$$I^{G}(J^{PC}) = 1^{+}(1^{--})$$

OMITTED FROM SUMMARY TABLE

See the review on "Spectroscopy of Light Meson Resonances."

ρ(1900) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
• • • We do no	t use th	e following data for	avera	ges, fits,	limits, etc. • • •	
$1880\!\pm\!10$		¹ ABLIKIM	22L	BES3	2.0–3.08 $e^+e^- \rightarrow K^+K^-\pi^0$	
$1909 \!\pm\! 17 \!\pm\! 25$	54	² AUBERT	0 8S	BABR	10.6 $e^+e^- \rightarrow \phi \pi^0 \gamma$	
$1880\!\pm\!30$		AUBERT	06 D	BABR	$10.6 e^+e^- \rightarrow 3\pi^+3\pi^-\gamma$	
$1860\!\pm\!20$		AUBERT	06 D	BABR	10.6 $e^+e^- \rightarrow 2(\pi^+\pi^-\pi^0)\gamma$	
$1910\!\pm\!10$		^{3,4} FRABETTI	04	E687	$\gamma p \rightarrow 3\pi^+ 3\pi^- p$	
$1870\!\pm\!10$		ANTONELLI	96	SPEC	$e^+e^- ightarrow hadrons$	

 $^1\,{\sf From}$ a partial wave amplitude analysis at $\sqrt{s}=2.125$ GeV which includes all the possible intermediate states that match J^{PC} conservation in the subsequent two-body decay. The intermediate states are parameterized with the relativistic Breit-Wigner functions. Statistical error only.

 2 From the fit with two resonances. ³ From a fit with two resonances with the JACOB 72 continuum.

⁴ Supersedes FRABETTI 01.

ρ(1900) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						
$69\!\pm\!15$		¹ ABLIKIM	22L	BES3	2.0–3.08 $e^+e^- \rightarrow K^+K^-\pi^0$	
$48 \pm 17 \pm 2$	54	² AUBERT	0 8S	BABR	10.6 $e^+e^- \rightarrow \phi \pi^0 \gamma$	
130 ± 30		AUBERT	06 D	BABR	10.6 $e^+e^- \rightarrow 3\pi^+3\pi^-\gamma$	
160 ± 20		AUBERT	06 D	BABR	10.6 $e^+e^- \to 2(\pi^+\pi^-\pi^0)\gamma$	
$37\!\pm\!13$		^{3,4} FRABETTI	04	E687	$\gamma p \rightarrow 3\pi^+ 3\pi^- p$	
$10\pm$ 5		ANTONELLI	96	SPEC	$e^+e^- ightarrow$ hadrons	

 $^1\,{\rm From}$ a partial wave amplitude analysis at $\sqrt{s}=2.125\,{\rm GeV}$ which includes all the possible intermediate states that match J^{PC} conservation in the subsequent two-body decay. The intermediate states are parameterized with the relativistic Breit-Wigner functions. Statistical error only.

² From the fit with two resonances. ³ From a fit with two resonances with the JACOB 72 continuum.

⁴ Supersedes FRABETTI 01.

$\rho(1900) \Gamma(i)\Gamma(e^+e^-)/\Gamma^2(\text{total})$

 $\Gamma(\phi\pi)/\Gamma_{\text{total}} \, \times \, \Gamma(e^+ e^-)/\Gamma_{\text{total}}$ $\Gamma_4/\Gamma \times \Gamma_6/\Gamma$ <u>VALUE (units 10^{-8})</u> EVTS DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT 08S BABR 10.6 $e^+e^- \rightarrow \phi \pi^0 \gamma$ 54 $4.2 \pm 1.2 \pm 0.8$ ¹ From the fit with two resonances.

https://pdg.lbl.gov

	Mode	Fraction (Γ_i/Γ)
Г1	6π	seen
Г2	$3\pi^+3\pi^-$	seen
Γ ₃	$2\pi^+2\pi^-2\pi^0$	
Г ₄	$\phi\pi$	seen
Γ ₅	hadrons	seen
Г ₆	e ⁺ e ⁻	seen
Г ₇	<u>N</u> N	not seen

ρ (1900) DECAY MODES

ρ (1900) BRANCHING RATIOS

$\Gamma(6\pi)/\Gamma_{total}$					Γ ₁ /Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
seen	8k	AKHMETSHIN	13	CMD3	$e^+e^- \rightarrow 3\pi^+3\pi^-$
not seen		AGNELLO	02	OBLX	$\overline{n}p \rightarrow 3\pi^+ 2\pi^- \pi^0$
seen		FRABETTI	01	E687	$\gamma p \rightarrow 3\pi^+ 3\pi^- p$
seen		ANTONELLI	96	SPEC	$e^+e^- ightarrow $ hadrons

$\rho(1900)$ REFERENCES

ABLIKIM	22L	JHEP 2207 045	M. Ablikim <i>et al.</i>	(BESIII Collab.)
AKHMETSHIN	13	PL B723 82	R.R. Akhmetshin <i>et al.</i>	(CMD-3 Collab.)
AUBERT	08S	PR D77 092002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	06D	PR D73 052003	B. Aubert <i>et al.</i>	(BABAR Collab.)
FRABETTI	04	PL B578 290	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
AGNELLO	02	PL B527 39	M. Agnello <i>et al.</i>	(OBELIX Collab.)
FRABETTI	01	PL B514 240	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
ANTONELLI	96	PL B365 427	A. Antonelli <i>et al.</i>	(FENICE Collab.)
JACOB	72	PR D5 1847	M. Jacob, R. Slansky	