Σ^{-}

 $I(J^P) = 1(\frac{1}{2}^+)$ Status: ****

We have omitted some results that have been superseded by later experiments. See our earlier editions.

Σ^- MASS

The fit uses Σ^+ , Σ^0 , Σ^- , and Λ mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID)	TECN	COMMENT
1197.449 ± 0.029	OUR FIT Error	includes scale	factor of	1.1.	
1197.45 ±0.04	OUR AVERAGE	Error includes	s scale fa	ictor of	1.2.
1197.417 ± 0.040		GUREV	93	SPEC	Σ^- C atom, crystal diff.
1197.532 ± 0.057		GALL	88	CNTR	Σ^- Pb, Σ^- W atoms
1197.43 ± 0.08	3000	SCHMIDT	65	HBC	See note with Λ mass
• • • We do not	use the following	data for avera	ges, fits,	limits,	etc. • • •
1197.24 ± 0.15	1	DUGAN	75	CNTR	Exotic atoms
1 CALL 00					1

¹ GALL 88 concludes that the DUGAN 75 mass needs to be reevaluated.

$$m_{\Sigma^{=}} - m_{\Sigma^{+}}$$

VALUE (MeV)	EVTS	TECN						
8.08 ± 0.08 OUR FIT	Error includ							
8.09 ± 0.16 OUR AVER	8.09±0.16 OUR AVERAGE							
7.91 ± 0.23	86	BOHM	72	EMUL				
8.25 ± 0.25	2500	DOSCH	65	HBC				
8.25 ± 0.40	87	BARKAS	63	EMUL				

$$m_{\Sigma^{-}} - m_{\Lambda}$$

VALUE ((MeV)	EVTS	<u>DOCI</u>	JMENT ID		TECN	COMMENT
81.766	±0.029	OUR FIT Er	ror includes s	scale factor	of 1.	1.	
81.69	±0.07	OUR AVERAG	E				
81.64	± 0.09	2279) HEP	Р	68	HBC	
81.80	± 0.13	85	5 SCH	MIDT	65	HBC	See note with Λ mass
81.70	± 0.19		BUR	NSTEIN	64	HBC	

Σ^- MEAN LIFE

Measurements with an error $~\geq~0.2\times10^{-10}$ s have been omitted.

VALUE (10^{-10} s)	EVTS	DOCUMENT ID		TECN	COMMENT
1.479 ± 0.011 OUR AV	ERAGE	Error includes scale	factor	of 1.3.	See the ideogram below.
$1.480\!\pm\!0.014$	16k	MARRAFFINO	80	HBC	<i>K⁻ p</i> 0.42–0.5 GeV/ <i>c</i>
$1.49 \ \pm 0.03$	8437	CONFORTO	76	HBC	$K^{-} p \ 1 - 1.4 \ \text{GeV} / c$
$1.463 \!\pm\! 0.039$	2400	ROBERTSON	72	HBC	<i>K⁻ p</i> 0.25 GeV/ <i>c</i>
$1.42\ \pm 0.05$	1383	BAKKER	71	DBC	$K^- N \rightarrow \Sigma^- \pi \pi$
$1.41 \begin{array}{c} +0.09 \\ -0.08 \end{array}$		TOVEE	71	EMUL	
https://pdg.lbl.gov		Page 1		Creat	ed: 4/29/2024 18:58

Citation: R.L. Workman et al. (Particle Data Group), Prog.Theor.Exp.Phys. 2022, 083C01 (2022) and 2023 update

1.485 ± 0.022	100k	EISELE	70	HBC	$K^- p$ at rest
$1.472\!\pm\!0.016$	10k	BARLOUTAU	D 69	HBC	<i>К</i> ⁻ <i>р</i> 0.4–1.2 GeV/ <i>с</i>
$1.38\ \pm 0.07$	506	WHITESIDE	68	HBC	$K^- p$ at rest
$1.666 \!\pm\! 0.075$	3267	¹ CHANG	66	HBC	$K^- p$ at rest
$1.58\ \pm 0.06$	1208	HUMPHREY	62	HBC	$K^- p$ at rest

 $^1\,\text{We}$ have increased the CHANG 66 error of 0.026; see our 1970 edition, Reviews of Modern Physics 42 87 (1970).

Σ^- MAGNETIC MOMENT

See the "Quark Model" review. Measurements with an error $~\geq$ 0.3 $\mu_{\it N}$ have been omitted.

VALUE (μ_N)	EVTS	DOCUMENT ID		TECN	COMMENT
-1.160 ± 0.025 OUR AVERAGE		Error includes sca	le fact	or of 1.7	. See the ideogram
below.					
$-1.105\pm0.029\pm0.010$)	HERTZOG	88	CNTR	Σ^- Pb, Σ^- W atoms
$-1.166\pm0.014\pm0.010$) 671k	ZAPALAC	86	SPEC	$ne^- u$, $n\pi^-$ decays
$-1.23\ \pm 0.03\ \pm 0.03$		WAH	85	CNTR	$pCu \rightarrow \Sigma^{-}X$
$\bullet \bullet \bullet$ We do not use t	he following	g data for averages	s, fits,	limits, et	
-0.89 ± 0.14	516k	DECK	83	SPEC	$p { m Be} ightarrow \Sigma^- { m X}$

Σ^- CHARGE RADIUS

VALUE (fm)	DOCUMENT ID		TECN	COMMENT		
$0.780 \pm 0.080 \pm 0.060$	¹ ESCHRICH	01	SELX	$\Sigma^-e ightarrow\Sigma^-e$		
1 ESCHRICH 01 actually gives $\langle r^2 angle =$ (0.61 \pm 0.12 \pm 0.09) fm 2 .						

Σ^- DECAY MODES

	Mode	Fraction (Γ_i/Γ) Confidence let	evel
Γ ₁	$n\pi^{-}_{-}$	(99.848±0.005)%	
I 2	$n\pi^-\gamma$	[a] (4.6 ± 0.6) $\times 10^{-4}$	
Γ ₃	ne ⁻ $\overline{ u}_e$	$(1.017 \pm 0.034) imes 10^{-3}$	
Γ4	$n\mu^-\overline{ u}_\mu$	$(4.5 \pm 0.4) imes 10^{-4}$	
Γ_5	$\Lambda e^- \overline{\nu}_e$	(5.73 ± 0.27) $ imes 10^{-5}$	
Г ₆	$\Sigma^+ X$	$< 1.2 \times 10^{-4} $ 9	0%
		Lepton number (L) violating modes	
Г ₇	p e ⁻ e ⁻	L < 6.7 $\times 10^{-5}$ 9	0%
[-	ol Soo tha I	stings below for the pion momentum range used in this mu	<u>م</u> _

[a] See the Listings below for the pion momentum range used in this measurement.

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 16 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2 =$ 8.7 for 13 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

x ₃	-64		
<i>x</i> 4	-77	0	
×5	-5	0	0
	<i>x</i> ₁	x ₃	<i>x</i> 4

Σ^{-} BRANCHING RATIOS

$\Gamma(n\pi^-\gamma)/\Gamma(n\pi^-)$

 Γ_2/Γ_1

 Γ_3/Γ_1

The π^+ momentum cuts differ, so we do not average the results but simply use the latest value for the Summary Table.

V	4 <i>LUE</i> (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
	0.46±0.06	292	EBENHOH	73	HBC	$\pi^+~<$ 150 MeV/ c
•	$\bullet~\bullet~$ We do not use the	ne following	data for averages	s, fits,	limits,	etc. ● ● ●
	0.10 ± 0.02	23	ANG	69 B	HBC	$\pi^-~<$ 110 MeV/ c
\sim	1.1		BAZIN	65 B	HBC	$\pi^ <$ 166 MeV/ c

$\Gamma(ne^-\overline{\nu}_e)/\Gamma(n\pi^-)$

Measurements with an error $\geq 0.2 \times 10^{-3}$ have been omitted. VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT

1.019±0.035 OUR FIT							
1.019	9 ^{+0.031} -0.040	OUR AVERAGE					
0.96	± 0.05	2847	BOURQUIN	83 C	SPEC	SPS hyperon beam	
1.09	$^{+0.06}_{-0.08}$	601	¹ EBENHOH	74	HBC	$K^- p$ at rest	
1.05	$^{+0.07}_{-0.13}$	455	¹ SECHI-ZORN	73	HBC	$K^- p$ at rest	
0.97	± 0.15	57	COLE	71	HBC	$K^- p$ at rest	
1.11	± 0.09	180	BIERMAN	68	HBC		

¹An additional negative systematic error is included for internal radiative corrections and latest form factors; see BOURQUIN 83C.

Citation: R.L. Workman et al. (Particle Data Group), Prog.Theor.Exp.Phys. 2022, 083C01 (2022) and 2023 update

$\Gamma(n\mu^-\overline{ u}_{\mu})/\Gamma(n\pi^-)$					Γ_4/Γ_1
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
0.45±0.04 OUR FIT					
0.45±0.04 OUR AVER	AGE				
0.38 ± 0.11	13	COLE	71	HBC	$K^- p$ at rest
0.43 ± 0.06	72	ANG	69	HBC	$K^- p$ at rest
0.43 ± 0.09	56	BAGGETT	69	HBC	$K^- p$ at rest
0.56 ± 0.20	11	BAZIN	65 B	HBC	$K^- p$ at rest
0.66 ± 0.15	22	COURANT	64	HBC	
$\Gamma(\Lambda e^-\overline{\nu}_e)/\Gamma(n\pi^-)$					Γ ₅ /Γ ₁
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
0.574 ± 0.027 OUR FIT					
0.574 ± 0.027 OUR AVE	RAGE				
$0.561\!\pm\!0.031$	1620	¹ BOURQUIN	82	SPEC	SPS hyperon beam
0.63 ± 0.11	114	THOMPSON	80	ASPK	Hyperon beam
0.52 ± 0.09	31	BALTAY	69	HBC	$K^- p$ at rest
0.69 ± 0.12	31	EISELE	69	HBC	$K^- p$ at rest
0.64 ± 0.12	35	BARASH	67	HBC	$K^- p$ at rest
0.75 ± 0.28	11	COURANT	64	HBC	$K^- p$ at rest
¹ The value is from B tance.	OURQUIN	83B, and include	es rad	iation co	rrections and new accep-
$\frac{\Gamma(\Sigma^+ X)}{\Gamma_{\text{total}}}$ Here mode X can	be any par	ticle combinatior	۱.		Г ₆ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<1.2 × 10 ⁻⁴	90	ABLIKIM	21F	BES	1,311 M J/ψ decays
	Lepton n	umber (<i>L</i>) viol	ating	; modes	5
$\Gamma(pe^-e^-)/\Gamma_{total}$ This decay violate	es lepton nu	mber conservatio	on wit	h $\Delta Q =$	Γ₇/Γ ΔL = 2.

This decay violates	iepton nun	iber conservatio		$\Delta Q =$	$\Delta L = 2.$
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<6.7 × 10 ⁻⁵	90	ABLIKIM	21F	BES	1,311 M J/ψ decays

Σ^- DECAY PARAMETERS

See the "Note on Baryon Decay Parameters" in the neutron Listings. Older, outdated results have been omitted.

α_{-} FOR $\Sigma^{-} \rightarrow n\pi^{-}$							
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT		
-0.068 ± 0.008 OU	JR AVERAGE						
$-0.062\!\pm\!0.024$	28k	HANSL	78	HBC	$K^- p \rightarrow \Sigma^- \pi^+$		
$-0.067\pm\!0.011$	60k	BOGERT	70	HBC	<i>К[—] р</i> 0.4 GeV/ <i>с</i>		
-0.071 ± 0.012	51k	BANGERTER	69	HBC	$K^- p$ 0.4 GeV/ c		

ϕ ANGLE FOR Σ^{-1}	$^- ightarrow n \pi^-$	-			(tan $\phi=eta$ / γ)
VALUE ($^{\circ}$)	EVTS	DOCUMENT ID		TECN	COMMENT
10 ± 15 OUR AVER	AGE				
$+ 5\pm 23$	1092	¹ BERLEY	70 B	HBC	n rescattering
14 ± 19	1385	BANGERTER	69 B	HBC	<i>Кр</i> 0.4 GeV/ <i>с</i>

 $^{1}\,\textsc{BERLEY}$ 70B changed from -5 to $+5^{\circ}$ to agree with our sign convention.

g_A/g_V FOR $\Sigma^- \rightarrow n e^- \overline{\nu}_e$

Measurements with fewer than 500 events have been omitted. Where necessary, signs have been changed to agree with our conventions, which are given in the "Note on Baryon Decay Parameters" in the neutron Listings. What is actually listed is $|g_1/f_1 - 0.237g_2/f_1|$. This reduces to $g_A/g_V \equiv g_1(0)/f_1(0)$ on making the usual assumption that $g_2 = 0$. See also the note on HSUEH 88.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.340 ± 0.017 OUR A	/ERAGE				
$+0.327 \pm 0.007 \pm 0.019$	50k	¹ HSUEH	88	SPEC	Σ^- 250 GeV
$+0.34 \pm 0.05$	4456	² BOURQUIN	83C	SPEC	SPS hyperon beam
$0.385 \!\pm\! 0.037$	3507	³ TANENBAUM	74	ASPK	
\bullet \bullet \bullet We do not use th	e following	data for averages	, fits,	limits, e	etc. • • •
0.29 ± 0.07	25k	HSUEH	85	SPEC	See HSUEH 88

 $0.17 \begin{array}{c} +0.07 \\ -0.09 \end{array}$ 519 DECAMP 77 ELEC Hyperon beam

¹ The sign is, with our conventions, unambiguously positive. The value assumes, as usual, that $g_2 = 0$. If g_2 is included in the fit, than (with our sign convention) $g_2 = -0.56 \pm 0.37$, with a corresponding reduction of g_A/g_V to $+0.20 \pm 0.08$.

 2 BOURQUIN 83C favors the positive sign by at least 2.6 standard deviations.

³ TANENBAUM 74 gives 0.435 \pm 0.035, assuming no q^2 dependence in g_A and g_V . The listed result allows q^2 dependence, and is taken from HSUEH 88.

$f_2(0)/f_1(0)$ FOR $\Sigma^- \rightarrow ne^-\overline{\nu}_e$

The signs have been changed to be in accord with our conventions, given in the "Note on Baryon Decay Parameters" in the neutron Listings.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.97±0.14 OUR AV	ERAGE				
$+0.96\pm0.07\pm0.13$	50k	HSUEH	88	SPEC	Σ^- 250 GeV
$+1.02 \pm 0.34$	4456	BOURQUIN	83C	SPEC	SPS hyperon beam

TRIPLE CORRELATION COEFFICIENT D for $\Sigma^- \rightarrow ne^- \overline{\nu}_e$

The coefficient *D* of the term $D \mathbf{P} \cdot (\hat{\mathbf{p}}_e \times \hat{\mathbf{p}}_\nu)$ in the $\Sigma^- \rightarrow n e^- \overline{\nu}$ decay angular distribution. A nonzero value would indicate a violation of time-reversal invariance. <u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **0.11±0.10** 50k HSUEH 88 SPEC Σ^- 250 GeV

g_V/g_A FOR $\Sigma^- \rightarrow \Lambda e^- \overline{\nu}_e$

For the sign convention, see the "Note on Baryon Decay Parameters" in the neutron Listings. The value is predicted to be zero by conserved vector current theory. The values averaged assume CVC-SU(3) weak magnetism term.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.01 ± 0.10	OUR AVERAGE	Error includes sca	le fac	tor of 1.	5. See the ideogram
below.					
-0.034 ± 0.080	1620	¹ BOURQUIN	82	SPEC	SPS hyperon beam
-0.29 ± 0.29	114	THOMPSON	80	ASPK	BNL hyperon beam
-0.17 ± 0.35	55	TANENBAUM	75 B	SPEC	BNL hyperon beam
$+0.45 \pm 0.20$	186	^{1,2} FRANZINI	72	HBC	

 $^1\,{\rm The}$ sign has been changed to agree with our convention.

² The FRANZINI 72 value includes the events of earlier papers.

 g_V/g_A for $\Sigma^-
ightarrow \Lambda e^- \overline{
u}_e$

g_{WM}/g_A FOR $\Sigma^- \rightarrow \Lambda e^- \overline{\nu}_e$

The values quote	ed assume t	he CVC prediction	g _V =	= 0.		
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
2.4 \pm 1.7 OUR AVERA	GE					
1.75 ± 3.5	114	THOMPSON	80	ASPK	BNL hyperon	beam
			750	CDEC		

3.5	± 4.5	55	TANENBAUM	75 B	SPEC	BNL hyperon beam
2.4	± 2.1	186	FRANZINI	72	HBC	

Σ^- REFERENCES

We have omitted some papers that have been superseded by later experiments. See our earlier editions.

ABLIKIM	21F	PR D103 052011	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ESCHRICH	01	PL B522 233	I. Eschrich <i>et al.</i>	(FNAL SELEX Collab.)
GUREV	93	JETPL 57 400	M.P. Gurev <i>et al.</i>) (PNPI)
		Translated from ZETFP 57	389.	
GALL	88	PRL 60 186	K.P. Gall <i>et al.</i>	(BOST, MIT, WILL, CIT+)
HERTZOG	88	PR D37 1142	D.W. Hertzog <i>et al.</i>	(WILL, BOST, MIT+)
HSUEH	88	PR D38 2056	S.Y. Hsueh et al.	(CHIC, ELMT, FNAL+)
ZAPALAC	86	PRL 57 1526	G. Zapalac <i>et al.</i>	(EFI, ELMT, FNAL+)
HSUEH	85	PRL 54 2399	S.Y. Hsueh <i>et al.</i>	(CHIC, ELMT, FNAL+)
WAH	85	PRI 55 2551	YW Wah et al	(FNAL IOWA ISU)
BOUROUIN	83R	7PHY C21 27	M H Bourguin et al	(BRIS GEVA HEIDP+)
BOUROUIN	830	7PHV C21 17	M H Bourguin et al	$(BRIS GEVA HEIDP_+)$
DECK	83	DP D28 1	L Dock et al	
BOUROUIN	80 80	7DHV C12 207	M H Bourguin at al	$(RPIS CEVA HEIDP_1)$
	02	DD D01 0501	Marraffina at al	(DNIS, GEVA, TIEIDI +)
	00	PR D21 2501		(VAND, MPIM)
THOMPSON	80	PR D21 25	J.A. Inompson <i>et al.</i>	(PITT, BNL)
HANSL	78	NP B132 45	I. Hansl <i>et al.</i>	(MPIM, VAND)
DECAMP	((PL 66B 295	D. Decamp <i>et al.</i>	(LALO, EPOL)
CONFORTO	76	NP B105 189	B. Conforto <i>et al.</i>	(RHEL, LOIC)
DUGAN	75	NP A254 396	G. Dugan <i>et al.</i>	(COLU, YALE)
TANENBAUM	75B	PR D12 1871	W. Tanenbaum <i>et al.</i>	(YALE, FNAL, BNL)
EBENHOH	74	ZPHY 266 367	H. Ebenhoh <i>et al.</i>	(HEIDT)
TANENBAUM	74	PRL 33 175	W. Tanenbaum <i>et al.</i>	(YALE, FNAL, BNL)
EBENHOH	73	ZPHY 264 413	W. Ebenhoh <i>et al.</i>	(HEIDT)
SECHI-ZORN	73	PR D8 12	B. Sechi-Zorn, G.A. Snow	`(UMD)
BOHM	72	NP B48 1	G Bohm et al	(BERI KIDR BRUX IASD+)
FRANZINI	72	PR D6 2417	P Franzini et al	$(COLU HEID UMD_{\pm})$
	72	Thesis 11MI 79 00977	P.M. Dobortson	
	72		A M Bakker et al	(III) (SAPPE Callab.)
	71		A.M. Dakker et al.	
COLE	/1		J. Cole et al.	
		Thesis Nevis 175	H. Norton	
TOVEE	/1	NP B33 493	D.N. Tovee <i>et al.</i>	(LOUC, KIDR, BERL+)
BERLEY	70B	PR D1 2015	D. Berley <i>et al.</i>	(BNL, MASA, YALE)
BOGERI	70	PR D2 6	D.V. Bogert <i>et al.</i>	(BNL, MASA, YALE)
EISELE	70	ZPHY 238 372	F. Eisele <i>et al.</i>	(HEID)
PDG	70	RMP 42 87	A. Barbaro-Galtieri <i>et al.</i>	(LRL, BRAN+)
ANG	69	ZPHY 223 103	G. Ang <i>et al.</i>	(HEID)
ANG	69B	ZPHY 228 151	G. Ang <i>et al.</i>	(HEID)
BAGGETT	69	PRL 23 249	N.V. Baggett, B. Kehoe, G./	A. Snow (UMD)
BALTAY	69	PRL 22 615	C. Baltay et al.	(COLU, ŠTON)
BANGERTER	69	Thesis UCRL 19244	R.O. Bangerter) (LRL)
BANGERTER	69B	PR 187 1821	R.O. Bangerter <i>et al.</i>	(LRL)
BARI OUTAUD	69	NP B14 153	R Barloutaud <i>et al</i>	(SACL CERN HEID)
FISFLE	69	7PHY 221 1	F Fisele <i>et al</i>	(e, (e), (e), (HEID)
RIFRMAN	68	PRI 20 1459	F Bierman et al	(PRIN)
	68	7DHV 214 71	V Hopp H Schloich	
	68	NC 54A 537	H Whiteside L Collub	(ILID) (OBER)
	67	DDI 10 101	N. Barach et al	
	66	PRL 19 101	N. Darash et al.	
CHANG	00	PR 151 1081	C.Y. Chang	
BAZIN	65B	PR 140 B1358	M. Bazin <i>et al.</i>	(PRIN, RUTG, COLU)
DOSCH	65	PL 14 239	H.C. Dosch <i>et al.</i>	(HEID)
Also		PK 151 1081	C.Y. Chang	(COLU)
SCHMIDT	65	PR 140 B1328	P. Schmidt	(COLU)
BURNSTEIN	64	PRL 13 66	R.A. Burnstein <i>et al.</i>	(UMD)
COURANT	64	PR 136 B1791	H. Courant <i>et al.</i>	(CERN, HEID, UMD+)
BARKAS	63	PRL 11 26	W.H. Barkas, J.N. Dyer, H.H	H. Heckman (LRL)
HUMPHREY	62	PR 127 1305	W.E. Humphrey, R.R. Ross	(LRL)