

$$I^{G}(J^{PC}) = 1^{+}(1^{--})$$

ρ (770) T-MATRIX POLE \sqrt{s}

Note that $\Gamma = -2 \operatorname{Im}(\sqrt{s})$.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT					
(761–765) – <i>i</i> (71–74) OUR ESTIMATE									
$(763.7^{+1.7}_{-1.5}) - i (73.2^{+1.0}_{-1.1})$	¹ GARCIA-MAR.	.11	RVUE	Compilation					
$(754 \pm 18) - i (74 \pm 10)$	² PELAEZ	04A	RVUE	$\pi \pi \rightarrow \pi \pi$	_				
$(762.4 \pm 1.8) - i \; (72.6 \pm 1.4)$	COLANGELO	01	RVUE	$\pi \pi \rightarrow \pi \pi$					
¹ Reanalysis of the K_{e4} data of BATLEY 10C and the $\pi N \rightarrow \pi \pi N$ data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73 using GKPY equations.									
COHEN 80 in the unitarized C	hPT model.	LJIF	ADRUUr	NO 14, GRATER 14, and					

ρ(770) MASS

We no longer list *S*-wave Breit-Wigner fits, or data with high combinatorial background.

NEUTRAL ONLY	, e ⁺ e ⁻				
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
775.26±0.23 OUR A	VERAGE				
775.3 $\pm 0.5 \pm 0.6$		¹ ACHASOV	21	SND	$e^+e^- \rightarrow \pi^+\pi^-$
$775.02 \!\pm\! 0.35$		² LEES	12G	BABR	$e^+e^- \rightarrow \pi^+\pi^-\gamma$
$775.97 \!\pm\! 0.46 \!\pm\! 0.70$	900k	³ AKHMETSHIN	07		$e^+e^- \rightarrow \pi^+\pi^-$
774.6 $\pm 0.4 \pm 0.5$	800k	^{4,5} ACHASOV	06	SND	$e^+e^- \rightarrow \pi^+\pi^-$
$775.65 \!\pm\! 0.64 \!\pm\! 0.50$	114k	^{6,7} AKHMETSHIN	04	CMD2	$e^+e^- \rightarrow \pi^+\pi^-$
775.9 $\pm 0.5 \pm 0.5$	1.98M	⁸ ALOISIO	03	KLOE	1.02 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
775.8 $\pm 0.9 \pm 2.0$	500k	⁸ ACHASOV	02	SND	1.02 $e^+e^- \to \pi^+\pi^-\pi^0$
775.9 ± 1.1		⁹ BARKOV	85	OLYA	$e^+e^- \rightarrow \pi^+\pi^-$
$\bullet \bullet \bullet$ We do not use	the follov	ving data for averag	ges, fi	ts, limits	s, etc. ● ● ●
763.49±0.53		¹⁰ BARTOS	17	RVUE	$e^+e^- \rightarrow \pi^+\pi^-$
758.23 ± 0.46		¹¹ BARTOS	17A	RVUE	$e^+e^- \rightarrow \pi^+\pi^-$
775.8 $\pm 0.5 \pm 0.3$	1.98M	¹² ALOISIO	03	KLOE	1.02 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
775.9 $\pm 0.6 \pm 0.5$	1.98M	¹³ ALOISIO	03	KLOE	1.02 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
775.0 $\pm 0.6 \pm 1.1$	500k	¹⁴ ACHASOV	02	SND	1.02 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
775.1 $\pm 0.7 \pm 5.3$		¹⁵ BENAYOUN	98	RVUE	$e^+e^- ightarrow \pi^+\pi^-$,
					$\mu^+\mu^-$
$770.5 \ \pm 1.9 \ \pm 5.1$		¹⁶ GARDNER	98	RVUE	$0.28-0.92 \ e^+ e^- \rightarrow$
764.1 +0.7		¹⁷ O'CONNELL	97	RVUF	$e^+e^- \rightarrow \pi^+\pi^-$
757 5 +1 5		¹⁸ BERNICHA	94	RVUE	$e^+e^- \rightarrow \pi^+\pi^-$
768 +1		19 GESHKEN	80	RVUE	$a^+a^- \rightarrow \pi^+\pi^-$
100 11		GESTINEN	05	INVOL	

¹ From a fit of the cross section in the energy range 0.525 < \sqrt{s} < 0.883 GeV parameterized by the sum of the Breit-Wigner amplitudes for the $\rho(770)$, ω and $\rho(1450)$ resonances.

² Using the GOUNARIS 68 parametrization with the complex phase of the $\rho-\omega$ interference and leaving the masses and widths of the $\rho(1450)$, $\rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.

³A combined fit of AKHMETSHIN 07, AULCHENKO 06, and AULCHENKO 05.

- ⁴ Supersedes ACHASOV 05A.
- ⁵ A fit of the SND data from 400 to 1000 MeV using parameters of the $\rho(1450)$ and $\rho(1700)$ from a fit of the data of BARKOV 85, BISELLO 89 and ANDERSON 00A.

⁶Using the GOUNARIS 68 parametrization with the complex phase of the ρ - ω interference.

⁷ Update of AKHMETSHIN 02.

⁸Assuming $m_{\rho^+} = m_{\rho^-}$, $\Gamma_{\rho^+} = \Gamma_{\rho^-}$.

⁹ From the GOUNARIS 68 parametrization of the pion form factor.

- ¹⁰ Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of LEES 12G and ABLIKIM 16C.
- ¹¹ Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, and AMBROSINO 11A.
- ¹² Assuming $m_{\rho^+} = m_{\rho^-} = m_{\rho^0}$, $\Gamma_{\rho^+} = \Gamma_{\rho^-} = \Gamma_{\rho^0}$.
- ^{μ} ^{μ} ^{μ} ^{μ} ^{ρ} ^{μ}

Assuming
$$m_{\rho^0} = m_{\rho^{\pm}}$$
, $g_{\rho^0 \pi \pi} = g_{\rho^{\pm} \pi \pi}$.

 15 Using the data of BARKOV 85 in the hidden local symmetry model.

¹⁶ From the fit to $e^+e^- \rightarrow \pi^+\pi^-$ data from the compilations of HEYN 81 and BARKOV 85, including the GOUNARIS 68 parametrization of the pion form factor.

¹⁷ A fit of BARKOV 85 data assuming the direct $\omega \pi \pi$ coupling.

 18 Applying the S-matrix formalism to the BARKOV 85 data.

¹⁹ Includes BARKOV 85 data. Model-dependent width definition.

CHARGED ONLY, τ DECAYS and e^+e^-

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
775.11±0.34 OUR	AVERAG	E				
$774.6\ \pm 0.2\ \pm 0.5$	5.4M	1,2 FUJIKAWA	08	BELL	±	$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$
775.5 ± 0.7		^{2,3} SCHAEL	05 C	ALEP		$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$
$775.5\ \pm 0.5\ \pm 0.4$	1.98M	⁴ ALOISIO	03	KLOE		$1.02 \stackrel{e^+e^-}{+} \stackrel{e^-}{-} \stackrel{\rightarrow}{0}$
$775.1 \ \pm 1.1 \ \pm 0.5$	87k	^{5,6} ANDERSON	00A	CLE2		$\tau^{-} \xrightarrow{\pi^{+}} \pi^{-} \pi^{-} \pi^{0} \nu_{\tau}$
• • • We do not u	se the fol	lowing data for ave	rages,	fits, lim	its, etc	. • • •
$761.60 \!\pm\! 0.95$		⁷ BARTOS	17A	RVUE		$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$
$774.8\ \pm 0.6\ \pm 0.4$	1.98M	⁸ ALOISIO	03	KLOE	_	$1.02 \ e^+ e^- \rightarrow 1.02 \ e^- e^- e^- e^- \rightarrow 1.02 \ e^- e^- e^- e^- e^- \rightarrow 1.02 \ e^- e^- e^- e^- e^- e^- e^- e^- e^- e^-$
776.3 $\pm 0.6 \pm 0.7$	1.98M	⁸ ALOISIO	03	KLOE	+	$1.02 \stackrel{\pi^+\pi^-}{e^+e^-}_{\pi^+\pi^-\pi^0} \rightarrow$
773.9 $\pm 2.0 \ +0.3 \\ -1.0$		⁹ SANZ-CILLER	003	RVUE		$\tau^- ightarrow \pi^- \pi^0 \nu_{ au}$
$774.5\ \pm 0.7\ \pm 1.5$	500k	⁴ ACHASOV	02	SND	±	$1.02 \stackrel{e^+e^-}{-} \xrightarrow{0}$
$775.1 \hspace{0.1 cm} \pm 0.5$		¹⁰ PICH	01	RVUE		$\tau^{-} \xrightarrow{\pi^+}{\rightarrow} \pi^- \pi^0 \nu_{\tau}$

 $||F_{\pi}(0)||^2$ fixed to 1.

² From the GOUNARIS 68 parametrization of the pion form factor.

 3 The error combines statistical and systematic uncertainties. Supersedes BARATE 97M.

⁴Assuming $m_{\rho^+} = m_{\rho^-}$, $\Gamma_{\rho^+} = \Gamma_{\rho^-}$.

 ${}^5
ho(1700)$ mass and width fixed at 1700 MeV and 235 MeV respectively.

⁶ From the GOUNARIS 68 parametrization of the pion form factor. The second error is a _model error taking into account different parametrizations of the pion form factor.

⁷ Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of FUJIKAWA 08.

⁸Without limitations on masses and widths.

 9 Using the data of BARATE 97M and the effective chiral Lagrangian.

¹⁰ From a fit of the model-independent parameterization of the pion form factor to the data of BARATE 97M.

MIXED CHARGES, OTHER REACTIONS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
763.0±0.3±1.2	600k	¹ ABELE	99E	CBAR	0±	$0.0 \ \overline{p} p \rightarrow \ \pi^+ \pi^- \pi^0$
1		1				

¹Assuming the equality of ρ^+ and ρ^- masses and widths.

CHARGED ONLY, HADROPRODUCED

NEUTRAL ONLY PHOTOPRODUCED

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
766.5±1.1 OU	R AVERAG	GE				
763.7 ± 3.2		ABELE	97	CBAR		$\overline{p} n \rightarrow \pi^{-} \pi^{0} \pi^{0}$
768 ± 9		AGUILAR	91	EHS		400 <i>pp</i>
767 ±3	2935	¹ CAPRARO	87	SPEC	_	$200 \ \pi^- \mathrm{Cu} \rightarrow \ \pi^- \pi^0 \mathrm{Cu}$
761 ± 5	967	¹ CAPRARO	87	SPEC	_	$200 \ \pi^- \mathrm{Pb} \rightarrow \ \pi^- \pi^0 \mathrm{Pb}$
771 ± 4		HUSTON	86	SPEC	+	$202 \pi^+ A \rightarrow \pi^+ \pi^0 A$
766 ±7	6500	² BYERLY	73	OSPK	_	$5 \pi^- p$
766.8 ± 1.5	9650	³ PISUT	68	RVUE	_	1.7–3.2 π^- p, t <10
767 ± 6	900	¹ EISNER	67	HBC	_	4.2 $\pi^- p$, t <10

¹Mass errors enlarged by us to Γ/\sqrt{N} ; see the note with the $K^*(892)$ mass.

² Phase shift analysis. Systematic errors added corresponding to spread of different fits.
 ³ From fit of 3-parameter relativistic *P*-wave Breit-Wigner to total mass distribution. Includes BATON 68, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGO-PIAN 66B, JACOBS 66B, JAMES 66, WEST 66, BLIEDEN 65 and CARMONY 64.

	.,				
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
769.2± 0.9 OUR A	VERAGE				
$770.8 \pm \ 1.3 {+2.3 \atop -2.4}$	900k	ANDREEV	20	H1	$ep \rightarrow e\pi^+\pi^-p$
771 \pm 2 $\substack{+2\\-1}$	63.5k	¹ ABRAMOWICZ	212	ZEUS	$ep \rightarrow e\pi^+\pi^-p$
770 \pm 2 \pm 1	79k	² BREITWEG	98 B	ZEUS	50–100 γ <i>p</i>
$767.6\pm$ 2.7		BARTALUCCI	78	CNTR	$\gamma p ightarrow e^+ e^- p$
775 ± 5		GLADDING	73	CNTR	2.9–4.7 γ <i>p</i>
767 ± 4	1930	BALLAM	72	HBC	2.8 γ <i>p</i>
770 ± 4	2430	BALLAM	72	HBC	4.7 γ <i>p</i>
765 ± 10		ALVENSLEB	70	CNTR	γ A, $t<$ 0.01
$767.7\pm~1.9$	140k	BIGGS	70	CNTR	$<$ 4.1 γ C $\rightarrow \pi^+\pi^-$ C
765 ± 5	4000	ASBURY	67 B	CNTR	γ + Pb
\bullet \bullet \bullet We do not us	se the follo	wing data for aver	ages,	fits, lim	its, etc. ● ● ●
771 ± 2	79k	³ BREITWEG	98 B	ZEUS	50–100 <i>үр</i>

¹ Using the KUHN 90 parametrization of the pion form factor, neglecting $\rho - \omega$ interference.

 2 From the parametrization according to SOEDING 66.

 3 From the parametrization according to ROSS 66.

NEUTRAL ONLY, OTHER REACTIONS

VALUE	(MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
769.0	±0.9	OUR AVERAGE	Error includes scale	facto	r of 1.4.	See the ideogram below.
765	± 6		BERTIN	97 C	OBLX	$0.0 \ \overline{p} p \rightarrow \ \pi^+ \pi^- \pi^0$
773	± 1.6		WEIDENAUER	93	ASTE	$\overline{p}p \rightarrow \pi^+\pi^-\omega$
762.6	± 2.6		AGUILAR	91	EHS	400 <i>pp</i>
770	± 2		¹ HEYN	81	RVUE	Pion form factor
768	± 4		^{2,3} BOHACIK	80	RVUE	
769	± 3		⁴ WICKLUND	78	ASPK	3,4,6 π^\pm N
768	± 1	76k	DEUTSCH	76	HBC	16 π^+ p
767	± 4	4100	ENGLER	74	DBC	$6 \pi^+ n \rightarrow \pi^+ \pi^- p$
775	± 4	32k	² PROTOPOP	73	HBC	7.1 π^+ p, t <0.4
764	± 3	6.8k	⁵ RATCLIFF	72	ASPK	15 π^- p, t <0.3
774	± 3	1.7k	REYNOLDS	69	HBC	2.26 $\pi^{-}p$
769.2	± 1.5	13.3k	⁶ PISUT	68	RVUE	1.7–3.2 $\pi^- p$, t <10
• • •	We do	not use the follow	ving data for averages	, fits,	limits, e	etc. • • •
774.34	1 ± 0.18	± 0.35 970k	⁷ ABLIKIM	18C	BES3	$\eta'(958) \rightarrow \gamma \pi^+ \pi^-$
772.93	3 ± 0.18	± 0.34 970k	⁸ ABLIKIM	18C	BES3	$\eta'(958) \rightarrow \gamma \pi^+ \pi^-$
773.5	± 2.5		⁹ COLANGELO	01	RVUE	$\pi\pi \rightarrow \pi\pi$
762.3	± 0.5	± 1.2 600k	¹⁰ ABELE	99e	CBAR	$0.0 \ \overline{p} p \rightarrow \pi^+ \pi^- \pi^0$
777	± 2	4.9k	¹¹ ADAMS	97	E665	470 $\mu p \rightarrow \mu XB$
770	± 2		¹² BOGOLYUB	97	MIRA	$32 \overline{p}p \rightarrow \pi^{+}\pi^{-}X$
768	± 8		¹² BOGOLYUB	97	MIRA	32 $pp \rightarrow \pi^+\pi^-X$
761.1	± 2.9		DUBNICKA	89	RVUE	π form factor
777.4	± 2.0		¹³ CHABAUD	83	ASPK	17 $\pi^- p$ polarized
769.5	± 0.7		^{2,3} LANG	79	RVUE	
770	± 9		³ ESTABROOKS	74	RVUE	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
773.5	± 1.7	11.2k	¹⁴ JACOBS	72	HBC	2.8 $\pi^{-}p$
775	± 3	2.2k	¹⁵ HYAMS	68	OSPK	11.2 $\pi^{-}p$

¹HEYN 81 includes all spacelike and timelike F_{π} values until 1978.

² From pole extrapolation.

³ From phase shift analysis of GRAYER 74 data.

⁴ Phase shift analysis. Systematic errors added corresponding to spread of different fits.

⁵ Published values contain misprints. Corrected by private communication RATCLIFF 74.

⁶ Includes MALAMUD 69, ARMENISE 68, BACON 67, HUWE 67, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66, WEST 66, GOLDHABER 64, ABOLINS 63.

⁷ From a fit to $\pi^+\pi^-$ mass using $\rho(770)$ (parametrized with the Gounaris-Sakurai approach), $\omega(782)$, and box anomaly components.

⁸ From a fit to $\pi^+\pi^-$ mass using $\rho(770)$ (parametrized with the Gounaris-Sakurai approach), $\omega(782)$, and $\rho(1450)$ components. ⁹ Breit-Wigner mass from a phase-shift analysis of HYAMS 73 and PROTOPOPESCU 73

data.

¹⁰Using relativistic Breit-Wigner and taking into account ρ - ω interference.

¹¹Systematic errors not evaluated.

¹² Systematic effects not studied.

 13 From fit of 3-parameter relativistic Breit-Wigner to helicity-zero part of P-wave intensity. CHABAUD 83 includes data of GRAYER 74. 14 Mass errors enlarged by us to Γ/\sqrt{N} ; see the note with the $K^*(892)$ mass.

 15 Of HYAMS 68 six parametrizations, this is theoretically soundest. MR

$$m_{\rho(770)^0} - m_{\rho(770)^{\pm}}$$

VALUE	(MeV)		EVTS	DOCUMENT ID		TECN	CHG	COMMENT
-0.7	±0.8	OUR	AVERAGE	Error includes	scale	factor of	1.5.	See the ideogram below.
-2.4	± 0.8			¹ SCHAEL	05 C	ALEP		$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$
0.4	± 0.7	± 0.6	1.98M	² ALOISIO	03	KLOE		1.02 $e^+e^- \rightarrow$
1.3	± 1.1	±2.0	500k	² ACHASOV	02	SND		$\begin{array}{c} \pi^{+}\pi^{-}\pi^{0} \\ 1.02 \ e^{+}e^{-} \\ \pi^{+}\pi^{-}\pi^{0} \end{array}$
1.6	± 0.6	± 1.7	600k	ABELE	99E	CBAR	± 0	$0.0 \overline{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$
-4	± 4		3000	³ REYNOLDS	69	HBC	-0	2.26 $\pi^{-}p$
-5	± 5		3600	³ FOSTER	68	HBC	± 0	0.0 <u>p</u> p
2.4	± 2.1		22950	⁴ PISUT	68	RVUE		$\pi N \rightarrow \rho N$
• • •	We do	o not ι	ise the follo	wing data for av	erages	, fits, lim	nits, e	etc. • • •
-3.37	2 ± 1.06	5		⁵ BARTOS	17A	RVUE		$e^+e^ ightarrow \pi^+\pi^-$,
								$\tau \rightarrow \pi^- \pi^0 \nu_{\tau}$

 1 From the combined fit of the τ^- data from ANDERSON 00A and SCHAEL 05C and e^+e^- data from the compilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05. Supersedes BARATE 97M.

²Assuming $m_{\rho^+} = m_{\rho^-}$, $\Gamma_{\rho^+} = \Gamma_{\rho^-}$.

³From quoted masses of charged and neutral modes.

- ⁴ Includes MALAMUD 69, ARMENISE 68, BATON 68, BACON 67, HUWE 67, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JA-COBS 66B, JAMES 66, WEST 66, BLIEDEN 65, CARMONY 64, GOLDHABER 64, ABOLINS 63.
- ⁵ Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, AMBROSINO 11A, and FUJIKAWA 08.

 • • We do not ι 	ise the follow	wing data for aver	rages, f	its, limits	s, etc. ● ● ●	
$1.5\!\pm\!0.8\!\pm\!0.7$	1.98M	¹ ALOISIO	03	KLOE	1.02 $e^+e^- \rightarrow$	$\pi^{+}\pi^{-}\pi^{0}$
¹ Without limita	tions on ma	sses and widths.				

$\rho(770)$ RANGE PARAMETER

The range parameter R enters an energy-dependent correction to the width, of the form $(1 + q_r^2 R^2) / (1 + q^2 R^2)$, where q is the momentum of one of the pions in the $\pi\pi$ rest system. At resonance, $q = q_r$.

VALUE (GeV ⁻¹)	DOCUMENT ID		TECN	CHG	COMMENT
$5.3^{+0.9}_{-0.7}$	¹ CHABAUD	83	ASPK	0	17 $\pi^- p$ polar-
1 The old PISUT 68 value, pro	operly corrected, wa	is 3.2	± 0.6.		

ρ(770) WIDTH

We no longer list *S*-wave Breit-Wigner fits, or data with high combinatorial background.

NEUTRAL ONL	.Y, e ⁺ e ⁻				
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
147.4 ±0.8 OUR	AVERAGE	Error includes scale	factor	of 2.0.	See the ideogram below.
145.6 $\pm 0.6 \pm 0.8$		¹ ACHASOV	21	SND	$e^+e^- \rightarrow \pi^+\pi^-$
$149.59 \!\pm\! 0.67$		² LEES	12G	BABR	$e^+e^- \rightarrow \pi^+\pi^-\gamma$
$145.98\!\pm\!0.75\!\pm\!0.5$	0 900k	³ AKHMETSHIN	07		$e^+e^- \rightarrow \pi^+\pi^-$
146.1 $\pm 0.8 \pm 1.5$	800k	^{4,5} ACHASOV	06	SND	$e^+e^- \rightarrow \pi^+\pi^-$
$143.85 \!\pm\! 1.33 \!\pm\! 0.8$	0 114k	^{6,7} AKHMETSHIN	04	CMD2	$e^+e^- \rightarrow \pi^+\pi^-$
147.3 $\pm 1.5 \pm 0.7$	1.98M	⁸ ALOISIO	03	KLOE	1.02 $e^+e^- \rightarrow$
151.1 $\pm 2.6 \pm 3.0$	500k	⁸ ACHASOV	02	SND	$\begin{array}{c} \pi^+ \pi^- \pi^0 \\ 1.02 \ e^+ e^- \rightarrow \\ \pi^+ \pi^- \pi^0 \end{array}$
150.5 ± 3.0		⁹ BARKOV	85	OLYA	$e^+e^- \rightarrow \pi^+\pi^-$
• • • We do not ι	use the followi	ng data for averages,	fits,	limits, e	tc. ● ● ●
$\begin{array}{c} 144.06 \pm 0.85 \\ 144.56 \pm 0.80 \end{array}$		¹⁰ BARTOS ¹¹ BARTOS	17 17A	RVUE RVUE	$e^+e^- ightarrow \pi^+\pi^-$ $e^+e^- ightarrow \pi^+\pi^-$
143.9 $\pm 1.3 \pm 1.1$	1.98M	¹² ALOISIO	03	KLOE	$1.02 \stackrel{e^+e^-}{-} \rightarrow$
147.4 $\pm 1.5 \pm 0.7$	1.98M	¹³ ALOISIO	03	KLOE	$1.02 \stackrel{\pi^+\pi^-\pi^0}{\pi^+\pi^-\pi^0} \rightarrow$
149.8 $\pm 2.2 \pm 2.0$	500k	¹⁴ ACHASOV	02	SND	$1.02 e^+ e^- \rightarrow$
147.9 $\pm 1.5 \pm 7.5$		¹⁵ BENAYOUN	98	RVUE	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{-},$ $\mu^{+}\mu^{-}$
$153.5 \pm 1.3 \pm 4.6$		¹⁶ GARDNER	98	RVUE	$0.28-0.92 e^+e^- \rightarrow$
$145.0 \ \pm 1.7$		¹⁷ O'CONNELL	97	RVUE	$e^+e^- \rightarrow \pi^+\pi^-$
142.5 ± 3.5		¹⁸ BERNICHA	94	RVUE	$e^+e^- \rightarrow \pi^+\pi^-$
138 ±1		¹⁹ GESHKEN	89	RVUE	$e^+e^- \rightarrow \pi^+\pi^-$

¹ From a fit of the cross section in the energy range 0.525 < \sqrt{s} < 0.883 GeV parameterized by the sum of the Breit-Wigner amplitudes for the ρ (770), ω and ρ (1450) a resonances.

² Using the GOUNARIS 68 parametrization with the complex phase of the $\rho-\omega$ interference and leaving the masses and widths of the $\rho(1450)$, $\rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.

³A combined fit of AKHMETSHIN 07, AULCHENKO 06, and AULCHENKO 05.

⁴ Supersedes ACHASOV 05A.

⁵ A fit of the SND data from 400 to 1000 MeV using parameters of the $\rho(1450)$ and $\rho(1700)$ from a fit of the data of BARKOV 85, BISELLO 89 and ANDERSON 00A.

⁶Using the GOUNARIS 68 parametrization with the complex phase of the ρ - ω interference.

 7 From a fit in the energy range 0.61 to 0.96 GeV. Update of AKHMETSHIN 02.

⁸Assuming $m_{\rho^+} = m_{\rho^-}$, $\Gamma_{\rho^+} = \Gamma_{\rho^-}$.

⁹ From the GOUNARIS 68 parametrization of the pion form factor.

¹⁰ Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of LEES 12G and ABLIKIM 16C.

- ¹¹ Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, and AMBROSINO 11A.
- ¹² Assuming $m_{\rho^+} = m_{\rho^-} = m_{\rho^0}$, $\Gamma_{\rho^+} = \Gamma_{\rho^-} = \Gamma_{\rho^0}$.

https://pdg.lbl.gov

Page 7

Created: 4/29/2024 18:56

- $\frac{13}{13}$ Without limitations on masses and widths.
- ¹⁴ Assuming $m_{\rho^0} = m_{\rho^{\pm}}$, $g_{\rho^0 \pi \pi} = g_{\rho^{\pm} \pi \pi}$.

 15 Using the data of BARKOV 85 in the hidden local symmetry model.

- 16 From the fit to e^+e^- ightarrow $\pi^+\pi^-$ data from the compilations of HEYN 81 and BARKOV 85, including the GOUNARIS 68 parametrization of the pion form factor. ¹⁷ A fit of BARKOV 85 data assuming the direct $\omega \pi \pi$ coupling.

¹⁸ Applying the S-matrix formalism to the BARKOV 85 data.
 ¹⁹ Includes BARKOV 85 data. Model-dependent width definition.

https://pdg.lbl.gov

Created: 4/29/2024 18:56

 $|F_{\pi}(0)|^2$ fixed to 1.

 2 From the GOUNARIS 68 parametrization of the pion form factor.

 3 The error combines statistical and systematic uncertainties. Supersedes BARATE 97M.

⁴Assuming $m_{\rho^+} = m_{\rho^-}$, $\Gamma_{\rho^+} = \Gamma_{\rho^-}$.

 ${}^{5}\rho(1700)$ mass and width fixed at 1700 MeV and 235 MeV respectively.

⁶ From the GOUNARIS 68 parametrization of the pion form factor. The second error is a model error taking into account different parametrizations of the pion form factor.

⁷Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of FUJIKAWA 08.

 8 Without limitations on masses and widths. 9 Using the data of BARATE 97M and the effective chiral Lagrangian.

¹⁰ Assuming $m_{\rho^0} = m_{\rho^{\pm}}$, $g_{\rho^0 \pi \pi} = g_{\rho^{\pm} \pi \pi}$.

MIXED CHARGES, OTHER REACTIONS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
149.5±1.3	600k	¹ ABELE	99E	CBAR	0±	$0.0 \ \overline{p} p \rightarrow \pi^+ \pi^- \pi^0$

¹Assuming the equality of ρ^+ and ρ^- masses and widths.

CHARGED ONLY, HADROPRODUCED

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
150.2± 2.4 O	UR FIT					
150.2± 2.4 O	UR AVER	AGE				
$152.8\pm$ 4.3		ABELE	97	CBAR		$\overline{p}n \rightarrow \pi^{-}\pi^{0}\pi^{0}$
155 ± 11	2.9k	¹ CAPRARO	87	SPEC	_	$200 \ \pi^- \operatorname{Cu} \rightarrow \ \pi^- \pi^0 \operatorname{Cu}$
154 ± 20	967	¹ CAPRARO	87	SPEC	_	200 $\pi^- Pb \rightarrow \pi^- \pi^0 Pb$
$150~\pm~5$		HUSTON	86	SPEC	+	$202 \pi^+ A \rightarrow \pi^+ \pi^0 A$
146 ± 12	6.5k	² BYERLY	73	OSPK	_	$5 \pi^- p$
$148.2\pm~4.1$	9.6k	³ PISUT	68	RVUE	_	1.7–3.2 π^- p, t <10
$146 \pm 13 $	900	EISNER	67	HBC	_	4.2 $\pi^- p$, $t < 10$
• • • We do n	ot use the	e following data fo	r avera	ges, fits,	limits	, etc. ● ● ●
$137.0\pm~0.4$		⁴ ABLIKIM	17	BES3		$J/\psi \rightarrow \gamma 3\pi$

¹Width errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

² Phase shift analysis. Systematic errors added corresponding to spread of different fits.

 3 From fit of 3-parameter relativistic *P*-wave Breit-Wigner to total mass distribution. Includes BATON 68, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGO-PIAN 66B, JACOBS 66B, JAMES 66, WEST 66, BLIEDEN 65 and CARMONY 64. ⁴S-matrix pole at a fixed ρ meson mass of 775.49 MeV.

NEUTRAL ONLY, PHOTOPRODUCED

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
151.5^+_{-} $\frac{1.9}{2.1}$ OUR λ	WERAGE				
$151.3 \pm \ 2.2 {+}{-} \ {} \frac{1.6}{2.8}$	900k	ANDREEV	20	H1	$ep \rightarrow e\pi^+\pi^-p$
155 \pm 5 \pm 2	63.5k	¹ ABRAMOWICZ	Z12	ZEUS	$ep \rightarrow e\pi^+\pi^-p$
146 \pm 3 \pm 13	79k	² BREITWEG	98 B	ZEUS	50–100 γ <i>p</i>
$150.9\pm$ 3.0		BARTALUCCI	78	CNTR	$\gamma p \rightarrow e^+ e^- p$

• • We do not use the following data for averages, fits, limits, etc. • • •

138	\pm 3	79k ³	BREITWEG	98 B	ZEUS	50–100 γ <i>p</i>
147	± 11		GLADDING	73	CNTR	2.9–4.7 γ <i>p</i>
155	± 12	2430	BALLAM	72	HBC	4.7 γp
145	± 13	1930	BALLAM	72	HBC	2.8 γ <i>p</i>
140	\pm 5		ALVENSLEB	70	CNTR	γ A, $t<$ 0.01
146.1	L± 2.9	140k	BIGGS	70	CNTR	$<4.1 \gamma C \rightarrow \pi^+ \pi^- C$
160	± 10		LANZEROTTI	68	CNTR	γp
130	\pm 5	4000	ASBURY	67 B	CNTR	γ + Pb

¹ Using the KUHN 90 parametrization of the pion form factor, neglecting $\rho - \omega$ interference. ² From the parametrization according to SOEDING 66.

 3 From the parametrization according to ROSS 66.

EVTS VALUE (MeV) DOCUMENT ID TECN COMMENT 150.9 ± 1.7 OUR AVERAGE Error includes scale factor of 1.1. 97C OBLX 0.0 $\overline{p}p \rightarrow \pi^+\pi^-\pi^0$ 122 ± 20 BERTIN ASTE $\overline{p}p \rightarrow \pi^+\pi^-\omega$ WEIDENAUER 93 145.7 \pm 5.3 $144.9~\pm~3.7$ DUBNICKA RVUE π form factor 89 1,2 BOHACIK 148 \pm 6 80 RVUE ³ WICKLUND ASPK 3,4,6 π^{\pm} pN 152 \pm 9 78 $16 \pi^+ p$ HBC DEUTSCH ... 76 154 ± 2 76k ⁴ RATCLIFF 157 \pm 8 6.8k 72 ASPK 15 $\pi^- p$, t < 0.3 \pm 8 REYNOLDS HBC 143 1.7k 69 2.26 $\pi^{-}p$ • • We do not use the following data for averages, fits, limits, etc. • • • ⁵ ABLIKIM 18C BES3 $\eta'(958) \rightarrow \gamma \pi^+ \pi^ 150.85 \pm 0.55 \pm 0.67$ 970k ⁶ ABLIKIM 18C BES3 $\eta'(958) \rightarrow \gamma \pi^+ \pi^ 150.18 \pm 0.55 \pm 0.65$ 970k ⁷ ABELE 99E CBAR 0.0 $\overline{p} p \rightarrow \pi^+ \pi^- \pi^0$ 147.0 \pm 2.5 600k ⁸ ADAMS 470 $\mu p \rightarrow \mu XB$ 146 \pm 3 4.9k 97 E665 160.0 $\begin{array}{c} + & 4.1 \\ - & 4 \end{array}$ ⁹ CHABAUD 83 ASPK 17 $\pi^- p$ polarized 10 Heyn RVUE π form factor 155 ± 1 81 ^{1,2} LANG $148.0~\pm~1.3$ 79 **RVUE** 74 DBC $6 \pi^+ n \rightarrow \pi^+ \pi^- p$ ENGLER 146 +144.1k ² ESTABROOKS 74 RVUE 17 $\pi^- p \rightarrow \pi^+ \pi^- n$ 143 ± 13 ¹ PROTOPOP... 73 7.1 $\pi^+ p$, t < 0.432k HBC 160 ± 10 ^{3,11} HYAMS 2.2k 68 OSPK 11.2 $\pi^{-}p$ 145 ± 12 163 ± 15 13.3k ¹² PISUT 68 RVUE 1.7–3.2 $\pi^- p$, t < 10

NEUTRAL ONLY, OTHER REACTIONS

¹ From pole extrapolation.

² From phase shift analysis of GRAYER 74 data.

³Width errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

⁴ Published values contain misprints. Corrected by private communication RATCLIFF 74.

⁵ From a fit to $\pi^+\pi^-$ mass using $\rho(770)$ (parametrized with the Gounaris-Sakurai approach), $\omega(782)$, and box anomaly components.

⁶ From a fit to $\pi^+\pi^-$ mass using $\rho(770)$ (parametrized with the Gounaris-Sakurai approach), $\omega(782)$, and $\rho(1450)$ components.

⁷Using relativistic Breit-Wigner and taking into account ρ - ω interference.

⁸Systematic errors not evaluated.

⁹ From fit of 3-parameter relativistic Breit-Wigner to helicity-zero part of *P*-wave intensity. CHABAUD 83 includes data of GRAYER 74.

 $^{10}\,\mathrm{HEYN}$ 81 includes all spacelike and timelike F_{π} values until 1978.

 $^{11}\,\mathrm{Of}$ HYAMS 68 six parametrizations this is theoretically soundest. MR

¹² Includes MALAMUD 69, ARMENISE 68, BACON 67, HUWE 67, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66, WEST 66, GOLDHABER 64, ABOLINS 63.

$\Gamma_{\rho(770)^0} - \Gamma_{\rho(770)^{\pm}}$	E		
VALUE (MeV) EV	TS DOCUMENT IL	D TECN	COMMENT
0.3 \pm 1.3 OUR AVE	RAGE Error includes	scale factor of 1	.4.
-0.2 ± 1.0	¹ SCHAEL	05C ALEP	$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$
$3.6 \pm 1.8 \pm 1.7$ 1.9	8M ² ALOISIO	03 KLOE	1.02 $e^+e^- \to \pi^+\pi^-\pi^0$
$\bullet \bullet \bullet$ We do not use th	e following data for av	erages, fits, limi	ts, etc. ● ● ●
4.66±0.85	³ BARTOS	17A RVUE	$e^+e^- \rightarrow \pi^+\pi^-$, $\tau^- \rightarrow$
			$\pi^{-}\pi^{0}\nu_{ au}$

¹ From the combined fit of the τ^- data from ANDERSON 00A and SCHAEL 05C and e^+e^- data from the compilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05. Supersedes BARATE 97M.

²Assuming $m_{\rho^+} = m_{\rho^-}$, $\Gamma_{\rho^+} = \Gamma_{\rho^-}$.

³ Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, AMBROSINO 11A, and FUJIKAWA 08.

$\Gamma_{\rho(770)^+} - \Gamma$	ρ(770) [_]				
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$1.8 \pm 2.0 \pm 0.5$	1.98M	¹ ALOISIO	03	KLOE	$1.02 e^+e^- \rightarrow \pi^+\pi^-\pi^0$
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1 1.1.1			

¹ Without limitations on masses and widths.

	Mode	Fraction (Γ_i/Γ)	Sca Confic	ale factor/ dence level
Γ ₁	$\pi\pi$	\sim 100	%	
	$ ho(770)^{d}$	[±] decays		
Γ_2	$\pi^{\pm}\pi^{0}$	\sim 100	%	
Γ ₃	$\pi^{\pm}\gamma$	(4.5 ± 0.5)	$) \times 10^{-4}$	S=2.2
Г4	$\pi^{\pm}\eta$	< 6	× 10 ⁻³	CL=84%
Γ ₅	$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	< 2.0	imes 10 ⁻³	CL=84%
	ρ(770) ⁰) decays		
Г ₆	$\pi^+\pi^-$	\sim 100	%	
Γ ₇	$\pi^+\pi^-\gamma$	(9.9 ± 1.6)	$) imes 10^{-3}$	
Γ ₈	$\pi^{0}\gamma$	(4.7 ± 0.8)	$) \times 10^{-4}$	S=1.7
Гg	$\eta\gamma$	(3.00 ± 0.21)	$) imes 10^{-4}$	
Γ ₁₀	$\pi^{0}\pi^{0}\gamma$	(4.5 ± 0.8)	$) imes 10^{-5}$	
Γ_{11}	$\mu^+\mu^-$ [a] (4.55 ± 0.28	$) imes 10^{-5}$	

 ρ (770) DECAY MODES

[a] The $\omega \rho$ interference is then due to $\omega \rho$ mixing only, and is expected to be small. If $e\mu$ universality holds, $\Gamma(\rho^0 \rightarrow \mu^+ \mu^-) = \Gamma(\rho^0 \rightarrow e^+ e^-) \times 0.99785$.

CONSTRAINED FIT INFORMATION

An overall fit to the total width and a partial width uses 10 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2 = 10.7$ for 8 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

$$\begin{array}{c|c} x_3 & -100 \\ \Gamma & 15 & -15 \\ \hline x_2 & x_3 \end{array}$$

_	Mode	Rate (MeV)	Scale factor
Г2	$\pi^{\pm}\pi^{0}$	150.2 ±2.4	
Г ₃	$\pi^{\pm}\gamma$	0.068±0.007	2.3

CONSTRAINED FIT INFORMATION

An overall fit to the total width, a partial width, and 7 branching ratios uses 21 measurements and one constraint to determine 9 parameters. The overall fit has a $\chi^2 = 9.5$ for 13 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

x ₇		-100								
<i>x</i> 8		-5	0							
x ₉		-1	0	1						
×10		-1	0	0	0					
<i>x</i> ₁₁		2	-3	0	0	0				
<i>x</i> ₁₂		0	0	-6	-9	0	0			
<i>×</i> 14		-1	0	0	0	0	0	0		
Г		0	0	3	5	0	0	-54	0	
		X6	X7	Xg	Xq	X10	X11	X12	X14	
		0		Ū	5	10	11	12	1.	
	М	lode	·	Ū	5	10	Rate (N	/leV)	11	Scale factor
Г ₆	Μ π	lode $+\pi^{-}$		Ū		10	Rate (N 147.5	леV) ±0.9		Scale factor
Г ₆ Г ₇	$\frac{M}{\pi}$	lode $+\pi^-$ $+\pi^-\gamma$					Rate (N 147.5 1.48	леV) ±0.9 ±0.2	4	Scale factor
Г ₆ Г ₇ Г ₈	$\frac{M}{\pi}$	$\frac{lode}{\overset{+}{\pi^{-}}_{\overset{+}{\pi^{-}}\gamma}}_{0\gamma}$					Rate (N 147.5 1.48 0.070	(12) (± 0.9) ± 0.2 $(-\pm 0.0)$	4	Scale factor
Г ₆ Г ₇ Г ₈ Г9	$\begin{array}{c} M \\ \pi \\ \pi \\ \pi \\ \eta \end{array}$	$\frac{\text{lode}}{+\pi^{-}}$ $+\pi^{-}\gamma$ 0γ γ					Rate (N 147.5 1.48 0.070 0.044	$ \frac{12}{\pm 0.9} \\ \pm 0.2 \\ 0 \\ \pm 0.0 \\ 17 \\ \pm 0.0 $	4 12 032	Scale factor
Г ₆ Г ₇ Г ₈ Г ₉ Г ₁₀	$\begin{array}{c} M \\ \pi \\ \pi \\ \pi \\ \eta \\ \pi \end{array}$	lode $+\pi^{-}$ $+\pi^{-}\gamma$ 0γ γ $0\pi^{0}\gamma$					Rate (N 147.5 1.48 0.070 0.044 0.006	$ \frac{12}{\pm 0.9} \\ \pm 0.2 \\ 0 \\ \pm 0.0 \\ 17 \\ \pm 0.0 \\ 16 \\ \pm 0.0 $	4 12 032 012	Scale factor
Γ ₆ Γ ₇ Γ ₈ Γ ₉ Γ ₁₀ Γ ₁₁	$\begin{array}{c} M \\ \pi^{T} \\ \pi^{T} \\ \eta^{T} \\ \pi^{T} \\ \mu^{T} \end{array}$	$\frac{\text{lode}}{+\pi^{-}}$ $+\pi^{-}\gamma$ 0γ 0γ 0π γ $+\mu^{-}$				[a]	Rate (N 147.5 1.48 0.070 0.044 0.006	$ \frac{\pm 0.9}{\pm 0.2} \\ 0 \pm 0.0 \\ 47 \pm 0.0 \\ 66 \pm 0.0 \\ 68 \pm 0.0 $	4 12 032 012 004	Scale factor
$ \Gamma_{6} \Gamma_{7} \Gamma_{8} \Gamma_{9} \Gamma_{10} \Gamma_{11} \Gamma_{12} $	$\begin{array}{c} M \\ \pi^{+} \\ \pi^{-} \\ \pi^{+} \\ \pi^{-} \\ \mu^{+} \\ e^{-} \end{array}$	$\frac{\text{lode}}{+\pi^{-}}$ $+\pi^{-}\gamma$ 0γ γ $0\pi^{0}\gamma$ $+\mu^{-}$ $+e^{-}$				[a] [a]	Rate (N 147.5 1.48 0.070 0.044 0.006 0.006 0.007	$ \frac{\pm 0.9}{\pm 0.2} \\ 0 \pm 0.0 \\ 0 \pm 0$	4 12 032 012 004 0006	Scale factor

ρ (770) PARTIAL WIDTHS

$\Gamma(\pi^{\pm}\gamma)$					Гз
VALUE (keV)	DOCUMENT ID		TECN	CHG	COMMENT
68 ±7 OUR FIT Er	ror includes scale	facto	or of 2.3.		
68 \pm 7 OUR AVERAG	E Error include	s sca	le factor	of 2.2	. See the ideogram below.
$81 \pm 4 \pm 4$	CAPRARO	87	SPEC	_	$200 \pi^- A \rightarrow \pi^- \pi^0 A$
59.8±4.0	HUSTON	86	SPEC	+	$202 \pi^+ A \rightarrow \pi^+ \pi^0 A$
71 ±7	JENSEN	83	SPEC	_	156–260 $\pi^- A \rightarrow \pi^- \pi^0 A$

¹A combined fit of AKHMETSHIN 07, AULCHENKO 06, and AULCHENKO 05.

² Using the GOUNARIS 68 parametrization with the complex phase of the ρ - ω interference. ³ From a fit in the energy range 0.61 to 0.96 GeV. Update of AKHMETSHIN 02.

⁴ Supersedes ACHASOV 05A.

 5 Using the data of BARKOV 85 in the hidden local symmetry model.

$\Gamma(\pi^+\pi^-\pi^+\pi^-)$				Г	14
VALUE (keV)	EVTS	DOCUMENT ID	TECN	COMMENT	
$\bullet \bullet \bullet$ We do not use the	ne followin	g data for averages, fits	, limits,	etc. ● ● ●	
$2.8 \pm 1.4 \pm 0.5$	153	AKHMETSHIN 00	CMD2		

$\rho(770) \Gamma(e^+e^-)\Gamma(i)/\Gamma^2(\text{total})$

$\Gamma(e^+e^-)/\Gamma_{\text{total}} \times$		Γ ₁₂ /Γ × Γ ₆ /Γ			
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
4.89 ±0.04 OUR AV	ERAGE				
$4.889 \!\pm\! 0.015 \!\pm\! 0.039$		¹ ACHASOV	21	SND	$e^+e^- \rightarrow \pi^+\pi^-$
$4.876 \!\pm\! 0.023 \!\pm\! 0.064$	800k	^{2,3} ACHASOV	06	SND	$e^+e^- \rightarrow \pi^+\pi^-$
\bullet \bullet \bullet We do not use the	ne followi	ing data for average	s, fits	limits, e	etc. • • •
4.72 ± 0.02		⁴ BENAYOUN	10	RVUE	0.4–1.05 e^+e^-

¹ From a fit of the cross section in the energy range 0.525 < \sqrt{s} < 0.883 GeV parameterized by the sum of the Breit-Wigner amplitudes for the $\rho(770)$, ω and $\rho(1450)$ ²Supersedes ACHASOV 05A.

³A fit of the SND data from 400 to 1000 MeV using parameters of the $\rho(1450)$ and $\rho(1700)$ from a fit of the data of BARKOV 85, BISELLO 89 and ANDERSON 00A. ⁴A simultaneous fit of $e^+e^- \rightarrow \pi^+\pi^-$, $\pi^+\pi^-\pi^0$, $\pi^0\gamma$, $\eta\gamma$ data.

$\Gamma(e^+e^-)/\Gamma_{\text{total}} \times \Gamma(\eta\gamma)/\Gamma_{\text{total}}$

 $\Gamma_{12}/\Gamma \times \Gamma_0/\Gamma$

· · · · ·	• • •				
VALUE (units 10^{-8})	EVTS	DOCUMENT ID		TECN	COMMENT
1.42±0.10 OUR FI	т				
1.45 ± 0.12 OUR AV	/ERAGE				
$1.32\!\pm\!0.14\!\pm\!0.08$	33k	¹ ACHASOV 07	7в	SND	0.6–1.38 $e^+e^- \rightarrow \eta \gamma$
$1.50\!\pm\!0.65\!\pm\!0.09$	17.4k	² AKHMETSHIN 05	5	CMD2	0.60-1.38 $e^+e^- \rightarrow \eta\gamma$
$1.61\!\pm\!0.20\!\pm\!0.11$	23k	^{3,4} AKHMETSHIN 02	1B	CMD2	$e^+e^- \rightarrow \eta\gamma$
1.85 ± 0.49		⁵ DOLINSKY 89	9	ND	$e^+e^- \rightarrow \eta\gamma$
• • • We do not us	se the follow	ing data for averages,	fits	, limits,	etc. • • •

 1.05 ± 0.02

⁶ BENAYOUN 10 RVUE 0.4–1.05 e^+e^-

¹ From a combined fit of $\sigma(e^+e^- \rightarrow \eta\gamma)$ with $\eta \rightarrow 3\pi^0$ and $\eta \rightarrow \pi^+\pi^-\pi^0$, and fixing B($\eta \rightarrow 3\pi^0$) / B($\eta \rightarrow \pi^+\pi^-\pi^0$) = 1.44 ± 0.04. Recalculated by us from the cross section at the peak. Supersedes ACHASOV 00D and ACHASOV 06A.

² From the $\eta \rightarrow 2\gamma$ decay and using B($\eta \rightarrow \gamma\gamma$)= 39.43 ± 0.26%.

³ From the $\eta \rightarrow 3\pi^0$ decay and using B($\eta \rightarrow 3\pi^0$)= (32.24 ± 0.29) × 10⁻².

⁴ The combined fit from 600 to 1380 MeV taking into account $\rho(770)$, $\omega(782)$, $\phi(1020)$, and $\rho(1450)$ (mass and width fixed at 1450 MeV and 310 MeV respectively).

⁵ Recalculated by us from the cross section in the peak. ⁶ A simultaneous fit of $e^+e^- \rightarrow \pi^+\pi^-$, $\pi^+\pi^-\pi^0$, $\pi^0\gamma$, $\eta\gamma$ data.

 $\Gamma(e^+e^-)/\Gamma_{\text{total}} \times \Gamma(\pi^0\gamma)/\Gamma_{\text{total}}$ $\Gamma_{12}/\Gamma \times \Gamma_8/\Gamma$ VALUE (units 10^{-8}) DOCUMENT ID EVTS TECN COMMENT 2.2 ±0.4 OUR FIT Error includes scale factor of 1.7. **2.21 ±0.34 OUR AVERAGE** Error includes scale factor of 1.6. See the ideogram below. ¹ ACHASOV $0.60-1.38 \ e^+ e^- \rightarrow \pi^0 \gamma$ $1.98 \pm 0.22 \pm 0.10$ 16A SND $^{+0.60}_{-0.55}$ CMD2 0.60-1.38 $e^+e^- \rightarrow \pi^0 \gamma$ 2.90 ± 0.18 18k **AKHMETSHIN 05** $e^+e^- \rightarrow \pi^0 \gamma$ ² DOLINSKY $3.61 \pm 0.74 \pm 0.49$ 10k 89 ND • • • We do not use the following data for averages, fits, limits, etc. ³ BENAYOUN RVUE 0.4–1.05 $e^+e^ 1.875 \pm 0.026$ 10 ⁴ ACHASOV $0.60-0.97 e^+e^- \rightarrow \pi^0 \gamma$ $2.37 \pm 0.53 \pm 0.33$ 36k 03 SND 1 From the VMD model with the prho(770), $\omega(782), \ \phi(1020)$ resonances, and an additional resonance describing the total contribution of the $\rho(1450)$ and $\omega(1420)$ states. Supersedes ACHASOV 03. 2 Recalculated by us from the cross section in the peak. ³A simultaneous fit of $e^+e^- \rightarrow \pi^+\pi^-$, $\pi^+\pi^-\pi^0$, $\pi^0\gamma$, $\eta\gamma$ data. ⁴Using $\sigma_{\phi \to \pi^0 \gamma}$ from ACHASOV 00 and m_{ρ} = 775.97 MeV in the model with the energy-independent phase of ρ - ω interferenceequal to $(-10.2 \pm 7.0)^{\circ}$. WEIGHTED AVERAGE 2.21±0.34 (Error scaled by 1.6) Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. 16A SND 0.9 ACHASOV CMD2 AKHMETSHIN 05 1.4 DOLINSKY 89 ND 2.5 4.8 (Confidence Level = 0.090) 2 3 4 5 6 7 $\Gamma(e^+e^-)/\Gamma_{\text{total}} \times \Gamma(\pi^0\gamma)/\Gamma_{\text{total}}$ (units 10⁻⁸) $\Gamma(e^+e^-)/\Gamma_{\text{total}} \times \Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ $\Gamma_{12}/\Gamma \times \Gamma_{13}/\Gamma$ *VALUE* (units 10^{-9}) DOCUMENT ID EVTS TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • RVUE 0.4-1.05 e⁺e⁻ ¹ BENAYOUN $0.903 \!\pm\! 0.076$ 10 $4.58 \begin{array}{c} +2.46 \\ -1.64 \end{array} \pm 1.56$ ² ACHASOV 03D RVUE 0.44–2.00 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ 1.2M Created: 4/29/2024 18:56 https://pdg.lbl.gov Page 16

¹ A simultaneous fit of $e^+e^- \rightarrow \pi^+\pi^-$, $\pi^+\pi^-\pi^0$, $\pi^0\gamma$, $\eta\gamma$ data. ² Statistical significance is less than 3σ .

ρ (770) BRANCHING RATIOS

$\Gamma(\pi^{\pm}\eta)/\Gamma(\pi\pi)$							Γ_4/Γ_1		
VALUE (units 10^{-4})	<u>CL%</u>	DOCUMENT	DOCUMENT ID		I CHG	COMMENT			
<60	84	FERBEL	66	HBC	±	$\pi^{\pm} p$ abov	/e 2.5		
$\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})/2$	Γ(ππ)						Γ_5/Γ_1		
VALUE (units 10^{-4})	CL%	DOCUMENT	ID	TECI	I CHG	COMMENT			
<20	84	FERBEL	66	НВС	±	$\pi^{\pm} p$ abov	/e 2.5		
• • • We do not use the following data for averages, fits, limits, etc. • •									
35 ± 40		JAMES	66	HBC	: +	2.1 $\pi^+ p$			
$\Gamma(\pi^+\pi^-\gamma)/\Gamma_{\rm tota}$	I						Г ₇ /Г		
VALUE	<u>CL%</u>	DOCUMENT	ID	TECI	<u>COMN</u>	1ENT			
0.0099±0.0016 O 0.0099±0.0016 • • • We do not use	UR FIT the follo	¹ DOLINSKY wing data for avera	91 ges, fit	ND ts, limits	e^+e^- s, etc. •	$ \xrightarrow{-} \rightarrow \pi^+ \pi^-$	$-\gamma$		
0.0111 ± 0.0014		² VASSERMA	N 88	ND	e ⁺ e ⁻	$- \rightarrow \pi^+ \pi$	$-\gamma$		
<0.005	90	³ VASSERMA	N 88	ND	e ⁺ e ⁻	$^- \rightarrow \pi^+ \pi$	$-\gamma$		
1 Bremsstrahlung from a decay pion and for photon energy above 50 MeV. 2 Superseded by DOLINSKY 91. 3 Structure radiation due to quark rearrangement in the decay.									
$\Gamma(\pi^0\gamma)/\Gamma_{ ext{total}}$							Г ₈ /Г		
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMEN	IT			
• • • We do not use	the follo	wing data for avera	ges, fit	ts, limits	s, etc. •	• •			
4.20±0.52		¹ ACHASOV	16A	SND	0.60-1.3	38 e ⁺ e ⁻ -	$\rightarrow \pi^0 \gamma$		
$6.21^{+1.28}_{-1.18}{\pm}0.39$	18k	^{2,3} AKHMETSHIN	V 05	CMD2	0.60-1.3	8 e ⁺ e ⁻ -	$\rightarrow \pi^0 \gamma$		
$5.22 \pm 1.17 \pm 0.75$	36k	^{3,4} ACHASOV	03	SND	0.60-0.9)7 e ⁺ e ⁻ -	$\rightarrow \pi^0 \gamma$		
6.8 ± 1.7		⁵ BENAYOUN	96	RVUE	0.54-1.0	4 e ⁺ e ⁻ -	$\rightarrow \pi^0 \gamma$		
7.9 ± 2.0		³ DOLINSKY	89	ND	e ⁺ e ⁻ -	$\rightarrow \pi^0 \gamma$			
¹ Using B($\rho \rightarrow e^{-2}$ ² Using B($\rho \rightarrow e^{-3}$ ³ Not independent	¹ Using B($\rho \rightarrow e^+e^-$) from PDG 15. Supersedes ACHASOV 03. ² Using B($\rho \rightarrow e^+e^-$) = (4.67 ± 0.09) × 10 ⁻⁵ . ³ Net indexeduate of the second random $\Gamma(e^+ - \gamma) = \Gamma(0, \gamma)/\Gamma^2$								
⁴ Using B($\rho \rightarrow e^{-1}$	$+e^{-}) =$	$(4.54 \pm 0.10) \times 10^{-10}$	-5	(·· /)/	total				
5 Reapply ris of DRUZHININ 84 DOUNSKY 90 and DOUNSKY 01 taking into account									

Reanalysis of DRUZHININ 84, DOLINSKY 89, and DOLINSKY 91 taking into account a triangle anomaly contribution.

$\Gamma(\eta\gamma)/\Gamma_{ ext{total}}$						٦/و٦	
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
3.00±0.21 OUR F	T						
2.90 ± 0.32 OUR A						I	
$2.79 \pm 0.34 \pm 0.03$	33k ¹	ACHASOV	07 В	SND	•	$0.6-1.38 \ e^+ \ e^- \rightarrow \eta \gamma$	
3.0 ± 0.9	- se the follow	ANDREVVS	//	fite li	U mits	$0.7-10 \gamma Cu$	
	17 AL 34						
$3.21 \pm 1.39 \pm 0.20$ $3.39 \pm 0.42 \pm 0.23$	17.4к с, 2,5,6	AKHMETSHI	V 05 V 01в	CMD2 CMD2	2	$e^+e^- \rightarrow \eta\gamma$	
$1.9 \ +0.6 \ -0.8$	7	BENAYOUN	96	RVUE		0.54-1.04 $e^+e^- ightarrow \eta\gamma$	
4.0 ±1.1	2,4	¹ DOLINSKY	89	ND		$e^+e^- \rightarrow \eta\gamma$	
¹ ACHASOV 07	B reports []	$\Gamma(ho(770) \rightarrow$	$\eta \gamma)/\Gamma$	total	× [B	$(\rho(770) \rightarrow e^+e^-)] =$	
(1.32 ± 0.14 ± 0.08) × 10 ⁻⁸ which we divide by our best value $B(\rho(770) \rightarrow e^+e^-)$ = (4.72 ± 0.05) × 10 ⁻⁵ . Our first error is their experiment's error and our second error is the systematic error from using our best value. Supersedes ACHASOV 00D and ACHASOV 06A. ² Solution corresponding to constructive ω - ρ interference. ³ Using $B(\rho \rightarrow e^+e^-) = (4.67 \pm 0.09) \times 10^{-5}$ and $B(\eta \rightarrow \gamma\gamma) = 39.43 \pm 0.26\%$. ⁴ Not independent of the corresponding $\Gamma(e^+e^-) \times \Gamma(\eta\gamma)/\Gamma_{total}^2$. ⁵ The combined fit from 600 to 1380 MeV taking into account $\rho(770)$, $\omega(782)$, $\phi(1020)$, and $\rho(1450)$ (mass and width fixed at 1450 MeV and 310 MeV respectively). ⁶ Using $B(\rho \rightarrow e^+e^-) = (4.75 \pm 0.10) \times 10^{-5}$ from AKHMETSHIN 02 and $B(\eta \rightarrow 3\pi^0) = (32.24 \pm 0.29) \times 10^{-2}$. ⁷ Reanalysis of DRUZHININ 84, DOLINSKY 89, and DOLINSKY 91 taking into account							
$\Gamma(\pi^0\pi^0\gamma)/\Gamma_{total}$.1					Γ10/Γ	
$VALUE$ (units $E_{10}-5$)	EVTS L	DOCUMENT ID	Т	ECN	СОММ	ENT	
4.5±0.8 OUR FIT							
4.5 $^{+0.9}_{-0.8}$ OUR AVE	RAGE						
$5.2^{+1.5}_{-1.3}{\pm}0.6$	190 1	KHMETSHIN	04в С	CMD2	0.6–0.	97 $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$	
$4.1^{+1.0}_{-0.9}\!\pm\!0.3$	295 ² /	ACHASOV	02F S	SND	0.36–0	$0.97 \ e^+ e^- \rightarrow \ \pi^0 \pi^0 \gamma$	
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
$4.8^{+3.4}_{-1.8}{\pm}0.5$	63 ³	ACHASOV	00g S	SND	e ⁺ e ⁻	$- \rightarrow \pi^0 \pi^0 \gamma$	
^{4.8} -1.8 ± 0.5 ⁶³ ⁵ ACHASOV 00G SND $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$ ¹ This branching ratio includes the conventional VMD mechanism $\rho \rightarrow \omega \pi^0, \omega \rightarrow \pi^0 \gamma$, and the new decay mode $\rho \rightarrow f_0(500)\gamma$, $f_0(500) \rightarrow \pi^0 \pi^0$ with a branching ratio $(2.0 + 1.1 \pm 0.3) \times 10^{-5}$ differing from zero by 2.0 standard deviations. ² This branching ratio includes the conventional VMD mechanism $\rho \rightarrow \omega \pi^0, \omega \rightarrow \pi^0 \gamma$ and the new decay mode $\rho \rightarrow f_0(500)\gamma$, $f_0(500) \rightarrow \pi^0 \pi^0$ with a branching ratio							

 $(1.9^{+0.9}_{-0.8}\pm0.4)\times10^{-5}$ differing from zero by 2.4 standard deviations. Supersedes ACHASOV 00G. 3 Superseded by ACHASOV 02F.

Γ(μ	$(\pi^+\mu^-)/\Gamma(\pi^+\pi^-)$				Γ ₁₁ /Γ ₆
VALU	<i>IE</i> (units 10 ⁻⁵)	DOCUMENT ID		TECN	COMMENT
4.60	\pm 0.28 OUR FIT				
4.6	$\pm 0.2 \pm 0.2$	ANTIPOV	89	SIGM	$\pi^- \operatorname{Cu} \rightarrow \ \mu^+ \mu^- \pi^- \operatorname{Cu}$
• •	• We do not use the foll	lowing data for ave	rages,	fits, limi	ts, etc. ● ● ●
8.2	+1.6 -3.6	¹ ROTHWELL	69	CNTR	Photoproduction
5.6	± 1.5	² WEHMANN	69	OSPK	12 π^- C, Fe
9.7	$+3.1 \\ -3.3$	^{3,4} HYAMS	67	OSPK	11 π^- Li, H

¹Possibly large ρ - ω interference leads us to increase the minus error.

 2 Result contains 11 \pm 11% correction using SU(3) for central value. The error on the correction takes account of possible ρ - ω interference and the upper limit agrees with the upper limit of $\omega \rightarrow \mu^+ \mu^-$ from this experiment.

³ But he even enlarges his error to take residual ω contamination into account. Since his value is high, seems the other experiments also can't have too many ω 's. But maybe Hyams has additional μ 's from $\rho \rightarrow \pi \pi$, decaying π 's.

DOCUMENT ID TECN COMMENT

⁴ HYAMS 67's mass resolution is 20 MeV. The ω region was excluded.

$\Gamma(e^+e^-)/\Gamma(\pi\pi)$

VALUE (units 10^{-4})

 Γ_{12}/Γ_1

• • • We do not use the following data for averages, fits, limits, etc. • • • ^{1,2} BENAKSAS 72 OSPK $e^+e^- \rightarrow \pi^+\pi^-$

 0.40 ± 0.05

¹ The ρ' contribution is not taken into account.

²Barkov excludes Auslender and Benaksas for large statistical and systematic errors.

$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{to}$	tal						Г ₁₃ /Г
VALUE (units 10^{-4})	CL%	EVTS	DOCUMENT ID		TECN	COMMENT	
0.88±0.23±0.30			¹ LEES	21 B	BABR	$10.5 \begin{array}{c} e^+ e^- \\ \pi^+ \pi^- \pi^0 \gamma \end{array}$	
• • • We do not us	e the	following	g data for averages,	fits, li	mits, etc		

$1.01 \substack{+0.54 \\ -0.36} \pm 0.34$		1.2M	² ACHASOV	03 D	RVUE	$\begin{array}{c} 0.44-2.00 \ e^+ \ e^- \rightarrow \\ \pi^+ \ \pi^- \ \pi^0 \end{array}$
<1.2	90		VASSERMAN	88 B	ND	$e^+e^- \rightarrow \pi^+\pi^-\pi^0$

¹ From the cross section for $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ with contributions from $\rho(770)$, $\omega(782)$, $\phi(1020)$, $\omega(1420)$, and $\omega(1650)$. Statistical evidence is more than 6 σ .

² Statistical significance is less than 3σ .

$\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi\pi)$						Γ_{13}/Γ_{1}
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	CHG	COMMENT
$\bullet \bullet \bullet$ We do not use the	following	data for averages	, fits,	limits, e	tc. •	• •
~ 0.01		BRAMON	86	RVUE	0	$J/\psi \rightarrow \omega \pi^0$
<0.01	84	¹ ABRAMS	71	HBC	0	3.7 $\pi^+ p$

¹ Model dependent, assumes I = 1, 2, or 3 for the 3π system.

$\Gamma(\pi^+\pi^-\pi^-)$	$(+\pi^{-})/\Gamma_{t}$	otal					Г ₁₄ /Г
VALUE (units 10	0 ⁻⁵) <u>CL%</u>	EVTS	DOCUMENT ID		TECN	COMM	INT
1.8±0.9	OUR FIT						
1.8 ± 0.9	±0.3	153	AKHMETSHI	00 1	CMD2	0.6-0.	$97 e^+ e^- \rightarrow$
• • • We do	not use th	e following o	lata for average	s, fits,	limits, e	etc. • •	$\pi^-\pi^+\pi^-$
<20	90		KURDADZE	88	OLYA	e+ e_	\rightarrow
						π^+	$\pi^-\pi^+\pi^-$
$\Gamma(\pi^+\pi^-\pi^-)$	⁺ π ⁻)/Γ($(\pi \pi)$					Γ_{14}/Γ_1
VALUE (units 10	D ⁻⁴)	CL%	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do	not use th	e following o	lata for average	s, fits,	limits, e	etc. • •	•
<15		90	ERBE	69	HBC	0	2.5–5.8 γ <i>p</i>
<20			CHUNG	68	HBC	0	3.2,4.2 π^{-} p
<20		90	HUSON	68	HLBC	0	16.0 $\pi^{-}p$
<80			JAMES	66	HBC	0	2.1 $\pi^+ p$
$\Gamma(\pi^+\pi^-\pi^0)$	$(0\pi^0)/\Gamma_{tot}$	⊧al					Г15/Г
VALUE (units 1)) ^{−5})	CI% E	OCUMENT ID	г	TECN C	OMMEN	T
1.60 ± 0.7	<u>4</u> +0 18	1				+	$\rightarrow \pi^+\pi^-\pi^0\pi^0$
• • • We do	not use th	, e following c	lata for average	s, fits.	limits, e	etc. • •	•
< 1		an 2		, , 87ς Ν		+	$_{\pi} + _{\pi}{\pi} 0_{\pi} 0$
< 4		90 F QA k	URDADZE 8	86 (+	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
1 Accumina	r na intarfa	ronco hotwo	n the eard of		butions	C	
Assuming	g no interie	rence betwee	en the ρ and ω (Jontri	butions.		
Г(π ⁰ е ⁺ е ⁻	[·])/Γ _{total}						Г ₁₆ /Г
VALUE (units 10	0 ⁻⁵) <u>CL%</u>	DOCUN	IENT ID	TECN	СОММЕ	NT	
<1.2	90	ACHA	SOV 08 S	SND	0.36–0	.97 e^+	$e^- \rightarrow \pi^0 e^+ e^-$
• • • We do	not use th	e following o	lata for average	s, fits,	limits, e	etc. • •	•
<1.6		AKHM	IETSHIN 05A	CMD2	0.72-0	.84 e ⁺ e	2
$\Gamma(\eta e^+ e^-)$	/Γ _{total}						Г ₁₇ /Г
VALUE (units 10	0 ⁻⁵)		DOCUMENT ID		TECN	COMM	INT
• • • We do	not use th	e following o	lata for average	s, fits,	limits, e	etc. • •	•
<0.7			AKHMETSHI	V 05A	CMD2	0.72-0	.84 e ⁺ e ⁻
		e(7			c		
		$\rho(r$	IU) KEFEKE		5		
ACHASOV	21 JHEP	2101 113	M.N. Achasov	et al.			(SND Collab.)
ANDREEV	20 EPJ C	104 112005 1189	V. Andreev et a	al.		((H1 Collab.)
	18C PRL 1	20 242003	M. Ablikim et	al.			(BESIII Collab.)
BARTOS	17 PR D	96 113004	E. Bartos <i>et a</i>	аї. І.			(BESIII COIIAD.)
BARTOS	17A LIMP	A32 1750154	F Bartos et a	1			

E. Bartos <i>et al.</i>	
M. Ablikim <i>et al.</i>	(BESIII Collab.)
M.N. Achasov <i>et al.</i>	(SND Collab.)
	(PDG Collab.)
H. Abramowicz et al.	(ZEUS Collab.)
J.P. Lees <i>et al.</i>	(BABAR Collab.)
F. Ambrosino <i>et al.</i>	(KLOE Collab.)
R. Garcia-Martin et al.	(MADR, CRAC)

https://pdg.lbl.gov

16C PL B753 629

16A

12G

11A

15

PR D93 092001

EPJ C72 1869

PL B700 102

PR D86 032013

PRL 107 072001

RPP 2015 at pdg.lbl.gov

ABLIKIM

ACHASOV

ABRAMOWICZ 12

AMBROSINO 11A GARCIA-MAR... 11

PDG

LEES

Page 20

Created: 4/29/2024 18:56

BATLEY BENAYOUN	10C 10	EPJ C70 635J.R. Batley et al.((EPJ C65 211M. Benayoun et al.ADS 61S. Dubridas A.Z. Dubridas	CERN NA48/2	Collab.)
ACHASOV	10 09A	JETP 109 379 M.N. Achasov <i>et al.</i>	(SND	Collab.)
AUBERT	0945	PRI 103 231801 B Aubert et al	(BABAR	Collab)
ACHASOV	08	JETP 107 61 M.N. Achasov <i>et al.</i>	(SND	Collab.)
	00	Translated from ZETF 134 80.		
Γυσικάννα Δεμάδον/	08 07R	PR D78 072000 M. Fujikawa et al. PR D76 077101 M.N. Achasov et al.	(BELLE (SND	Collab.)
AKHMETSHIN	07	PL B648 28 R.R. Akhmetshin <i>et al.</i> (Novo	sibirsk CMD-2	Collab.)
ACHASOV	06	JETP 103 380 M.N. Achasov et al. (No	ovosibirsk SND	Collab.)
		Translated from ZETF 130 437.	(0)0	, , ,
ACHASOV	06A	PR D/4 014016 M.N. Achasov et al.	(SND	Collab.)
AULCHENKU	00	Translated from ZETFP 84 491.	SIDIFSK CIVID-2	Collab.)
ACHASOV	05A	JETP 101 1053 M.N. Achasov et al. (No	ovosibirsk SND	Collab.)
AKHMETSHIN	05	PL B605 26 R.R. Akhmetshin <i>et al.</i> (Novo	sibirsk CMD-2	Collab.)
AKHMETSHIN	05A	PL B613 29 R.R. Akhmetshin et al. (Novo	sibirsk CMD-2	Collab.)
ALOISIO	05	PL B606 12 A. Aloisio et al.	(KLOE	Collab.)
AULCHENKO	05	JETPL 82 743 V.M. Aulchenko <i>et al.</i> (Novo	sibirsk CMD-2	Collab.)
SCHAFI	05C	PRPL 421 191 S Schael et al	(ALEPH	Collab)
AKHMETSHIN	04	PL B578 285 R.R. Akhmetshin <i>et al.</i> (Novo	sibirsk CMD-2	Collab.)
AKHMETSHIN	04B	PL B580 119 R.R. Akhmetshin et al. (Novo	sibirsk CMD-2	Collab.)
PELAEZ	04A	MPL A19 2879 J.R. Pelaez	((MADU)
ACHASOV	03	PL B559 171 M.N. Achasov <i>et al.</i> (No	ovosibirsk SND	Collab.)
ACHASOV	03D	PR D68 052006 M.N. Achasov et al. (No	vosibirsk SND	Collab.)
	03	PL B501 55 A. Aloisio <i>et al.</i> EPL C27 587 LL Sanz-Cillero A. Pich	(KLUE	Collab.)
ACHASOV	02	PR D65 032002 M.N. Achasov <i>et al.</i> (No	ovosibirsk SND	Collab.)
ACHASOV	02F	PL B537 201 M.N. Achasov et al. (No	ovosibirsk SND	Collab.)
AKHMETSHIN	02	PL B527 161 R.R. Akhmetshin et al. (Novo	sibirsk CMD-2	Collab.)
AKHMETSHIN	01B	PL B509 217 R.R. Akhmetshin <i>et al.</i> (Novo	sibirsk CMD-2	Collab.)
	01	NP B003 125 G. Colangelo, J. Gasser, H. Leytwy	yler	
	00	FR D03 093005 A. PICH, J. PORTOLES	wosibirsk SND	Collab)
ACHASOV	00D	JETPL 72 282 M.N. Achasov et al. (No	vosibirsk SND	Collab.)
		Translated from ZETFP 72 411.		
ACHASOV	00G	JETPL 71 355 M.N. Achasov <i>et al.</i> (No Translated from ZETFP 71 519.	wosibirsk SND	Collab.)
AKHMETSHIN	00	PL B475 190 R.R. Akhmetshin et al. (Novo	sibirsk CMD-2	Collab.)
ANDERSON	00A	PR D61 112002 S. Anderson <i>et al.</i>	(CLEO	Collab.)
ABELE	99E	PL B469 270 A. Abele <i>et al.</i>	(Crystal Barrel	Collab.)
BREITWEG	90 98B	EPJ C2 209 IN. Benayoun et al. (1 EPJ C2 247 I Breitweg et al.	(7FUS	Collab
GARDNER	98	PR D57 2716 S. Gardner, H.B. O'Connell	(2200	conub.)
Also		PR D62 019903 (errat.) S. Gardner, H.B. O'Connell		
ABELE	97	PL B391 191 A. Abele <i>et al.</i>	(Crystal Barrel	Collab.)
ADAMS	97	ZPHY C74 237 M.R. Adams <i>et al.</i>	(E665	Collab.)
	97M	ZPHY C/0 15 R. Barate <i>et al.</i>	(ALEPH	Collab.)
BOGOLYUB	97C 97	PAN 60 46 $M.Y.$ Bogolyubsky <i>et al.</i>	(MOSU	SERP)
	•	Translated from YAF 60 53.	(,
O'CONNELL	97	NP A623 559 H.B. O'Connell <i>et al.</i>		(ADLD)
BENAYOUN	96	ZPHY C/2 221 M. Benayoun <i>et al.</i>	(IPNP, Destisou	NOVO)
	94 03	7PHY C50 387 P Weidenquer et al		Collab
AGUILAR	91	ZPHY C50 405 M. Aguilar-Benitez <i>et al.</i>	(LEBC-EHS	Collab.)
DOLINSKY	91	PRPL 202 99 S.I. Dolinsky <i>et al.</i>	((NOVO)
KUHN	90	ZPHY C48 445 J.H. Kuhn et al.		(MPIM)
ANTIPOV	89	ZPHY C42 185 Y.M. Antipov <i>et al.</i> (SERP, JINR, E	3GNA+)
	89 80	PL B220 321 D. Bisello et al. 7DHY C42 511 S.L. Dolinghy et al.	(DM2	Collab.)
	89 89	IP G15 1349 S Dubnicka et al	(IINR	
GESHKEN	89	ZPHY C45 351 B.V. Geshkenbein	(5111)	(ITEP)
KURDADZE	88	JETPL 47 512 L.M. Kurdadze et al.	1	(NOVO)
VASSERMAN	88	Translated from ZETFP 47 432. SINP 47 1035		
	00	Translated from YAF 47 1635.		(
VASSERMAN	88B	SJNP 48 480 I.B. Vasserman <i>et al.</i> Translated from YAF 48 753.		(NOVO)

https://pdg.lbl.gov

Created: 4/29/2024 18:56

AULCHENKO	87C	IYF 87-90 Prepr	int	V.M. Aulchenko et al.	(NOVO)
CAPRARO	87	NP B288 659		L. Capraro <i>et al.</i>	(CLER, FRAS, MILA+)
BRAMON	86	PL B173 97		A. Bramon, J. Casulleras) (BARC)
HUSTON	86	PR D33 3199		J. Huston <i>et al.</i>	(ROCH, FNAL, MINN)
KURDADZE	86	JETPL 43 643		L.M. Kurdadze <i>et al.</i>	(NOVO)
		Translated from	ZETFP 4	43 497.	()
BARKOV	85	NP B256 365		L.M. Barkov <i>et al.</i>	(NOVO)
DRUZHININ	84	PL 144B 136		V.P. Druzhinin <i>et al.</i>	(NOVO)
CHABAUD	83	NP B223 1		V. Chabaud <i>et al.</i>	(CERN. CRAC. MPIM)
JENSEN	83	PR D27 26		T. Jensen <i>et al.</i>	(ROCH. FNAL. MINN)
HEYN	81	ZPHY C7 169		M.F. Hevn. C.B. Lang	(GRAZ)
BOHACIK	80	PR D21 1342		J. Bohacik, H. Kuhnelt	(SLOV, WIEN)
COHEN	80	PR D22 2595		D Cohen et al	(ani)
LANG	79	PR D19 956		C.B. Lang A. Mas-Parareda	(GRAZ)
BARTALUCCI	78	NC 44A 587		S Bartalucci <i>et al</i>	(DESY ERAS)
WICKLUND	78	PR D17 1107		A B Wicklund et al	(BEST, 110(S) (ANL)
ANDREWS	77	PRI 38 108		DE Andrews et al	(ROCH)
DEUTSCH	76	NP B103 426		M Deutschmann et al	(AACH3 BERL BONN+)
ENGLER	74	PR D10 2070		Δ Engler et al	(CMU CASE)
ESTABROOKS	74	NP R70 301		PC Estabrooks AD Martin	
GRAVER	74	NP R75 180		G Graver et al	(CERN MPIM)
DATCHEE	74	Privato Comm		G. Glayer et al.	
RVEDIV	73	PR D7 637		W/I Byorly at al	(МІСН)
	72	DD D0 2701		CE Cladding at al	
	73	FR D0 3721		B.D. Hueme et al.	
	15	NF D04 134		D.D. Hyanis et al.	(CERN, MPINI)
	73	PR D7 1279		S.D. Protopopescu <i>et al.</i>	
BALLAN	72	PK D5 545		J. Ballam <i>et al.</i>	(SLAC, LBL, TUFTS)
BENAKSAS	72	PL 39B 289		D. Benaksas <i>et al.</i>	(ORSAY)
JACOBS	72	PR D6 1291		L.D. Jacobs	(SACL)
RATCLIFF	72	PL 38B 345		B.N. Ratcliff <i>et al.</i>	(SLAC)
ABRAMS	/1	PR D4 653		G.S. Abrams <i>et al.</i>	(LBL)
ALVENSLEB	70	PRL 24 786		H. Alvensleben <i>et al.</i>	(DESY)
BIGGS	70	PRL 24 1197		P.J. Biggs <i>et al.</i>	(DARE)
EKBE	69	PR 188 2060	~~	R. Erbe <i>et al.</i> (Germa	n Bubble Chamber Collab.)
MALAMUD	69	Argonne Conf.	93	E.I. Malamud, P.E. Schlein	(UCLA)
REYNOLDS	69	PR 184 1424		B.G. Reynolds <i>et al.</i>	(FSU)
ROTHWELL	69	PRL 23 1521		P.L. Rothwell <i>et al.</i>	(NEAS)
WEHMANN	69	PR 178 2095		A.A. Wehmann <i>et al.</i>	(HARV, CASE, SLAC+)
ARMENISE	68	NC 54A 999		N. Armenise <i>et al.</i>	(BARI, BGNA, FIRZ+)
BATON	68	PR 1/6 15/4		J.P. Baton, G. Laurens	(SACL)
CHUNG	68	PR 165 1491		S.U. Chung <i>et al.</i>	(LRL)
FOSTER	68	NP B6 107		M. Foster <i>et al.</i>	(CERN, CDEF)
GOUNARIS	68	PRL 21 244		G.J. Gounaris, J.J. Sakurai	
HUSON	68	PL 28B 208		R. Huson <i>et al.</i>	(ORSAY, MILA, UCLA)
HYAMS	68	NP B/ I		B.D. Hyams <i>et al.</i>	(CERN, MPIM)
	68	PR 100 1305		L.J. Lanzerotti <i>et al.</i>	(HARV)
	00	NP B0 325		J. PISUL, IVI. ROOS	
ASBURY	07B	PRL 19 805		J.G. Asbury et al.	(DEST, COLU)
	67	PR 157 1203		I.C. Bacon <i>et al.</i>	
EISNER	67	PK 104 1099		R.L. Eisner <i>et al.</i>	(PURD)
HUWE	67	PL 24B 252		D.O. Huwe <i>et al.</i>	
HYAMS	67	PL 24B 034		B.D. Hyams <i>et al.</i>	(CERN, MPIM)
	07B	PR 153 1423		D.H. Willer et al.	(PURD)
	60	PK 145 1072		C. Altr-Steinberger <i>et al.</i>	(COLU, RUTG)
	00 66	PL ZI III DD 14E 1100		I. Ferdel	
	00 66 D	PR 143 1120		V. Hagopian <i>et al.</i>	(PEININ, SACL)
	00D	PR 152 1105		V. Hagopian, T.L. Pan	(PEININ, LRL)
JACODS	00D	DD 142 006		L.D. Jacobs	
JAIVIES	00	PR 142 890		F.E. James, H.L. Kraybill	(YALE, BINL)
	00	PK 149 11/2		IVI. KOSS, L. Stodolsky	
	66	FL D19 /UZ		F. Soeding	
	00 6 E	FR 149 1089		E. VVEST <i>et al.</i>	
BLIEDEN	05	PL 19 444		п.к. Blieden <i>et al.</i>	(CERN MMS Collab.)
	04	PKL 12 254		D.D. Carmony <i>et al.</i>	
	04 62	FRE 12 330		G. GOIGNADER <i>et al.</i>	
ADULINS	05	FAL 11 301		WI.A. ADOINS ET al.	(UCSD)