 0.041	2 BAZAVOV	18	LATT
$2.27 \pm 0.06 \pm 0.06$	3 FODOR	16	LATT
2.36 ± 0.24	4 CARRASCO	14	LATT
$2.24 \pm 0.10 \pm 0.34$	5 BLUM	10	LATT
2.01 ± 0.14	6 MCNEILE	10	LATT

- - We do not use the following data for averages, fits, limits, etc. - • •

2.57	± 0.26	± 0.07	7	AOKI
2.15	± 0.03	± 0.10	8	12
DURR	LATT			
1.9	± 0.2	9	11	LATT
2.01	± 0.14	6	DAVIES	10
LATT				
2.9	± 0.2	10	10	LATT
2.9	± 0.8	11 DEMINGUEZ	09	THEO
3.02	± 0.33	12 BLUM	07	LATT
2.7	± 0.4	13 JAMIN	06	THEO
1.9	± 0.2	14 MASON	06	LATT
2.8	± 0.2	15 NARISON	06	THEO
1.7	± 0.3	16 AUBIN	$04 A$	LATT

${ }^{1}$ DOMINGUEZ 19 determine the quark mass from a QCD finite energy sum rule for the divergence of the axial current.
${ }^{2}$ BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.
3 FODOR 16 is a lattice simulation with $n_{f}=2+1$ dynamical flavors and includes partially quenched QED effects.
${ }^{4}$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2+1+1$ dynamical quarks, with $m_{u}=m_{d} \neq m_{s} \neq m_{c}$. The u and d quark masses are
obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.
${ }^{5}$ BLUM 10 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use $2+1$ dynamical quark flavors.
${ }^{6}$ DAVIES 10 and MCNEILE 10 determine $\bar{m}_{c}(\mu) / \bar{m}_{s}(\mu)=11.85 \pm 0.16$ using a lattice computation with $n_{f}=2+1$ dynamical fermions of the pseudoscalar meson masses. Mass m_{u} is obtained from this using the value of m_{c} from ALLISON 08 or MCNEILE 10 and the BAZAVOV 10 values for the light quark mass ratios, m_{s} / \bar{m} and m_{u} / m_{d}.
${ }^{7}$ AOKI 12 is a lattice computation using $1+1+1$ dynamical quark flavors.
8 DURR 11 determine quark mass from a lattice computation of the meson spectrum using $n_{f}=2+1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed. The individual m_{u}, m_{d} values are obtained using the lattice determination of the average mass $m_{u d}$ and of the ratio m_{s} / m_{ud} and the value of $Q=\left(m_{s}^{2}-m_{\mathrm{ud}}^{2}\right) /\left(m_{d}^{2}-m_{u}^{2}\right)$ as determined from $\eta \rightarrow 3 \pi$ decays.
${ }^{9}$ BAZAVOV 10 is a lattice computation using $2+1$ dynamical quark flavors.
10 DOMINGUEZ 09 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order α_{s}^{4}.
11 DEANDREA 08 determine $m_{u}-m_{d}$ from $\eta \rightarrow 3 \pi^{0}$, and combine with the PDG 06 lattice average value of $m_{u}+m_{d}=7.6 \pm 1.6$ to determine m_{u} and m_{d}.
${ }^{12}$ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
13 JAMIN 06 determine $m_{u}(2 \mathrm{GeV})$ by combining the value of m_{s} obtained from the spectral function for the scalar $K \pi$ form factor with other determinations of the quark mass ratios.
14 MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order. The quark masses m_{u} and m_{d} were determined from their $\left(m_{u}+m_{d}\right) / 2$ measurement and AUBIN 04A m_{u} / m_{d} value.
15 NARISON 06 uses sum rules for $e^{+} e^{-} \rightarrow$ hadrons to order α_{s}^{3} to determine m_{s} combined with other determinations of the quark mass ratios.
${ }^{16}$ AUBIN 04A employ a partially quenched lattice calculation of the pseudoscalar meson masses.

d-QUARK MASS

See the comment for the u quark above.
We have normalized the $\overline{M S}$ masses at a renormalization scale of $\mu=2$ GeV . Results quoted in the literature at $\mu=1 \mathrm{GeV}$ have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 2 and 3 in the "Quark masses" review.
$\overline{\mathrm{MS}}$ MASS (MeV)
CL\% DOCUMENT ID TECN
4.70 ± 0.07 ($\mathrm{CL}=\mathbf{9 0 \%}$) OUR EVALUATION See the ideogram below.

5.3 ± 0.4	1 DOMINGUEZ	19	THEO
4.675 ± 0.056	2 BAZAVOV	18	LATT
$4.67 \pm 0.06 \pm 0.06$	3 FODOR	16	LATT
5.03 ± 0.26	4 CARRASCO	14	LATT
$4.65 \pm 0.15 \pm 0.32$	5 BLUM	10	LATT
4.77 ± 0.15	6 MCNEILE	10	LATT

$4.77 \pm 0.15 \quad 6$ MCNEILE 10 LATT

- - We do not use the following data for averages, fits, limits, etc.

3.68	± 0.29	± 0.10	7	AOKI	12
LATT					
4.79	± 0.07	± 0.12	8 DURR	11	LATT
4.6	± 0.3	9	BAZAVOV	10	LATT
4.79	± 0.16	6 DAVIES	10	LATT	
5.3	± 0.4	10 DOMINGUEZ	09	THEO	
4.7	± 0.8	11 DEANDREA	08	THEO	

5.49	± 0.39	12 BLUM	07	LATT
4.8	± 0.5	13 JAMIN	06	THEO
4.4	± 0.3	14 MASON	06	LATT
5.1	± 0.4	15 NARISON	06	THEO
3.9	± 0.5	16 AUBIN	$04 A$	LATT

${ }^{1}$ DOMINGUEZ 19 determine the quark mass from a QCD finite energy sum rule for the divergence of the axial current.
${ }^{2}$ BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.
${ }^{3}$ FODOR 16 is a lattice simulation with $n_{f}=2+1$ dynamical flavors and includes partially quenched QED effects.
${ }^{4}$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2+1+1$ dynamical quarks, with $m_{u}=m_{d} \neq m_{s} \neq m_{c}$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.
${ }^{5}$ BLUM 10 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use $2+1$ dynamical quark flavors.
${ }^{6}$ DAVIES 10 and MCNEILE 10 determine $\bar{m}_{c}(\mu) / \bar{m}_{s}(\mu)=11.85 \pm 0.16$ using a lattice computation with $n_{f}=2+1$ dynamical fermions of the pseudoscalar meson masses. Mass m_{d} is obtained from this using the value of m_{c} from ALLISON 08 or MCNEILE 10 and the BAZAVOV 10 values for the light quark mass ratios, m_{s} / \bar{m} and m_{u} / m_{d}.
${ }^{7}$ AOKI 12 is a lattice computation using $1+1+1$ dynamical quark flavors.
8 DURR 11 determine quark mass from a lattice computation of the meson spectrum using $n_{f}=2+1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed. The individual m_{u}, m_{d} values are obtained using the lattice determination of the average mass m_{ud} and of the ratio m_{s} / m_{ud} and the value of $Q=\left(m_{s}^{2}-m_{\mathrm{ud}}^{2}\right) /\left(m_{d}^{2}-m_{u}^{2}\right)$ as determined from $\eta \rightarrow 3 \pi$ decays.
${ }^{9}$ BAZAVOV 10 is a lattice computation using $2+1$ dynamical quark flavors.
10 DOMINGUEZ 09 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order α_{s}^{4}.
11 DEANDREA 08 determine $m_{u}-m_{d}$ from $\eta \rightarrow 3 \pi^{0}$, and combine with the PDG 06 lattice average value of $m_{u}+m_{d}=7.6 \pm 1.6$ to determine m_{u} and m_{d}.
${ }^{12}$ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
13 JAMIN 06 determine $m_{d}(2 \mathrm{GeV})$ by combining the value of m_{s} obtained from the spectral function for the scalar $K \pi$ form factor with other determinations of the quark mass ratios.
14 MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order. The quark masses m_{u} and m_{d} were determined from their $\left(m_{u}+m_{d}\right) / 2$ measurement and AUBIN 04A m_{u} / m_{d} value.
15 NARISON 06 uses sum rules for $e^{+} e^{-} \rightarrow$ hadrons to order α_{s}^{3} to determine m_{s} combined with other determinations of the quark mass ratios.
${ }^{16}$ AUBIN 04A perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with continuum estimate of electromagnetic effects in the kaon masses, and one-loop perturbative renormalization constant.

$$
\bar{m}=\left(m_{u}+m_{d}\right) / 2
$$

See the comments for the u quark above.
We have normalized the $\overline{\mathrm{MS}}$ masses at a renormalization scale of $\mu=2$ GeV . Results quoted in the literature at $\mu=1 \mathrm{GeV}$ have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 2 and 3 in the "Quark masses" review.
$\overline{\text { MS }}$ MASS (MeV) CL\% DOCUMENT ID TECN
3.49 ± 0.07 ($C L=90 \%$) OUR EVALUATION See the ideogram below.
$3.636 \pm 0.066_{-0.057}^{+0.060}$
$3.54 \quad \pm 0.12 \pm 0.09$
$3.9 \quad \pm 0.3$
$4.7 \quad+0.8$
$3.70 \quad \pm 0.17$
$3.45 \quad \pm 0.12$
$3.469 \pm 0.047 \pm 0.048$
$3.6 \quad \pm 0.2$
$3.39 \quad \pm 0.06$

1 ALEXANDROU21	LATT	
2 BRUNO	20	LATT
3 DOMINGUEZ	19	THEO
${ }^{4}$ YUAN	17	THEO
${ }^{5}$ CARRASCO	14	LATT
6 ARTHUR	13	LATT
7 DURR	11	LATT
${ }^{2}$ BLOSSIER	10	LATT
9 MCNEILE	10	LATT

- - We do not use the following data for averages, fits, limits, etc. - •

3.59 ± 0.21	10 AOKI	11A	LATT
3.40 ± 0.07	9 DAVIES	10	LATT
4.1 ± 0.2	11 DOMINGUEZ	09	THEO
3.72 ± 0.41	12 ALLTON	08	LATT
$3.85 \pm 0.12 \pm 0.4$	13 BLOSSIER	08	LATT
$\geq 4.85 \pm 0.20$	14 DOMINGUEZ.	.08B	THEO
$3.55{ }_{-0.28}^{+0.65}$	15 ISHIKAWA	08	LATT
4.026 ± 0.048	16 NAKAMURA	08	LATT
4.25 ± 0.35	17 BLUM	07	LATT
$4.08 \pm 0.25 \pm 0.42$	18 GOCKELER	06	LATT
$4.7 \pm 0.2 \pm 0.3$	19 GOCKELER	06A	LATT
3.2 ± 0.3	20 MASON	06	LATT
3.95 ± 0.3	21 NARISON	06	THEO
2.8 ± 0.3	22 AUBIN	04	LATT
$4.29 \pm 0.14 \pm 0.65$	23 AOKI	03	LATT
3.223 ± 0.3	24 AOKI	03B	LATT
$4.4 \pm 0.1 \pm 0.4$	25 BECIREVIC	03	LATT
$4.1 \pm 0.3 \pm 1.0$	26 CHIU	03	LATT

${ }^{1}$ ALEXANDROU 21 determines the quark mass using a lattice calculation of the meson and baryon masses with a twisted mass fermion action. The simulations are carried out using $2+1+1$ dynamical quarks with $m_{u}=m_{d} \neq m_{s} \neq m_{c}$, including gauge ensembles close to the physical pion point.
${ }^{2}$ BRUNO 20 determines the light quark mass using a lattice calculation with $n_{f}=2+1$ flavors of Wilson fermions. The scale has been set from f_{π} and f_{K}. The tuning was done using the masses of the lightest (π) and strange (K) pseudoscalar mesons.
${ }^{3}$ DOMINGUEZ 19 determine the quark mass from a QCD finite energy sum rule for the divergence of the axial current.
${ }^{4}$ YUAN 17 determine \bar{m} using QCD sum rules in the isospin $I=0$ scalar channel. At the end of the "Numerical Results" section of YUAN 17 the authors discuss the significance of their larger value of the light quark mass compared to previous determinations.
${ }^{5}$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2+1+1$ dynamical quarks, with $m_{u}=m_{d} \neq m_{s} \neq m_{c}$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.
${ }^{6}$ ARTHUR 13 is a lattice computation using $2+1$ dynamical domain wall fermions. Masses at $\mu=3 \mathrm{GeV}$ have been converted to $\mu=2 \mathrm{GeV}$ using conversion factors given in their paper.
7 DURR 11 determine quark mass from a lattice computation of the meson spectrum using $n_{f}=2+1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed.
${ }^{8}$ BLOSSIER 10 determines quark masses from a computation of the hadron spectrum using $n_{f}=2$ dynamical twisted-mass Wilson fermions.
9 DAVIES 10 and MCNEILE 10 determine $\bar{m}_{c}(\mu) / \bar{m}_{s}(\mu)=11.85 \pm 0.16$ using a lattice computation with $n_{f}=2+1$ dynamical fermions of the pseudoscalar meson masses. Mass \bar{m} is obtained from this using the value of m_{c} from ALLISON 08 or MCNEILE 10 and the BAZAVOV 10 values for the light quark mass ratio, m_{s} / \bar{m}.
10 AOKI 11A determine quark masses from a lattice computation of the hadron spectrum using $n_{f}=2+1$ dynamical flavors of domain wall fermions.
11 DOMINGUEZ 09 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order α_{s}^{4}.

12 ALLTON 08 use a lattice computation of the π, K, and Ω masses with $2+1$ dynamical flavors of domain wall quarks, and non-perturbative renormalization.
13 BLOSSIER 08 use a lattice computation of pseudoscalar meson masses and decay constants with 2 dynamical flavors and non-perturbative renormalization.
14 DOMINGUEZ-CLARIMON 08B obtain an inequality from sum rules for the scalar twopoint correlator.
15 ISHIKAWA 08 use a lattice computation of the light meson spectrum with $2+1$ dynamical flavors of $\mathcal{O}(a)$ improved Wilson quarks, and one-loop perturbative renormalization.
16 NAKAMURA 08 do a lattice computation using quenched domain wall fermions and non-perturbative renormalization.
17 BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
18 GOCKELER 06 use an unquenched lattice computation of the axial Ward Identity with $n_{f}=2$ dynamical light quark flavors, and non-perturbative renormalization, to obtain $\bar{m}(2 \mathrm{GeV})=4.08 \pm 0.25 \pm 0.19 \pm 0.23 \mathrm{MeV}$, where the first error is statistical, the second and third are systematic due to the fit range and force scale uncertainties, respectively. We have combined the systematic errors linearly.
19 GOCKELER 06A use an unquenched lattice computation of the pseudoscalar meson masses with $n_{f}=2$ dynamical light quark flavors, and non-perturbative renormalization.
20 MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order.
21 NARISON 06 uses sum rules for $e^{+} e^{-} \rightarrow$ hadrons to order α_{s}^{3} to determine m_{s} combined with other determinations of the quark mass ratios.
${ }^{22}$ AUBIN 04 perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with one-loop perturbative renormalization constant.
23 AOKI 03 uses quenched lattice simulation of the meson and baryon masses with degenerate light quarks. The extrapolations are done using quenched chiral perturbation theory.
24 The errors given in AOKI 03B were ${ }_{-0.069}^{+0.046}$. We changed them to ± 0.3 for calculating the overall best values. AOKI 03B uses lattice simulation of the meson and baryon masses with two dynamical light quarks. Simulations are performed using the $\mathcal{O}(a)$ improved Wilson action.
25 BECIREVIC 03 perform quenched lattice computation using the vector and axial Ward identities. Uses $\mathcal{O}(a)$ improved Wilson action and nonperturbative renormalization.
26 CHIU 03 determines quark masses from the pion and kaon masses using a lattice simulation with a chiral fermion action in quenched approximation.

$m_{u} / m_{\boldsymbol{d}}$ MASS RATIO

VALUE ${ }^{\text {CL\% }}$	DOCUMENT ID		TECN
0.462 ± 0.020 (CL \equiv (90\%)	EVALUATION	See the ideog	
$0.485 \pm 0.011 \pm 0.016$	1 FODOR	16	LATT
${ }_{0.4482-0.0173}^{-0.0206}$	2 BASAK	15	LATT
0.470 ± 0.056	3 CARRASCO	14	LATT
$0.42 \pm 0.01 \pm 0.04$	${ }^{4}$ BAZAVOV	10	LATT
$0.4818 \pm 0.0096 \pm 0.0860$	5 BLUM	10	LATT

- - We do not use the following data for averages, fits, limits, etc. - -

0.698 ± 0.051	6	AOKI	12
LATT			
0.550	± 0.031		BLUM
0.43	± 0.08	9 NUBIN	07
LATT			
0.410 ± 0.036	10 LELSON	03	LATT
0.553 ± 0.043	LATT		

${ }^{1}$ FODOR 16 is a lattice simulation with $n_{f}=2+1$ dynamical flavors and includes partially quenched QED effects.
${ }^{2}$ BASAK 15 is a lattice computation using $2+1$ dynamical quark flavors.
${ }^{3}$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2+1+1$ dynamical quarks, with $m_{u}=m_{d} \neq m_{s} \neq m_{c}$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.
${ }^{4}$ BAZAVOV 10 is a lattice computation using $2+1$ dynamical quark flavors.
${ }^{5}$ BLUM 10 is a lattice computation using $2+1$ dynamical quark flavors.
${ }^{6}$ AOKI 12 is a lattice computation using $1+1+1$ dynamical quark flavors.
${ }^{7}$ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
${ }^{8}$ AUBIN 04A perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with continuum estimate of electromagnetic effects in the kaon masses.
${ }^{9}$ NELSON 03 computes coefficients in the order p^{4} chiral Lagrangian using a lattice calculation with three dynamical flavors. The ratio m_{u} / m_{d} is obtained by combining this with the chiral perturbation theory computation of the meson masses to order p^{4}.
${ }^{10}$ LEUTWYLER 96 uses a combined fit to $\eta \rightarrow 3 \pi$ and $\psi^{\prime} \rightarrow J / \psi(\pi, \eta)$ decay rates, and the electromagnetic mass differences of the π and K.

s-QUARK MASS

See the comment for the u quark above.
We have normalized the $\overline{\mathrm{MS}}$ masses at a renormalization scale of $\mu=2$ GeV . Results quoted in the literature at $\mu=1 \mathrm{GeV}$ have been rescaled by dividing by 1.35 .
$\overline{\text { MS }}$ MASS (MeV)
DOCUMENT ID TECN
93.5 ± 0.8 (CL $=\mathbf{9 0 \%}$) OUR EVALUATION See the ideogram below.

$98.7 \pm 2.4 \pm 4.0$	1	ALEXANDROU21	LATT
$95.7 \pm 2.5 \pm 2.4$	2 BRUNO	20	LATT
92.47 ± 0.69	3 BAZAVOV	18	LATT
93.85 ± 0.75	4 LYTLE	18	LATT
87.6 ± 6.0	5 ANANTHANA. 16	THEO	

99.6	± 4.3	6	CARRASCO	14
LATT				
94.4	± 2.3	7 ARTHUR	13	LATT
94	± 9	8 BODENSTEIN	13	THEO
$95.5 \pm 1.1 \pm 1.5$	9	DURR	11	LATT

- - We do not use the following data for averages, fits, limits, etc.

93.6 ± 0.8	10 CHAKRABOR.. 15		LATT
$102 \pm 3 \pm 1$	11 FRITZSCH	12	LATT
96.2 ± 2.7	12 AOKI	11A	LATT
95 ± 6	13 BLOSSIER	10	LATT
$97.6 \pm 2.9 \pm 5.5$	14 BLUM	10	LATT
92.4 ± 1.5	15 DAVIES	10	LATT
92.2 ± 1.3	15 MCNEILE	10	LATT
107.3 ± 11.7	16 ALLTON	08	LATT
$105 \pm 3 \pm 9$	17 BLOSSIER	08	LATT
102 ± 8	18 DOMINGUEZ	08A	THEO
90.1 +17.2	19 ISHIKAWA	08	LATT
105.6 ± 1.2	20 NAKAMURA	08	LATT
119.5 ± 9.3	21 BLUM	07	LATT
$105 \pm 6 \pm 7$	22 CHETYRKIN	06	THEO
$111 \pm 6 \pm 10$	23 GOCKELER	06	LATT
$119 \pm 5 \pm 8$	24 GOCKELER	06A	LATT
92 ± 9	25 JAMIN	06	THEO
87 ± 6	26 MASON	06	LATT
104 ± 15	27 NARISON	06	THEO
$\geq 71 \pm 4, \leq 151 \pm 14$	28 NARISON	06	THEO
$\begin{array}{rrr} + & 5 & +16 \\ -3 & -18 \end{array}$	29 BAIKOV	05	THEO
81 ± 22	30 GAMIZ	05	THEO
125 ± 28	31 GORBUNOV	05	THEO
93 ± 32	32 NARISON	05	THEO
76 ± 8	33 AUBIN	04	LATT
$116 \pm 6 \pm 0.65$	34 AOKI	03	LATT
$84.5 \begin{gathered} +12 \\ -1.7 \end{gathered}$	35 AOKI	03B	LATT
$106 \pm 2 \pm 8$	36 BECIREVIC	03	LATT
$92 \pm 9 \pm 16$	37 CHIU	03	LATT
117 ± 17	38 GAMIZ	03	THEO
103 ± 17	39 GAMIZ	03	THEO

${ }^{1}$ ALEXANDROU 21 determines the quark mass using a lattice calculation of the meson and baryon masses with a twisted mass fermion action. The simulations are carried out using $2+1+1$ dynamical quarks with $m_{u}=m_{d} \neq m_{s} \neq m_{c}$, including gauge ensembles close to the physical pion point.
${ }^{2}$ BRUNO 20 determines the light quark mass using a lattice calculation with $n_{f}=2+1$ flavors of Wilson fermions. The scale has been set from f_{π} and f_{K}. The tuning was done using the masses of the lightest (π) and strange (K) pseudoscalar mesons.
${ }^{3}$ BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.
${ }^{4}$ LYTLE 18 combined with CHAKRABORTY 2015 determine $\bar{m}_{s}(3 \mathrm{GeV})=84.78 \pm 0.65$ MeV from a lattice simulation with $n_{f}=2+1+1$ flavors. They also determine the quoted value $\bar{m}_{s}(2 \mathrm{GeV})$ for $n_{f}=4$ dynamical flavors.
${ }^{5}$ ANANTHANARAYAN 16 determine $\bar{m}_{\boldsymbol{s}}(2 \mathrm{GeV})=106.70 \pm 9.36 \mathrm{MeV}$ and 74.47 ± 7.77 MeV from fits to ALEPH and OPAL τ decay data, respectively. We have used the weighted average of the two.
${ }^{6}$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2+1+1$ dynamical quarks, with $m_{u}=m_{d} \neq m_{s} \neq m_{c}$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.
7 ARTHUR 13 is a lattice computation using $2+1$ dynamical domain wall fermions. Masses at $\mu=3 \mathrm{GeV}$ have been converted to $\mu=2 \mathrm{GeV}$ using conversion factors given in their paper.
8 BODENSTEIN 13 determines m_{s} from QCD finite energy sum rules, and the perturbative computation of the pseudoscalar correlator to five-loop order.
${ }^{9}$ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $n_{f}=2+1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed.
10 CHAKRABORTY 15 is a lattice QCD computation that determines m_{c} and m_{c} / m_{s} using pseudoscalar mesons masses tuned on gluon field configurations with $2+1+1 \mathrm{dy}$ namical flavors of HISQ quarks with u / d masses down to the physical value.
${ }^{11}$ FRITZSCH 12 determine m_{s} using a lattice computation with $n_{f}=2$ dynamical flavors.
12 AOKI 11A determine quark masses from a lattice computation of the hadron spectrum using $n_{f}=2+1$ dynamical flavors of domain wall fermions.
13 BLOSSIER 10 determines quark masses from a computation of the hadron spectrum using $n_{f}=2$ dynamical twisted-mass Wilson fermions.
14 BLUM 10 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use $2+1$ dynamical quark flavors.
15 DAVIES 10 and MCNEILE 10 determine $\bar{m}_{c}(\mu) / \bar{m}_{s}(\mu)=11.85 \pm 0.16$ using a lattice computation with $n_{f}=2+1$ dynamical fermions of the pseudoscalar meson masses. Mass m_{s} is obtained from this using the value of m_{c} from ALLISON 08 or MCNEILE 10.
${ }^{16}$ ALLTON 08 use a lattice computation of the π, K, and Ω masses with $2+1$ dynamical flavors of domain wall quarks, and non-perturbative renormalization.
17 BLOSSIER 08 use a lattice computation of pseudoscalar meson masses and decay constants with 2 dynamical flavors and non-perturbative renormalization.
18 DOMINGUEZ 08A make determination from QCD finite energy sum rules for the pseudoscalar two-point function computed to order α_{S}^{4}.
19 ISHIKAWA 08 use a lattice computation of the light meson spectrum with $2+1$ dynamical flavors of $\mathcal{O}(a)$ improved Wilson quarks, and one-loop perturbative renormalization.
20 NAKAMURA 08 do a lattice computation using quenched domain wall fermions and non-perturbative renormalization.
${ }^{21}$ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
${ }^{22}$ CHETYRKIN 06 use QCD sum rules in the pseudoscalar channel to order α_{s}^{4}.
23 GOCKELER 06 use an unquenched lattice computation of the axial Ward Identity with $n_{f}=2$ dynamical light quark flavors, and non-perturbative renormalization, to obtain $\bar{m}_{s}(2 \mathrm{GeV})=111 \pm 6 \pm 4 \pm 6 \mathrm{MeV}$, where the first error is statistical, the second and third are systematic due to the fit range and force scale uncertainties, respectively. We have combined the systematic errors linearly.
${ }^{24}$ GOCKELER 06A use an unquenched lattice computation of the pseudoscalar meson masses with $n_{f}=2$ dynamical light quark flavors, and non-perturbative renormalization.
25 JAMIN 06 determine $\bar{m}_{s}(2 \mathrm{GeV})$ from the spectral function for the scalar $K \pi$ form factor.
26 MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order.
27 NARISON 06 uses sum rules for $e^{+} e^{-} \rightarrow$ hadrons to order α_{s}^{3}.

28 NARISON 06 obtains the quoted range from positivity of the spectral functions.
${ }^{29}$ BAIKOV 05 determines $\bar{m}_{s}\left(M_{\tau}\right)=100_{-3-19}^{+5}+17$ from sum rules using the strange spectral function in τ decay. The computations were done to order α_{s}^{3}, with an estimate of the α_{s}^{4} terms. We have converted the result to $\mu=2 \mathrm{GeV}$.
30 GAMIZ 05 determines $\bar{m}_{s}(2 \mathrm{GeV})$ from sum rules using the strange spectral function in τ decay. The computations were done to order α_{s}^{2}, with an estimate of the α_{s}^{3} terms.
${ }^{31}$ GORBUNOV 05 use hadronic tau decays to N3LO, including power corrections.
32 NARISON 05 determines $\bar{m}_{s}(2 \mathrm{GeV})$ from sum rules using the strange spectral function in τ decay. The computations were done to order α_{s}^{3}.
33 AUBIN 04 perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with one-loop perturbative renormalization constant.
34 AOKI 03 uses quenched lattice simulation of the meson and baryon masses with degenerate light quarks. The extrapolations are done using quenched chiral perturbation theory. Determines $\mathrm{m}_{s}=113.8 \pm 2.3_{-2.9}^{+5.8}$ using K mass as input and $\mathrm{m}_{s}=142.3 \pm 5.8_{-0}^{+22}$ using ϕ mass as input. We have performed a weighted average of these values.
35 AOKI 03B uses lattice simulation of the meson and baryon masses with two dynamical light quarks. Simulations are performed using the $\mathcal{O}(a)$ improved Wilson action.
36 BECIREVIC 03 perform quenched lattice computation using the vector and axial Ward identities. Uses $\mathcal{O}(a)$ improved Wilson action and nonperturbative renormalization. They also quote $\bar{m} / \mathrm{m}_{s}=24.3 \pm 0.2 \pm 0.6$.
37 CHIU 03 determines quark masses from the pion and kaon masses using a lattice simulation with a chiral fermion action in quenched approximation.
38 GAMIZ 03 determines m_{s} from SU(3) breaking in the τ hadronic width. The value of $V_{u s}$ is chosen to satisfy CKM unitarity.
39 GAMIZ 03 determines m_{s} from $\operatorname{SU}(3)$ breaking in the τ hadronic width. The value of $V_{u s}$ is taken from the PDG.

OTHER LIGHT QUARK MASS RATIOS

$\boldsymbol{m}_{\boldsymbol{s}} / \boldsymbol{m}_{\boldsymbol{d}}$ MASS RATIO

$\boldsymbol{m}_{\boldsymbol{s}} / \overline{\boldsymbol{m}}$ MASS RATIO

$\bar{m} \equiv\left(m_{u}+m_{d}\right) / 2$	DOCUMENT ID		
${ }^{27.33}{ }_{-0.14}^{+0.18}(\mathrm{CL}=90 \%) \mathrm{OU}$	See the ideogram		
$27.17 \pm 0.32+0.56$	1 ALEXANDROU21		LATT
$27.0 \pm 1.0 \pm 0.4$	2 BRUNO	20	LATT
$27.35 \pm 0.05{ }_{-0.07}^{+0.10}$	3 BAZAVOV	14A	LATT
26.66 ± 0.32	4 CARRASCO	14	LATT
27.36 ± 0.54	${ }^{5}$ ARTHUR	13	LATT
$27.53 \pm 0.20 \pm 0.08$	6 DURR	11	LATT

- - We do not use the following data for averages, fits, limits, etc. • • -

26.8 ± 1.4	7	AOKI	11 A
LATT			
27.3	± 0.9	8 BLOSSIER	10
LATT			
28.8 ± 1.65	9 ALLTON	08	LATT
$27.3 \pm 0.3 \pm 1.2$	10 BLOSSIER	08	LATT
23.5	± 1.5	11 OLLER	$07 A$
27.4 ± 0.4	12 AUBIN	04	LATT

${ }^{1}$ ALEXANDROU 21 determines the quark mass using a lattice calculation of the meson and baryon masses with a twisted mass fermion action. The simulations are carried out using $2+1+1$ dynamical quarks with $m_{u}=m_{d} \neq m_{s} \neq m_{c}$, including gauge ensembles close to the physical pion point.
${ }^{2}$ BRUNO 20 determines the light quark mass using a lattice calculation with $n_{f}=2+1$ flavors of Wilson fermions. The scale has been set from f_{π} and f_{K}. The tuning was done using the masses of the lightest (π) and strange (K) pseudoscalar mesons.
${ }^{3}$ BAZAVOV 14A is a lattice computation using 4 dynamical flavors of HISQ fermions.
${ }^{4}$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2+1+1$ dynamical quarks, with $m_{u}=m_{d} \neq m_{s} \neq m_{c}$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.
${ }^{5}$ ARTHUR 13 is a lattice computation using $2+1$ dynamical domain wall fermions.
${ }^{6}$ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $n_{f}=2+1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed.
${ }^{7}$ AOKI 11A determine quark masses from a lattice computation of the hadron spectrum using $n_{f}=2+1$ dynamical flavors of domain wall fermions.
${ }^{8}$ BLOSSIER 10 determines quark masses from a computation of the hadron spectrum using $n_{f}=2$ dynamical twisted-mass Wilson fermions.
${ }^{9}$ ALLTON 08 use a lattice computation of the π, K, and Ω masses with $2+1$ dynamical flavors of domain wall quarks, and non-perturbative renormalization.
10 BLOSSIER 08 use a lattice computation of pseudoscalar meson masses and decay constants with 2 dynamical flavors and non-perturbative renormalization.
11 OLLER 07A use unitarized chiral perturbation theory to order p^{4}.
12 Three flavor dynamical lattice calculation of pseudoscalar meson masses.

Q MASS RATIO
$Q \equiv \sqrt{\left(m_{s}^{2}-\bar{m}^{2}\right) /\left(m^{2} d^{-m^{2}}{ }_{u}\right)} ; \quad \bar{m} \equiv\left(m_{u}+m_{d}\right) / 2$
VALUE DOCUMENTID

- - We do not use the following data for averages, fits, limits, etc. - • •

22.1 ± 0.7	1 COLANGELO	18	THEO
22.0 ± 0.7	2 COLANGELO	17	THEO
21.6 ± 1.1	3 GUO	17	THEO
$23.4 \pm 0.4 \pm 0.5$	4 FODOR	16	LATT
21.4 ± 0.4	5 GUO	15 F	THEO
22.8 ± 0.4	6 MARTEMYA... 05	THEO	
22.7 ± 0.8	7 ANISOVICH	96	THEO

${ }^{1}$ COLANGELO 18 obtain Q from a dispersive analysis of $\eta \rightarrow 3 \pi$ decay.
${ }^{2}$ COLANGELO 17 obtain Q from a dispersive analysis of KLOE collaboration data on $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays and chiral perturbation theory input.
${ }^{3}$ GUO 17 determine Q from a dispersive model fit to KLOE and WASA-at-COSY data on $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay and matching to chiral perturbation theory.
${ }^{4}$ FODOR 16 is a lattice simulation with $n_{f}=2+1$ dynamical flavors and includes partially quenched QED effects.
${ }^{5}$ GUO 15F determine Q from a Khuri-Treiman analysis of $\eta \rightarrow 3 \pi$ decays.
6 MARTEMYANOV 05 determine Q from $\eta \rightarrow 3 \pi$ decay.
${ }^{7}$ ANISOVICH 96 find Q from $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay using dispersion relations and chiral perturbation theory.

LIGHT QUARKS ($u, d, s)$ REFERENCES

ALEXANDROU	21	PR D104 074515
BRUNO	20	EPJ C80 169
DOMINGUEZ	19	JHEP 1902057
BAZAVOV	18	PR D98 054517
COLANGELO	18	EPJ C78 947
LYTLE	18	PR D98 014513
COLANGELO	17	PRL 118022001
GUO	17	PL B771 497
YUAN	17	PR D96 014034
ANANTHANA	. 16	PR D94 116014
FODOR	16	PRL 117082001
BASAK	15	JPCS 640012052
CHAKRABOR.	15	PR D91 054508
GUO	15F	PR D92 054016
BAZAVOV	14A	PR D90 074509
CARRASCO	14	NP B887 19
ARTHUR	13	PR D87 094514
BODENSTEIN	13	JHEP 1307138
AOKI	12	PR D86 034507
FRITZSCH	12	NP B865 397
AOKI	11A	PR D83 074508
DURR	11	PL B701 265
BAZAVOV	10	RMP 821349
BLOSSIER	10	PR D82 114513
BLUM	10	PR D82 094508
DAVIES	10	PRL 104132003
MCNEILE	10	PR D82 034512
DOMINGUEZ	09	PR D79 014009
ALLISON	08	PR D78 054513
ALLTON	08	PR D78 114509
BLOSSIER	08	JHEP 0804020
DEANDREA	08	PR D78 034032
DOMINGUEZ	08A	JHEP 0805020
DOMINGUEZ.	08B	PL B660 49
ISHIKAWA	08	PR D78 011502
NAKAMURA	08	PR D78 034502
BLUM	07	PR D76 114508
OLLER	07A	EPJ A34 371
CHETYRKIN	06	EPJ C46 721
GOCKELER	06	PR D73 054508
GOCKELER	06A	PL B639 307
JAMIN	06	PR D74 074009
MASON	06	PR D73 114501
NARISON	06	PR D74 034013
PDG	06	JP G33 1
BAIKOV	05	PRL 95012003
GAMIZ	05	PRL 94011803
GORBUNOV	05	PR D71 013002
MARTEMYA...	05	PR D71 017501
NARISON	05	PL B626 101
AUBIN	04	PR D70 031504

