WIMP and Dark Matter Searches

We omit papers on CHAMP's, millicharged particles, and other exotic particles.

GALACTIC WIMP SEARCHES

These limits are for weakly-interacting stable particles that may constitute the invisible mass in the galaxy. Unless otherwise noted, a local mass density of 0.3 GeV/cm³ is assumed; see each paper for velocity distribution assumptions. In the papers the limit is given as a function of the X^0 mass. Here we list limits only for typical mass values of sub-GeV, GeV, 20 GeV, 100 GeV, and 1 TeV. Specific limits on supersymmetric dark matter particles may be found in the Supersymmetry section.

—— Spin-Independent Cross Section Limits —— for Dark Matter Particle (X⁰) on Nucleon ———

For $m_{\chi 0}$ in GeV range We provide here limits to $m_{\chi 0} < 5$ GeV

vve provide ner	e limits ro	$x_0 < 5 \text{ GeV}$			
VALUE (pb)	CL%	DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not use	the follow	wing data for avera	ges, f	its, limit	s, etc. ● ● ●
$< 3 \times 10^{-3}$	90	¹ AALBERS	23A	LZ	SI scatter on Xe
$< 4 \times 10^{-7}$	90	² AGNES	23	DS50	LDM search via Migdal
$<$ 6 $\times 10^{-7}$	90	³ AGNES	23 B	DS50	LDM scatter on nucleons
< 0.5	90	⁴ ALBAKRY	23	SCDM	LDM via Migdal
< 1	95	⁵ AMBROSONE	23		DM distortion of CR spec-
<70	90	⁶ ANGLOHER	23	CRES	LDM search
$< 8 \times 10^{-8}$	90	7 _{LI}	23F	PNDX	SI light DM limits
$< 5 \times 10^{-10}$	90	⁸ MA	23A	PNDX	LDM search
<10	90	⁹ ADHIKARI	22в	C100	sub-GeV WIMP via SI cou- pling/Migdal effect
$< 1.4 \times 10^4$	90	¹⁰ ARMENGAUD	22	EDEL	GeV-scale DM on Ge via Migdal effect
$< 5 \times 10^{5}$	90	¹¹ CUI	22	PNDX	sub-GeV boosted DM
$< 6.5 imes 10^{6}$	90	¹² XU	22	CDEX	sub-GeV DM
$< 2 \times 10^{-7}$	95	¹³ AKERIB	21A	LUX	low mass WIMPs
$< 5 \times 10^{6}$	90	¹⁴ ALKHATIB	21	SCDM	light DM
$< 1 \times 10^{8}$	95	¹⁵ ANDRIAMIR	21A		sub-GeV DM on nucleon
$< 1 \times 10^{-8}$	90	¹⁶ APRILE	21	XE1T	GeV scale DM
$< 8 \times 10^{-4}$	90	¹⁷ AGUILAR-AR	.20C	DMIC	WIMP SI scatter on Si
$< 8 \times 10^{-4}$	90	¹⁸ AKERIB	20A	LUX	GeV-scale WIMP search
$< 1 \times 10^{-2}$	90	¹⁹ ABDELHAME.	. 19 A	CRES	CaWO ₄
$< 5.4 \times 10^{-6}$	90	²⁰ AGNESE	19A	SCDM	GeV-scale WIMPs on Ge
< 1	90	²¹ AKERIB	19	LUX	light DM on Xe via Migdal/brem effect
$<$ 1 \times 10 ⁻⁶	90	²² AMOLE	19	PICO	C ₃ F ₈
$<$ 1.6 $ imes$ 10 $^{-3}$	90	²³ APRILE	19 C	XE1T	DM on Xe
$<$ 1 \times 10 ⁻⁷	90	²⁴ APRILE	19D	XE1T	DM on Xe
< 0.1	90	²⁵ ARMENGAUD	19	EDEL	GeV-scale WIMPs on Ge

< 1.6	10^3	90	²⁶ KOBAYASHI	19	XMAS	annual modulation Xe
< 7	$ imes 10^2$	90	²⁷ LIU	19 B	CDEX	Ge; sub-GeV DM via Migdal
< 7	imes 10 ⁻⁷	90	²⁸ AGNES	18	DS50	GeV-scale WIMPs on Ar
< 1.5	$\times 10^{-5}$	95	²⁹ AGNESE	18	SCDM	GeV-scale WIMPs on Ge
< 2	imes 10 ⁻⁸	90	³⁰ APRILE	18	XE1T	Xe, SI
< 4.5	5×10^{-3}	90	³¹ ARNAUD	18	NEWS	low mass WIMP, Ne
< 8	imes 10 ⁻⁶	90	³² JIANG	18	CDEX	GeV-scale WIMPs on Ge
< 3	imes 10 ⁻⁵	90	³³ YANG	18	CDEX	WIMPs on Ge
< 1	imes 10 ⁻⁶	90	³⁴ AKERIB	17	LUX	Xe
< 1	imes 10 ²	90	³⁵ ANGLOHER	17A	CRES	GeV-scale WIMPs
< 7	imes 10 ⁻⁵	90	³⁶ ANGLOHER	16	CRES	CaWO ₄
< 3	imes 10 ⁻⁵	90	³⁷ APRILE	16	X100	Xe
< 4.3	10^{-4}	90	³⁸ ARMENGAUD	16	EDE3	GeV-scale WIMPs on Ge
< 7	imes 10 ⁻⁵	90	³⁹ HEHN	16	EDE3	SI WIMP on Ge
< 6	imes 10 ⁻⁵	90	⁴⁰ ZHAO	16	CDEX	GeV-scale WIMPs on Ge
< 1	imes 10 ⁻⁴	90	⁴¹ AMOLE	15	PICO	C ₃ F ₈
< 8	imes 10 ⁻⁵	90	⁴² XIAO	15	PNDX	WIMPs on Xe
< 3	imes 10 ⁻⁵	90	⁴³ AGNESE	14	SCDM	GeV-scale WIMPs
< 1	imes 10 ⁻³	90	⁴⁴ AKERIB	14	LUX	WIMP on Xe
< 9	imes 10 ⁻⁴	90	⁴⁵ LI	13 B	TEXO	WIMPs on Ge
< 3	imes 10 ⁻⁴	90	⁴⁶ ARCHAMBAU.	.12	PICA	C ₄ F ₁₀
< 2	$ imes 10^{-4}$	90	⁴⁷ AALSETH	11	CGNT	GeV WIMPs on Ge
< 5	$ imes 10^{-4}$	90	⁴⁸ AHMED	11B	CDM2	GeV-scale WIMPs on Ge
< 8	imes 10 ⁻⁵	90	⁴⁹ ANGLE	11	XE10	Xe
< 5	imes 10 ⁻⁴	90	⁵⁰ AKERIB	10	CDM2	WIMPs on Ge/Si

 1 AALBERS 23A search for e recoil events from GeV scale WIMP scatter on Xe. No signal observed. Limits placed on 6 different models including $\sigma^{SI} < 3 \times 10^{-3}$ for m($\chi) \sim 1$ GeV via Migdal scattering.

- ²AGNES 23 for for light DM via *e* recoil/Migdal effect. No signal observed. $\sigma^{SI}(\chi N)$ < 4×10^{-7} pb for m(χ) = 3 GeV.
- ³AGNES 23B search for GeV-scale DM scatter on nucleons in Ar. No signal observed. Limit $\sigma^{SI}(\chi N) < 6 \times 10^{-7}$ pb for m(χ) = 3 GeV.
- ⁴ALBAKRY 23 search for light DM via Migdal effect. No signal observed. Allow σ^{SI} < 0.5 pb for m(χ)=1 GeV (see e.g. Fig. 7).
- ⁵ AMBROSONE 23 derive limits on $\sigma(\chi p)$ due to possible DM distortion of cosmic ray spectra in starburst galaxies. Limits placed in σ vs. mass (10⁻³–10 MeV) plane, the most stringent given above being at 1 keV.
- ⁶ ANGLOHER 23 search for light DM using Si target. No signal observed. Require σ^{SI} < _70 pb for m(χ) = 0.3 GeV (see e.g. Fig. 5).
- ⁷LI 23F searches for SI light DM scatter from Xe. No signal observed. The quoted limit for $m(\chi) = 4$ GeV.
- ⁸MA 23A search for GeV-scale DM using PandaX-4T. No signal observed. $\sigma(\chi p) < 5 \times 10^{-10}$ pb for m(χ) = 10 GeV.
- ⁹ ADHIKARI 22B search for sub-GeV WIMPs via SI and SD detection; no signal detected; limits placed in m(χ) vs. σ plane for m(χ): 0.2–3 GeV; quoted limit is for m(χ) = 1 GeV.
- ¹⁰ ARMENGAUD 22 search for GeV-scale DM scatter on Ge at EDELWEISS via Migdal effect; no signal observed; limits placed in $\sigma^{SI}(\chi N)$ vs. m(DM) plane; quoted limit is for m(DM) = 100 MeV.

- ¹¹ CUI 22 search for sub-GeV boosted DM at PandaX-II at CJPL; no signal detected; limits set in $\sigma^{SI}(\chi p)$ vs. m(χ) plane; quoted limit for m(χ) = 0.1 GeV.
- ¹² XU 22 search for sub-GeV boosted DM in CDEX; no signal observed; limits placed in $\sigma(\chi N)$ vs. m(DM) plane; quoted limit is for m(DM) = 0.1 GeV.
- ¹³ AKERIB 21A present new technique for low mass WIMP detection. Require $\sigma^{SI}(p\chi) < 2 \times 10^{-7}$ pb for m(WIMP) 10 GeV.
- ¹⁴ ALKHATIB 21 search for light DM using SuperCDMS; require $\sigma^{SI}(p\chi) < 5 \times 10^6$ for m(DM) = 0.1 GeV.
- ¹⁵ ANDRIAMIRADO 21A search for upscattered (boosted) sub-GeV DM interacting with proton in PROSPECT detector. No signal observed. Limits placed in $\sigma(\chi N)$ vs. m(DM) plane for m(DM) ~ 1 keV 0.5 GeV. The listed limit is for m(DM) = 1 keV.
- ¹⁶ APRILE 21 search for low recoil energy GeV-scale DM in XENON1T with 1.6 keV threshold. No signal in 0.6 t y exposure. Limits placed in $\sigma^{SI}(\chi N)$ vs. m(DM) plane for m(DM) between 3–12 GeV. The listed limit is for m(DM) = 5 GeV.
- ¹⁷ AGUILAR-AREVALO 20C search for WIMP SI scatter on Si using DAMIC at SNOLab; some excess; limits placed in σ vs m(DM) for m(DM) in 1.2–10 GeV; quoted limit for m(WIMP) = 2 GeV.
- ¹⁸ AKERIB 20A search for GeV-scale WIMPs via WIMP-nucleon scatter with single photon emission; no signal; limits placed in m(WIMP) vs σ^{SI} plane: for example $\sigma^{SI}(\chi n) < 8 \times 10^{-4}$ pb for m(WIMP) = 2.5 GeV.
- ¹⁹ ABDELHAMEED 19A search for GeV scale dark matter SI scatter on CaWO₄; no signal, limits placed in σ vs. mass plane for m(DM) ~ 0.1 -10 GeV. The listed limit is for m(DM) = 1 GeV.
- ²⁰ AGNESE 19A search for 1.5–10 GeV WIMP scatter on Ge in CDMSlite dataset. Limits set in a likelihood analysis. No signal was observed. Limit reported for $m(\chi) = 5$ GeV.
- ²¹ AKERIB 19 search for 0.4–5 GeV DM using bremsstrahlung photons and "Migdal" electrons; 1.4×10^4 kg d exposure of liquid Xe; constraint $\sigma^{SI}(\chi N) < 1$ pb for m(χ) = 5 GeV in light scalar mediator model.
- ²² AMOLE 19 search for SI WIMP scatter on C₃F₈ in PICO-60 bubble chamber; no signal: set limit for spin independent coupling $\sigma^{SI}(\chi N) < 1 \times 10^{-6}$ pb for m(χ) = 5 GeV.
- ²³ APRILE 19C search for light DM scatter on Xe via atomic excitation, ionization (Migdal effect) or bremsstrahlung; no signal, limits placed in σ vs. m(DM) plane for m(DM) $\sim 0.085-2$ GeV. The listed limit is for m(DM) = 1 GeV.
- ²⁴ APRILE 19D search for light DM scatter on Xe via ionization to probe SI, SD, and χe cross sections; with 22 t d exposure, limits placed in various σ vs. m(DM) planes. Quoted limit is for m(DM) = 5 GeV.
- ²⁵ ARMENGAUD 19search for GeV scale WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 0.045–10 GeV; quoted limit is for m(χ) = 5 GeV.
- ²⁶ KOBAYASHI 19 search for sub-GeV WIMP annual modulation in Xe via brems; no signal; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m \sim 0.3–1 GeV; quoted limit is for m(χ) = 0.5 GeV.
- ²⁷ LIU 19B seach for sub-GeV DM using Migdal effect on Ge at CDEX-IB; no signal, require $\sigma^{SI}(\chi N) < 7 \times 10^2$ pb for m(χ) = 0.1 GeV.
- ²⁸ AGNES 18 search for 1.8–20 GeV WIMP SI scatter on Ar; quoted limit is for $m(\chi) = 5$ GeV.
- ²⁹ AGNESE 18 search for GeV scale WIMPs using CDMSlite; limits placed in $\sigma^{SI}(\chi N)$ vs. $m(\chi)$ plane for $m \sim 1.5$ -20 GeV; quoted limit is for $m(\chi) = 5$ GeV.
- ³⁰ APRILE 18 search for WIMP scatter on 1 t yr Xe; no signal, limits set in $\sigma(\chi N)$ vs. $m(\chi)$ plane for $m(\chi) \sim 6-1000$ GeV; quoted limit is for m = 6 GeV.
- ³¹ARNAUD 18 search for low mass WIMP scatter on Ne via SPC at NEWS-G; limits set in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m \sim 0.5–20 GeV; quoted limit is for m = 5 GeV.
- ³² JIANG 18 search for GeV scale WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 3–10 GeV; quoted limit is for m(χ) = 5 GeV.

- ³³ YANG 18 search for WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 2–10 GeV; quoted limit is for m(χ) = 5 GeV.
- ³⁴ AKERIB 17 search for WIMP scatter on Xe; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 5–1 × 10⁵ GeV; quoted limit is for m(χ) = 5 GeV.
- ³⁵ANGLOHER 17A search for GeV scale WIMP scatter on Al₂O₃ crystal; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 0.15–10 GeV; quoted limit is for m(χ) = 5 GeV.
- ³⁶ ANGLOHER 16 search for GeV scale WIMP scatter on CaWO₄; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 0.5–30 GeV; quoted limit is for m(χ) = 5 GeV.
- ³⁷ APRILE 16 search for low mass WIMPs via ionization at XENON100; limits placed in $\sigma^{SI}(\chi N)$ vs m(χ) plane for m \sim 3.5–20 GeV; guoted limit is for m(χ) = 5 GeV.
- ³⁸ ARMENGAUD 16 search for GeV scale WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 4–30 GeV; quoted limit is for m(χ) = 5 GeV.
- ³⁹ HEHN 16 search for low mass WIMPs via SI scatter on Ge target using profile likelihood analysis; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 4–30 GeV; quoted limit is for m(χ) = 5 GeV.
- ⁴⁰ ZHAO 16 search for GeV-scale WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 4–30 GeV; quoted limit is for m(χ) = 5 GeV.
- ⁴¹AMOLE 15 search for WIMP scatter on C₃F₈ in PICO-2L; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 4–25 GeV; quoted limit is for m(χ) = 5 GeV.
- ⁴² XIAO 15 search for WIMP scatter on Xe with PandaX-I; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 5–100 GeV; quoted limit is for m(χ) = 5 GeV.
- ⁴³ AGNESE 14 search for GeV scale WIMPs SI scatter at SuperCDMS; no signal, limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 3.5–30 GeV; quoted limit is for m(χ) $\chi = 5$ GeV.
- ⁴⁴ AKERIB 14 search for WIMP scatter on Xe; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 5–5000 GeV. Limit given for m(χ) = 5 GeV.
- ⁴⁵LI 13B search for WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 4–100 GeV; quoted limit is for m(χ) = 5 GeV.
- ⁴⁶ ARCHAMBAULT 12 search for low mass WIMP scatter on C₄F₁₀; limits set in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m \sim 4–12 GeV; quoted limit is for m = 5 GeV.
- ⁴⁷ AALSETH 11 search for GeV-scale SI WIMP scatter on Ge; limits placed on $\sigma^{SI}(\chi N)$ for m(χ) ~ 3.5–100 GeV; quoted limit is for m(χ) = 5 GeV.
- ⁴⁸AHMED 11B search for GeV scale WIMP scatter on Ge in CDMS II; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m ~ 4–12 GeV.
- ⁴⁹ ANGLE 11 search for GeV scale WIMPs in Xenon-10; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 4–20 GeV; quoted limit is for m(χ) = 5 GeV.
- ⁵⁰ AKERIB 10 search for WIMP scatter on Ge/Si in CDMS II; limits place in $\sigma_{SI}(\chi N)$ vs. $m(\chi)$ plane for $m \sim 3-100$ GeV. Limit given for m(DM) = 5 GeV.

For $m_{\chi^0} = 20 \text{ GeV}$

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

VALUE	(pb)	CL%	DOCUMENT ID		TECN	COMMENT
• • •	We do not use th	ne following	data for averages	, fits,	limits, e	etc. ● ● ●
<1	imes 10 ⁻¹¹	90	¹ AALBERS	23	LZ	SI scatter on Xe
<2	imes 10 ⁻⁷	90	² ABE	23E	XMAS	WIMP search

- 1		00	3 ADDU E	024	VENT	
<4 <5	$\times 10^{-11}$	90	^a APRILE	23A		SI WIIVIP search
<5 <5	$\times 10^{-5}$	90		21B		A VIIVIP search
< 5	$\times 10^{-10}$	00	° FELIZARDO	20		
<2.2	× 10 10	90		20G		
.7	10-5	00	¹ ANGLOHER	19	CRES	CavvO ₄
<1	$\times 10^{-7}$	90		19A	KIMS	Nal
<3	× 10 ′	90		19	XMAS	SI WIMP on Xe
-0 5	10-5	00	10 SEONG	19	BELL	$I \rightarrow \gamma A, A \rightarrow \chi \chi$
<3.5	$\times 10^{-7}$	90	12 ADE	19	CDEX	annual modulation Ge
<2	× 10 ′	90	13 ABE	180	XMAS	X ^o - Xe modulation
<1.44	$\times 10^{-5}$	90		18	C100	Nal
<3	$\times 10^{-7}$	90	¹⁴ AGNES	18	DS50	X ^o -Ar
<5	$\times 10^{-0}$	95	¹⁵ AGNESE	18	SCDM	Ge
<4	$\times 10^{-0}$	90	¹⁰ AGNESE	18A	SCDM	Ge
<6	$\times 10^{-11}$	90	¹ APRILE	18	XE1T	Xe, SI
<4.5	$\times 10^{-3}$	90	¹⁰ ARNAUD	18	NEWS	GeV WIMPs on Ne
<2	$\times 10^{-0}$	90	¹⁹ AARTSEN	17	ICCB	u, earth
<2	$\times 10^{-10}$	90	²⁰ AKERIB	17	LUX	Xe
<1	$\times 10^{-3}$	90	²¹ BARBOSA-D	. 17	ICCB	Nal
< 1.7	$\times 10^{-10}$	90	²² CUI	17A	PNDX	WIMPs on Xe
<7.3	$\times 10^{-1}$	90	AGNES	16	DS50	Ar
< 1	$\times 10^{-5}$	90	²³ AGNESE	16	CDMS	Ge
<2	$\times 10^{-4}$	90	²⁴ AGUILAR-AR	.16	DMIC	Si CCDs
<4.5	$\times 10^{-5}$	90	²⁵ ANGLOHER	16	CRES	CaWO ₄
<2	$\times 10^{-6}$	90	²⁶ APRILE	16	X100	Xe
<9.4	$\times 10^{-8}$	90	²⁷ ARMENGAUD	16	EDE3	Ge
<1.0	$\times 10^{-7}$	90	²⁸ HEHN	16	EDE3	Ge
<5	$\times 10^{-6}$	90	²⁹ ZHAO	16	CDEX	Ge
< 1	$\times 10^{-5}$	90	AGNES	15	DS50	Ar
<1.5	$\times 10^{-6}$	90	³⁰ AGNESE	15A	CDM2	Ge
<1.5	$\times 10^{-7}$	90	³¹ AGNESE	15 B	CDM2	Ge
<2	$\times 10^{-6}$	90	³² AMOLE	15	PICO	C ₃ F ₈
<1.2	$\times 10^{-5}$	90	CHOI	15	SKAM	H, solar ν ($b\overline{b}$)
<1.19	$\times 10^{-6}$	90	CHOI	15	SKAM	H, solar $ u \ (au^+ au^-)$
<2	imes 10 ⁻⁸	90	³³ XIAO	15	PNDX	Xe
<2.0	$\times 10^{-7}$	90	³⁴ AGNESE	14	SCDM	Ge
<3.7	$\times 10^{-5}$	90	³⁵ AGNESE	14A	SCDM	Ge
<1	imes 10 ⁻⁹	90	³⁶ AKERIB	14	LUX	Xe
<2	imes 10 ⁻⁶	90	³⁷ ANGLOHER	14	CRES	CaWO ₄
<5	imes 10 ⁻⁶	90	FELIZARDO	14	SMPL	C ₂ ClF ₅
<8	imes 10 ⁻⁶	90	³⁸ LEE	14A	KIMS	Csl
<2	imes 10 ⁻⁴	90	³⁹ LIU	14A	CDEX	Ge
$<\!\!1$	imes 10 ⁻⁵	90	⁴⁰ YUE	14	CDEX	Ge
<1.08	imes 10 ⁻⁴	90	⁴¹ AARTSEN	13	ICCB	H, solar ν ($\tau^+ \tau^-$)
<1.5	imes 10 ⁻⁵	90	⁴² ABE	13 B	XMAS	Xe
<3.1	imes 10 ⁻⁶	90	⁴³ AGNESE	13	CDM2	Si
<3.4	imes 10 ⁻⁶	90	⁴⁴ AGNESE	13A	CDM2	Si
<2.2	imes 10 ⁻⁶	90	⁴⁵ AGNESE	13A	CDM2	Si
			⁴⁶ BERNABEI	13A	DAMA	Nal modulation

<1.2	imes 10 ⁻⁴	90 4	⁴⁷ LI	13 B	TEXO	Ge
		4	⁴⁸ ZHAO	13	CDEX	Ge
<1.2	$ imes$ 10 $^{-7}$	90	AKIMOV	12	ZEP3	Xe
		2	⁴⁹ ANGLOHER	12	CRES	CaWO ₄
<8	imes 10 ⁻⁶	90	⁵⁰ ANGLOHER	12	CRES	CaWO ₄
<7	imes 10 ⁻⁹	90	⁵¹ APRILE	12	X100	Xe
<7	imes 10 ⁻⁷	90	⁵² ARMENGAUD	12	EDE2	Ge
		Į	⁵³ BARRETO	12	DMIC	CCD
<2	imes 10 ⁻⁶	90	BEHNKE	12	COUP	CF ₃ I
<7	imes 10 ⁻⁶	Į	⁵⁴ FELIZARDO	12	SMPL	C ₂ CIF ₅
<1.5	imes 10 ⁻⁶	90	KIM	12	KIMS	Csl
<5	imes 10 ⁻⁵	90	⁵⁵ AALSETH	11	CGNT	Ge
		Į	⁵⁶ AALSETH	11A	CGNT	Ge
<5	imes 10 ⁻⁷	90	⁵⁷ AHMED	11	CDM2	Ge, inelastic
<2.7	imes 10 ⁻⁷	90	⁵⁸ AHMED	11A	RVUE	Ge
<3	imes 10 ⁻⁶	90	⁵⁹ ANGLE	11	XE10	Xe
<7	imes 10 ⁻⁸	90 (⁵⁰ APRILE	11	X100	Xe
		(⁵¹ APRILE	11A	X100	Xe, inelastic
<2	imes 10 ⁻⁸	90	⁵¹ APRILE	11 B	X100	Xe
		(⁵² HORN	11	ZEP3	Xe
<2	imes 10 ⁻⁷	90	AHMED	10	CDM2	Ge
$<\!\!1$	$ imes$ 10 $^{-5}$	90 6	⁵³ AKERIB	10	CDM2	Si, Ge, low threshold
<1	imes 10 ⁻⁷	90	APRILE	10	X100	Xe
<2	imes 10 ⁻⁶	90	ARMENGAUD	10	EDE2	Ge
<4	imes 10 ⁻⁵	90	FELIZARDO	10	SMPL	$C_2 CIF_3$
<1.5	imes 10 ⁻⁷	90 (⁶⁴ AHMED	09	CDM2	Ge
<2	imes 10 ⁻⁴	90 6	⁵⁵ LIN	09	TEXO	Ge
		(⁵⁶ AALSETH	08	CGNT	Ge

¹AALBERS 23 present first limits for WIMP scatter on Xe. $\sigma^{SI}(\chi p) < 1 \times 10^{-11}$ pb for m(χ) = 20 GeV.

²ABE 23E search for WIMP scatter on Xe in XMASS. No signal observed. Require σ^{SI} < 2 × 10⁻⁷ pb for m(χ) = 20 GeV.

³APRILE 23A present first results from Xe-nton SI WIMP search. No signal observed. Quoted limit is for $m(\chi) = 20$ GeV.

⁴ MENG 21B search for SI WIMP interaction with 3.7 t Xe and 0.63 t yr exposure. No signal observed. Limits placed in m(DM) vs. σ^{SI} plane.

 5 FELIZARDO 20 presents 2014 SIMPLE bounds on WIMP DM using C $_2$ CIF $_5$ target .

 6 WANG 20G search for SI WIMP scatter on Xe with 132 t d exposure of PANDAX-II .

⁷ ANGLOHER 19 search for low mass WIMP scatter on CaWO₄; no signal; limits placed on Wilson coefficients for $m(\chi) = 0.6-60$ GeV.

⁸ KIM 19A search for WIMP scatter in Nal KIMS experiment; no signal: require $\sigma^{SI}(\chi n)$ < 7 × 10⁻⁵ pb for m(χ) = 20 GeV.

⁹KOBAYASHI 19 search for WIMP scatter in XMASS single-phase liquid Xe detector; no signal; require $\sigma^{SI}(\chi N) < 3 \times 10^{-7}$ pb for m(χ) = 20 GeV.

¹⁰ SEONG 19 search for $\Upsilon \rightarrow \gamma A$, $A \rightarrow \chi \chi$ via CP-odd Higgs; no signal; limits on BF set; model dependent conversion to WIMP-nucleon scattering cross section limits $\sigma^{SI} < 10^{-36} \text{ cm}^2 \text{ for } m(\chi) = 0.01-1 \text{ GeV}.$

¹¹ YANG 19 search for low mass wimps via annual modulation in Ge; no signal; require $\sigma^{SI}(\chi N) < 3.5 \times 10^{-5}$ pb for m(χ) = 20 GeV.

- ¹² ABE 18C search for WIMP annual modulation signal for m(WIMP): 6–20 GeV; limits set on SI WIMP-nucleon cross section: see Fig. 6.
- ¹³ ADHIKARI 18 search for WIMP scatter on Nal; no signal; require $\sigma^{SI} < 1.44 \times 10^{-5}$ pb for m(WIMP) = 20 GeV; inconsistent with DAMA/LIBRA result.
- ¹⁴ AGNES 18 search low mass m(WIMP): 1.8–20 GeV scatter on Ar; limits on SI WIMPnucleon cross section set in Fig. 8.
- ¹⁵AGNESE 18 give limits for $\sigma^{SI}(\chi N)$ for m(WIMP) between 1.5 and 20 GeV using CDMSlite mode data.
- ¹⁶ AGNESE 18A search for WIMP scatter on Ge at SuperCDMS; 1 event, consistent with expected background; set limit in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m \sim 10–250 GeV.
- ¹⁷ APRILE 18 search for WIMP scatter on 1 t yr Xe; no signal, limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 6–1000 GeV.
- ¹⁸ ARNAUD 18 search for low mass WIMP scatter on Ne via SPC at NEWS-G; limits set in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m \sim 0.5–20 GeV.
- ¹⁹ AARTSEN 17 obtain $\sigma(SI) < 6 \times 10^{-6}$ pb for m(wimp) = 20 GeV from ν from earth.
- ²⁰ AKERIB 17 search for WIMP scatter on Xe; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 5–1 × 10⁵ GeV.
- 21 BARBOSA-DE-SOUZA 17 search for annual modulation of WIMP scatter on Nal using an exposure of 61 kg yr of DM-Ice17 for recoil energy in the 4–20 keV range (DAMA found modulation for recoil energy < 5 keV). No modulation seen. Sensitivity insufficient to distinguish DAMA signal from null.
- ²² CUI 17A search for SI WIMP scatter; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m $\sim 10-1 \times 10^4$ GeV using 54 ton-day exposure of Xe.
- 23 AGNESE 16 CDMSlite excludes low mass WIMPs 1.6–5.5 GeV and SI scattering cross section depending on $m({\rm WIMP});$ see Fig. 4.
- ²⁴ AGUILAR-AREVALO 16 search low mass 1–10 GeV WIMP scatter on Si CCDs; set limits Fig. 11.
- ²⁵ ANGLOHER 16 search for GeV scale WIMP scatter on CaWO₄; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 0.5–30 GeV.
- ²⁶ APRILE 16 search for low mass WIMPs via ionization at XENON100; limits placed in $\sigma^{SI}(\chi N)$ vs m(χ) plane for m ~ 3.5 –20 GeV.
- ²⁷ ARMENGAUD 16 search for GeV scale WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 4–30 GeV.
- ²⁸ HEHN 16 search for low mass WIMPs via SI scatter on Ge target using profile likelihood analysis; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 4–30 GeV.
- ²⁹ ZHAO 16 search for GeV-scale WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 4–30 GeV.
- 30 AGNESE 15A reanalyse AHMED 11B low threshold data. See their Fig. 12 (left) for improved limits extending down to 5 GeV.
- ³¹ AGNESE 15B reanalyse AHMED 10 data.
- 32 See their Fig. 7 for limits extending down to 4 GeV.
- ³³XIAO 15 search for WIMP scatter on Xe with PandaX-I; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 5 –100 GeV.
- 34 This limit value is provided by the authors. See their Fig. 4 for limits extending down to $m_{\chi 0} = 3.5 \ {\rm GeV}.$
- ³⁵ This limit value is provided by the authors. AGNESE 14A result is from CDMSlite mode operation with enhanced sensitivity to low mass m_{χ^0} . See their Fig. 3 for limits extending down to $m_{\chi^0} = 3.5$ GeV (see also Fig. 4 in AGNESE 14).
- 36 See their Fig. 5 for limits extending down to $m_{\chi 0}$ = 5.5 GeV.
- $^{37}\,{\rm See}$ their Fig. 5 for limits extending down to $m_{{\it X}^0}=1$ GeV.
- $^{38}\,{\rm See}$ their Fig. 5 for limits extending down to $m_{\chi 0}$ = 5 GeV.

- ³⁹LIU 14A result is based on prototype CDEX-0 detector. See their Fig. 13 for limits extending down to $m_{\chi 0} = 2$ GeV.
- ⁴⁰See their Fig. 4 for limits extending down to $m_{\chi^0} =$ 4.5 GeV.
- 41 AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of X^{0} trapped by the sun in data taken between June 2010 and May 2011.
- ⁴²See their Fig. 8 for limits extending down to $m_{\chi 0} = 7$ GeV.
- 43 This limit value is provided by the authors. AGNESE 13 use data taken between Oct. 2006 and July 2007. See their Fig. 4 for limits extending down to $m_{\chi^0}=$ 7 GeV.
- 44 This limit value is provided by the authors. AGNESE 13A use data taken between July 2007 and Sep. 2008. Three candidate events are seen. Assuming these events are real, the best fit parameters are $m_{\chi 0} =$ 8.6 GeV and $\sigma = 1.9 \times 10^{-5}$ pb.
- ⁴⁵ This limit value is provided by the authors. Limit from combined data of AGNESE 13 and AGNESE 13A. See their Fig. 4 for limits extending down to $m_{\chi^0} = 5.5$ GeV.
- 46 BERNABEI 13A search for annual modulation of counting rate in the 2–6 keV recoil energy interval, in a 14 yr live time exposure of 1.33 t yr. Find a modulation of 0.0112 \pm 0.0012 counts/(day kg keV) with 9.3 sigma C.L. Find period and phase in agreement with expectations from DM particles.
- ⁴⁷LI 13B search for WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) $\sim~$ 4–100 GeV.
- ⁴⁸See their Fig. 5 for limits for $m_{\chi 0} = 4-12$ GeV.
- ⁴⁹ ANGLOHER 12 observe excess events above the expected background which are consistent with X^0 with mass ~ 25 GeV (or 12 GeV) and spin-independent X^0 -nucleon cross section of 2×10^{-6} pb (or 4×10^{-5} pb).
- 50 Reanalysis of ANGLOHER 09 data with all three nuclides. See also BROWN 12.
- 51 See also APRILE 14A.
- ⁵² See their Fig. 4 for limits extending down to $m_{\chi^0} = 7$ GeV.
- $^{53}\,{\rm See}$ their Fig. 13 for cross section limits for $m_{\chi 0}$ between 1.2 and 10 GeV.
- 54 See also DAHL 12 for a criticism. 55 See their Fig. 4 for limits extending to $m_{\chi 0}=3.5$ GeV.
- 56 AALSETH 11A find indications of annual modulation of the data, the energy spectrum being compatible with X^0 mass around 8 GeV. See also AALSETH 13.
- 57 AHMED 11 search for X^0 inelastic scattering. See their Fig. 8–10 for limits. The inelastic cross section reduces to the elastic cross section at the limit of zero mass splitting (Fig. 8, left).
- $^{58}\,\mathrm{AHMED}$ 11A combine CDMS II and EDELWEISS data.
- ⁵⁹ANGLE 11 show limits down to $m_{\chi^0} = 4$ GeV on Fig. 3.
- ⁶⁰ APRILE 11 reanalyze APRILE 10 data.
- ⁶¹APRILE 11A search for X^0 inelastic scattering. See their Fig. 2 and 3 for limits. See also APRILE 14A.
- ⁶² HORN 11 perform detector calibration by neutrons. Earlier results are only marginally affected.
- ⁶³See their Fig. 10 and 12 for limits extending to X^0 mass of 1 GeV.
- ⁶⁴ Superseded by AHMED 10.
- 65 See their Fig. 6(a) for cross section limits for m_{χ^0} extending down to 2 GeV.
- 66 See their Fig. 2 for cross section limits for $m_{\chi 0}$ between 4 and 10 GeV.

For $m_{\chi 0} = 100 \text{ GeV}$

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

VALUE	(pb)	CL%		DOCUMENT ID		TECN	COMMENT
• • •	We do not us	e the following	g da	ata for averages	, fits,	limits, e	tc. ● ● ●
<2.5	$ imes$ 10 $^{-11}$	90	1	AALBERS	23	LZ	SI scatter on Xe
<2	imes 10 ⁻⁸	90	2	ABE	23E	XMAS	WIMP search
<6	$ imes$ 10 $^{-11}$	90	3	APRILE	23A	XENT	SI WIMP search
<6	$ imes$ 10 $^{-11}$	90	4	MENG	21в	PNDX	Xe WIMP search
			5	ADHIKARI	20	DEAP	Ar
<5	imes 10 ⁻⁵		6	FELIZARDO	20	SMPL	W
<4.2	imes 10 ⁻¹⁰	90	7	WANG	20 G	PNDX	Xe TPC
<4	imes 10 ⁻⁸	90	8	ABE	19	XMAS	Xe
<3.9	imes 10 ⁻⁹	90	9	AJAJ	19	DEAP	Ar
<2.3	imes 10 ⁻⁶	90	10	ADHIKARI	18	C100	Nal
<1.14	$\times 10^{-8}$	90	11	AGNES	18A	DS50	Ar
<2	imes 10 ⁻⁸	90	12	AGNESE	18A	CDMS	Ge
<1.2	imes 10 ⁻⁸	90	13	AMAUDRUZ	18	DEAP	Ar
< 9.12	imes 10 ⁻¹¹	90	14	APRILE	18	XE1T	Xe
			15	REN	18	PNDX	SIDM at PDX-II
<1.7	imes 10 ⁻¹⁰	90	16	AKERIB	17	LUX	Xe
<1.2	$\times 10^{-10}$	90	17	APRILE	17G	XE1T	Xe
<1.2	$\times 10^{-10}$	90	18	CUI	17A	PNDX	Xe
<2.0	$\times 10^{-8}$	90		AGNES	16	DS50	Ar
<1	$\times 10^{-9}$	90	19	AKERIB	16	LUX	Xe
<1	$\times 10^{-9}$	90	20	APRILE	16B	X100	Xe
<2	$\times 10^{-8}$	90	21	TAN	16	PNDX	Xe
<4	$\times 10^{-10}$	90	22	TAN	16B	PNDX	Xe
<6	$\times 10^{-8}$	90		AGNES	15	DS50	Ar
<4	$\times 10^{-8}$	90	23	AGNESE	15B	CDM2	Ge
<7.13	$\times 10^{-6}$	90		СНОІ	15	SKAM	H, solar ν ($b\overline{b}$)
<6.26	imes 10 ⁻⁷	90		СНОІ	15	SKAM	H, solar $\nu (W^+ W^-)$
<2.76	$\times 10^{-7}$	90		CHOI	15	SKAM	H. solar ν ($\tau^+ \tau^-$)
<1.5	$\times 10^{-8}$	90	24	XIAO	15	PNDX	Xe
<1	$\times 10^{-9}$	90		AKERIB	14	IUX	Xe
<40	$\times 10^{-6}$	90	25	AVRORIN	14	BAIK	H solar $\nu (W^+ W^-)$
<10	$\times 10^{-4}$	90	25	AVRORIN	14	BAIK	H solar ν (bb)
<1.0	$\times 10^{-6}$	90	25	AVRORIN	14	BAIK	H solar ν ($\tau^+ \tau^-$)
< 5	$\times 10^{-6}$	90		FELIZARDO	14	SMPI	
<6.01	$\times 10^{-7}$	00	26		13		H solar $u (W^+ W^-)$
< 3 30	$^{\times 10}_{\times 10}$	90	26		13		H solar ν ($b\overline{b}$)
< 1.0	$\times 10^{-6}$	90	27		12		H color ν (M^+ M^-)
< 1.9	$\times 10^{-4}$	90	27		.13		H, solar ν ($\overline{\nu}$, $\overline{\nu}$)
< 1.2	× 10 ⁻⁷	90	27		.13		$\frac{1}{(DD)}$
< 1.0	× 10 ·	90	28	ADRIAN-MAR.	.13		Π , solar ν ($\tau + \tau$)
<2	× 10 °	90	29	AGNESE	13		SI $(14/\pm 14/\pm)$
<1.0	× 10 ~ 5	90	20	BULIEV	13	BAKS	Π , solar ν ($VV + VV$)
<1.9	$\times 10^{-5}$	90	29 20	ROLIEN	13	BAKS	H, solar ν (bb)
<7.1	$\times 10^{-7}$	90	20	ROLIEN	13	BAKS	H, solar $\nu (\tau^{\top} \tau^{-})$
<3.2	$\times 10^{-4}$	90	20	LI	13B	TEXO	WIMPs on Ge

<1.67	$\times 10^{-6}$	90 31	ABBASI	12	ICCB	H, solar ν (W^+W^-)
<1.07	1×10^{-4}	90 31	ABBASI	12	ICCB	H, solar ν (<i>bb</i>)
<4	imes 10 ⁻⁸	90	AKIMOV	12	ZEP3	Xe
<1.4	imes 10 ⁻⁶	₉₀ 32	ANGLOHER	12	CRES	CaWO₄
<3	imes 10 ⁻⁹	₉₀ 33	APRILE	12	X100	Xe
<3	imes 10 ⁻⁷	90	BEHNKE	12	COUP	CF ₂ I
<7	imes 10 ⁻⁶		FELIZARDO	12	SMPL	
<2.5	imes 10 ⁻⁷	90 34	KIM	12	KIMS	Csl
<2	imes 10 ⁻⁴	90	AALSETH	11	CGNT	Ge
		35	AHMED	11	CDM2	Ge, inelastic
<3.3	imes 10 ⁻⁸	₉₀ 36	AHMED	11A	RVUE	Ge
		37	AJELLO	11	FLAT	
<3	imes 10 ⁻⁸	90 38	APRILE	11	X100	Xe
		39	APRILE	11A	X100	Xe, inelastic
< 1	$\times 10^{-8}$	90 33	APRILE	11 B	X100	Xe
<5	imes 10 ⁻⁸	90 40	ARMENGAUD	11	EDE2	Ge
		41	HORN	11	ZEP3	Xe
<4	$\times 10^{-8}$	90	AHMED	10	CDM2	Ge
<9	imes 10 ⁻⁶	90	AKERIB	10	CDM2	Si, Ge, low threshold
		42	AKIMOV	10	ZEP3	Xe, inelastic
<5	$\times 10^{-8}$	90	APRILE	10	X100	Xe
< 1	$\times 10^{-7}$	90	ARMENGAUD	10	EDE2	Ge
<3	imes 10 ⁻⁵	90	FELIZARDO	10	SMPL	C ₂ CIF ₃
<5	imes 10 ⁻⁸	90 43	AHMED	09	CDM2	Ge
		44	ANGLE	09	XE10	Xe, inelastic
<3	imes 10 ⁻⁴	90	LIN	09	TEXO	Ge
		45	GIULIANI	05	RVUE	

¹AALBERS 23 present first LZ limits on SI WIMP-nucleon scatter from Xe. $\sigma^{SI}(\chi p)$ < 2.5×10^{-11} pb for m(χ) = 100 GeV.

 2 ABE 23E search for WIMP scatter on Xe in XMASS. No signal observed. Require $\sigma^{SI} < 2 \times 10^{-7}$ pb for m(χ) = 100 GeV.

³APRILE 23A present first results from Xe-nton SI WIMP search. No signal observed. Quoted limit is for $m(\chi) = 100$ GeV.

⁴MENG 21B search for SI WIMP interaction with 3.7 t Xe and 0.63 t yr exposure. No signal observed. Limits placed in m(DM) vs. σ^{SI} plane.

⁵ ADHIKARI 20 search for SI WIMP scatter from Ar in AJAJ 19 data. No signal observed. Limits placed on σ^p vs. m(WIMP) for various assumed operators and models.

 6 FELIZARDO 20 presents 2014 SIMPLE bounds on WIMP DM using C_2CIF₅ target .

⁷WANG 20G search for SI WIMP scatter on Xe with 132 t d exposure of PANDAX-II .

⁸ABE 19 search for SI DD in single phase Xe; no signal; require $\sigma^{SI}(\chi p) < 4 \times 10^{-8}$ pb for m(χ) \sim 100 GeV.

 9 AJAJ 19 search for SI WIMP-nucleon scatter with 758 tonne day exposure of single phase liquid Ar; no signal: require $\sigma^{SI}(\chi N) < 3.9 \times 10^{-9}$ pb for $m(\chi) = 100$ GeV. ¹⁰ ADHIKARI 18 search for WIMP scatter on Nal; limit set $\sigma^{SI}(\chi p) < 2.3 \times 10^{-6}$ pb for

 $m(\chi) = 100 \text{ GeV}.$

¹¹AGNES 18A search for WIMP scatter on 46.4 kg Ar; no signal; require $\sigma^{SI}(\chi N) <$ 1.14×10^{-8} pb for m(χ) = 100 GeV.

¹² AGNESE 18A set limit $\sigma^{SI}(\chi N) < 2 \times 10^{-8}$ pb for m(WIMP) = 100 GeV.

¹³AMAUDRUZ 18 search for WIMP scatter on Ar with DEAP-3600; limits set: $\sigma^{SI}(\chi p)$ $< 1.2 \times 10^{-8}$ pb for m(WIMP) = 100 GeV.

- ¹⁴ APRILE 18 search for WIMP scatter on 1.3 t liquid Xe; no signal; require $\sigma^{SI}(\chi p)$ < 9.12 × 10⁻¹¹ pb for m(χ) = 100 GeV.
- ¹⁵ REN 18 search for self-interacting DM at Panda-X-II with a total exposure of 54 ton day; limits set in m(DM) vs. m(mediator) plane.
- 16 AKERIB 17 exclude SI cross section $> 1.7 \times 10^{-10}$ pb for m(WIMP) = 100 GeV. Uses complete LUX data set.
- ¹⁷ APRILE 17G set limit $\sigma^{SI}(\chi p) < 1.2 \ 10^{-10}$ pb for m(WIMP) = 100 GeV using 1 ton fiducial mass Xe TPC. Exposure is 34.2 live days.
- ¹⁸ CUI 17A search for SI WIMP scatter; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m $\sim 10-1 \times 10^4$ GeV using 54 ton-day exposure of Xe.
- ¹⁹ AKERIB 16 re-analysis of 2013 data exclude SI cross section $> 1 \times 10^{-9}$ pb for m(WIMP) = 100 GeV on Xe target.
- ²⁰ APRILE 16B combined 447 live days using Xe target exclude $\sigma(SI) > 1.1 \times 10^{-9}$ pb for m(WIMP) = 50 GeV.
- 21 TAN 16 search for WIMP scatter off Xe target; see SI exclusion plot Fig. 6.
- ²² TAN 16B search for WIMP-p scatter off Xe target; see Fig. 5 for SI exclusion.
- ²³AGNESE 15B reanalyse AHMED 10 data.
- ²⁴ XIAO 15 search for WIMP scatter on Xe with PandaX-I; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) \sim 5–100 GeV.
- 25 AVRORIN 14 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
- ²⁶ AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between June 2010 and May 2011.
- 27 ADRIAN-MARTINEZ 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between Jan. 2007 and Dec. 2008.
- ²⁸ AGNESE 13 use data taken between Oct. 2006 and July 2007.
- ²⁹ BOLIEV 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for an older analysis of the same data.
- ³⁰LI 13B search for WIMP scatter on Ge; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) ~ 4–100 GeV.
- ³¹ABBASI 12 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.
- 32 Reanalysis of ANGLOHER 09 data with all three nuclides. See also BROWN 12.

³³See also APRILE 14A.

- ³⁴See their Fig. 6 for a limit on inelastically scattering X^0 for $m_{\chi 0} = 70$ GeV.
- ³⁵AHMED 11 search for X^0 inelastic scattering. See their Fig. 8–10 for limits.
- ³⁶_a AHMED 11A combine CDMS and EDELWEISS data.
- ³⁷ AJELLO 11 search for e^{\pm} flux from X^0 annihilations in the Sun. Models in which X^0 annihilates into an intermediate long-lived weakly interacting particles or X^0 scatters inelastically are constrained. See their Fig. 6–8 for limits.
- ³⁸APRILE 11 reanalyze APRILE 10 data.
- ³⁹APRILE 11A search for X^0 inelastic scattering. See their Fig. 2 and 3 for limits. See also APRILE 14A.
- ⁴⁰ Supersedes ARMENGAUD 10. A limit on inelastic cross section is also given.
- ⁴¹ HORN 11 perform detector calibration by neutrons. Earlier results are only marginally affected.
- ⁴² AKIMOV 10 give cross section limits for inelastically scattering dark matter. See their Fig. 4.
- ⁴³ Superseded by AHMED 10.
- ⁴⁴ANGLE 09 search for X^0 inelastic scattering. See their Fig. 4 for limits.
- ⁴⁵ GIULIANI 05 analyzes the spin-independent X^0 -nucleon cross section limits with both isoscalar and isovector couplings. See their Fig. 3 and 4 for limits on the couplings.

For $m_{\chi^0} = 1 \text{ TeV}$

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

VALUE (pb)	CL%		DOCUMENT ID		TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the	following	g d	ata for averages	, fits,	limits, e	tc. • • •
$< 2.8 \times 10^{-10}$	90	1	AALBERS	23	LZ	SI scatter on Xe
$< 1 \times 10^{-7}$	90	2	ABE	23E	XMAS	WIMP search
$< 5 \times 10^{-10}$	90	3	MENG	21 B	PNDX	Xe WIMP search
		4	ADHIKARI	20	DEAP	Ar
$< 4 \times 10^{-9}$	90	5	WANG	20 G	PNDX	Xe TPC
$<3 \times 10^{-6}$	90	6	YAGUNA	19		Ar: I-spin viol DM
$<3.8 \times 10^{-8}$	90	7	AGNES	18A	DS50	Ar
$< 8.24 \times 10^{-10}$	90	8	APRILE	18	XE1T	Xe
$<2 \times 10^{-9}$	90	9	AKERIB	17	LUX	Xe
< 0.3	90	10	CHEN	17F	PNDX	$\gamma N \rightarrow \gamma^* \rightarrow \gamma \gamma$
$< 1.2 \times 10^{-9}$	90	11	CUL	17A	PNDX	SI WIMPs on Xe
$< 8.6 \times 10^{-8}$	90		AGNES	16	DS50	Ar
$<2 \times 10^{-7}$	90		AGNES	15	DS50	Ar
$<2 \times 10^{-7}$	90	12	AGNESE	15 _R		Ge
$<2 \times 10^{-8}$	00			1/		X ₀
$<1 \times 10^{-6}$	90 00	13		1/	BVIK	H color $u \left(\frac{W^+}{W^-} \right)$
$< 2.2 \times 10$	90	13		14	BAIK	H solar ν ($b\overline{b}$)
$< 5.3 \times 10^{-7}$	90	13		14		H color $\nu (\sigma^+ \sigma^-)$
$< 0.0 \times 10^{-7}$	90	14		14		11, solar $\nu (1/+1/-)$
$< 3.40 \times 10^{-6}$	90	14		13		$\Pi, \text{ solar } \nu (\nu \nu + \nu \nu)$
$< 7.75 \times 10^{-7}$	90	15		13		Π , solar ν (DD)
$< 0.9 \times 10^{-5}$	90	15	ADRIAN-MAR.	.13		H, solar ν ($\nu\nu$ ' $\nu\nu$)
$<1.5 \times 10^{-7}$	90	15	ADRIAN-MAR.	.13	ANTR	H, solar ν (<i>bb</i>)
<1.8 × 10 '	90	16	ADRIAN-MAR.	.13	ANTR	H, solar ν (τ ' τ)
$<4.3 \times 10^{-6}$	90	16	BOLIEV	13	BAKS	H, solar $\nu (W^+ W^-)$
$<3.4 \times 10^{-5}$	90	16	BOLIEV	13	BAKS	H, solar ν (<i>bb</i>)
$<1.2 \times 10^{-0}$	90	17	BOLIEV	13	BAKS	H, solar $\nu (\tau^+ \tau^-)$
$<2.12 \times 10^{-7}$	90	17	ABBASI	12	ICCB	H, solar $\nu (W^+ W^-)$
$< 6.56 \times 10^{-0}$	90	11	ABBASI	12	ICCB	H, solar ν (<i>bb</i>)
$<4 \times 10^{-7}$	90	10	AKIMOV	12	ZEP3	Xe
$<1.1 \times 10^{-5}$	90	10	ANGLOHER	12	CRES	CaWO ₄
$<2 \times 10^{-8}$	90	19	APRILE	12	X100	Xe
$<2 \times 10^{-6}$	90		BEHNKE	12	COUP	CF ₃ I
$<4 \times 10^{-6}$			FELIZARDO	12	SMPL	C ₂ CIF ₅
$< 1.5 \times 10^{-0}$	90	•••	KIM	12	KIMS	Csl
_		20	AHMED	11	CDM2	Ge, inelastic
$< 1.5 \times 10^{-7}$	90	21	AHMED	11A	RVUE	Ge
$<2 \times 10^{-7}$	90	22	APRILE	11	X100	Xe
$< 8 \times 10^{-8}$	90	19	APRILE	11 B	X100	Xe
$<2 \times 10^{-7}$	90	23	ARMENGAUD	11	EDE2	Ge
_		24	HORN	11	ZEP3	Xe
$<2 \times 10^{-7}$	90		AHMED	10	CDM2	Ge
$< 4 \times 10^{-7}$	90		APRILE	10	X100	Xe
$< 6 \times 10^{-7}$	90		ARMENGAUD	10	EDE2	Ge
$< 3.5 \times 10^{-7}$	90	25	AHMED	09	CDM2	Ge

- 1 AALBERS 23 give first LZ limits on WIMP-nucleon scatter from Xe. $\sigma^{SI}<~$ 2.8 $\times10^{-10}$ pb for $m(\chi) = 1$ TeV.
- ²ABE 23E search for WIMP scatter on Xe in XMASS. No signal observed. Require σ^{SI} < 2 × 10⁻⁷ pb for m(χ) = 1000 GeV.
- 3 MENG 21B search for SI WIMP interaction with 3.7 t Xe and 0.63 t yr exposure. No signal observed. Limits placed in m(DM) vs. σ^{SI} plane.
- ⁴ADHIKARI 20 search for SI WIMP scatter from Ar in AJAJ 19 data. No signal observed. Limits placed on σ^p vs. m(WIMP) for various assumed operators and models.
- 5 WANG 20G search for SI WIMP scatter on Xe with 132 t d exposure of PANDAX-II .
- ⁶YAGUNA 19 recasts DEAP-3600 single-phase liquid argon results in limit for isospin violating DM; for $f_n/f_p = -0.69$, requires $\sigma^{SI}(\chi p) < 3 \times 10^{-6}$ pb for m(χ) = 1 TeV. 7 AGNES 18A search for WIMP scatter on 46.4 kg Ar; no signal; require $\sigma^{SI}(\chi$ N) <
- 3.8×10^{-8} pb for m(χ) = 1 TeV.
- ⁸APRILE 18 search for WIMP scatter on 1.3 t Xe; no signal seen; require $\sigma^{SI}(\chi p)$ < 8.24 × 10⁻¹⁰ pb for m(χ) = 1 TeV.
- ⁹AKERIB 17 search for WIMP scatter on Xe using complete LUX data set; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m(χ) $\sim 5-1 \times 10^5$ GeV.
- ¹⁰ CHEN 17E search for inelastic WIMP scatter on Xe; require $\sigma^{SI}(\chi N) < 0.3$ pb for m(χ) = 1 TeV and (mass difference) = 300 keV.
- 11 CUI 17A search for WIMP scatter using 54 ton-day exposure of Xe; limits placed in $\sigma^{SI}(\chi N)$ vs. m(χ) plane for m $\sim 10-1 \times 10^4$ GeV.
- ¹² AGNESE 15B reanalyse AHMED 10 data.
- ¹³AVRORIN 14 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
- ¹⁴AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between June 2010 and May 2011.
- 15 ADRIAN-MARTINEZ 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between Jan. 2007 and Dec. 2008.
- ¹⁶ BOLIEV 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for an older analysis of the same data.
- ¹⁷ABBASI 12 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.
- 18 Reanalysis of ANGLOHER 09 data with all three nuclides. See also BROWN 12.
- ¹⁹ See also APRILE 14A.
- ²⁰AHMED 11 search for X^0 inelastic scattering. See their Fig. 8–10 for limits.
- ²¹ AHMED 11A combine CDMS and EDELWEISS data. ²² APRILE 11 reanalyze APRILE 10 data.
- ²³Supersedes ARMENGAUD 10. A limit on inelastic cross section is also given.
- 24 HORN 11 perform detector calibration by neutrons. Earlier results are only marginally affected.
- ²⁵ Superseded by AHMED 10.

For Super-heavy dark matter ($m_{\chi 0} > 10^{10} \text{ GeV}$)

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e following data fo	or ave	rages, fits	s, limits, etc. • • •
	¹ ABREU ² ACEVEDO	23 23	AUGE	DM decay to photons DM tracks in ancient mica
¹ ABREU 23 search for signal detected. Exc	or superheavy DM clude $m(X) > 3 \times$	X dec 10 ¹³	ay to <i>q q</i> GeV for	pairs via instanton, then to γ s. No dark gauge coupling $\alpha_X = 0.09$.
2 ACEVEDO 23 re-ev	amine data from a	ncien	t mica to	nlace limits on superheavy DM in

ACEVEDO 23 re-examine data from ancient mica to place limits on superheavy D the mass range 10^7-10^{25} GeV. See Fig. 3 for σ^{SI} and σ^{SD} limits.

—— Spin-Dependent Cross Section Limits —— for Dark Matter Particle (X⁰) on Proton ———

For $m_{\chi 0}$ in GeV range

We provide he	We provide here limits fo $m_{oldsymbol{\chi}0}~<$ 5 GeV											
VALUE (pb)	CL%	DOCUMENT ID		TECN	COMMENT							
• • • We do not use	the follo	owing data for avera	ages,	fits, limi	ts, etc. ● ● ●							
$<$ 1 \times 10 ⁴	90	¹ AALBERS	23A	LZ	SD scatter on Xe							
$< 2 \times 10^{5}$	90	² ADHIKARI	22в	C100	sub-GeV WIMP via SD cou- pling/Migdal effect							
< 9 $\times 10^{4}$	90	³ ANGLOHER	22	CRES	SD limit using Li							
< 40	90	⁴ ANGLOHER	22A	CRES	SD limit using Li and Al							
< 8 $\times 10^{4}$	90	⁵ ABDELHAME.	.20A	CRES	LiAlO ₂							
$<$ 1 \times 10 ⁶	95	⁶ ABDELHAME.	.19	CRES	GeV-scale WIMPs on Li							
$< 3 \times 10^{-4}$	90	⁷ AMOLE	19	PICO	C ₃ F ₈							
$< 1.7 \times 10^4$	90	⁸ APRILE	19 C	XE1T	light DM on Xe via Migdal/brem effect							
$< 8 \times 10^{6}$	90	⁹ ARMENGAUD	19	EDEL	GeV-scale WIMPs on Ge							
< 70	90	¹⁰ XIA	19A	PNDX	SD WIMP on Xe							
<100	90	¹¹ AGNESE	18	SCDM	GeV-scale WIMPs on Ge							
< 1	90	¹² AKERIB	17A	LUX	Xe							
< 0.6	90	¹³ FU	17	PNDX	SD WIMP on Xe							
< 0.2	90	¹⁴ AMOLE	15	PICO	C ₃ F ₈							
$<$ 1.6 \times 10 ⁻¹	90	¹⁵ ARCHAMBAU.	.12	PICA	¹⁹ F							

¹AALBERS 23A search for GeV-scale WIMP scatter on Xe. No signal observed. Limits placed in $\sigma^{SD}(\chi p)$ vs. m(χ) plane. Quoted limit is for m(χ) = 1 GeV via Migdal scattering.

² ADHIKARI 22B search for sub-GeV WIMPs via SI and SD detection; no signal detected; limits placed in m(χ) vs. σ plane for m(χ): 0.2–3 GeV; quoted limit is for SD m(χ) = 1 GeV.

³ANGLOHER 22 search for SD WIMP-proton scatter from Li target; no signal detected; limits placed in σ vs. m(WIMP) plane; limit quoted for m(WIMP) = 1 GeV.

⁴ ANGLOHER 22A search for spin-dependent DM scatter on Li and Al for m(DM) $\sim 0.2-6$ GeV; no signal observed; limits set in $\sigma(\chi p)$ vs. m(DM) plane; quoted limit is for m(DM) $_{r} = 1$ GeV.

⁵ABDELHAMEED 20A use LiAIO₂ target in CRESST to search for SD WIMP scatter on p; no signal; quoted limit is for m(DM) = 1 GeV.

⁶ABDELHAMEED 19 search for SD WIMP scatter on ⁷Li; limits placed on $\sigma^{SD}(\chi p)$ for $m(\chi) \sim 0.8-20$ GeV; quoted limit is for $m(\chi) = 1$ GeV.

⁷ AMOLE 19 search for SD WIMP scatter on C₃F₈ in PICO-60 bubble chamber; no signal: set limit for spin dependent coupling $\sigma^{SD}(\chi p) < 2 \times 10^{-4}$ pb for m(χ) = 5 GeV.

⁸APRILE 19C search for light DM on Xe via Migdal/brem effect; no signal, require $\sigma^{SD}(\chi p) < 1.7 \times 10^4$ pb for m(χ) = 1 GeV.

⁹ ARMENGAUD 19 search for GeV scale WIMP scatter on Ge; limits placed in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m(χ) ~ 0.5–10 GeV; quoted limit is for m(χ) = 5 GeV.

- ¹⁰XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in $\sigma^{SD}(\chi p)$ vs. $m(\chi)$ plane for $m(\chi) \sim 5-1 \times 10^5$ GeV; quoted limit is for $m(\chi) = 5$ GeV.
- ¹¹ AGNESE 18 search for GeV scale WIMPs with CDMSlite; limits placed in $\sigma^{SD}(\chi p)$ vs. $m(\chi)$ plane for $m(\chi) \sim 1.5$ –20 GeV; quoted limit is for $m(\chi) = 5$ GeV.

¹² AKERIB 17A search for SD WIMP scatter on Xe using 129.5 kg yr exposure; limits placed in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m(χ) ~ 6–1 × 10⁵ GeV.

¹³FU 17 search for SD WIMP scatter on Xe; limits set in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for $m(\chi) \sim 4-1 \times 10^3$ GeV.; quoted limit is for $m(\chi) = 5$ GeV.

¹⁴ AMOLE 15 search for WIMP scatter on C₃F₈ in PICO-2L; limits placed in $\sigma^{SD}(\chi p)$

vs. m(χ) plane for m(χ) ~ 4–1×10⁴ GeV; quoted limit is for m(χ) = 5 GeV. ¹⁵ ARCHAMBAULT 12 search for SD WIMP scatter in ¹⁹F with PICASSO; limits set in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m ~ 4–500 GeV; quoted limit is for m(χ) = 5 GeV.

For $m_{\chi 0} = 20 \text{ GeV}$

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

VALU	JE (pb)			<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
• •	• We	e d	o not	use the	following	g d	ata for averages	, fits,	limits, e	tc. ● ● ●
<	6	×	10-5		90	1	AALBERS	23	LZ	SD scatter on Xe
<	3.5	Х	10^{-5}		90	2	ABBASI	22в	ICCB	IceCube SD limit
<	1.5	Х	10 ⁵		90	3	ANGLOHER	22	CRES	SD limit using Li
<	2	Х	10^{-4}		90	4	HUANG	22	PNDX	SD DM limits
<	9	Х	10^{-5}		90	5	AARTSEN	20C	ICCB	SD WIMP on p
<	2	Х	10 ⁵		90	6	ABDELHAME.	.20A	CRES	LiAlO ₂
<	5	Х	10-3			7	FELIZARDO	20	SMPL	WIMPs via SIMPLE
<	3	Х	10 ⁵		95	8	ABDELHAME.	.19	CRES	⁷ Li
<	2.5	Х	10^{-5}		90	9	AMOLE	19	PICO	C ₃ F ₈
<	2.5	Х	10-4		90	10	APRILE	19A	XE1T	Xe, SD
<	1	Х	10-3		90	11	XIA	19A	PNDX	SD WIMP on Xe
< 3	30				95	12	AGNESE	18	SCDM	Ge
<	1	Х	10-3		90	13	AKERIB	17A	LUX	Xe
<	1.32	Х	10-2		90	14	BEHNKE	17	PICA	C ₄ F ₁₀
<	2	Х	10-3		90	15	FU	17	PNDX	SD WIMP on Xe
<	5	Х	10^{-4}		90	16	AMOLE	16A	PICO	C ₃ F ₈
<	2	Х	10^{-6}		90	17	KHACHATRY	. 16 AJ	CMS	8 TeV $pp \rightarrow Z + E_T$;
										$Z \rightarrow \ell \overline{\ell}$
<	1.2	Х	10 ⁻³		90		AMOLE	15	PICO	C ₃ F ₈
<	1.43	Х	10-3		90		CHOI	15	SKAM	H, solar ν (bb)
<	1.42	Х	10^{-4}		90		CHOI	15	SKAM	H, solar $ u \left(au^+ au^- ight)$
<	5	Х	10^{-3}		90	10	FELIZARDO	14	SMPL	C ₂ CIF ₅
<	1.29	Х	10^{-2}		90	10	AARTSEN	13	ICCB	H, solar $ u \left(au^+ au^- ight)$
<	3.17	Х	10^{-2}		90	19	APRILE	13	X100	Xe
<	3	Х	10^{-2}		90	20	ARCHAMBAU.	.12	PICA	F (C ₄ F ₁₀)
<	6	Х	10^{-2}		90		BEHNKE	12	COUP	CF ₃ I
< 2	20		2		90		DAW	12	DRFT	F (CF ₄)
<	7	Х	10^{-3}				FELIZARDO	12	SMPL	C ₂ CIF ₅
<	0.15		_		90	01	KIM	12	KIMS	Csl
<	1	Х	10 ⁵		90	21	AHLEN	11	DMTP	F (CF ₄)
<	0.1		2		90	21	BEHNKE	11	COUP	CF ₃ I
<	1.5	Х	10^{-2}		90	22	TANAKA	11	SKAM	H, solar ν ($b\overline{b}$)
<	0.2				90		ARCHAMBAU.	.09	PICA	F
<	4				90		LEBEDENKO	09A	ZEP3	Xe
<	0.6				90		ANGLE	08A	XE10	Xe
< 10	00				90		ALNER	07	ZEP2	Xe
<	1				90		LEE	07A	KIMS	Csl

< 20	90	²³ AKERIB	06	CDMS	⁷³ Ge, ²⁹ Si
< 2	90	SHIMIZU	06A	CNTR	F (CaF ₂)
< 0.5	90	ALNER	05	NAIA	Nal
< 1.5	90	BARNABE-HE	05	PICA	$F(C_4F_{10})$
< 1.5	90	GIRARD	05	SMPL	$F(C_2CIF_5)$
< 35	90	MIUCHI	03	BOLO	LiF
< 30	90	TAKEDA	03	BOLO	NaF

¹AALBERS 23 yield first SD LZ limits on WIMP-p scatter using Xe. $\sigma^{SD}(\chi p) < 6 imes$ 10^{-5} pb for m(χ) = 20 GeV.

²ABBASI 22B search for WIMP annihilation to $b\overline{b}$, $\tau\overline{\tau}$, $\nu\overline{\nu}$ in Sun with 7 years data; no signal; limits set in m(χ) vs. $\sigma^{SD}(\chi p)$ plane for m(χ): 10–100 GeV; quoted limit for $\nu \overline{\nu}$ channel.

³ANGLOHER 22 search for SD WIMP-proton scatter from Li target; no signal detected; limits placed in σ vs. m(WIMP) plane.

⁴ HUANG 22 search for SD DM scatter on Xe; no signal observed; limits placed in $\sigma(\chi n)$ _vs. m(DM) plane; quoted limit is for m(DM) = 20 GeV.

⁵ AARTSEN 20C place combined IceCube and Pico-60 velocity-independent limits on spindependent WIMP-p scatter $\sigma^{SD}(\chi p) < 9-5$ pb for m(WIMP) = 20 GeV assuming

dominant annihilation to $\tau \overline{\tau}$. 6 ABDELHAMEED 20A use LiAIO₂ target in CRESST to search for spin-dependent WIMP scatter on p; limits set for m(WIMP): 0.3–30 GeV in Fig. 8. Quoted limit is for M(WIMP) = 30 GeV. 7 FELIZARDO 20 presents 2014 SIMPLE bounds on WIMP DM using C_2CIF_5 target .

 8 ABDELHAMEED 19 uses Li_2MoO_4 target to set limit for spin dependent coupling $\int \sigma^{SD}(\chi p) < 3. imes 10^5$ pb for m(χ) = 20 GeV.

⁹AMOLE 19 search for SD WIMP scatter on C_3F_8 in PICO-60 bubble chamber; no signal: set limit for spin dependent coupling $\sigma^{SD}(\chi p) < 2.5 \times 10^{-5}$ pb for m(χ) = 20 GeV.

 10 APRILE 19A search for SD WIMP scatter on 1 t yr Xe; no signal, limits placed in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m $\sim\,$ 6–1000 GeV.

¹¹XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m(χ) ~ 5–1 × 10⁵ GeV.

¹²AGNESE 18 give limits for $\sigma^{SD}(p\chi)$ for m(WIMP) between 1.5 and 20 GeV using CDMSlite mode data. ¹³ AKERIB 17A search for SD WIMP scatter on Xe using 129.5 kg yr exposure; limits placed

in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m(χ) ~ 6–1 × 10⁵ GeV. ¹⁴ BEHNKE 17 show final Picasso results based on 231.4 kg d exposure at SNOLab for

WIMP scatter on C₄F₁₀ search via superheated droplet; require σ (SD) < 1.32×10^{-2} pb for m(WIMP) = 20 GeV.

- ¹⁵ FU 17 search for SD WIMP scatter on Xe; limits set in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for $m(\chi) \sim 4-1 \times 10^3$ GeV.
- ¹⁶ AMOLE 16A require SD WIMP-*p* scattering $< 5 \times 10^{-4}$ pb for *m*(WIMP) = 20 GeV; bubbles from C_3F_8 target.
- ¹⁷ KHACHATRYAN 16AJ require SD WIMP- $p < 2 \times 10^{-6}$ pb for m(WIMP) = 20 GeV
- 18 AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between June 2010 and May 2011.
- 19 The value has been provided by the authors. APRILE 13 note that the proton limits on Xe are highly sensitive to the theoretical model used. See also APRILE 14A.
- ²⁰ARCHAMBAULT 12 search for WIMP scatter on C₄F₁₀; limits set in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m \sim 4–500 GeV.
- $\frac{21}{22}$ Use a direction-sensitive detector.

 22 TANAKA 11 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.

²³ See also AKERIB 05.

For $m_{\chi 0} = 100 \text{ GeV}$

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

VALUE (pb)	CL%		DOCUMENT ID		TECN	COMMENT
$\bullet~\bullet~\bullet$ We do not use the	followin	g da	ata for averages	, fits,	limits, e	etc. • • •
$<$ 1.5 $\times 10^{-4}$	90	1	AALBERS	23	LZ	SD scatter on Xe
< 1	90	2	ADHIKARI	23C	C100	SD WIMP scatter on I
< 25.7	90	3	SHIMADA	23	NAGE	directional WIMP search
$<$ 2.5 $\times 10^{-5}$	90	4	ABBASI	22в	ICCB	IceCube SD limit
$< 2 \times 10^{-4}$	90	5	HUANG	22	PNDX	SD DM limits
< 50	90	6	IKEDA	21	NAGE	directional gas TPC
$< 3.34 \times 10^{-4}$	90	7	AARTSEN	20C	ICCB	SD WIMP on <i>p</i>
< 6.5 $\times 10^{-3}$		8	FELIZARDO	20	SMPL	WIMPs via SIMPLE
< 4 $\times 10^{-5}$	90	9	AMOLE	19	PICO	C ₃ F ₈
$< 4 \times 10^{-4}$	90	10	APRILE	19A	XE1T	Xe, SD
$< 8 \times 10^{-4}$	90	11	XIA	19A	PNDX	SD WIMP on Xe
$< 8 \times 10^{-4}$	90	12	AKERIB	17A	LUX	Xe
$< 5 \times 10^{-5}$	90	13	AMOLE	17	PICO	C ₃ F ₈
$< 3.3 \times 10^{-2}$	90	14	APRILE	17A	X100	Xe inelastic
$<$ 2.8 $\times 10^{-1}$	90	15	BATTAT	17	DRFT	CS ₂
$<$ 1.5 $\times 10^{-3}$	90	16	FU	17	PNDX	Xe
< 0.553-0.019	95	17	AABOUD	16 D	ATLS	$pp ightarrow j + ot\!$
$< 1 \times 10^{-5}$	90	18	AABOUD	16F	ATLS	$pp \rightarrow \gamma + E_T$
$< 1 \times 10^{-4}$	90	19	AARTSEN	16C	ICCB	solar ν ($W^+ \overline{W}^-$)
$< 2 \times 10^{-4}$	90	20	ADRIAN-MAR.	.16	ANTR	solar ν (WW, $b\overline{b}$, $\tau\overline{\tau}$)
$< 3 \times 10^{-3}$	90	21	AKERIB	16A	LUX	Xe
< 5 $\times 10^{-4}$	90	22	AMOLE	16	PICO	CF ₃ I
$<$ 1.5 $\times 10^{-3}$	90		AMOLE	15	PICO	C ₃ F ₈
$< 3.19 \times 10^{-3}$	90		СНОІ	15	SKAM	H, solar ν (<i>bb</i>)
$< 2.80 \times 10^{-4}$	90		СНОІ	15	SKAM	H, solar $ u$ (W^+W^-)
$< 1.24 \times 10^{-4}$	90		СНОІ	15	SKAM	H, solar $ u$ $(au^+ au^-)$
< 8 $\times 10^{2}$	90	23	NAKAMURA	15	NAGE	CF ₄
$<$ 1.7 $\times 10^{-3}$	90	24	AVRORIN	14	BAIK	H, solar ν (W ⁺ W ⁻)
$<$ 4.5 $\times 10^{-2}$	90	24	AVRORIN	14	BAIK	H, solar ν ($b\overline{b}$)
$<$ 7.1 $\times 10^{-4}$	90	24	AVRORIN	14	BAIK	H, solar $\nu (\tau^+ \tau^-)$
< 6 $\times 10^{-3}$	90		FELIZARDO	14	SMPL	C ₂ CIF ₅
$< 2.68 \times 10^{-4}$	90	25	AARTSEN	13	ICCB	H, solar ν (W ⁺ W ⁻)
$< 1.47 \times 10^{-2}$	90	25	AARTSEN	13	ICCB	H, solar ν ($b\overline{b}$)
$<$ 8.5 $\times 10^{-4}$	90	26	ADRIAN-MAR.	.13	ANTR	H, solar ν (W^+W^-)
$<$ 5.5 $\times 10^{-2}$	90	26	ADRIAN-MAR.	.13	ANTR	H, solar ν ($b\overline{b}$)
$< 3.4 \times 10^{-4}$	90	26	ADRIAN-MAR.	.13	ANTR	H, solar $\nu (\tau^+ \tau^-)$
$< 1.00 \times 10^{-2}$	90	27	APRILE	13	X100	Xe
$<$ 7.1 $\times 10^{-4}$	90	28	BOLIEV	13	BAKS	H, solar ν (W ⁺ W ⁻)
$<$ 8.4 $\times 10^{-3}$	90	28	BOLIEV	13	BAKS	H, solar ν ($b\overline{b}$)
$< 3.1 \times 10^{-4}$	90	28	BOLIEV	13	BAKS	H, solar $\nu (\tau^+ \tau^-)$
$< 7.07 \times 10^{-4}$	90	29	ABBASI	12	ICCB	H, solar $\nu (W^+ W^-)$
< 4.53×10^{-2}	90	29	ABBASI	12	ICCB	H, solar ν ($b\overline{b}$)
$<$ 7 $\times 10^{-2}$	90	30	ARCHAMBAU.	.12	PICA	$F(C_4F_{10})$
$< 1 \times 10^{-2}$	90		BEHNKE	12	COUP	CF ₃ I

<	1.8		90	DAW	12	DRFT	F (CF ₄)
<	9	imes 10 ⁻³		FELIZARDO	12	SMPL	C ₂ CIF ₅
<	2	imes 10 ⁻²	90	KIM	12	KIMS	Csl
<	2	imes 10 ³	90	²³ AHLEN	11	DMTP	F (CF ₄)
<	7	imes 10 ⁻²	90	BEHNKE	11	COUP	CF ₃ I
<	2.7	imes 10 ⁻⁴	90	³¹ TANAKA	11	SKAM	H, solar ν (W^+W^-)
<	4.5	imes 10 ⁻³	90	³¹ TANAKA	11	SKAM	H, solar ν (<i>bb</i>)
				³² FELIZARDO	10	SMPL	C ₂ CIF ₃
<	6	imes 10 ³	90	²³ MIUCHI	10	NAGE	CF ₄
<	0.4		90	ARCHAMBAU	.09	PICA	F
<	0.8		90	LEBEDENKO	09A	ZEP3	Xe
<	1.0		90	ANGLE	08A	XE10	Xe
< 3	15		90	ALNER	07	ZEP2	Xe
<	0.2		90	LEE	07A	KIMS	Csl
<	1	imes 10 ⁴	90	²³ MIUCHI	07	NAGE	$F(CF_4)$
<	5		90	³³ AKERIB	06	CDMS	⁷³ Ge, ²⁹ Si
<	2		90	SHIMIZU	06A	CNTR	F (CaF ₂)
<	0.3		90	ALNER	05	NAIA	Nal
<	2		90	BARNABE-HE	05	PICA	$F_{10}(C_4F_{10})$
< 10	00		90	BENOIT	05	EDEL	⁷³ Ge
<	1.5		90	GIRARD	05	SMPL	$F(C_2CIF_5)$
<	0.7			³⁴ GIULIANI	05A	RVUE	
				³⁵ GIULIANI	04	RVUE	
				³⁰ GIULIANI	04A	RVUE	
< 3	35		90	MIUCHI	03	BOLO	LiF
< 4	40		90	TAKEDA	03	BOLO	NaF

¹AALBERS 23 yield first SD LZ limits on WIMP-*p* scatter using Xe. $\sigma^{SD}(\chi p) < 1.5 \times 10^{-4}$ pb for m(χ) = 100 GeV.

² ADHIKARI 23C search for SD WIMP scatter on I. No signal observed. Require $\sigma^{SD}(\chi p)$ < 1 pb for m(χ) = 100 GeV.

³SHIMADA 23 search for WIMPs in NEWAGE directional detector. No signal observed. Limits placed in $\sigma^{SD}(\chi p)$ vs. mass plane. Quoted limit for m(χ) = 150 GeV.

⁴ ABBASI 22B search for WIMP annihilation to $b\overline{b}$, $\tau\overline{\tau}$, $\nu\overline{\nu}$ in Sun with 7 years data; no signal; limits set in m(χ) vs. $\sigma^{SD}(\chi p)$ plane for m(χ): 10–100 GeV; quoted limit for $\nu\overline{\nu}$ channel.

⁵ HUANG 22 search for SD DM scatter on Xe; no signal observed; limits placed in $\sigma(\chi n)$ vs. m(DM) plane; quoted limit is for m(DM) = 100 GeV.

⁶ IKEDA 21 use direction sensitive TPC NEWAGE to search for SD WIMPs. No signal observed. Limits set in $\sigma^{SD}(\chi p)$ vs. m plane; $\sigma^{SD}(\chi p) < 50$ pb for m(DM) = 100 _ GeV.

⁷ AARTSEN 20C place combined lceCube and Pico-60 velocity-independent limits on spindependent WIMP-*p* scatter $\sigma^{SD}(\chi p) < 3.34 \times 10^{-4}$ pb for m(WIMP) = 100 GeV assuming dominant annihilation to $\tau \overline{\tau}$.

 8 FELIZARDO 20 presents 2014 SIMPLE bounds on WIMP DM using C_2CIF_5 target .

⁹ AMOLE 19 search for SD WIMP scatter on C₃F₈ in PICO-60 bubble chamber; no signal: set limit for spin dependent coupling $\sigma^{SD}(\chi p) < 4 \times 10^{-5}$ pb for m(χ) = 100 GeV.

¹⁰ APRILE 19A search for SD WIMP scatter on 1 t yr Xe; no signal, limits placed in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m \sim 6–1000 GeV.

¹¹XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m(χ) ~ 5–1 × 10⁵ GeV.

- ¹² AKERIB 17A search for SD WIMP scatter on Xe using 129.5 kg yr exposure; limits placed in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m(χ) ~ 6–1 × 10⁵ GeV.
- ¹³ AMOLE 17 require $\sigma(WIMP-p)^{SD} < 5 \times 10^{-5}$ pb for m(WIMP) = 100 GeV using PICO-60 1167 kg-days exposure at SNOLab.
- ¹⁴ APRILE 17A require require σ (WIMP-*p*)(inelastic)^{SD} < 3.3×10^{-2} pb for m(WIMP) = 100 GeV, based on 7640 kg day exposure at LNGS.
- 15 BATTAT 17 use directional detection of CS₂ ions to require $\sigma(\text{SD}) < 2.8 \times 10^{-1}$ pb for 100 GeV WIMP with a 55 days exposure at the Boulby Underground Science Facility.
- ¹⁶ FU 17 from a 33000 kg d exposure at CJPL, PANDAX II derive for m(DM) = 100 GeV, σ^{SD} (WIMP-p) < 2 × 10⁻³ pb.
- ¹⁷ AABOUD 16D use ATLAS 13 TeV 3.2 fb⁻¹ of data to search for monojet plus missing E_T ; agree with SM rates; present limits on large extra dimensions, compressed SUSY spectra and wimp pair production.
- ¹⁸ AABOUD 16F search for monophoton plus missing E_T events at ATLAS with 13 Tev and 3.2 fb⁻¹; signal agrees with SM background; place limits on SD WIMP-proton scattering vs. mediator mass and large extra dimension models.
- ¹⁹ AARTSEN 16C search for high energy ν s from WIMP annihilation in solar core; limits set on SD WIMP-*p* scattering (Fig. 8).
- ²⁰ ADRIAN-MARTINEZ 16 search for WIMP annihilation into ν s from solar core; exclude SD cross section < few 10⁻⁴ depending on *m*(WIMP).
- ²¹ AKERIB 16A using 2013 data exclude SD WIMP-proton scattering > 3×10^{-3} pb for m(WIMP) = 100 GeV.
- ²² AMOLE 16 use bubble technique on CF₃I target to exclude SD WIMP-*p* scattering $> 5 \times 10^{-4}$ pb for *m*(WIMP) = 100 GeV.
- 23 Use a direction-sensitive detector.
- ²⁴ AVRORIN 14 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
- 25 AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between June 2010 and May 2011.
- 26 ADRIAN-MARTINEZ 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between Jan. 2007 and Dec. 2008.
- ²⁷ The value has been provided by the authors. APRILE 13 note that the proton limits on Xe are highly sensitive to the theoretical model used. See also APRILE 14A.
- 28 BOLIEV 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for an older analysis of the same data.
- ²⁹ABBASI 12 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.
- ³⁰ ARCHAMBAULT 12 search for WIMP scatter on C₄F₁₀; limits set in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m \sim 4–500 GeV.
- ³¹ TANAKA 11 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.
- ³² See their Fig. 3 for limits on spin-dependent proton couplings for X^0 mass of 50 GeV. ³³ See also AKERIB 05.
- ³⁴ GIULIANI 05A analyze available data and give combined limits.
- 35 GIULIANI 04 reanalyze COLLAR 00 data and give limits for spin-dependent X^0 -proton coupling.
- ³⁶ GIULIANI 04A give limits for spin-dependent X^0 -proton couplings from existing data.

For $m_{\chi^0} = 1 \text{ TeV}$

For limits from X^0 annihilation in the Sun, the assumed annihilation final state is shown in parenthesis in the comment.

VAL	<i>UE</i> (pb)	CL%	DOCUMENT ID		TECN	COMMENT
• •	• We do not u	se the follow	wing data for averag	es, fi	ts, limits	, etc. ● ● ●
<	1.5×10^{-3}	90	¹ AALBERS	23	LZ	SD scatter on Xe
<	0.2	90	² ADHIKARI	23C	C100	SD WIMP scatter on I
<	1.2×10^{-3}	90	³ HUANG	22	PNDX	SD DM limits
<2	00	90	⁴ IKEDA	21	NAGE	directional gas TPC
<	$4.81 imes 10^{-3}$	90	⁵ AARTSEN	20C	ICCB	SD WIMP on p
<	3×10^{-4}	90	⁶ AMOLE	19	PICO	C ₃ F ₈
<	4×10^{-3}	90	⁷ APRILE	19A	XE1T	Xe, SD
<	5×10^{-3}	90	⁸ XIA	19A	PNDX	SD WIMP on Xe
			⁹ ALBERT	18C	HAWC	DM annihilation in Sun to long-lived mediator
<	$2.05 imes 10^{-5}$	90	¹⁰ AARTSEN	17A	ICCB	ν , sun
<	7×10^{-3}	90	¹¹ AKERIB	17A	LUX	Xe
<	2×10^{-2}	90	¹² FU	17	PNDX	SD WIMP on Xe
			¹³ ADRIAN-MAR.	. 16 B	ANTR	solar μ from WIMP annih.
<	1×10^{-2}	90	AMOLE	15	PICO	C ₃ F ₈
<	1.5×10^3	90	NAKAMURA	15	NAGE	CF ₄
<	2.7×10^{-3}	90	¹⁴ AVRORIN	14	BAIK	H, solar ν (W ⁺ W ⁻)
<	6.9×10^{-2}	90	¹⁴ AVRORIN	14	BAIK	H, solar ν ($b\overline{b}$)
<	8.4×10^{-4}	90	¹⁴ AVRORIN	14	BAIK	H, solar $\nu (\tau^+ \tau^-)$
<	$4.48 imes 10^{-4}$	90	¹⁵ AARTSEN	13	ICCB	H, solar ν (W^+W^-)
<	1.00×10^{-2}	90	¹⁵ AARTSEN	13	ICCB	H, solar ν (<i>b</i> \overline{b})
<	8.9×10^{-4}	90	¹⁶ ADRIAN-MAR.	.13	ANTR	H, solar ν (W^+W^-)
<	2.0×10^{-2}	90	¹⁶ ADRIAN-MAR.	.13	ANTR	H, solar ν (<i>b</i> \overline{b})
<	2.3×10^{-4}	90	¹⁶ ADRIAN-MAR.	.13	ANTR	H, solar $\nu (\tau^+ \tau^-)$
<	7.57×10^{-2}	90	¹⁷ APRILE	13	X100	Xe
<	5.4 $\times 10^{-3}$	90	¹⁸ BOLIEV	13	BAKS	H. solar ν (W^+W^-)
<	4.2×10^{-2}	90	¹⁸ BOLIEV	13	BAKS	H, solar ν (<i>bb</i>)
<	1.5×10^{-3}	90	¹⁸ BOLIEV	13	BAKS	H, solar $\nu (\tau^+ \tau^-)$
<	2.50×10^{-4}	90	¹⁹ ABBASI	12	ICCB	H. solar ν (W^+W^-)
<	7.86×10^{-3}	90	¹⁹ ABBASI	12	ICCB	H. solar ν (<i>bb</i>)
<	8×10^{-2}	90	BEHNKE	12	COUP	CFal
<	8	90	DAW	12	DRFT	$F(CF_{A})$
<	6×10^{-2}		FELIZARDO	12	SMPL	C ₂ CIF _⊑
<	8×10^{-2}	90	KIM	12	KIMS	Csl
<	8×10^3	90	²⁰ AHLEN	11	DMTP	$F(CF_{4})$
<	0.4	90	BEHNKE	11	COUP	CFal
~	2×10^{-3}	90	21 TANAKA	11	SKAM	H solar ν (<i>bb</i>)
$\overline{\langle}$	2×10^{-2}	90	21 TANAKA	11	SKAM	H solar ν (W^+W^-)
$\overline{\langle}$	1×10^{-3}	90	22 ABBASI	10	ICCB	KK dark matter
$\overline{\langle}$	2×10^{4}	90	²⁰ MIUCHI	10	NAGE	CF ₄
$\sum_{i=1}^{n}$	$\frac{2}{87} \times 10^{-4}$	00		10 00 R		~ 4 H solar $y (W^+ W^-)$
\geq	2.7×10^{-2}	90		090		H solar ν (bb)
\geq	3	90 QA		090	PICA	F
$\overline{\langle}$	6	90	I FBFDFNKO	.09A	7FP3	Xe
~	-	~ ~		.		

< 9	90	ANGLE	08A	XE10	Xe
<100	90	ALNER	07	ZEP2	Xe
< 0.8	90	LEE	07A	KIMS	Csl
$< 4 \times 10^4$	90	²⁰ MIUCHI	07	NAGE	$F(CF_4)$
< 30	90	²³ AKERIB	06	CDMS	⁷³ Ge, ²⁹ Si
< 1.5	90	ALNER	05	NAIA	Nal
< 15	90	BARNABE-HE.	.05	PICA	$F(C_4F_{10})$
<600	90	BENOIT	05	EDEL	73 _{Ge}
< 10	90	GIRARD	05	SMPL	$F(C_2CIF_5)$
<260	90	MIUCHI	03	BOLO	LiF
<150	90	TAKEDA	03	BOLO	NaF

¹AALBERS 23 yield first SD LZ limits on WIMP-*p* scatter using Xe. $\sigma^{SD}(\chi p) < 2 \times 10^{-3}$ pb for m(χ) = 1 TeV.

² ADHIKARI 23C search for SD WIMP scatter on I. No signal observed. Require $\sigma^{SD}(\chi p) < 0.2$ pb for m(χ) = 1 TeV.

³ HUANG 22 search for SD DM scatter on Xe; no signal observed; limits placed in $\sigma(\chi n)$ vs. m(DM) plane; quoted limit is for m(DM) = 1 TeV.

⁴ IKEDA 21 use direction sensitive TPC NEWAGE to search for SD WIMPs. No signal observed. Limits set in $\sigma^{SD}(\chi p)$ vs. m plane; $\sigma^{SD}(\chi p) < 200$ pb for m(DM) = 1000 geV.

⁵ AARTSEN 20C place combined IceCube and Pico-60 velocity-independent limits on spindependent WIMP-*p* scatter $\sigma^{SD}(\chi p) < 3 \times 10^{-3}$ pb for m(WIMP) = 1 TeV assuming dominant annihilation to *WW*.

⁶ AMOLE 19 search for SD WIMP scatter on C₃F₈ in PICO-60 bubble chamber; no signal: set limit for spin dependent coupling $\sigma^{SD}(\chi p) < 3 \times 10^{-4}$ pb for m(χ) = 1000 GeV.

⁷ APRILE 19A search for SD WIMP scatter on 1 t yr Xe; no signal, limits placed in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m \sim 6–1000 GeV.

⁸XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in $\sigma^{SD}(\chi p)$ vs. $m(\chi)$ plane for $m(\chi) \sim 5-1 \times 10^5$ GeV.

⁹ALBERT 18C search for DM annihilation in Sun to long-lived mediator (LLM) which decays outside Sun, for DM masses above 1 TeV; assuming LLM, limits set on $\sigma^{SD}(\chi p)$.

 10 AARTSEN 17A search for neutrinos from solar WIMP annihilation into $\tau^+ \, \tau^-$ in 532 days of live time.

¹¹ AKERIB 17A search for SD WIMP scatter on Xe using 129.5 kg yr exposure; limits placed in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m(χ) ~ 6–1 × 10⁵ GeV.

- ¹² FU 17 search for SD WIMP scatter on Xe; limits set in $\sigma^{SD}(\chi p)$ vs. m(χ) plane for m(χ) ~ 4–1 × 10³ GeV.
- ¹³ ADRIAN-MARTINEZ 16B search for secluded DM via WIMP annihilation in solar core into light mediator which later decays to μ or ν s; limits presented in Figures 3 and 4.
- ¹⁴ AVRORIN 14 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun in data taken between 1998 and 2003. See their Table 1 for limits assuming annihilation into neutrino pairs.
- ¹⁵ AARTSEN 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between June 2010 and May 2011.
- ¹⁶ ADRIAN-MARTINEZ 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken between Jan. 2007 and Dec. 2008.
- ¹⁷ The value has been provided by the authors. APRILE 13 note that the proton limits on Xe are highly sensitive to the theoretical model used. See also APRILE 14A.
- 18 BOLIEV 13 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the sun in data taken from 1978 to 2009. See also SUVOROVA 13 for an older analysis of the same data.

¹⁹ABBASI 12 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.

²⁰Use a direction-sensitive detector.

²¹ TANAKA 11 search for neutrinos from the Sun arising from the pair annihilation of X^0 trapped by the Sun. The amount of X^0 depends on the X^0 -proton cross section.

 22 ABBASI 10 search for ν_{μ} from annihilations of Kaluza-Klein photon dark matter in the co Sun.

²³See also AKERIB 05.

— Spin-Dependent Cross Section Limits — for Dark Matter Particle (X⁰) on Neutron —

For $m_{\chi 0}$ in GeV range We provide here limits fo $m_{\chi 0}$ < 5 GeV

tte provide ner		$X_0 < 3 \text{ GeV}$			
VALUE (pb)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the follow	wing data for avera	ges, f	its, limit	s, etc. ● ● ●
$< 1 \times 10^{2}$	90	¹ AALBERS	23A	LZ	SD scatter on Xe
$< 1 \times 10^{6}$	90	² ANGLOHER	22	CRES	SD limit using Li
<570	90	³ ANGLOHER	22A	CRES	SD limit using Li and Al
$< 1 \times 10^{8}$	90	⁴ ABDELHAME.	.20A	CRES	LiAlO ₂
$<$ 1 \times 10 ¹⁰	95	⁵ ABDELHAME.	.19	CRES	SD low mass DM on Li
$< 2.3 \times 10^{2}$	90	⁶ APRILE	19 C	XE1T	light DM on Xe via Migdal/brem effect
$< 1 \times 10^{-2}$	90	⁷ APRILE	19 D	XE1T	light DM on Xe via ioniza- tion
$< 4 \times 10^{4}$	90	⁸ ARMENGAUD	19	EDEL	GeV-scale WIMPs on Ge
$< 8 \times 10^{-2}$	90	⁹ XIA	19A	PNDX	SD WIMP on Xe
< 3	90	¹⁰ AGNESE	18	SCDM	GeV-scale WIMPs on Ge
< 3	90	¹¹ JIANG	18	CDEX	GeV-scale WIMPs on Ge
< 10	90	¹² YANG	18	CDEX	WIMPs on Ge
$< 1 \times 10^{-1}$	90	¹³ AKERIB	17A	LUX	Xe
< 0.1	90	¹⁴ FU	17	PNDX	SD WIMP on Xe
< 20	90	¹⁵ ZHAO	16	CDEX	GeV-scale WIMPs on Ge
<150	90	¹⁶ AHMED	11 B	CDM2	GeV-scale WIMPs on Ge

¹AALBERS 23A search for GeV-scale WIMP scatter on Xe. No signal observed. Limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane. Quoted limit is for m(χ) = 1 GeV via Migdal scattering.

²ANGLOHER 22 search for SD WIMP scatter on Li target; no signal detected; limits placed on WIMP-neutron SD scatter versus m(WIMP); limit quoted for m(WIMP) = 1 GeV.

³ ANGLOHER 22A search for spin-dependent DM scatter on Li and Al for m(DM) $\sim 0.2-6$ GeV; no signal observed; limits set in $\sigma(\chi n)$ vs. m(DM) plane; quoted limit is for m(DM) $_{\star} = 1$ GeV.

⁴ABDELHAMEED 20A use LiAlO₂ target in CRESST to search for SD WIMP scatter; no signal; quoted limit is for m(DM) = 1 GeV.

⁵ ABDELHAMEED 19 search for GeV-scale WIMP SD scatter on ⁷Li crystal; set limit $\sigma^{SD}(\chi n)$ for m(χ) ~ 0.8–20 GeV; quoted limit for m(χ) = 1 GeV.

⁶APRILE 19C search for light DM on Xe via Migdal/bremsstrahlung effect; no signal, require $\sigma^{SD}(\chi n) < 230$ pb for m(χ) = 1 GeV.

⁷ APRILE 19D search for light DM scatter on Xe via ionization; no signal, limits placed in σ vs. m(DM) \sim 3–6 GeV; quoted limit is for m(DM) = 5 GeV.

⁸ ARMENGAUD 19 search for GeV scale WIMP scatter on Ge; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 0.5–10 GeV; quoted limit is for m(χ) = 5 GeV.

- ⁹XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 5–1 × 10⁵ GeV; quoted limit is for m(χ) = 5 GeV.
- ¹⁰ AGNESE 18 search for GeV scale WIMPs scatter at CDMSlite; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m \sim 1.5–20 GeV; quoted limit is for m(χ) = 5 GeV.
- ¹¹ JIANG 18 search for GeV scale WIMP scatter on Ge; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 3–10 GeV; quoted limit is for m(χ) = 5 GeV.
- ¹² YANG 18 search for WIMP scatter on Ge; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 2–10 GeV; quoted limit is for m(χ) = 5 GeV.
- ¹³ AKERIB 17A search for SD WIMP scatter on Xe with 129.5 kg yr exposure; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 5–1 × 10⁵ GeV; quoted limit is for m(χ) = 5 GeV.
- ¹⁴ FU 17 search for SD WIMP scatter on Xe; limits set in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 4–1 × 10³ GeV.; quoted limit is for m(χ) = 5 GeV.
- ¹⁵ ZHAO 16 search for GeV-scale WIMP scatter on Ge; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 4–30 GeV; quoted limit is for m(χ) = 5 GeV.
- ¹⁶ AHMED 11B search for GeV scale WIMP scatter on Ge in CDMS II; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m \sim 4–12 GeV. Limit given for m(χ) = 5 GeV.

For $m_{\chi 0} = 20 \text{ GeV}$

	<u>CL%</u>		DOCUMENT ID		TECN	COMMENT	
e do not use	the follo	win	g data for avera	ges, f	its, limit	s, etc. ● ● ●	
imes 10 ⁻⁶	90	1	AALBERS	23	LZ	SD scatter on Xe	
imes 10 ⁶	90	2	ANGLOHER	22	CRES	SD limit using Li	
imes 10 ⁻⁶	90	3	HUANG	22	PNDX	SD DM limits	
imes 10 ⁷	90	4	ABDELHAME.	.20A	CRES	LiAlO ₂	
$ imes$ 10 $^{-1}$		5	FELIZARDO	20	SMPL	WIMPs via SIMPLE	
imes 10 ⁻⁶	90	6	APRILE	19A	XE1T	Xe, SD	
imes 10 ⁻⁵	90	7	XIA	19A	PNDX	SD WIMP on Xe	
	95	8	AGNESE	18	SCDM	Ge	
$\times 10^{-5}$	90	9	AKERIB	17A	LUX	Xe	
imes 10 ⁻⁵	90	10	FU	17	PNDX	SD WIMP on Xe	
	90	11	ZHAO	16	CDEX	GeV-scale WIMPs on Ge	
	90		FELIZARDO	14	SMPL	C ₂ CIF ₅	
	90	12	UCHIDA	14	XMAS	¹²⁹ Xe, inelastic	
imes 10 ⁻³	90	13	APRILE	13	X100	Xe	
	90		AKIMOV	12	ZEP3	Xe	
	90		AHMED	09	CDM2	Ge	
	90		LEBEDENKO	09A	ZEP3	Xe	
0		14	LIN	09	TEXO	Ge	
$\times 10^{-3}$	90		ANGLE	08A	XE10	Xe	
	90		ALNER	07	ZEP2	Xe	
	90	1 -	LEE	07A	KIMS	Csl	
	90	15	AKERIB	06	CDMS	⁷³ Ge, ²⁹ Si	
	90		SHIMIZU	06A	CNTR	F (CaF ₂)	
	90		ALNER	05	NAIA	Nal	
	90		BARNABE-HE	.05	PICA	$F_{20}(C_4F_{10})$	
	90		BENOIT	05	EDEL	¹³ Ge	
	90		KLAPDOR-K	05	HDMS	⁷³ Ge (enriched)	
	90		TAKEDA	03	BOLO	NaF	
	$\times 10^{-6}$ $\times 10^{6}$ $\times 10^{-6}$ $\times 10^{-1}$ $\times 10^{-1}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-3}$ $\times 10^{-3}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} CL\% \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} CL\% \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	CL% DOCUMENT ID or do not use the following data for avera $\times 10^{-6}$ 90 1 AALBERS $\times 10^{-6}$ 90 2 ANGLOHER $\times 10^{-6}$ 90 3 HUANG $\times 10^{-6}$ 90 4 ABDELHAME. $\times 10^{-7}$ 90 4 ABDELHAME. $\times 10^{-7}$ 90 6 APRILE $\times 10^{-5}$ 90 7 XIA 95 8 AGNESE $\times 10^{-5}$ 90 9 AKERIB $\times 10^{-5}$ 90 10 FU 90 11 ZHAO 90 12 $\times 10^{-3}$ 90 13 APRILE 90 AKIMOV 90 AKIMOV 90 AKIMOV 90 ALNER 90 ALNER 90 ALNER 90 ALNER 90 ALNER 90 BENOIT 90 BENOIT 90 KLAPDO	CL% DOCUMENT ID or do not use the following data for averages, f $\times 10^{-6}$ 90 1 AALBERS 23 $\times 10^{-6}$ 90 2 ANGLOHER 22 $\times 10^{-6}$ 90 3 HUANG 22 $\times 10^{-6}$ 90 4 ABDELHAME20A $\times 10^{-1}$ 5 FELIZARDO 20 $\times 10^{-6}$ 90 6 APRILE 19A $\times 10^{-5}$ 90 7 XIA 19A $\times 10^{-5}$ 90 7 XIA 19A $\times 10^{-5}$ 90 7 XIA 19A $\times 10^{-5}$ 90 9 AKERIB 17A $\times 10^{-5}$ 90 10 FU 17 90 12 UCHIDA 14 $\times 10^{-3}$ 90 AKIMOV 12 90 AKIMOV 12 90 AKIMOV 12 90 ANGLE 08A 90 ALNER 07 </td <td>CL% DOCUMENT ID TECN v do not use the following data for averages, fits, limit $\times 10^{-6}$ 90 1 AALBERS 23 LZ $\times 10^{-6}$ 90 2 ANGLOHER 22 CRES $\times 10^{-6}$ 90 3 HUANG 22 PNDX $\times 10^{-6}$ 90 4 ABDELHAME 20A CRES $\times 10^{-1}$ 5 FELIZARDO 20 SMPL $\times 10^{-6}$ 90 6 APRILE 19A XE1T $\times 10^{-5}$ 90 7 XIA 19A PNDX 95 8 AGNESE 18 SCDM $\times 10^{-5}$ 90 9 AKERIB 17A LUX $\times 10^{-5}$ 90 10 FU 17 PNDX 90 11 ZHAO 16 CDEX 90 12 UCHIDA 14 XMAS $\times 10^{-3}$ 90 AKIMOV 12 ZEP3 <t< td=""></t<></td>	CL% DOCUMENT ID TECN v do not use the following data for averages, fits, limit $\times 10^{-6}$ 90 1 AALBERS 23 LZ $\times 10^{-6}$ 90 2 ANGLOHER 22 CRES $\times 10^{-6}$ 90 3 HUANG 22 PNDX $\times 10^{-6}$ 90 4 ABDELHAME 20A CRES $\times 10^{-1}$ 5 FELIZARDO 20 SMPL $\times 10^{-6}$ 90 6 APRILE 19A XE1T $\times 10^{-5}$ 90 7 XIA 19A PNDX 95 8 AGNESE 18 SCDM $\times 10^{-5}$ 90 9 AKERIB 17A LUX $\times 10^{-5}$ 90 10 FU 17 PNDX 90 11 ZHAO 16 CDEX 90 12 UCHIDA 14 XMAS $\times 10^{-3}$ 90 AKIMOV 12 ZEP3 <t< td=""></t<>	

- ¹ AALBERS 23 yield first LZ limits on SD WIMP-*n* scatter using Xe. $\sigma^{SD}(\chi n) < 2 \times 10^{-6}$ pb for m(χ) = 20 GeV.
- ² ANGLOHER 22 search for SD WIMP-neutron scatter from Li target; no signal detected; limits placed in σ vs. m(WIMP) plane.
- ³ HUANG 22 search for SD DM scatter on Xe; no signal observed; limits placed in $\sigma(\chi n)$ vs. m(DM) plane; quoted limit is for m(DM) = 20 GeV.
- ⁴ ABDELHAMEED 20A use LiAlO₂ target in CRESST to search for SD WIMP scatter on n; limits placed for m(WIMP): 0.3–30 GeV in Fig. 8. Quoted limit is for M(WIMP) = _30 GeV.
- 5 FELIZARDO 20 presents 2014 SIMPLE bounds on WIMP DM using C_2CIF_5 target .
- ⁶ APRILE 19A search for SD WIMP scatter on 1 t yr Xe; no signal: limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m \sim 6–1000 GeV.
- ⁷XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in $\sigma^{SD}(\chi n)$ vs. $m(\chi)$ plane for $m(\chi) \sim 5-1 \times 10^5$ GeV.
- ⁸ AGNESE 18 give limits for $\sigma^{SD}(n\chi)$ for m(WIMP) between 1.5 and 20 GeV using CDMSlite mode data. ⁹ AKERIB 17A search for SD WIMP scatter on Xe with 129.5 kg yr exposure; limits placed
- ⁹ AKERIB 17A search for SD WIMP scatter on Xe with 129.5 kg yr exposure; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 5–1 × 10⁵ GeV.
- ¹⁰ FU 17 search for SD WIMP scatter on Xe; limits set in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 4–1 × 10³ GeV.
- ¹¹ ZHAO 16 search for GeV-scale WIMP scatter on Ge; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 4–30 GeV.
- ¹² Derived limit from search for inelastic scattering $X^0 + {}^{129}Xe \rightarrow X^0 + {}^{129}Xe^*(39.58 \text{ keV}).$
- 13 The value has been provided by the authors. See also APRILE 14A.
- 14 See their Fig. 6(b) for cross section limits for $m_{\chi 0}$ extending down to 2 GeV.

¹⁵See also AKERIB 05.

For $m_{\chi 0} = 100 \text{ GeV}$

VALUE (pb)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the followin	g data for averages	, fits,	limits, e	etc. • • •
$< 5 \times 10^{-6}$	90	¹ AALBERS	23	LZ	SD scatter on Xe
$< 1 \times 10^{-5}$	90	² HUANG	22	PNDX	SD DM limits
< 1.5 $ imes$ 10 ⁻¹		³ FELIZARDO	20	SMPL	WIMPs via SIMPLE
$<$ 1.5 $ imes$ 10 $^{-5}$	90	⁴ APRILE	19A	XE1T	Xe, SD
< 4 $\times 10^{-3}$	90	⁵ SUZUKI	19	XMAS	¹²⁹ Xe, inelastic
$< 2 \times 10^{-5}$	90	⁶ XIA	19A	PNDX	SD WIMP on Xe
$<$ 2.5 $ imes 10^{-5}$	90	⁷ AKERIB	17A	LUX	Xe
$<$ 7 $\times 10^{-5}$	90	⁸ FU	17	PNDX	SD WIMP on Xe
< 0.1	90	FELIZARDO	14	SMPL	C ₂ CIF ₅
< 0.05	90	⁹ UCHIDA	14	XMAS	¹²⁹ Xe, inelastic
$< 4.68 \times 10^{-4}$	90	¹⁰ APRILE	13	X100	Xe
< 0.01	90	AKIMOV	12	ZEP3	Xe
		¹¹ FELIZARDO	10	SMPL	C ₂ CIF ₃
< 0.02	90	AHMED	09	CDM2	Ge
< 0.01	90	LEBEDENKO	09 A	ZEP3	Xe
<100	90	LIN	09	TEXO	Ge
< 0.01	90	ANGLE	08A	XE10	Xe
< 0.05	90	¹² BEDNYAKOV	08	RVUE	Ge

< 0.08	90	ALNER (07	ZEP2	Xe
< 6	90	LEE (07A	KIMS	Csl
< 0.07	90	¹³ AKERIB (06	CDMS	⁷³ Ge, ²⁹ Si
< 30	90	SHIMIZU (06A	CNTR	F (CaF ₂)
< 10	90	ALNER (05	NAIA	Nal
< 30	90	BARNABE-HE	05	PICA	F (C ₄ F ₁₀)
< 0.7	90	BENOIT (05	EDEL	⁷³ Ge
< 0.2		¹⁴ GIULIANI (05A	RVUE	
< 1.5	90	KLAPDOR-K (05	HDMS	⁷³ Ge (enriched)
		¹⁵ GIULIANI (04	RVUE	
		¹⁶ GIULIANI (04A	RVUE	
		¹⁷ MIUCHI (03	BOLO	LiF
<800	90	TAKEDA (03	BOLO	NaF

¹AALBERS 23 yield first LZ limits on SD WIMP-*n* scatter using Xe. $\sigma(\chi n) < 5 \times 10^{-6}$ pb for m(χ) = 100 GeV.

² HUANG 22 search for SD DM scatter on Xe; no signal observed; limits placed in $\sigma(\chi n)$ vs. m(DM) plane; quoted limit is for m(DM) = 100 GeV.

 3 FELIZARDO 20 presents 2014 SIMPLE bounds on WIMP DM using C $_2$ CIF $_5$ target .

- ⁴ APRILE 19A search for SD WIMP scatter on 1 t yr Xe; no signal, limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m \sim 6–1000 GeV.
- ⁵SUZUKI 19 search in single phase liquid xenon detector for inelastic scattering X^0 + ¹²⁹Xe $\rightarrow X^0$ + ¹²⁹Xe^{*} (39.58 keV) ; no signal: require $\sigma(\chi n)^{SD} < 4 \times 10^{-3}$ pb for m(χ) = 100 GeV.
- ⁶XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 5–1 × 10⁵ GeV.
- ⁷ AKERIB 17A search for SD WIMP scatter on Xe with 129.5 kg yr exposure; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 5–1 × 10⁵ GeV.
- ⁸ FU 17 search for SD WIMP scatter on Xe; limits set in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 4–1 × 10³ GeV.
- ⁹ UCHIDA 14 derived limit from search for inelastic scattering X^0 + ¹²⁹Xe $\rightarrow X^0$ + ¹²⁹Xe(39.58 keV).
- 10 The value has been provided by the authors. See also APRILE 14A.
- ¹¹See their Fig. 3 for limits on spin-dependent neutron couplings for X^0 mass of 50 GeV.
- ¹² BEDNYAKOV 08 reanalyze KLAPDOR-KLEINGROTHAUS 05 and BAUDIS 01 data.
- ¹³See also AKERIB 05.
- 14 GIULIANI 05A analyze available data and give combined limits.
- ¹⁵ GIULIANI 04 reanalyze COLLAR 00 data and give limits for spin-dependent X^0 -neutron coupling.
- ¹⁶ GIULIANI 04A give limits for spin-dependent X^0 -neutron couplings from existing data.
- $^{17}\,\rm MIUCHI$ 03 give model-independent limit for spin-dependent X^0 -proton and neutron cross sections. See their Fig. 5.

For $m_{\chi^0} = 1$ TeV

VAL	UE	(pb)	<u>CL%</u>	DOCUMENT ID)	TECN	COMMENT	
• •	٠	We do not	use the followi	ng data for averag	es, fits,	limits,	etc. • • •	
<	5	imes 10 ⁻⁵	90	¹ AALBERS	23	LZ	SD scatter on Xe	

https://pdg.lbl.gov

<	6	imes 10 ⁻⁵	90	² HUANG	22	PNDX	SD DM limits
<	7	$ imes$ 10 $^{-1}$		³ FELIZARDO	20	SMPL	WIMPs via SIMPLE
<	1.2	imes 10 ⁻⁴	90	⁴ APRILE	19A	XE1T	Xe, SD
<	2	imes 10 ⁻⁴	90	⁵ XIA	19A	PNDX	Xe
<	2.5	imes 10 ⁻⁴	90	⁶ AKERIB	17A	LUX	Xe
<	4	imes 10 ⁻⁴	90	⁷ FU	17	PNDX	SD WIMP on Xe
<	0.07		90	FELIZARDO	14	SMPL	C ₂ CIF ₅
<	0.2		90	⁸ UCHIDA	14	XMAS	¹²⁹ Xe, inelastic
<	3.64	$\times 10^{-3}$	90	⁹ APRILE	13	X100	Xe
<	0.08		90	AKIMOV	12	ZEP3	Xe
<	0.2		90	AHMED	09	CDM2	Ge
<	0.1		90	LEBEDENKO	09 A	ZEP3	Xe
<	0.1		90	ANGLE	08A	XE10	Xe
<	0.25		90	¹⁰ BEDNYAKOV	08	RVUE	Ge
<	0.6		90	ALNER	07	ZEP2	Xe
<	30		90	LEE	07A	KIMS	Csl
<	0.5		90	¹¹ AKERIB	06	CDMS	⁷³ Ge, ²⁹ Si
< -	40		90	ALNER	05	NAIA	Nal
<2	00		90	BARNABE-HE	05	PICA	F (C ₄ F ₁₀)
<	4		90	BENOIT	05	EDEL	73 _{Ge}
< 1	10		90	KLAPDOR-K	. 05	HDMS	⁷³ Ge (enriched)
<	4	imes 10 ³	90	TAKEDA	03	BOLO	NaF

¹ AALBERS 23 yield first LZ SD limits on WIMP-*n* scatter on Xe. $\sigma^{SD}(\chi n) < 5 \times 10^{-5}$ pb for m(χ) = 1 TeV.

² HUANG 22 search for SD DM scatter on Xe; no signal observed; limits placed in $\sigma(\chi n)$ vs. m(DM) plane; quoted limit is for m(DM) = 1 TeV.

 3 FELIZARDO 20 presents 2014 SIMPLE bounds on WIMP DM using C_2CIF_5 target .

⁴ APRILE 19A search for SD WIMP scatter on 1 t yr Xe; no signal, limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m \sim 6–1000 GeV.

⁵XIA 19A search for WIMP scatter on Xe in PandaX-II; limits placed in $\sigma^{SD}(\chi n)$ vs. $m(\chi)$ plane for $m(\chi) \sim 5-1 \times 10^5$ GeV.

⁶ AKERIB 17A search for SD WIMP scatter on Xe with 129.5 kg yr exposure; limits placed in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 5–1 × 10⁵ GeV.

⁷ FU 17 search for SD WIMP scatter on Xe; limits set in $\sigma^{SD}(\chi n)$ vs. m(χ) plane for m(χ) ~ 4–1 × 10³ GeV.

⁸ Derived limit from search for inelastic scattering $X^0 + {}^{129}Xe^* \rightarrow X^0 + {}^{129}Xe^*$ (39.58 keV).

 9 The value has been provided by the authors. See also APRILE 14A.

 10 BEDNYAKOV 08 reanalyze KLAPDOR-KLEINGROTHAUS 05 and BAUDIS 01 data. 11 See also AKERIB 05.

Cross-Section Limits for Dark Matter Particles (X^0) on electron –

For $m_{\chi 0}$ in GeV range

	We provide h	ere limit	is fo $m_{\chi^0} < 5$ GeV	/			
VALU	. <i>UE</i> (pb) <u>CL%</u>		DOCUMENT ID	DOCUMENT ID		COMMENT	
• •	• We do not u	se the fo	llowing data for ave	erages,	, fits, lin	nits, etc. • • •	
<	3×10^{-3}	90	¹ AGNES	23A	DS50	LDM scatter on <i>e</i>	
<	0.3	90	² ARNQUIST	23A	DAMC	LDM search via CCDs	
https://pdg.lbl.gov			Page 26		(Created: 4/29/2024 18:59	

<	2	imes 10 ⁻⁵	90	³ LI	23F	PNDX	light DM limits
				⁴ AGOSTINI	22A	GERD	search for superWIMPs
<1	L000		90	⁵ APRILE	22	XE1T	WIMP- <i>e</i> scatter
		_		⁶ BATTAGLIERI	22		BDX-MINI search for light DM from beam dump
<	2	imes 10 ⁻⁹	95	⁷ BOSE	22		DM- e limits from solar γ s
<	100			⁸ GHOSH	22		boosted DM- $e/$ DM- $ u$ scatter
				⁹ HOCHBERG	22	SNSP	superconducting nanowire search for light DM
				¹⁰ ZHANG	22A	CDEX	light DM search on <i>e</i> in Ge
<	10		90	¹¹ CHENG	21	PNDX	MeV-scale DM on <i>e</i>
				¹² AKERIB	20	LUX	mirror DM with Xe
<	8.7	$\times 10^2$	90	¹³ AMARAL	20	SCDM	light DM scatter on e in Si
				¹⁴ APRILE	20	XE1T	excess keV electron recoil in Xe
<	100		90	¹⁵ ARNAUD	20	EDEL	MeV DM scatter on <i>e</i> in Ge
<	0.6		90	¹⁶ BARAK	20	SENS	MeV scale DM scatter from
<	2	imes 10 ⁶	90	¹⁷ ABRAMOFF	19	SENS	e in Si WIMP-e scatter on Si
				¹⁸ AGUILAR-AR	.19A	DMIC	MeV scale DM scatter on <i>e</i> in Si
<	1	imes 10 ⁻⁴	90	¹⁹ APRILE	19 D	XE1T	light DM on Xe via ioniza-
<	9	imes 10 ⁻³	90	²⁰ AGNES	18 B	DS50	Ar
<	1	imes 10 ⁴	90	²¹ AGNESE	18 B	SCDM	$e \chi$ scatter
<	5	imes 10 ³	90	²² CRISLER	18	SENS	Si CCD
				²³ APRILE	17	X100	Xe, annual modulation

¹AGNES 23A search for MeV-scale DM scatter from *e* using Ar. No signal observed. $\sigma(\chi e) < 3 \times 10^{-3}$ pb for m(χ) = 30 MeV.

² ARNQUIST 23A search for LDM scatter on *e* using CCDs. No signal observed. Require $\sigma(\chi e) < 0.3$ pb for m(χ) = 10 MeV and F_{DM} = 1 (Fig. 3b).

- ³LI 23F search for light DM in MeV range via scatter from e. No signal observed. Limits set. The quoted limit is for $m(\chi) = 0.2$ GeV with $F_{DM} = 1$.
- ⁴ AGOSTINI 22 search for superWIMP particles using GERDA detector; no signal observed; limits placed in mass vs coupling plane for m(DM) 0.06–1 MeV.
- ⁵ APRILE 22 place new limits on WIMP-*e* scatter for dark photon and various multipole moments vs. WIMP mass for various DM models; quoted limit for m(WIMP) = 1 GeV in light mediator model.
- 6 BATTAGLIERI 22 search for light MeV scale DM particles produced in JLAB beam dump; no signal observed; limits set in kinetic mixing vs. m(DM) plane for m(DM) $\sim~1-200$ _ MeV .
- ⁷ BOSE 22 theoretically derive limits on WIMP-*e* scatter from solar gamma rays using data of Fermi-LAT; limit quoted for m(WIMP) = 5 GeV.
- ⁸GHOSH 22 derive limits on sub-GeV boosted DM scatter from *e* or ν using SuperK/XENON1T data; quoted limit for m(χ) = 1 MeV.
- ⁹HOCHBERG 22 search for sub-eV or sub-MeV scale DM scatter/absorption on *e* in superconducting nanowire; no signal observed; limits set in m(DM) vs. cross section plane for sub-MeV-scale DM and in m(DM) vs. kinetic mixing plane for sub-eV-scale DM.
- ¹⁰ ZHANG 22A search for DM scatter on *e* using CDEX-10; no signal observed; limits placed on $\sigma(\chi e)$ vs. m(DM) plane for m(DM) $\sim 0.07-10$ GeV for various simplified models.
- ¹¹ CHENG 21 search for MeV-scale DM scatter from *e* in PANDAX-II. No signal detected. Limits set in $\sigma(\chi e)$ vs. m(DM) plane for two choices of form factors; $\sigma(\chi e) < 10$ pb for m(χ) = 10 MeV and F_{DM} = 1.

- ¹² AKERIB 20 search for mirror DM with LUX 95 d \times 118 kg data for mirror *e* scatter from Xe; no signal, limits placed in kinetic mixing parameter vs. mirror *e* temperature T \sim 0.1–0.9 keV plane.
- ¹³AMARAL 20 search SuperCDMS data for low mass DM scatter from *e* in Si; no signal; quoted limit $\sigma_e < 8.7 \times 10^2$ pb for m(DM) = 10 MeV with form factor F_{DM} = 1.
- ¹⁴ APRILE 20 report excess at electron recoil around 2–3 keV in Xe; data compared to unforeseen tritium background, and various signal models (bosonic DM, solar axion, and neutrino magnetic moment).
- ¹⁵ ARNAUD 20 search for MeV DM scattering from *e* in Ge; no signal; quoted limit is for m(DM) = 10 MeV with form factor $F_{DM} = 1$.
- ¹⁶ BARAK 20 report search for MeV scale DM scatter from e in Si; limits placed in σ_e vs. m(DM) plane; quoted limit is for m(DM) = 10 MeV and form factor $F_{DM} = 1$.
- ¹⁷ ABRAMOFF 19 search for MeV-scale WIMP scatter from Si skipper-CCD; limits placed on $\sigma(\chi e)$ for m(χ) ~ 0.5–100 MeV depending on DM form factors. Limit given for m(DM) = 1 MeV.
- ¹⁸ AGUILAR-AREVALO 19A search for MeV scale DM scatter from e in Si CCDs at SNO-LAB; no signal, limits placed in σ (e) vs. m(DM) plane for m(DM) ~ 0.6 -100 MeV.
- ¹⁹ APRILE 19D search for light DM scatter on Xe via ionization; no signal, limits placed in σ on nucleus vs. m(DM) plane for m(DM) $\sim 0.02-10$ GeV; quoted limit is for m(DM) ≈ 0.2 GeV.
- ²⁰ AGNES 18B search for MeV scale WIMP scatter from *e* in Ar; no signal, limits set in σ_e vs. m(χ) plane for m \sim 20–1000 MeV and two choices of form factor F(DM); quoted limit for m(χ) = 100 MeV and F = 1.
- ²¹ AGNESE 18B search for $e\chi$ scatter in SuperCDMS; limits placed in $\sigma(e\chi)$ vs. m(χ) plane for m $\sim 0.3-1 \times 10^4$ MeV for two assumed form factors and also in m(dark photon) vs. kinetic mixing plane. Limit given for m(χ) = 1 GeV and F=1.
- ²² CRISLER 18 search for $\chi e \rightarrow \chi e$ scatter in Si CCD; place limits on MeV DM in σ_e vs. m(χ) plane for m ~ 0.5 -1000 MeV for different form factors; quoted limit is for F(DM) = 1 and m(χ) = 10 MeV.
- 23 APRILE 17 search for WIMP-*e* annual modulation signal for recoil energy in the 2.0–5.8 keV interval using 4 years data with Xe. No significant effect seen.

Cross-Section Limits for Dark Matter Particles (X^0) on Nuclei

For m_{χ^0} in GeV range

We provide here limits fo $m_{\chi^0}~<$ 5 GeV

VALUE (pb)

DOCUMENT ID COMMENT

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

¹ AKIMOV 22 COHERENT search for DM mediators

¹ AKIMOV 22 use COHERENT CsI(Na) detector to search for sub GeV DM particles produced by the Spallation Neutron Source; no signal observed; limits placed in mediator mass vs. coupling plane for leptophobic DM models.

For $m_{\chi 0} = 20 \text{ GeV}$

VALUE (nb)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e following	g data for averages	s, fits,	limits, e	etc. • • •
< 0.03	90	¹ UCHIDA	14	XMAS	¹²⁹ Xe, inelastic
< 0.08	90	² ANGLOHER	02	CRES	Al
		³ BENOIT	00	EDEL	Ge
< 0.04	95	⁴ KLIMENKO	98	CNTR	⁷³ Ge, inel.
< 0.8		ALESSAND	96	CNTR	0
< 6		ALESSAND	96	CNTR	Te
< 0.02	90	⁵ BELLI	96	CNTR	¹²⁹ Xe, inel.
https://pdg.lbl.gov		Page 28		Creat	ed: 4/29/2024 18:59

		⁶ BELLI	96C	CNTR	¹²⁹ Xe
$< 4 \times 10^{-3}$	90	⁷ BERNABEI	96	CNTR	Na
< 0.3	90	⁷ BERNABEI	96	CNTR	I
< 0.2	95	⁸ SARSA	96	CNTR	Na
< 0.015	90	⁹ SMITH	96	CNTR	Na
< 0.05	95	¹⁰ GARCIA	95	CNTR	Natural Ge
< 0.1	95	QUENBY	95	CNTR	Na
<90	90	¹¹ SNOWDEN	95	MICA	¹⁶ 0
$< 4 \times 10^{3}$	90	¹¹ SNOWDEN	95	MICA	³⁹ K
< 0.7	90	BACCI	92	CNTR	Na
< 0.12	90	¹² REUSSER	91	CNTR	Natural Ge
< 0.06	95	CALDWELL	88	CNTR	Natural Ge
		···· ·· · · · · · · · · · · · · · · ·	. 12	9, *	$v_{0} = 129v * c_{0}$

¹UCHIDA 14 limit is for inelastic scattering X^0 + ¹²⁹Xe^{*} \rightarrow X^0 + ¹²⁹Xe^{*} (39.58 keV).

²ANGLOHER 02 limit is for spin-dependent WIMP-Aluminum cross section.

³BENOIT 00 find four event categories in Ge detectors and suggest that low-energy surface nuclear recoils can explain anomalous events reported by UKDMC and Saclay Nal experiments.

⁴ KLIMENKO 98 limit is for inelastic scattering X^{0} ⁷³Ge $\rightarrow X^{0}$ ⁷³Ge^{*} (13.26 keV). ⁵ BELLI 96 limit for inelastic scattering X^{0} ¹²⁹Xe $\rightarrow X^{0}$ ¹²⁹Xe^{*}(39.58 keV).

⁶BELLI 96C use background subtraction and obtain σ < 150 pb (< 1.5 fb) (90% CL) for spin-dependent (independent) X^0 -proton cross section. The confidence level is from R. Bernabei, private communication, May 20, 1999.

⁷ BERNABEI 96 use pulse shape discrimination to enhance the possible signal. The limit here is from R. Bernabei, private communication, September 19, 1997.

⁸SARSA 96 search for annual modulation of WIMP signal. See SARSA 97 for details of the analysis. The limit here is from M.L. Sarsa, private communication, May 26, 1997.

 9 SMITH 96 use pulse shape discrimination to enhance the possible signal. A dark matter density of 0.4 GeV cm $^{-3}$ is assumed.

 10 GARCIA 95 limit is from the event rate. A weaker limit is obtained from searches for diurnal and annual modulation.

¹¹ SNOWDEN-IFFT 95 look for recoil tracks in an ancient mica crystal. Similar limits are also given for ²⁷Al and ²⁸Si. See COLLAR 96 and SNOWDEN-IFFT 96 for discussion on potential backgrounds.

¹² REUSSER 91 limit here is changed from published	(0.04)) after	reanalysis	by	authors.
J.L. Vuilleumier, private communication, March 29,	1996.				

VALUE (nb)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e followir	ng data for averages	s, fits,	limits, e	etc. • • •
$< 3.3 \times 10^{-6}$	90	¹ APRILE	21A	XE1T	¹²⁹ Xe, inelastic
< 3 × 10 5 < 0.3	90 90	² UCHIDA ³ ANGLOHER	14 02	XMAS CRES	Al
		⁴ BELLI	02	RVUE	
		⁵ BERNABEI	0 2C	DAMA	
		⁶ GREEN	02	RVUE	
		⁷ ULLIO	01	RVUE	
		⁸ BENOIT	00	EDEL	Ge
$< 4 \times 10^{-3}$	90	⁹ BERNABEI	00 D		¹²⁹ Xe, inelastic
		¹⁰ AMBROSIO	99	MCRO	
		¹¹ BRHLIK	99	RVUE	
$< 8 \times 10^{-3}$	95	¹² KLIMENKO	98	CNTR	⁷³ Ge, inelastic
https://pdg.lbl.gov		Page 29		Creat	ed: 4/29/2024 18:59

For $m_{\chi 0} = 100 \text{ GeV}$

95	¹³ KLIMENKO ALESSAND	98 96 06	CNTR CNTR	⁷³ Ge, inelastic O
90	¹⁴ BELLI ¹⁵ BELLI	90 96 96C	CNTR CNTR	¹²⁹ Xe, inelastic ¹²⁹ Xe
90	¹⁶ BERNABEI	96	CNTR	Na
90	¹⁶ BERNABEI	96	CNTR	I
95	¹⁷ SARSA	96	CNTR	Na
90	¹⁸ SMITH	96	CNTR	Na
90	¹⁸ SMITH	96	CNTR	I
95	¹⁹ GARCIA	95	CNTR	Natural Ge
95	QUENBY	95	CNTR	Na
95	QUENBY	95	CNTR	I
90	²⁰ SNOWDEN	95	MICA	¹⁶ 0
90	²⁰ SNOWDEN	95	MICA	³⁹ K
90	²¹ BECK	94	CNTR	⁷⁶ Ge
90	BACCI	92	CNTR	Na
90	BACCI	92	CNTR	I
90	²² REUSSER	91	CNTR	Natural Ge
95	CALDWELL	88	CNTR	Natural Ge
	95 90 90 95 90 95 95 95 95 95 90 90 90 90 90 90 90 90 95	95 13 KLIMENKO ALESSAND ALESSAND 90 14 BELLI 15 BELLI 90 16 BERNABEI 90 16 BERNABEI 90 16 BERNABEI 90 17 SARSA 90 18 SMITH 90 18 SMITH 95 QUENBY 95 QUENBY 90 20 SNOWDEN 90 20 SNOWDEN 90 21 BECK 90 BACCI 90 22 REUSSER 90 22 RLUSSER 90 20 SNOWELL	95 13 KLIMENKO 98 ALESSAND 96 ALESSAND 96 90 14 BELLI 96 90 14 BELLI 96 90 16 BERNABEI 96 90 16 BERNABEI 96 90 16 BERNABEI 96 90 18 SMITH 96 90 18 SMITH 96 90 18 SMITH 96 95 QUENBY 95 95 QUENBY 95 90 20 SNOWDEN 95 90 20 SNOWDEN 95 90 20 SNOWDEN 95 90 21 BECK 94 90 BACCI 92 90 22 REUSSER 91 90 22 REUSSER 91 95 CALDWELL 88	95 13 KLIMENKO 98 CNTR ALESSAND 96 CNTR ALESSAND 96 CNTR 90 14 BELLI 96 CNTR 90 14 BELLI 96 CNTR 90 14 BELLI 96 CNTR 90 16 BERNABEI 96 CNTR 90 18 SMITH 96 CNTR 90 18 SMITH 96 CNTR 90 18 SMITH 96 CNTR 95 QUENBY 95 CNTR 95 QUENBY 95 CNTR 90 20 SNOWDEN 95 MICA 90 20 SNOWDEN 95 MICA 90 20 SNOWDEN 95 MICA 90 BACCI 92 CNTR 90 BACCI 92 CNTR 90 BACCI 92<

¹APRILE 21A search for inelastic DM scatter off ¹²⁹Xe nuclei with 0.83 t yr exposure. No signal obseved. Limits placed in $\sigma(\chi Xe)$ vs. m(DM) plane for WIMP mass between 20 GeV and 10 TeV.

² UCHIDA 14 limit is for inelastic scattering X^0 + ¹²⁹Xe^{*} \rightarrow X^0 + ¹²⁹Xe^{*}(39.58) keV).

³ANGLOHER 02 limit is for spin-dependent WIMP-Aluminum cross section.

 4 BELLI 02 discuss dependence of the extracted WIMP cross section on the assumptions of the galactic halo structure.

⁵ BERNABEI 02C analyze the DAMA data in the scenario in which X^0 scatters into a slightly heavier state as discussed by SMITH 01.

⁶ GREEN 02 discusses dependence of extracted WIMP cross section limits on the assumptions of the galactic halo structure.

 7 ULLIO 01 disfavor the possibility that the BERNABEI 99 signal is due to spin-dependent WIMP coupling.

⁸BENOIT 00 find four event categories in Ge detectors and suggest that low-energy surface nuclear recoils can explain anomalous events reported by UKDMC and Saclay Nal experiments.

⁹BERNABEI 00D limit is for inelastic scattering X^{0129} Xe $\rightarrow X^{0129}$ Xe (39.58 keV).

 10 AMBROSIO 99 search for upgoing muon events induced by neutrinos originating from WIMP annihilations in the Sun and Earth.

 11 BRHLIK 99 discuss the effect of astrophysical uncertainties on the WIMP interpretation of the BERNABEI 99 signal.

¹² KLIMENKO 98 limit is for inelastic scattering X^{0} ⁷³Ge $\rightarrow X^{0}$ ⁷³Ge^{*} (13.26 keV).

¹³ KLIMENKO 98 limit is for inelastic scattering X^{0} ⁷³Ge $\rightarrow X^{0}$ ⁷³Ge^{*} (66.73 keV). ¹⁴ BELLI 96 limit for inelastic scattering X^{0} ¹²⁹Xe $\rightarrow X^{0}$ ¹²⁹Xe^{*}(39.58 keV).

¹⁵ BELLI 96C use background subtraction and obtain $\sigma < 0.35$ pb (< 0.15 fb) (90% CL) for spin-dependent (independent) X^0 -proton cross section. The confidence level is from R. Bernabei, private communication, May 20, 1999.

 16 BERNABEI 96 use pulse shape discrimination to enhance the possible signal. The limit here is from R. Bernabei, private communication, September 19, 1997.

 17 SARSA 96 search for annual modulation of WIMP signal. See SARSA 97 for details of the analysis. The limit here is from M.L. Sarsa, private communication, May 26, 1997.

 18 SMITH 96 use pulse shape discrimination to enhance the possible signal. A dark matter density of 0.4 GeV cm⁻³ is assumed.

 19 GARCIA 95 limit is from the event rate. A weaker limit is obtained from searches for a diurnal and annual modulation.

²⁰ SNOWDEN-IFFT 95 look for recoil tracks in an ancient mica crystal. Similar limits are also given for ²⁷Al and ²⁸Si. See COLLAR 96 and SNOWDEN-IFFT 96 for discussion on potential backgrounds.

²¹ BECK 94 uses enriched ⁷⁶Ge (86% purity).

²² REUSSER 91 limit here is changed from published (0.3) after reanalysis by authors. J.L. Vuilleumier, private communication, March 29, 1996.

For $m_{\chi 0} = 1$ TeV					
VALUE (nb)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	g data for averages	, fits,	limits, e	tc. ● ● ●
< 0.03	90	¹ UCHIDA	14	XMAS	¹²⁹ Xe, inelastic
< 3	90	² ANGLOHER	02	CRES	Al
		³ BENOIT	00	EDEL	Ge
		⁴ BERNABEI	99 D	CNTR	SIMP
		⁵ DERBIN	99	CNTR	SIMP
< 0.06	95	⁶ KLIMENKO	98	CNTR	⁷³ Ge, inel.
< 0.4	95	⁷ KLIMENKO	98	CNTR	⁷³ Ge, inel.
< 40		ALESSAND	96	CNTR	0
<700		ALESSAND	96	CNTR	Te
< 0.05	90	⁸ BELLI	96	CNTR	¹²⁹ Xe, inel.
< 1.5	90	⁹ BELLI	96	CNTR	¹²⁹ Xe, inel.
		¹⁰ BELLI	96C	CNTR	¹²⁹ Xe
< 0.01	90	¹¹ BERNABEI	96	CNTR	Na
< 9	90	¹¹ BERNABEI	96	CNTR	1
< 7	95	¹² SARSA	96	CNTR	Na
< 0.3	90	¹³ SMITH	96	CNTR	Na
< 6	90	¹³ SMITH	96	CNTR	1
< 6	95	¹⁴ GARCIA	95	CNTR	Natural Ge
< 8	95	QUENBY	95	CNTR	Na
< 50	95	QUENBY	95	CNTR	
<700	90	¹⁵ SNOWDEN	95	MICA	¹⁶ O
$< 1 \times 10^{3}$	90	¹⁵ SNOWDEN	95	MICA	³⁹ K
< 0.8	90	¹⁶ BECK	94	CNTR	⁷⁶ Ge
< 30	90	BACCI	92	CNTR	Na
< 30	90	BACCI	92	CNTR	1
< 15	90	17 REUSSER	91	CNTR	Natural Ge
< 6	95	CALDWELL	88	CNTR	Natural Ge

¹ UCHIDA 14 limit is for inelastic scattering X^0 + ¹²⁹Xe^{*} \rightarrow X^0 + ¹²⁹Xe^{*} (39.58 keV).

 2 ANGLOHER 02 limit is for spin-dependent WIMP-Aluminum cross section.

³BENOIT 00 find four event categories in Ge detectors and suggest that low-energy surface nuclear recoils can explain anomalous events reported by UKDMC and Saclay Nal experiments.

⁴BERNABEI 99D search for SIMPs (Strongly Interacting Massive Particles) in the mass range 10^3 – 10^{16} GeV. See their Fig. 3 for cross-section limits.

⁵ DERBIN 99 search for SIMPs (Strongly Interacting Massive Particles) in the mass range 10^2-10^{14} GeV. See their Fig. 3 for cross-section limits.

- ⁶KLIMENKO 98 limit is for inelastic scattering X^{0} ⁷³Ge $\rightarrow X^{0}$ ⁷³Ge^{*} (13.26 keV).
- ⁷KLIMENKO 98 limit is for inelastic scattering X^{0} ⁷³Ge $\rightarrow X^{0}$ ⁷³Ge^{*} (66.73 keV).
- ⁸BELLI 96 limit for inelastic scattering X^{0} ¹²⁹Xe $\rightarrow X^{0}$ ¹²⁹Xe^{*}(39.58 keV).
- ⁹BELLI 96 limit for inelastic scattering X^{0} ¹²⁹Xe $\rightarrow X^{0}$ ¹²⁹Xe^{*}(236.14 keV).
- ¹⁰ BELLI 96C use background subtraction and obtain $\sigma < 0.7 \text{ pb}$ (< 0.7 fb) (90% CL) for spin-dependent (independent) X^0 -proton cross section. The confidence level is from R. Bernabei, private communication, May 20, 1999.
- $^{11}\,{\sf BERNABEI}$ 96 use pulse shape discrimination to enhance the possible signal. The limit here is from R. Bernabei, private communication, September 19, 1997.
- ¹² SARSA 96 search for annual modulation of WIMP signal. See SARSA 97 for details of the analysis. The limit here is from M.L. Sarsa, private communication, May 26, 1997.
- 13 SMITH 96 use pulse shape discrimination to enhance the possible signal. A dark matter density of 0.4 GeV cm⁻³ is assumed.
- 14 GARCIA 95 limit is from the event rate. A weaker limit is obtained from searches for $_{1-}$ diurnal and annual modulation.
- ¹⁵ SNOWDEN-IFFT 95 look for recoil tracks in an ancient mica crystal. Similar limits are also given for ²⁷Al and ²⁸Si. See COLLAR 96 and SNOWDEN-IFFT 96 for discussion on potential backgrounds.
- ¹⁶BECK 94 uses enriched ⁷⁶Ge (86% purity).
- ¹⁷ REUSSER 91 limit here is changed from published (5) after reanalysis by authors. J.L. Vuilleumier, private communication, March 29, 1996.

—— Miscellaneous Results from Underground Dark Matter Searches

VALUE CL%	DOCUMENT ID		TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the followi	ing data for ave	rages,	fits, lim	its, etc. ● ● ●
1	ABE	23A	SKAM	boosted DM limits
2	ADAMS	23	PICO	inelastic DM search
3	ADHIKARI	23 B	C100	BDM/heavy photon DM
4	AL-KHARUSI	23	EXO2	UDM search
5	APRILE	23	XE1T	Planck scale DM search
6	HUANG	23	PNDX	scalar DM via dark mediator decay
7	NING	23A	PNDX	boosted LDM
8	ADHIKARI	22	DEAP	Planck scale DM multiple scatter on Ar
9	ADHIKARI	22D	NAI	COSINE-100 annual modula- tion DM search
10	DAI	22A	CDEX	MeV scale exotic DM
11	GU	22	PNDX	absorption of fermion DM
12	ZHANG	22	PNDX	light DM search
13	AKERIB	21 B	LUX	limits on WIMP EFT cou- plings
14	AMARE	21	ANAI	annual modulation on Nal
15	WANG	21K	CDEX	DM effective operator limits
16	AGOSTINI	20	HPGE	keV-MeV scale super-WIMP absorption in Ge
17	ANDRIANAV	20	FUNK	hidden photon DM search
18	CLARK	20		superheavy MIMP DM
19	ABRAMOFF	19	SENS	MeV DM <i>e</i> -Si; dark photon Si absorption
20	ADHIKARI	19	C100	annual modulation Nal
21	AMARE	19	ANAI	annual modulation Nal

<6.4	imes 10 ⁻¹⁰	90	²² APRILE	19	XE1T	π (Xe)
			²³ BRINGMANN	19		cosmic ray DM
			²⁴ BRUNE	19		Majoran DM
			²⁵ CHOI	19	THEO	290 TeV IceCube ν
			²⁶ HA	19	C100	inelastic boosted dark γ
			²⁷ KLOPF	19		$n \rightarrow \chi e^+ e^-$
			²⁸ AARTSEN	18D	ICCB	relic WIMP $\chi \rightarrow \nu X$
			²⁹ ABE	18F	XMAS	$A' e \rightarrow A' e$
			³⁰ AGNES	18 B	DS50	Ar
			³¹ AGNESE	18 B	SCDM	MeV DM <i>e</i> -Si; dark photon Si absorption
			³² AKERIB	18A	LUX	Xe
			³³ ARMENGAUD	18	EDE3	Ge
			³⁴ KACHULIS	18	SKAM	boosted DM on <i>e</i>
< 1	$ imes$ 10 $^{-12}$	90	³⁵ AGUILAR-AR	. 17	DMIC	γ' on Si
			³⁶ APRILE	17	X100	Xe
			³⁷ APRILE	17 D	X100	Xe
			³⁸ APRILE	17H	X100	keV bosonic DM search
			³⁹ APRILE	17K	X100	$\chi N \rightarrow \chi^* \rightarrow \chi \gamma$
<4	$ imes$ 10 $^{-3}$	90	⁴⁰ ANGLOHER	16A	CRES	CaWO ₄
			⁴¹ APRILE	15	X100	Event rate modulation
			⁴² APRILE	15A	X100	Electron scattering

¹ ABE 23A search for boosted sub-GeV DM using 0.37 Mt·y exposure of SuperK data. No signal observed. Model dependent limits set, see Fig. 3 corrected in ABE 23G erratum.

² ADAMS 23 search for inelastic DM scatter in fluorocarbons. No signal observed. Limits placed in σ vs. m(χ) mass splitting plane.

³ ADHIKARI 23B search for boosted heavy photon DM in MeV range using Cosine-100. No signal observed. Limits placed in coupling vs. mass plane for masses 1–100 MeV.

⁴ AL-KHARUSI 23 search for absorption of MeV-scale DM with 234.1 kg·y exposure of 136 Xe, triggering beta decay. No signal observed. Limit placed in cross section vs. mass plane for m(χ) = 1.7–11.6 MeV (see Fig. 5).

⁵ APRILE 23 search for multiple scatter events from Planck scale-DM particles. No signal observed. Limits set on σ^{SI} and σ^{SD} on *n* and *p*.

⁶HUANG 23 search for MeV-scale scalar DM interacting via GeV-scale dark mediator. Limits placed on cross section vs. mass plane.

⁷ NING 23A search for boosted LDM arising from η decays which are produced in CR events with 0.63 t·y exposure. No signal observed. Limits placed in $\sigma(\chi N)$ vs. m(χ) plane for various mediator models and branching fraction assumptions (see Fig. 2).

⁸ ADHIKARI 22 search for multiple scatter of Planck scale DM on Ar using DEAP detector. No signal observed. Limits placed in mass vs. cross section plane for m(DM): 10^7-10^{19} GeV.

⁹ ADHIKARI 22D report search for annual modulation signal of DM in a 173 kg·yr exposure of Nal; result consistent with both the modulation amplitude reported by DAMA/LIBRA and no-modulation .

 10 DAI 22A search for MeV-scale exotic DM interaction with Ge; no signal observed; limits set in m(DM) vs. cross section plane for m(DM) $\sim\,$ 5–60 MeV in simplified model.

¹¹ GU 22 use PANDAX to search for absorption of fermionic DM in MeV range in Xe; no signal observed; limits set in m(DM) vs. cross section plane for m(DM) $\sim 30-125$ MeV.

¹² ZHANG 22 search for light DM scatter on e; no signal observed; limits placed in $\sigma \cdot v$ vs. m(DM) plane for m(DM) $\sim 10-180$ keV.

¹³AKERIB 21B place limits on 15 WIMP non-relativistic EFT couplings for m(DM): 10–4000 GeV using 3.14 kg d exposure.

- ¹⁴ AMARE 21 search for WIMP annual modulation signal on Nal target in the Canfranc Underground Laboratory (LSC). With an effective exposure of 313.95 kg y, and a sensitivity of 2.5 σ no signal is observed. Incompatible with DAMA/LIBRA at 3.3 σ level.
- 15 WANG 21K use CDEX detector to search for WIMP dark matter scatter on Ge; no signal observed; limits placed on 14 non-relativistic effective operators along with WIMP-pion coupling for m(WIMP) $\sim 3-20$ GeV.
- ¹⁶ AGOSTINI 20 search for keV–MeV scale super-WIMP absorption in Ge in GERDA; no signal; limits placed on keV–MeV scale bosonic superWIMPs in coupling vs. mass plane.
- ¹⁷ ANDRIANAVALOMAHEFA 20 search for hidden photon DM in eV range; place limits in m(DM) vs ln(χ) plane: exclude coupling $\chi \lesssim 1 \times 10^{-12}$ for m(DM) ~ 2.5 –7 eV.
- 18 CLARK 20 use Majorana and Xe-1-ton data to constrain superheavy multply interacting dark matter (MIMP) in range m $\sim~10^8 10^{17}$ GeV depending on interaction cross section.
- ¹⁹ABRAMOFF 19 search for MeV scale DM via DM-*e* scattering and dark photon DM via absorption in Si; limits set in coupling vs. $m(\chi)$ plane and on dark photon in m(A) vs. kinetic mixing parameter plane.
- ²⁰ ADHIKARI 19 search for annual modulation signal from WIMP scatter on Nal with 1.7 yr exposure; result consistent with both DAMA/LIBRA and null hypothesis.
- 21 AMARE 19 is ANAIS-112 search for WIMP scatter annual modulation on NaI; 157.55 kg yr exposure; result compatible with null hypothesis; confirm goal of reaching sensitivity at 3σ to DAMA/LIBRA result in 5 years.
- ²² APRILE 19 search for WIMP-pion scattering in Xe; no signal: require $\sigma(\chi \pi) < 6.4 \times 10^{-10}$ pb for m(χ) = 30 GeV.
- $^{23}\,\rm BRINGMANN$ 19 derive theoretically limits on GeV and sub-GeV mass dark matter, in its high energy component generated by interaction with cosmic rays; place limits on σ^{SI} and $\sigma^{SD}~<~10^5$ pb.
- 24 BRUNE 19 examine possibility of Majoron dark matter; limits placed on Majoron mass vs. coupling from SN1987a and ν -less double beta decay.
- ²⁵ CHOI 19 from multimessenger observation finds limit on $\sigma(\nu \chi)/m(DM) < 5.1 \times 10^{-23}$ cm²/GeV based on 290 TeV IceCube neutrino event.
- ²⁶ HA 19 search for inelastic boosted MeV scale dark photon using COSINE-100 data; limits placed in m vs. epsilon plane for various mediators.
- ²⁷ KLOPF 19 search for DM via $n \rightarrow \chi e^+ e^-$; no signal: limits placed in branching fraction vs. m($e^+ e^-$) plane.
- ²⁸AARTSEN 18D search for long-lived DM particles decaying $\chi \rightarrow \nu X$; no excess seen; for DM masses above 10 TeV, excluding lifetimes shorter than 10²⁸ s.
- 29 ABE 18F search for keV mass ALPs and hidden photons (HP) scatter on electrons; limits set on mass vs. coupling.
- ³⁰ AGNES 18B search for MeV-scale DM scatter on electrons in Ar; no signal; require $\sigma(\chi e)$ < 9 × 10⁻³ pb for DM form factor F(DM) = 1 and < 300 pb for F(DM) proportional to 1/q² for m(χ) = 100 MeV.
- ³¹AGNESE 18B search for MeV scale DM via DM-*e* scattering and dark photon DM via absorption in Si; limits set on MeV DM in coupling vs. $m(\chi)$ plane and on dark photon in m(A') vs. kinetic mixing plane.
- ³² AKERIB 18A search for annual and diurnal modulation of DM scattering rate on electrons for recoil energy between 2 and 6 keVee; no signal found.
- ³³ ARMENGAUD 18 search for ALP from the Sun and galactic bosonic DM, interacting in Ge; no signal; limits set for 0.8–500 keV DM particles.
- ³⁴ KACHULIS 18 search for an excess of elastically scattered electrons above the atmospheric neutrino background in Super-K; limits placed for simple annihilation or decay in the Sun or galactic center producing "boosted" dark matter.
- ³⁵ AGUILAR-AREVALO 17 search for hidden photon DM scatter on Si target CCD; limit kinetic mixing $\kappa < 1 \times 10^{-12}$ for m = 10 eV.

- ³⁶ APRILE 17 search for WIMP-*e* annual modulation signal for recoil energy in the 2.0–5.8 keV interval using 4 years data with Xe. No significant effect seen.
- ³⁷ APRILE 17D set limits on 14 WIMP-nucleon different interaction operators. No deviations found using 225 live days in the 6.6–240 keV recoil energy range.
- ³⁸ APRILE 17H search for keV bosonic DM via $e\chi \rightarrow e$, looking for electronic recoils with 224.6 live days of data and 34 kg of LXe. Limits set on χee coupling for m(χ) = 8–125 keV.
- ³⁹ APRILE 17K search for magnetic inelastic DM via $\chi N \rightarrow \chi^* \rightarrow \chi \gamma$. Limits set in DM magnetic moment vs. mass splitting plane for two DM masses corresponding to the DAMA/LIBRA best fit values.
- 40 ANGLOHER 16A require q² dependent scattering $< 8 \times 10^{-3}$ pb for asymmetric DM $m({\rm WIMP})$ = 3 GeV on CaWO₄ target. It uses a local dark matter density of 0.38 GeV/cm³.
- ⁴¹ APRILE 15 search for periodic variation of electronic recoil event rate in the data between Feb. 2011 and Mar. 2012. No significant modulation is found for periods up to 500 days.
- ⁴² APRILE 15A search for X^0 scattering off electrons. See their Fig. 4 for limits on cross section through axial-vector coupling for m_{χ^0} between 0.6 GeV and 1 TeV. For $m_{\chi^0} = 2$ GeV, $\sigma < 60$ pb (90%CL) is obtained.

$----- X^0$ Annihilation Cross Section

Limits are on σv for X^0 pair annihilation for the X^0 mass specified in the footnote when needed.

VALUE	$(cm^{3}s^{-1})$	CL%	DOCUMENT ID		TECN	COMMENT
• • •	We do not	use the	following data for	averag	ges, fits,	limits, etc. • • •
< 1	imes 10 ⁻²⁴	90	¹ ABBASI	23A	ICCB	WIMP annihilation to $ u$'s
$<\!\!1$	imes 10 ⁻²²	90	² ABBASI	23 B	ICCB	PeV WIMP annihilation
<5	$ imes$ 10 $^{-28}$	95	³ ABE	23 B	MGIC	Wimp annihilation to γ
			⁴ ALBERT	23	HAWC	WIMP annihilation to γ in galactic halo
			⁵ CHENG	23A		Fermi-LAT and DAMPE combined γ line search
<2	$ imes$ 10 $^{-25}$	95	⁶ FOSTER	23	FLAT	DM annihilation to gamma line
			⁷ GUO	23	FAST	DM annihilation in dwarf spheroidal galaxy
			⁸ GUO	23A		WIMP annihilation in dwarf spheroidal galaxies
<2	imes 10 ⁻²⁶	95	⁹ LAVIS	23		$b\overline{b}$ + 2HDM+S, m<1000 GeV
<1.2	$ imes$ 10 $^{-26}$	95	¹⁰ ABDALLA	22	HESS	DM annihilation to gamma rays
			¹¹ ALBERT	22A	ANTR	PeV-scale DM search
<1	$\times 10^{-27}$		¹² CHAN	22		DM annihilation from Omega Centauri X-ravs
<3	imes 10 ⁻²⁶		¹³ EGOROV	22		DM annihilation to radio waves
			¹⁴ MANCONI	22		from M31 polarized synchrotron emission from DM annihilation via
<5	imes 10 ⁻²⁴	95	¹⁵ ABDALLAH	21	HESS	WIMP annihilation in dwarf
			¹⁶ CIRELLI	21		light DM annihilation producing X-rays
			¹⁷ JOHN	21		cosmic positron spectra limits on leptophilic DM
<2.5	$ imes 10^{-27}$	95	¹⁸ ABAZAJIAN	20	FLAT	γ from galactic center
			¹⁹ ABDALLAH	20	HESS	WIMP annihilation in dwarf satellite galaxies
https	://pdg.lbl.	gov	Page 3	35		Created: 4/29/2024 18:59

<1.2	\times 10 ⁻	-24	90	²⁰ ABE	2 0 G	SKAM	WIMP annihilation to neutrinos
<2.2	$\times 10^{-1}$	-24	95	²¹ ALBERT	20	HAWC	WIMP annihilation to γ
<5	× 10 ⁻	-24	90	²² ALBERT	20A	ANTR	WIMP annihilation to ν s in galactic center
<1	× 10 ⁻	-23	90	²³ ALBERT	20C	ANTR	Antares/IceCube search for WIMP annihilation to vs
<8	$\times 10^{-1}$	-26		²⁴ ALVAREZ	20	FLAT	dwarf spheroidal; J-distribution
<2	$\times 10^{-1}$	-26	90	²⁵ HOOF	20	FLAT	WIMP annihilation to γ
				²⁶ MAZZIOTTA	20	FLAT	DM annihilation in Sun to γ
				²⁷ ABEYSEKARA	19	HAWC	DM annihilation to γ s within galactic substructure
<0.8	$\times 10^{-1}$	-22	95	²⁸ ALBERT	19 B	HAWC	annihilation/decay to γ in M31
<4	$\times 10^{-1}$	-26	95	²⁹ CHEUNG	19	EDGS	$\chi \chi \rightarrow e^+ e^-$ and $b \overline{b}$
<7	$\times 10^{-1}$	-27	95	³⁰ DI-MAURO	19	FLAT	Fermi-LAT M31 and M33
				³¹ JOHNSON	19	FLAT	<i>P</i> -wave DM; Fermi-LAT
<2	$\times 10^{-1}$	-26	95	³² LI	19D	FLAT	$\chi \chi \rightarrow \gamma$
$<\!\!1$	$\times 10^{-1}$	-32		³³ NG	19		sterile ν decay/annihilation
				³⁴ QUEIROZ	19		semi-annihilating DM
<4	× 10 ⁻	-28	95	35 ABDALLAH	18	HESS	$X^0 X^0 \rightarrow \gamma X^{\circ}$ galactic halo
<1	$\times 10^{-10}$	-23	95	36 AHNEN	18	MGIC	$X^0 X^0 \rightarrow \gamma X$: Ursa Major II
<1	$\times 10^{-10}$	-22	95 05	37 ALBERT	18R		$X^0 X^0 \rightarrow \chi X$: Andromeda
<1 <1	$\sim 10^{-10}$	-26	05	38 CHANG	184	11/0/0	$x x \rightarrow b \overline{b} \rightarrow \infty$
~1	~ 10		55	39 LISANTI	18	THEO	χ_{χ} / g_{0} / g_{1}
				40 MAZZIOTTA	18	FLAT	Fermi-I AT CRF data
<12	× 10 ⁻	-23	05	41 AARTSEN	17C		$\gamma \gamma \rightarrow \text{neutrinos}$
<1.2	$\sim 10^{-10}$	-23	00	42 ALBERT	174	ANTR	χ_{χ} DM annihilation
<1 32	$\sim 10^{-10}$	-25	90 05	43 ARCHAMBALL	17	VRTS	or dwarf galaxies
<1.52	10 10	-21	90 00	44 AVRORIN	17	RAIK	γ dwarf galaxies
<1	$\sim 10^{-10}$	-28	50		17	D/ III (May DM to a^+a^-
<1	× 10			46 AARTSEN	16D		v galactic conter
<6	$\vee 10^{-1}$	-26	05		16	HESS	Control Coloctic Holo
<0 <1	$\sim 10^{-10}$	-27	95		164		WIMP WIMP v avait galactic
<1	~ 10		95	ADDALLAH	IUA	TIL 35	center
<3	\times 10 ⁻	-26	95	⁴⁹ AHNEN	16	MGFL	Satellite galaxy, m(WIMP)=100 GeV
<1.9	$\times 10^{-1}$	-21	90	⁵⁰ AVRORIN	16	BAIK	us from galactic center
<3	$\times 10^{-1}$	-26	95	⁵¹ CAPUTO	16	FLAT	small Magellanic cloud
< 1	$\times 10^{-1}$	-25	95	⁵² FORNASA	16	FLAT	Fermi-LAT γ -ray anisotropy
<5	\times 10 ⁻	-27		⁵³ LEITE	16		WIMP, radio
<2	\times 10 ⁻	-26	95	⁵⁴ LI	16	FLAT	dwarf gala×ies
< 1	$\times 10^{-1}$	-25	95	⁵⁵ LI	16A	FLAT	Fermi-LAT; M31
< 1	$\times 10^{-1}$	-26		⁵⁶ LIANG	16	FLAT	Fermi-LAT, gamma line
< 1	$\times 10^{-1}$	-25	95	⁵⁷ LU	16	FLAT	Fermi-LAT and AMS-02
< 1	$\times 10^{-1}$	-23	95	⁵⁸ SHIRASAKI	16	FLAT	extra galactic
				⁵⁹ AARTSEN	15C	ICCB	ν , Galactic halo
				⁶⁰ AARTSEN	15E	ICCB	u, Galactic center
				⁶¹ ABRAMOWSK	115	HESS	Galactic center
				⁶² ACKERMANN	15	FLAT	monochromatic γ
				63 ACKEDMANNI	15 4	FI AT	isotropic of background
				ACKERIMANIN	10/1	1 6/ 11	isotropic y background
				⁶⁴ ACKERMANN	15B	FLAT	Satellite galaxy
			_	⁶⁴ ACKERMANN ⁶⁵ ADRIAN-MAR.	15B .15	FLAT ANTR	Satellite galaxy ν , Galactic center

	95 95 95	66,68 ACKERMANN 66,68 ACKERMANN 69 ALEKSIC	14 14 14	FLAT FLAT MGIC	Satellite galaxy, $m = 100$ GeV Satellite galaxy, $m = 1$ TeV Segue 1, $m = 1.35$ TeV
		⁷⁰ AARTSEN	13C	ICCB	Galaxies
		4 ABRAMOWSKI	13	HESS	Central Galactic Halo
		⁷² ACKERMANN 1	13A	FLAT	Galaxy
		⁷³ ABRAMOWSKI	12	HESS	Fornax Cluster
		74 ACKERMANN	12	FLAT	Galaxy
		⁷⁵ ACKERMANN 1	12	FLAT	Galaxy
		⁷⁶ ALIU	12	VRTS	Segue 1
$<1 \times 10^{-22}$	90	⁷⁷ ABBASI	11C	ICCB	Galactic halo, $m=1$ TeV
$<3 \times 10^{-25}$	95	⁷⁸ ABRAMOWSKI	11	HESS	Near Galactic center, $m=1$ TeV
$<1 \times 10^{-26}$	95	⁷⁹ ACKERMANN	11	FLAT	Satellite galaxy, $m=10$ GeV
$< 1 \times 10^{-25}$	95	⁷⁹ ACKERMANN	11	FLAT	Satellite galaxy, $m=100$ GeV
$< 1 \times 10^{-24}$	95	⁷⁹ ACKERMANN	11	FLAT	Satellite galaxy, $m=1$ TeV

¹ABBASI 23A search for WIMP-WIMP annihilation to ν 's. No signal observed. Require $\langle \sigma \cdot v \rangle < 10^{-24} \text{ cm}^3/\text{s}$ for m(χ) $\sim 10-10 \times 10^4$ GeV for various halo profiles.

²ABBASI 23B search for PeV-scale WIMP-WIMP annihilation to μ or b pairs. No signal observed. Require $\langle \sigma \cdot v \rangle < 10^{-22} \text{ cm}^3/\text{s}$ for $\chi \chi \rightarrow b \overline{b}$ with m(χ) about 1 PeV or $\langle \sigma \cdot v \rangle < 10^{-23} \text{ cm}^3/\text{s}$ for $\chi \chi \rightarrow \mu^+ \mu^-$ with m(χ) about 1 PeV.

³ABE 23B search for WMP-WIMP annihilation to γ in GC. No signal observed. Require $\langle \sigma \cdot v \rangle < 5 \times 10^{-28} \text{ cm}^3/\text{s}$ for m(χ) = 1 TeV or $\langle \sigma \cdot v \rangle < 1 \times 10^{-25} \text{ cm}^3/\text{s}$ for m(χ) = 100 TeV.

⁴ ALBERT 23 search for WIMP pair annihilation to γ in galactic halo. No signal observed. Limits placed in $\langle \sigma \cdot v \rangle$ vs. mass (10–100 TeV) plane for various annihilation channels.

⁵ CHENG 23A provide updated combined Fermi-LAT/DAMPE search for gamma line from WIMP annihilation. No signal observed. Limits placed in $\langle \sigma \cdot v \rangle$ vs. mass (6–200 GeV) plane for various halo profiles.

⁶ FOSTER 23 search for gamma ray line in Fermi-LAT data. No signal observed. Limits placed in $\langle \sigma \cdot v \rangle$ vs. m(χ) plane. For Higgsino DM limit see Fig. 12.

⁷GUO 23 search with Five-hundred-meter Aperture Spherical Radio Telescope for synchrotron emission radio signal of DM annihilation from dwarf spheroidal galaxy. No signal observed. Limits set in $\langle \sigma \cdot v \rangle$ vs. m(χ) plane for various annihilation final states.

⁸GUO 23A search in public IceCube data for DM annihilation to neutrinos. No signal observed. Limits placed in $\langle \sigma \cdot v \rangle$ vs m(χ) plane for various annihilation assumptions.

⁹LAVIS 23 search for 2HDM+S DM and generic spectra using MeerKAT. No signal observed. Limits placed in $\langle \sigma \cdot v \rangle$ vs. mass (10–1000 GeV) plane for various annihilation channels.

¹⁰ABDALLA 22 search for WIMP annihilation in galactic center to gamma rays using HESS; no signal observed; limits set in mass vs $\langle \sigma \cdot v \rangle$ plane for dominant annihilation to WW or $\tau \overline{\tau}$. Limit here for $\tau \overline{\tau}$ channel 0.7 TeV mass.

¹¹ ALBERT 22A search for secluded PeV-scale DM annihilation to four final states; no signal detected; limits placed in $\langle \sigma \cdot v \rangle$ vs. m(χ) plane for m(χ): 6–6000 TeV for m(mediator) = 50, 250, and 1000 GeV.

 12 CHAN 22 derive a variety of limits on DM annihilation to various channels resulting in X-rays from dwarf galaxy Omega Centauri. Limits are very dependent on assumed DM density and diffusion coefficient. Quoted limit is for m(WIMP) = 100 GeV annihilating to WW with parameters as in Fig. 4.

¹³ EGOROV 22 derives limits on DM annihilation to $b\overline{b}$ or $\tau\overline{\tau}$ via radio signals from M31; quoted limit from $b\overline{b}$ channel with LOFAR telescope as main data source, using parameters as in Fig. 10 (green curve) for m(χ) = 100 GeV.

- ¹⁴ MANCONI 22 use polarized synchrotron emission data from Planck to constrain WIMP annihilation cross section in Galaxy; limits set in $\langle \sigma \cdot v \rangle$ vs. m(DM) plane.
- ¹⁵ ABDALLAH 21 search for WIMP-WIMP annihilation into 2 monoenergetic γ rays in WLM dwarf irregular galaxy using HESS data. No signal. Limits placed in $\langle \sigma \cdot v \rangle$ vs. m(WIMP) plane for a mass of 370 GeV.
- ¹⁶ CIRELLI 21 derive limits on light DM annihilation to *ee*, $\mu\mu$, $\pi\pi$ that then produce X-rays using data published by INTEGRAL telescope. Limits placed in $\langle \sigma \cdot v \rangle$ vs. m(DM) plane for m(DM) = 1–5000 MeV.
- ¹⁷ JOHN 21 derive limits on leptophilic DM annihilating to positrons by comparing expected spectra to AMS-02 data. The range m(DM): 60–300 GeV appears excluded for this type of model, see Fig. 3.
- ¹⁸ ABAZAJIAN 20 derive new limits on WIMP annihilation in galactic center (GC): $\langle \sigma \cdot v \rangle < 2.5 \times 10^{-27} \text{ cm}^3/\text{s}$ for m(WIMP) = 50 GeV: seems to rule out WIMP explanation for GC γ excess, favouring an astrophysics origin.
- ¹⁹ ABDALLAH 20 search for WIMP annihilation in newly discovered by DES dwarf satellite galaxies using HESS; limits placed in $\langle \sigma \cdot v \rangle$ vs. m(DM) plane depending on annihilation channel and which dwarf satellite.
- ²⁰ ABE 20G search Super-Kamiokande data for WIMP annihilation to neutrinos in galactic center/halo; no signal; limits placed in $\langle \sigma \cdot v \rangle$ vs. m(DM) plane depending on annihilation channel and m(WIMP). Reported limit for annihilation to $\nu \overline{\nu}$ at 1 GeV.
- ²¹ ALBERT 20 search for TeV-scale WIMP annihilation to $\gamma \gamma$ in dwarf spheroidal galaxies; no signal; limits placed in $\sigma \cdot v$ vs m(WIMP) plane: e.g. $\sigma \cdot v < 2.2 \times 10^{-24}$ cm³/s for m(WIMP) = 1 TeV.
- ²² ALBERT 20A search for WIMP annihilation to ν s in galactic center using Antares; limits placed in $\sigma \cdot v$ vs m(WIMP) plane e.g. $\sigma \cdot v < 5 \times 10^{-24}$ cm³/s for m(WIMP) = 1 TeV assuming annihilation dominantly to $\tau\overline{\tau}$.
- ²³ ALBERT 20C report combined Antares + IceCube search for WIMP annihilation to $\tau \overline{\tau}$; for NFW halo profile report $\sigma \cdot v < 1 \times 10^{-23} \text{ cm}^3/\text{s}$ for m(WIMP) = 100 GeV.
- ²⁴ ALVAREZ 20 use profiling over J-factor distributions and background to derive new limits on $\sigma \cdot v$; e.g. $\sigma \cdot v < 8 \times 10^{-26} \text{ cm}^3/\text{s}$ for m(WIMP) = 100 GeV.
- ²⁵ HOOF 20 examine γ rays from 27 dwarf spheroidals using Fermi-LAT data; place limits in $\sigma \cdot v$ vs m(WIMP) plane using profile likelihood and marginalized posterior techniques for DM annihilation to $\tau \overline{\tau}$ and $b\overline{b}$; quoted limit uses first technique and $b\overline{b}$ channel for m(WIMP) = 100 GeV; results rule out WIMP explanation of galactic center excess.
- ²⁶ MAZZIOTTA 20 use Fermi-LAT pointed-at-Sun data to search for DM annihilation in the Sun to long-lived mediators decaying into gamma rays, i.e. $\chi\chi \rightarrow \phi\phi \rightarrow 4\gamma$. Limits placed on the SI and SD DM-nucleon cross sections in the σ -DM mass plane for DM masses in the range 3 GeV 1.8 TeV. Limits are evaluated in both cases of equilibrium and non-equilibrium.
- 27 ABEYSEKARA 19 search for γs from DM annihilation in galactic substructures with HAWC; no signal, limits placed in J $\langle \sigma \cdot v \rangle$ vs. declination plane for m(DM) $\sim~$ 1–108 TeV.
- ²⁸ ALBERT 19B search for DM signal from M31 galaxy in μ , τ , t, b, W channels using HAWC for m(DM) $\sim 1-100$ TeV; no signal, limits placed in $\langle \sigma \cdot v \rangle$ vs. m(DM) plane.
- ²⁹ CHEUNG 19 derive model-dependent bounds on $\langle \sigma \cdot v \rangle$ from EDGES data: $< 4 \times 10^{-26}$ cm³/s for e^+e^- and $b\overline{b}$ for m(χ) = 100 GeV (including boost factor).
- ³⁰ DI-MAURO 19 place limits on WIMP annihilation via Fermi-LAT observation of M31 and M33 galaxies: $\langle \sigma \cdot v \rangle < 7 \times 10^{-27} \text{ cm}^3/\text{s}$ for m(χ) = 20 GeV from M31.
- ³¹ JOHNSON 19 search for γ -rays, 10–600 GeV energy, from *P*-wave annihilating DM around SgrA* BH using Fermi-LAT; limits set for various models.
- ³²LI 19D search for $\chi\chi \rightarrow \gamma$ in Fermi-LAT data; no signal, require $\langle \sigma \cdot v \rangle < 2 \times 10^{-26}$ cm³/s for m(χ) = 100 GeV.
- ³³NG 19 search for X-ray line from sterile ν decay/annihilation using NuStar M-31; no signal: limits placed in m(ν) vs mixing angle and $\langle \sigma \cdot v \rangle$ vs m(ν).

- ³⁴ QUEIROZ 19 examine $\chi \chi \to \chi SM$ semi-annihilation of DM reaction; limits placed for various assumed SM particles in $\langle \sigma \cdot v \rangle$ vs. m(χ) plane.
- ³⁵ABDALLAH 18 search for WIMP WIMP $\rightarrow \gamma X$ in central galactic halo, 10 years of data; limits placed in $\langle \sigma \cdot v \rangle$ vs. m(WIMP) plane for m(WIMP): 0.3–70 TeV.
- ³⁶ AHNEN 18 search for WIMP WIMP $\rightarrow \gamma X$ from Ursa Major II; limits set in $\langle \sigma \cdot v \rangle$ vs. m(WIMP) plane for $b\overline{b}$, W^+W^- , $\tau^+\tau^-$, and $\mu^+\mu^-$ annihilation modes.
- ³⁷ ALBERT 18B search for TeV-scale WIMPs with WIMP WIMP $\rightarrow \gamma X$ in Andromeda galaxy using HAWC Observatory; limits set in $\langle \sigma \cdot v \rangle$ vs m(WIMP) plane.
- ³⁸ CHANG 18A examine $\chi \chi \rightarrow b \overline{b} \rightarrow \gamma$ using Fermi Pass 8 data; no signal; require $\langle \sigma \cdot v \rangle < 10^{-26} \text{ cm}^3/\text{s}$ for m(χ) = 50 GeV.
- ³⁹LISANTI 18 examine Fermi Pass 8 γ -ray data from galaxy groups; report m(WMP) > 30 GeV for annihilation in $b\overline{b}$ channel.
- ⁴⁰ MAZZIOTTA 18 examine Fermi-LAT electron and positron spectra searching for features originating from DM particles annihilation into e^+e^- pairs, from 45 GeV to 2 TeV; no signal found, limits are obtained.
- ⁴¹AARTSEN 17C use 1005 days of IceCube data to search for $\chi\chi \rightarrow$ neutrinos via various annihilation channels. Limits set.
- ⁴² ALBERT 17A search for DM annihilation to ν s using ANTARES data from 2007–2015. No signal. Limits set in $\langle \sigma \cdot v \rangle$ vs. m(DM) plane for m(DM) $\sim 10-10 \times 10^5$ GeV. The listed limit is for m(DM) = 100 TeV.
- ⁴³ ARCHAMBAULT 17 set limits for WIMP mass between 100 GeV and 1 TeV on $\langle \sigma \cdot v \rangle$ for W^+W^- , ZZ, $b\overline{b}$, $s\overline{s}$, $u\overline{u}$, $d\overline{d}$, $t\overline{t}$, e^+e^- , gg, $c\overline{c}$, hh, $\gamma\gamma$, $\mu^+\mu^-$, $\tau^+\tau^-$ annihilation channels.
- ⁴⁴ AVRORIN 17 find upper limits for the annhilation cross section in various channels for DM particle mass between 30 GeV and 10 TeV. Strongest upper limits coming from the two neutrino channel require $\langle \sigma \cdot v \rangle < 6 \times 10^{-20} \text{ cm}^3/\text{s}$ in dwarf galaxies and $\langle \sigma \cdot v \rangle < 7 \times 10^{-21} \text{ cm}^3/\text{s}$ in LMC for 5 TeV WIMP mass.
- ⁴⁵ BOUDAUD 17 use data from the spacecraft Voyager 1, beyond the heliopause, and from AMS02 on $\chi\chi \rightarrow e^+e^-$ to require $\langle \sigma \cdot v \rangle < 1. \times 10^{-28} \text{ cm}^3/\text{s}$ for m(χ) = 10 MeV.
- ⁴⁶ AARTSEN 16D search for GeV ν s from WIMP annihilation in galaxy; limits set on $\langle \sigma \cdot v \rangle$ in Fig. 6, 7.
- ⁴⁷ ABDALLAH 16 require $\langle \sigma \cdot v \rangle < 6 \times 10^{-26} \text{ cm}^3/\text{s}$ for m(WIMP) = 1.5 TeV from 254 hours observation (*W W* channel) and $< 2 \times 10^{-26} \text{ cm}^3/\text{s}$ for m(WIMP) = 1.0 TeV in $\tau^+ \tau^-$ channel.
- ⁴⁸ ABDALLAH 16A search for line spectra from WIMP + WIMP $\rightarrow \gamma\gamma$ in 18 hr HESS data; rule out previous 130 GeV WIMP hint from Fermi-LAT data.
- ⁴⁹AHNEN 16 require $\langle \sigma \cdot v \rangle < 3 \times 10^{-26} \text{ cm}^3/\text{s}$ for m(WIMP) = 100 GeV (*WW* channel).
- 50 AVRORIN 16 require $\langle \text{s.v} \rangle < 1.91 \times 10^{-21} \text{ cm}^3/\text{s}$ from WIMP annihilation to νs via WW channel for m(WIMP) = 1 TeV.
- ⁵¹ CAPUTO 16 place limits on WIMPs from annihilation to gamma rays in Small Magellanic Cloud using Fermi-LaT data: $\langle \sigma \cdot v \rangle < 3 \times 10^{-26} \text{cm}^3/\text{s}$ for m(WIMP) = 10 GeV.
- 52 FORNASA 16 use anisotropies in the γ -ray diffuse emission detected by Fermi-LAT to bound $\langle \sigma \cdot v \rangle < 10^{-25} {\rm cm}^3/{\rm s}$ for m(WIMP) = 100 GeV in $b\overline{b}$ channel: see Fig. 28. The limit is driven by dark-matter subhalos in the Milky Way and it refers to their Most Constraining Scenario.
- ⁵³LEITE 16 constrain WIMP annihilation via search for radio emissions from Smith cloud; $\langle \sigma \cdot v \rangle < 5 \times 10^{-27} \text{cm}^3/\text{s}$ in *ee* channel for m(WIMP) = 5 GeV.
- ⁵⁴LI 16 re-analyze Fermi-LAT data on 8 dwarf spheroidals; set limit $\langle \sigma \cdot v \rangle < 2 \times 10^{-26}$ cm³/s for *m*(WIMP) = 100 GeV in $b\overline{b}$ mode with substructures included.
- 55 LI 16A constrain $\langle \sigma \cdot v \rangle < 10^{-25} {\rm cm}^3/{\rm s}$ in $b \overline{b}$ channel for m(WIMP) = 100 GeV using Fermi-LAT data from M31; see Fig. 6.

- 56 LIANG 16 search dwarf spheroidal galaxies, Large Magellanic Cloud, and Small Magellanic Cloud for γ -line in Fermi-LAT data.
- ⁵⁷LU 16 re-analyze Fermi-LAT and AMS-02 data; require $\langle \sigma \cdot v \rangle < 10^{-25} \text{cm}^3/\text{s}$ for $m_m(\text{WIMP}) = 1$ TeV in $b\overline{b}$ channel .
- ⁵⁸SHIRASAKI 16 re-anayze Fermi-LAT extra-galactic data; require $\langle \sigma \cdot v \rangle < 10^{-23} \text{cm}^3/\text{s}$ for m(WIMP) = 1 TeV in $b\overline{b}$ channel; see Fig. 8.
- ⁵⁹ AARTSEN 15C search for neutrinos from X^0 annihilation in the Galactic halo. See their Figs. 16 and 17, and Table 5 for limits on $\sigma \cdot v$ for X^0 mass between 100 GeV and 100 co TeV.
- ⁶⁰ AARTSEN 15E search for neutrinos from X^0 annihilation in the Galactic center. See their Figs. 7 and 9, and Table 3 for limits on $\sigma \cdot v$ for X^0 mass between 30 GeV and 10 TeV.
- ⁶¹ABRAMOWSKI 15 search for γ from X^0 annihilation in the Galactic center. See their Fig. 4 for limits on $\sigma \cdot v$ for X^0 mass between 250 GeV and 10 TeV.
- ⁶² ACKERMANN 15 search for monochromatic γ from X^0 annihilation in the Galactic halo. See their Fig. 8 and Tables 2–4 for limits on $\sigma \cdot v$ for X^0 mass between 0.2 GeV and 500 GeV.
- ⁶³ ACKERMANN 15A search for γ from X^0 annihilation (both Galactic and extragalactic) in the isotropic γ background. See their Fig. 7 for limits on $\sigma \cdot v$ for X^0 mass between 10 GeV and 30 TeV.
- ⁶⁴ ACKERMANN 15B search for γ from X^0 annihilation in 15 dwarf spheroidal satellite galaxies of the Milky Way. See their Figs. 1 and 2 for limits on $\sigma \cdot v$ for X^0 mass between 2 GeV and 10 TeV.
- ⁶⁵ ADRIAN-MARTINEZ 15 search for neutrinos from X^0 annihilation in the Galactic center. See their Figs. 10 and 11 and Tables 1 and 2 for limits on $\sigma \cdot v$ for X^0 mass between 25 GeV and 10 TeV.
- ⁶⁶ ACKERMANN 14 search for γ from X^0 annihilation in 25 dwarf spheroidal satellite galaxies of the Milky Way. See their Tables II–VII for limits assuming annihilation into e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $u\overline{u}$, $b\overline{b}$, and W^+W^- , for X^0 mass ranging from 2 GeV to 10 TeV.
- ⁶⁷ Limit assuming X^0 pair annihilation into $b\overline{b}$.
- ⁶⁸Limit assuming X^0 pair annihilation into W^+W^- .
- ⁶⁹ ALEKSIC 14 search for γ from X^0 annihilation in the dwarf spheroidal galaxy Segue 1. The listed limit assumes annihilation into W^+W^- . See their Figs. 6, 7, and 16 for limits on $\sigma \cdot v$ for annihilation channels $\mu^+\mu^-$, $\tau^+\tau^-$, $b\overline{b}$, $t\overline{t}$, $\gamma\gamma$, γZ , W^+W^- , ZZ for X^0 mass between 10^2 and 10^4 GeV.
- ⁷⁰ AARTSEN 13C search for neutrinos from X^0 annihilation in nearby galaxies and galaxy clusters. See their Figs. 5–7 for limits on $\sigma \cdot v$ for $X^0 X^0 \rightarrow \nu \overline{\nu}$, $\mu^+ \mu^-$, $\tau^+ \tau^-$, and $W^+ W^-$ for X^0 mass between 300 GeV and 100 TeV. ⁷¹ ABRAMOWSKI 13 search for monochromatic γ from X^0 annihilation in the Milky Way
- ⁽¹ ABRAMOWSKI 13 search for monochromatic γ from X^0 annihilation in the Milky Way halo in the central region. Limit on $\sigma \cdot v$ between 10^{-28} and 10^{-25} cm³ s⁻¹ (95% CL) is obtained for X^0 mass between 500 GeV and 20 TeV for $X^0 X^0 \rightarrow \gamma \gamma$. X^0 density distribution in the Galaxy by Einasto is assumed. See their Fig. 4.
- ⁷² ACKERMANN 13A search for monochromatic γ from X^0 annihilation in the Milky Way. Limit on $\sigma \cdot v$ for the process $X^0 X^0 \rightarrow \gamma \gamma$ in the range 10^{-29} – 10^{-27} cm³ s⁻¹ (95% CL) is obtained for X^0 mass between 5 and 300 GeV. The limit depends slightly on the assumed density profile of X^0 in the Galaxy. See their Tables VII–X and Fig.10. Supersedes ACKERMANN 12.
- ⁷³ ABRAMOWSKI 12 search for γ 's from X^0 annihilation in the Fornax galaxy cluster. See their Fig. 7 for limits on $\sigma \cdot v$ for X^0 mass between 0.1 and 100 TeV for the annihilation channels $\tau^+ \tau^-$, $b\overline{b}$, and $W^+ W^-$.
- ⁷⁴ ACKERMANN 12 search for monochromatic γ from X^0 annihilation in the Milky Way. Limit on $\sigma \cdot v$ in the range 10^{-28} – 10^{-26} cm³s⁻¹ (95% CL) is obtained for X^0 mass

between 7 and 200 GeV if X^0 annihilates into $\gamma\gamma$. The limit depends slightly on the assumed density profile of X^0 in the Galaxy. See their Table III and Fig. 15.

- ⁷⁵ ACKERMANN 12 search for γ from X^0 annihilation in the Milky Way in the diffuse γ background. Limit on $\sigma \cdot v$ of 10^{-24} cm³s⁻¹ or larger is obtained for X^0 mass between 5 GeV and 10 TeV for various annihilation channels including W^+W^- , $b\overline{b}$, gg, e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$. The limit depends slightly on the assumed density profile of X^0 in the Galaxy. See their Figs. 17–20.
- ⁷⁶ ALIU 12 search for γ 's from X^0 annihilation in the dwarf spheroidal galaxy Segue 1. Limit on $\sigma \cdot v$ in the range 10^{-24} – 10^{-20} cm³s⁻¹ (95% CL) is obtained for X^0 mass between 10 GeV and 2 TeV for annihilation channels e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $b\overline{b}$, and W^+W^- . See their Fig. 3.
- ⁷⁷ ABBASI 11C search for ν_{μ} from X^0 annihilation in the outer halo of the Milky Way. The limit assumes annihilation into $\nu\nu$. See their Fig. 9 for limits with other annihilation channels.
- ⁷⁸ ABRAMOWSKI 11 search for γ from X^0 annihilation near the Galactic center. The limit assumes Einasto DM density profile.
- ⁷⁹ ACKERMANN 11 search for γ from X^0 annihilation in ten dwarf spheroidal satellite galaxies of the Milky Way. The limit for m = 10 GeV assumes annihilation into $b\overline{b}$, the others $W^+ W^-$. See their Fig. 2 for limits with other final states. See also GERINGER-SAMETH 11 for a different analysis of the same data.

- Dark Matter Particle (X^0) Production in Hadron Collisions

Searches for X^0 production in association with observable particles (γ , jets, ...) in high energy hadron collisions. If a specific form of effective interaction Lagrangian is assumed, the limits may be translated into limits on X^0 -nucleon scattering cross section.

VALUE	DOCUMENT ID		TECN	COMMENT
$\bullet \bullet \bullet$ We do not u	se the following data	for a	/erages,	fits, limits, etc. • • •
	¹ AAD	23A	ATLS	$H \rightarrow$ invisible search
	² AAD	23AF	ATLS	$\overline{t}t + H \rightarrow \text{ invisible search}$
	³ AAD	23AJ	ATLS	extended 2HDM search
	⁴ AAD	23вх	ATLS	<i>H</i> a , $a \rightarrow DM$ search
	⁵ AAD	23W	ATLS	dark Higgs model
	⁶ AKIMOV	23	COHR	LDM search at SNS
	⁷ LIN	23C	кото	$\chi ightarrow \ \gamma \gamma$ from ${\cal K}^{m 0}_I$ decay
	⁸ AAD	22D	ATLS	$Z{+}H$ with $H ightarrow { m ar D}{ m M}$
	⁹ AAD	22P	ATLS	$H ightarrow \ \chi \chi$ search via VBF
	¹⁰ AGUILAR-AR	.22A	CCM	p dump search for MeV-scale DM
	¹¹ TUMASYAN	22AA	CMS	Z' ightarrow DM search
	¹² TUMASYAN	22AG	CMS	strongly interacting DM search
	¹³ TUMASYAN	22G	CMS	DM search via VBF to Higgs
	¹⁴ AAD	21AZ	ATLS	DM search in $H ot \!$
	¹⁵ AAD	21 BB	ATLS	DM search in $H \not \!$
	¹⁶ AAD	21 D	ATLS	Dark Higgs
	¹⁷ AAD	21F	ATLS	jet + missing momentum
	¹⁸ AAD	21ĸ	ATLS	photon + DM
	¹⁹ AAD	210	ATLS	$\ell + \text{jets} + \not\!$
	²⁰ AAD	21 P	ATLS	$\ell^+ \ell^- + \text{jets} + E_T$
	²¹ AAD	21S	ATLS	b -jets + $\not\!$
	²² SIRUNYAN	21A	CMS	$pp \rightarrow Z\chi\chi; Z \rightarrow \ell\overline{\ell}$
	-			

https://pdg.lbl.gov

²³ TUMASYAN	21D CMS	DM search in jets $+ E_T$
²⁴ SIRUNYAN	20x CMS	$pp \rightarrow Z' \rightarrow A(Z')h \rightarrow h + E_T$
²⁵ AABOUD	19AA ATLS	multi-channel BSM search
²⁶ AABOUD	19AL ATLS	$H \rightarrow \gamma \gamma$
²⁷ AABOUD	19AL ATLS	$\begin{array}{c} H \rightarrow \chi \chi \\ H \rightarrow \chi \chi \end{array}$
²⁸ AABOUD	190 ATLS	single $t + E_{TT}$
²⁹ AABOUD	19V ATLS	review mediator based DM searches
30 BANER IFF	19 NA64	$eN \rightarrow eN + E$
³¹ SIRUNYAN	19AN CMS	$H_{\gamma\gamma} \rightarrow b\overline{b} E_{T}$
32 SIRUNYAN	19BC CMS	$1010 \rightarrow \mu i E_{T}$
33 SIRUNYAN	19BC CMS	$VV \rightarrow Haa: H \rightarrow DM$
³⁴ SIRUNYAN	19C CMS	$nn \rightarrow t \overline{t} \gamma \gamma$
35 SIRUNYAN	190 CMS	$pp \rightarrow \mathcal{E}_{\mathcal{X}\mathcal{X}}$
36 SIRLINYAN	190 CMS	$pp \rightarrow t\overline{t} + \eta \overline{x}; pp \rightarrow t(\overline{t}) + \eta \overline{x}$
		$pp \rightarrow II + FI; pp \rightarrow I(I) + FI$ $pp \rightarrow Z\gamma\gamma; Z \rightarrow \ell\ell$
		$pp \rightarrow \overline{t} \overline{E}_{XX}, \overline{z} \rightarrow \overline{b} \overline{b} \overline{E}_{\overline{x}}$
	18CA ATLS	$pp \rightarrow ll \not p_T, pp \rightarrow bb \not p_T$
		$pp \rightarrow v \chi \chi, v \rightarrow jj$
	18P MRNE	$pp \rightarrow jet(3) + \psi_T$
42 KHACHATRY		$p_N \rightarrow \chi_N, \chi = e, \pi, or N$
43 CIDI INIVANI		$pp \rightarrow Z(\ell\ell) + \mu_{I}$
44 SIRLINVAN		$pp \rightarrow t \varphi_{I'}$
45 SIRLINVAN		$z = \frac{7}{2} F_{}$
46 SIRLINVAN		$pp \rightarrow \mathcal{I} \varphi_{T}$
47 SIDUNVAN		$pp \rightarrow ll \# l'$
48 CIDLINIVAN		$pp \rightarrow z \psi_T$
49 SIDUNIVAN		$pp \rightarrow \chi \chi \eta, \eta \rightarrow \gamma \gamma \gamma \text{ or } \eta \eta$
		$pp \rightarrow \text{Jets } \psi_{\underline{T}}$
	17A ATLS	$pp(H \rightarrow DD + \text{ while pair})$
	17AMATLS	$pp \rightarrow Z' \rightarrow An \rightarrow n(bb) + \mu_T$
	17AQ ATLS	$pp \rightarrow h(\gamma\gamma) + \mu_T$
		$pp \rightarrow \text{Jet}(s) + \not\!$
55 ACUU AD AD	17R AILS	$pp \rightarrow \gamma \not \!\!\!\!/ T$
56 DANED JEE	17 MBNE	$pN \rightarrow \chi\chi\chi; \chiN \rightarrow \chiN$
57 KUACHATOX	17 NA64	$eN \rightarrow eN\gamma'$
58 KHACHATRY.	ITA CMS	forward jets + $\not\!$
⁵⁰ KHACHATRY	17 CMS	$H \rightarrow \text{invisibles}$
60 CIDUNIXAN	17 CMS	$Z + \not\!$
61 SIRUNYAN	17AP CMS	$pp \rightarrow Z' \rightarrow Ah \rightarrow h + \not\!\!\! E_T$
62 SIRUNYAN	17AQ CMS	$pp \rightarrow \gamma + \not\!$
62 SIRUNYAN	17BB CMS	$pp \rightarrow tt + \not\!$
⁶³ SIRUNYAN	17G CMS	$pp \rightarrow j + \not\!$
65 A DE AVIE	170 CMS	$pp \rightarrow Z\chi\chi; Z \rightarrow \ell\ell$
⁶⁵ AABOUD	16AD ATLS	(W or Z $ ightarrow$ jets) + $ ot\!$
67	16AF ATLS	$VV ightarrow$ forward jets $+ ot\!$
68 AAD	16AG ATLS	ℓ + jets
⁰⁰ AAD	16M ATLS	$pp ightarrow H + ot\!$
V ⁹ KHACHATRY	.16BZ CMS	$jet(s) + \not\!\!E_T$
[™] KHACHATRY	.16CA CMS	jets + E_T
^{1 KHACHATRY}	.16N CMS	$pp \rightarrow \gamma + E_T$
/ AAD	15AS ATLS	$b~(b)+ ot\!$
¹³ AAD	15bh ATLS	$jet + E_T$

74	AAD	15cf	ATLS	$H^0 + E_T$
75	AAD	15cs	ATLS	$\gamma + \not\!\!\! E_T$
76	KHACHATRY	. 15 AG	CMS	$t\overline{t} + E_T$
77	KHACHATRY	.15AL	CMS	$jet + \not\!\!\!E_T$
78	KHACHATRY	.15T	CMS	$\ell + \not\!\! E_T$
79	AAD	14AI	ATLS	$W + E_T$
80	AAD	14BK	ATLS	W, $Z + \not\!\!\!E_T$
81	AAD	14K	ATLS	$Z + \not\!\!E_T$
82	AAD	140	ATLS	$Z + \not \! E_T$
83	AAD	13AD	ATLS	jet + $\dot{\not{\!\! E}_T}$
84	AAD	13C	ATLS	$\gamma + \not\!\! E_T$
85	AALTONEN	12K	CDF	$t + \not{\!\! E_T}$
86	AALTONEN	12M	CDF	jet $+ \hat{E}_T$
87	CHATRCHYAN	12ap	CMS	jet $+ \not\!\!\!E_T$
88	CHATRCHYAN	12T	CMS	$\gamma + \not\!\! E_T$
				_

- ¹ AAD 23A search for $H \rightarrow$ invisible. No signal observed. Results interpreted in terms of several DM Higgs portal simplified models.
- ² AAD 23AF search for $\overline{t}t + H \rightarrow \text{ invisible with 139 fb}^{-1}$ of data. No signal observed. Limits placed on branching fractions of H decays etc. for various DM mediator models. Result also included in AAD 23A.
- ³ AAD 23AJ search for $t W \chi \chi$ production in mediator-extended 2HDM with 139 fb⁻¹ of data. No signal observed. Limits placed in m(H) vs. m(mediator) and tan(β) vs. m(H) planes.
- ⁴AAD 23BX search for $A \rightarrow Ha$ production where $H \rightarrow \tau \overline{\tau}$ and $a \rightarrow \chi \chi$. No signal observed. Limits placed on 2HDM+a model.
- ⁵ AAD 23W search for DM in dark Higgs model via $WW\chi\chi$ final state with 139 fb⁻¹ of data. No signal detected. Limits set in m(dark Higgs) vs. m(Z') plane.
- ⁶ AKIMOV 23 search for light DM via COHERENT CsI detector at SNS. No signal observed. For scalar DM model, limits set for $m(\chi) = 1-300$ MeV. Limit of $\sigma(\chi N) < 1 \times 10^1$ pb set at peak sensitivity $m(\chi) = 25$ MeV.
- ⁷ LIN 23C search for $\chi \to \gamma \gamma$ decay where $p \to \chi \chi$ at KOTO. No signal observed. Limits placed on K_I^0 branching fraction.
- ⁸ AAD 22D search for Z+H production with $Z \rightarrow I\overline{I}$ and $H \rightarrow \chi\chi$ with 139 fb⁻¹ at 13 TeV; no signal found; limits placed in various simplified models depending on Higgs portal and DM mediator.
- ⁹AAD 22P search for *H* production via VBF with $H \rightarrow \chi \chi$ with 139 fb⁻¹ at 13 TeV; no signal found; limits placed for various Higgs DM portal simplified models.
- ¹⁰ AGUILAR-AREVALO 22A report search for MeV vector portal and leptophobic DM via scatter on liquid Ar at the Lujan stopped pion source at LANL; no signal detected; limits placed on vector portal and leptophobic DM vs. $m(\chi)$: 1–40 MeV.
- ¹¹ TUMASYAN 22AA search for Z' decay to dark quarks with 138 fb⁻¹ at 13 TeV; no signal observed; limits exclude a wide range of strongly coupled hidden sector models.
- 12 TUMASYAN 22AG search for strongly interacting dark matter production via scalar mediator, with SIMP decay to trackless jets with 16.1 fb $^{-1}$ at 13 TeV; no signal detected; limits placed in mass vs. cross section plane for simplified models.
- ¹³ TUMASYAN 22G search for VBF production of Higgs with $H \rightarrow \chi \chi$ with 101 fb⁻¹ at 13 TeV, combined with earlier searches, in total 19.7 fb⁻¹ at 8 TeV and 140 fb⁻¹ at 13 TeV are used; no signal detected; limits placed in mass vs. cross section plane for various Higgs portal simplified models.
- ¹⁴AAD 21AZ search for DM in $H \not \!\!E_T \rightarrow \gamma \gamma \not \!\!E_T$ events with 139 fb⁻¹ at 13 TeV. No signal observed. Limits placed for several simplified models.

- ¹⁶ AAD 21D search for $VV + \chi\chi$, $V \rightarrow q\overline{q}$ with 139 fb⁻¹ at 13 TeV LHC. No signal detected. Limits placed in dark Higgs boson mass vs. m(Z') plane. Here VV stand for $W^{\pm}W^{\mp}$, ZZ.
- 17 AAD 21F search for monojet recoiling against invisibles with 139 fb $^{-1}$ at 13 TeV LHC. No signal detected. Limits placed in various simplified dark matter models.
- 18 AAD 21K search for a photon recoiling against dark matter with 139 fb⁻¹ at 13 TeV LHC. No signal detected. Limits placed on parameter space of various simplified models.
- ¹⁹ AAD 210 search for ℓ + jets + $\not\!\!E_T$ to search for *t*-pairs + DM particles with 139 fb⁻¹ at LHC 13 TeV LHC. No signal detected. Limits placed in the cross-section vs. mediator mass plane, assuming light DM states.
- ²⁰ AAD 21P search for $\ell^+\ell^-$ + jets + $\not\!\!E_T$ in context of various BSM models with 139 fb⁻¹ at 13 TeV LHC. No signal observed. Limits placed in parameter space of dark matter models and SUSY.
- ²¹AAD 21S search for *b*-jets + $\not{\!\! E}_T$ signal from BSM/DM models with 139 fb⁻¹ at 13 TeV LHC. No signal observed. Limits placed on parameter space of DM models.
- 22 SIRUNYAN 21A search for DM production in association with leptonically decaying Z boson in 137 fb⁻¹ at 13 TeV; no signal; limits set in large variety of simplified DM as models.
- ²³ TUMASYAN 21D search for DM and other exotica at CMS in jets $+ \not\!\!E_T$ events with 137 fb⁻¹ at 13 TeV. No signal observed. Limits placed for a variety of simplified models.
- 25 AABOUD 19AA searches for BSM physics in more than 700 event classes with more than 10^5 regions at 13 TeV with 3.2 fb⁻¹; no significant signal.
- ²⁶ AABOUD 19AI searches for vector boson fusion $pp \rightarrow Hqq$, $H \rightarrow$ invisible at 13 TeV with 36.1 fb⁻¹; no signal: require B($H \rightarrow$ invisible) < 0.37 (0.28 expected).
- ²⁷ AABOUD 19AL perform search in three different channels for $H \rightarrow \chi \chi$ at 7, 8 and 13 TeV; combined result BF($H \rightarrow$ invisible) < 0.26 (0.17 expected).
- ²⁸AABOUD 19Q search for single $t + E_T$ at 13 TeV with 36.1 fb⁻¹ of data; no signal; limits set in σ or coupling vs. mass plane for simplified models.
- ²⁹ AABOUD 19V review ATLAS results from 7, 8 and 13 TeV searches for mediator-based DM and DE scalar which couples to gravity; no signal: limits set for large variety of simplified models.
- ³¹SIRUNYAN 19AN search at 13 TeV with 35.9 fb⁻¹ for $pp \rightarrow H\chi\chi \rightarrow b\overline{b} \not E_T$; no signal: limits set in the context of a 2HDM + pseudoscalar (a) model and a baryonic Z' 22 model.
- ³³SIRUNYAN 19BO search for vector boson fusion $VV \rightarrow qqH$ with $H \rightarrow \chi\chi$ at 13 TeV with 38.2 fb⁻¹; no signal: limits placed for several models. Also search for $H \rightarrow$ invisible at 7, 8, and 13 TeV; no signal: limit placed on BF < 0.19.
- ³⁴ SIRUNYAN 19C search for DM via $pp \rightarrow t\bar{t}\chi\chi$ at 13 TeV, 35.9 fb⁻¹; no signal; limits placed on coupling vs. mediator mass for various simplified models.
- ³⁵SIRUNYAN 190 search for $pp \rightarrow \gamma$ at 13 TeV with 35.9 fb⁻¹; no signal: limits placed on parameters of various models.

- ³⁷AABOUD 18 search for $pp \rightarrow Z + \not\!\!E_T$ with $Z \rightarrow \ell \ell$ at 13 TeV with 36.1 fb⁻¹ of data. Limits set for simplified models.
- ³⁸AABOUD 18A search for $pp \rightarrow t\overline{t} \not\!\!\!E_T$ or $pp \rightarrow b\overline{b} \not\!\!\!E_T$ at 13 TeV, 36.1 fb⁻¹ of data. Limits set for simplified models.
- ³⁹AABOUD 18CA search for $pp \rightarrow V\chi\chi$ with $V \rightarrow jj$ at 13 TeV, 36.1 fb⁻¹; no signal; limits set in m(DM) vs m(mediator) simplified model plane
- ⁴⁰AABOUD 181 search for $pp \rightarrow j + E_T$ at 13 TeV with 36.1 fb⁻¹ of data. Limits set for simplified models with pair-produced weakly interacting dark-matter candidates.
- ⁴¹ AGUILAR-AREVALO 18B search for WIMP production in MiniBooNE *p* beam dump; no signal; limits set for $m(\chi) \sim 5-50$ MeV in vector portal DM model.

- ⁴⁴ SIRUNYAN 18BO search for high mass dijet resonances at 13 TeV and 36 fb⁻¹; no signal: limits placed on various models, including simplified DM models involving a spin z = 1 Z' mediator.
- 45 SIRUNYAN 18_{BV} search for $pp \rightarrow Z \not \!\!E_T$ at 13 TeV; no signal, limits placed for various exotic physics models including DM.
- ⁴⁶ SIRUNYAN 18C search for new physics in $pp \rightarrow$ final states with two oppositely charged leptons at 13 TeV with 35.9 fb⁻¹. Limits placed on m(mediator) and top squark for various simplified models.
- ⁴⁸ SIRUNYAN 18DH search for $pp \rightarrow \chi \chi h$; $h \rightarrow \gamma \gamma$ or $\tau \overline{\tau}$ at 13 TeV, 35.9 fb⁻¹; no signal; limits placed on massive boson mediator Z' in the context of Z'+2HDM and baryonic Z' models. Limits also cast in terms of spin-independent WIMP-nucleon cross section for masses 1–200 GeV.
- ⁴⁹ SIRUNYAN 18S search for $pp \rightarrow \text{jets } \not\!\!\!E_T$ at 13 TeV; no signal: limits placed on simplified dark matter models, on the branching ratio of the Higgs boson to invisible particles, and on several other exotic physics models including fermion portal DM.
- ⁵⁰ AABOUD 17A search for $H \rightarrow b\overline{b} + E_T$. See Fig. 4b for limits set on VB mediator vs __ WIMP mass.
- ⁵¹ AABOUD 17AM search for $pp \rightarrow Z' \rightarrow Ah \rightarrow h(b\overline{b}) + \mathbb{E}_T$ at 13 TeV. Limits set in m(Z') vs. m(A) plane and on the visible cross section of $h(b\overline{b}) + \mathbb{E}_T$ events in bins of \mathbb{E}_T .
- ⁵² AABOUD 17AQ search for WIMP in $pp \rightarrow h(\gamma\gamma) + \not\!\!\!E_T$ in 36.1 fb⁻¹ of data. Limits on the visible cross section are also provided. Model dependent limits on spin independent DM Nucleon cross-section are also presented, which are more stringent than those from direct searches for DM mass smaller than 2.5 GeV.
- 54 AABOUD 17R, for an axial vector mediator in the s-channel, excludes m(mediator) < 750-1200 GeV for m(DM) < 230-480 GeV, depending on the couplings.
- ⁵⁵ AGUILAR-AREVALO 17A search for DM produced in 8 GeV proton collisions with steel beam dump followed by DM-nucleon scattering in MiniBooNE detector. Limit placed on DM cross section parameter $Y < 2 \times 10^{-8}$ for $\alpha_D = 0.5$ and for 0.01 < m(DM) < 0.3 GeV.
- ⁵⁶ BANERJEE 17 search for dark photon invisible decay via eN scattering; exclude m(γ') < 100 MeV as an explanation of $(g_{\mu}-2)$ muon anomaly.
- 57 KHACHATRYAN 17A search for WIMPs in forward jets + $\not\!\!\!E_T$ channel with 18.5 fb $^{-1}$ at 8 TeV; limits set in effective theory model, Fig. 3.

- ⁵⁸ KHACHATRYAN 17F search for $H \rightarrow$ invisibles in pp collisions at 7, 8, and 13 TeV; place limits on Higgs portal DM.
- ⁵⁹SIRUNYAN 17 search for $pp \rightarrow Z + E_T$ with 2.3 fb⁻¹ at 13 TeV; no signal seen; limits placed on WIMPs and unparticles.
- ⁶⁰ SIRUNYAN 17AP search for $pp \rightarrow Z' \rightarrow Ah \rightarrow h + \not\!\!\!E_T$ with $h \rightarrow b\overline{b}$ or $\gamma\gamma$ and $A \rightarrow \chi\chi$ with 2.3 fb⁻¹ at 13 TeV. Limits set in m(Z') vs. m(A) plane.
- ⁶² SIRUNYAN 17BB search for WIMPs via $pp \rightarrow t\overline{t} + \not\!\!E_T$, $pp \rightarrow b\overline{b} + \not\!\!E_T$ at 13 TeV with 2.2 fb⁻¹. Limits derived for various simplified models.
- ⁶³SIRUNYAN 17G search for $pp \rightarrow j + \not\!\!E_T$ with 12.9 fb⁻¹ at 13 TeV; limits placed on WIMP mass/mediators in DM simplified models.
- ⁶⁴SIRUNYAN 17U search for WIMPs/unparticles via $pp \rightarrow Z\chi\chi$, $Z \rightarrow \ell\bar{\ell}$ at 13 TeV with 2.3 fb⁻¹. Limits derived for various simplified models.
- 65 AABOUD 16AD place limits on VVXX effective theory via search for hadronic W or Z plus WIMP pair production. See Fig. 5.
- ⁶⁶ AAD 16AF search for $VV \rightarrow (H \rightarrow WIMP \text{ pair}) + \text{forward jets with } 20.3 \text{ fb}^{-1} \text{ at } 8$ TeV; set limits in Higgs portal model, Fig. 8.
- ⁶⁷ AAD 16AG search for lepton jets with 20.3 fb⁻¹ of data at 8 TeV; Fig. 13 excludes dark photons around 0.1–1 GeV for kinetic mixing 10^{-6} – 10^{-2} .
- ⁶⁸AAD 16M search with 20.3 fb⁻¹ of data at 8 TeV pp collisions; limits placed on EFT model (Fig. 7) and simplified Z' model (Fig. 6).
- 69 KHACHATRYAN 16BZ search for jet(s) + $\not\!\!\!E_T$ in 19.7 fb $^{-1}$ at 8 TeV; limits set for variety of simplified models.
- ⁷⁰ KHACHATRYAN 16CA search for WIMPs via jet(s) + E_T using razor variable; require mediator scale > 1 TeV for various effective theories.
- 71 KHACHATRYAN 16N search for γ + WIMPs in 19.6 fb $^{-1}$ at 8 TeV; limits set on SI and SD WIMP-p scattering in Fig. 3.
- ⁷² AAD 15AS search for events with one or more bottom quark and missing E_T , and also events with a top quark pair and missing E_T in *pp* collisions at $E_{cm} = 8$ TeV with L = 20.3 fb⁻¹. See their Figs. 5 and 6 for translated limits on X^0 -nucleon cross section for m = 1-700 GeV.
- ⁷³ AAD 15BH search for events with a jet and missing E_T in pp collisions at $E_{cm} = 8$ TeV with L = 20.3 fb⁻¹. See their Fig. 12 for translated limits on X^0 -nucleon cross section T_1 for m = 1-1200 GeV.
- ⁷⁴ AAD 15CF search for events with a H^0 ($\rightarrow \gamma\gamma$) and missing E_T in pp collisions at $E_{\rm cm} = 8$ TeV with L = 20.3 fb⁻¹. See paper for limits on the strength of some contact interactions containing X^0 and the Higgs fields.
- ⁷⁵ AAD 15CS search for events with a photon and missing E_T in pp collisions at $E_{cm} = 8$ TeV with L = 20.3 fb⁻¹. See their Fig. 13 (see also erratum) for translated limits on X^0 -nucleon cross section for m = 1-1000 GeV.
- ⁷⁶ KHACHATRYAN 15AG search for events with a top quark pair and missing E_T in pp collisions at $E_{cm} = 8$ TeV with L = 19.7 fb⁻¹. See their Fig. 8 for translated limits on _____X⁰-nucleon cross section for m = 1-200 GeV.
- ⁷⁷ KHACHATRYAN 15AL search for events with a jet and missing E_T in pp collisions at $E_{\rm cm} = 8$ TeV with L = 19.7 fb⁻¹. See their Fig. 5 and Tables 4–6 for translated limits on X^0 -nucleon cross section for m = 1–1000 GeV.
- ⁷⁸ KHACHATRYAN 15T search for events with a lepton and missing E_T in pp collisions at $E_{cm} = 8$ TeV with L = 19.7 fb⁻¹. See their Fig. 17 for translated limits on X^0 -proton cross section for m = 1-1000 GeV.

⁷⁹ AAD 14AI search for events with a W and missing E_T in pp collisions at $E_{cm} = 8$ TeV with L = 20.3 fb⁻¹. See their Fig. 4 for translated limits on X^0 -nucleon cross section for m = 1-1500 GeV.

- ⁸⁰AAD 14_{BK} search for hadronically decaying W, Z in association with E_T in 20.3 fb⁻¹ at 8 TeV pp collisions. Fig. 5 presents exclusion results for SI and SD scattering cross section. In addition, cross section limits on the anomalous production of W or Z bosons with large missing transverse momentum are also set in two fiducial regions.
- ⁸¹ AAD 14K search for events with a Z and missing E_T in pp collisions at $E_{cm} = 8$ TeV with L = 20.3 fb⁻¹. See their Fig. 5 and 6 for translated limits on X^0 -nucleon cross section for $m = 1-10^3$ GeV. ⁸² AAD 140 search for ZH^0 production with H^0 decaying to invisible final states. See
- ^{o2} AAD 140 search for ZH^0 production with H^0 decaying to invisible final states. See their Fig. 4 for translated limits on X^0 -nucleon cross section for m = 1-60 GeV in Higgs-portal X^0 scenario.
- ⁸³ AAD 13AD search for events with a jet and missing E_T in pp collisions at $E_{cm} = 7$ TeV with L = 4.7 fb⁻¹. See their Figs. 5 and 6 for translated limits on X^0 -nucleon cross section for m = 1-1300 GeV.
- ⁸⁴ AAD 13C search for events with a photon and missing E_T in pp collisions at $E_{cm} = 7$ TeV with L = 4.6 fb⁻¹. See their Fig. 3 for translated limits on X^0 -nucleon cross section for m = 1-1000 GeV.
- ⁸⁵ AALTONEN 12K search for events with a top quark and missing E_T in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV with L = 7.7 fb⁻¹. Upper limits on $\sigma(tX^0)$ in the range 0.4–2 pb (95% CL) is given for $m_{\chi^0} = 0$ –150 GeV.
- ⁸⁶ AALTONEN 12M search for events with a jet and missing E_T in $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV with L = 6.7 fb⁻¹. Upper limits on the cross section in the range 2–10 pb (90% CL) is given for $m_{\chi^0} = 1$ –300 GeV. See their Fig. 2 for translated limits on X^0 -nucleon cross section.
- ⁸⁷ CHATRCHYAN 12AP search for events with a jet and missing E_T in pp collisions at $E_{\rm cm} = 7$ TeV with L = 5.0 fb⁻¹. See their Fig. 4 for translated limits on X^0 -nucleon cross section for $m_{\chi^0} = 0.1$ -1000 GeV.
- ⁸⁸ CHATRCHYAN 12T search for events with a photon and missing E_T in pp collisions at $E_{\rm cm} = 7$ TeV with L = 5.0 fb⁻¹. Upper limits on the cross section in the range 13–15 fb (90% CL) is given for $m_{\chi^0} = 1$ –1000 GeV. See their Fig. 2 for translated limits

on X^0 -nucleon cross section.

REFERENCES FOR WIMP and Dark Matter Searches

AAD	23A	PL B842 137963	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23AF	EPJ C83 503	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23AJ	EPJ C83 603	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23BX	JHEP 2309 189	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23W	JHEP 2307 116	G. Aad <i>et al.</i>	(ATLAS Collab.)
AALBERS	23	PRL 131 041002	J. Aalbers <i>et al.</i>	(LZ Collab.)
AALBERS	23A	PR D108 072006	J. Aalbers <i>et al.</i>	(LZ Collab.)
ABBASI	23A	PR D108 102004	R. Abbasi <i>et al.</i>	(IceCube Collab.)
ABBASI	23B	JCAP 2310 003	R. Abbasi <i>et al.</i>	(IceCube Collab.)
ABE	23A	PRL 130 031802	K. Abe <i>et al.</i>	(Super-Kamiokande Collab.)
Also		PRL 131 159903 (errat.) K. Abe <i>et al.</i>	(Super-Kamiokande Collab.)
ABE	23B	PRL 130 061002	H. Abe <i>et al.</i>	(MAGIC Collab.)
ABE	23E	PR D108 083022	K. Abe <i>et al.</i>	(XMASS-I Collab.)
ABE	23G	PRL 131 159903 (errat.) K. Abe <i>et al.</i>	(Super-Kamiokande Collab.)
ABREU	23	PRL 130 061001	P. Abreu <i>et al.</i>	(Pierre Auger Collab.)
ACEVEDO	23	JCAP 2311 085	J.F. Acevedo, J. Bramante	, A. Goodman (QUKI+)
ADAMS	23	PR D108 062003	E. Adams <i>et al.</i>	(PICO Collab.)
ADHIKARI	23B	PRL 131 201802	G. Adhikari <i>et al.</i>	(COSINE-100 Collab.)
ADHIKARI	23C	PR D108 092006	G. Adhikari <i>et al.</i>	(COSINE-100 Collab.)
AGNES	23	PRL 130 101001	P. Agnes <i>et al.</i>	(DarkSide-50 Collab.)
AGNES	23A	PRL 130 101002	P. Agnes <i>et al.</i>	(DarkSide-50 Collab.)

AUMES 238 PK DLU 063001 P. Agnes et al. (Darbade-30 calab.) ALIBARY 23 PR D107 112013 M. F. Albakry et al. (SuperCDMS calab.) ALEBARY 23 PR D107 112013 M. F. Albakry et al. (EMCENT Calab.) ALEARANCY 23 PR D107 112003 S. Al Kharusi et al. (EKD-200 Calab.) ALLARANCSONE 23 PR D107 112003 S. Al Kharusi et al. (KENONIT Calab.) APRIL 23 PRL 130 751003 I. Arnquist et al. (KENONIT Calab.) APRIL 23 PRL 130 751003 I. Arnquist et al. (MIT, UCB, LBL.+) GUO 23 PR D106 963010 XK. Guo et al. (MIT, UCB, LBL.+) GUO 23 PR D108 12336 N. Lavis et al. (PandaX-4T Calab.) ILAVIS 23 PR D108 12336 N. Lavis et al. (PandaX-4T Calab.) ILAVIS 23 PR D103 021802 W. Ma et al. (PandaX-4T Calab.) ILAVIS 23 PR D103 021802 W. Ma et al. (PandaX-4T Calab.) ILAVIS 23		000			
AKIMOV 23 PR L 130 D5 Akimov et al. (CDHELENI Collab.) ALBARKY 23 PR D 107 12013 A. Albert et al. (HAWC Collab.) ALERARUS 23 PR D 107 12007 A. Albert et al. (EXE-200 Collab.) AMBROSONE 23 PR L 130 12003 A. Ambrosone et al. (EXE-200 Collab.) AMRILE 23 PR L 130 12003 C. Angloher et al. (XENONIT Collab.) ARNILE 23 PR D 107 12003 L. Armies et al. (MIT, UCB, LBL+) ANN LOWIST 23 PR D 107 13011 W. Forter et al. (MIT, UCB, LBL+) GUO 23 PR D 107 13011 W. State et al. (MATC Collab.) LAVIS 24 PR D 107 13021 W. Lang et al. (MatC Collab.) LAVIS 23 PR D 108 120350 N. Lavis et al. (MTC Collab.) LAVIS 23 PR D 108 120350 N. Lavis et al. (MTC Collab.) LAVIS 24 PR L 130 <t< td=""><td>AGNES</td><td>23B</td><td>PR D107 063001</td><td>P. Agnes <i>et al.</i></td><td>(DarkSide-50 Collab.)</td></t<>	AGNES	23B	PR D107 063001	P. Agnes <i>et al.</i>	(DarkSide-50 Collab.)
ALBARY 23 PR D107 112013 M.F. Albakry et al. (SuperCDMS Collab.) ALBERT 31 JCAP 2312 038 A. Albert et al. (EXO-200 Collab.) ALRARUSI 23 PR D107 122003 G. Angloher et al. (CRESST-III Collab.) ARGLOHER 23 PR D107 122003 G. Angloher et al. (XENONTT Collab.) ARGLOHER 23 PR D107 10301 E. Aprile et al. (XENONTT Collab.) ARGUET 23 PR D107 10301 WO. Guo et al. (MIT, UCB, LBL+) GUO 23 PR D108 043001 X.K. Guo et al. (WITW. RHODE) GUO 23 PR D108 123536 N. Lavis et al. (WITW. RHODE) LINUS 23 PR D108 123536 N. Lavis et al. (KOTO Collab.) LAVIS 23 PR D108 123536 N. Lavis et al. (RadX-AT Collab.) LAVIS 23 PR D103 021802 W. Ma et al. (RadX-AT Collab.) SHIMADA 220 PL B2023 103F01 X. Ning et al. (RAdX-AT Collab.) SHIMA 234 PRL 130 0111001	AKIMOV	23	PRL 130 051803	D. Akimov <i>et al.</i>	(COHERENT Collab.)
ALBERT 23 ICAP 2312 933 A. Albert et al. (HAWC Collab.) AMEROSONE 23 PR L 131 111003 A. Ambrosone et al. (CRESST-III Collab.) ANCLOHER 23 PR L 130 261002 E. Aprile et al. (XENONIT Collab.) APRILE 23 PR L 130 261002 E. Aprile et al. (XENONIT Collab.) ARNUST 23A PR L 130 12003 1. Arnquist et al. (MIT, UCB, LBL+) GUO 23 PR D 107 130301 VWQ. Guo et al. (MIT, UCB, LBL+) GUO 23A PR D 101 130302 X. K. Guo et al. (PandaX-AT Collab.) GUO 23A PR L 130 213020 W. Ma et al. (PandaX-AT Collab.) INM 23A PRL 130 213020 W. Ma et al. (PandaX-AT Collab.) NING 23A PRL 130 213020 W. Ma et al. (PandaX-AT Collab.) AD 22P PL R29 113010 T. Simada et al. (ATLAS Collab.) AD	ALBAKRY	23	PR D107 112013	M.F. Albakry <i>et al.</i>	(SuperCDMS_Collab.)
AL-KHARUSI 23 PR D107 D2007 S. Al Kharusi et al. (EXC-200 Collab.) AMBGOSONE 23 PR D107 D2003 G. Angloher et al. (CRESST-III Collab.) APRILE 23 PR L130 061003 E. Aprile et al. (XENONTT Collab.) ARNQUIST 23A PR D108 063015 JG. Cheng, YF. Liang, E-W. Liang Liang GUO 23 PR D108 063015 JG. Cheng, YF. Liang, E-W. Liang Liang GUO 23 PR D108 064001 X. K. Guo et al. (PandaX-4T Collab.) LAVIS 23 PR D108 052015 J. et al. (PandaX-4T Collab.) LAVIS 23 PR L130 012020 D. Huang et al. (PandaX-4T Collab.) LAVIS 23 PR L130 012020 W. Ma et al. (PandaX-4T Collab.) MAK 23A PRL 130 012020 W. Ma et al. (PandaX-4T Collab.) MAK 23A PRL 130 012030 X. Ming et al. (PandaX-4T Collab.) MAK <	ALBERT	23	JCAP 2312 038	A. Albert <i>et al.</i>	(HAWC Collab.)
AMBROSONE 23 PR L 131 111003 A. Ambrosone et al. ANGLOHER 23 PR L 130 261002 E. Aprile et al. (CRESST-III Collab.) APRILE 23 PR L 130 171003 I. Arnquist et al. (DAMIC Collab.) ARNUUST 23A PR L 130 171003 I. Arnquist et al. (DAMIC Collab.) GUO 23A PR D107 103047 J.W. Foster et al. (MIT, UCB, LBL+) GUO 23A PR D108 043001 X-K. Guo et al. (MIT, UCB, LBL+) GUO 23A PR D108 123356 N. Lavis et al. (PandaX-4T Collab.) LAVIS 23 PR L 130 011001 X. Ning et al. (PandaX-4T Collab.) LIN 23C PRL 130 011001 X. Ning et al. (PandaX-4T Collab.) AD 22D PL B220 3103F01 X. Shada et al. (ATLAS Collab.) AAD 22D PL B220 3103F01 X. Shada et al. (CATLAS Collab.) AAD 22D PL B220 3103F01 X. Asada et al. (CATLAS Collab.) AAD 22D PL B220 3103F01 X. Shada et al. </td <td>AL-KHARUSI</td> <td>23</td> <td>PR D107 012007</td> <td>S. Al Kharusi <i>et al.</i></td> <td>(EXO-200 Collab.)</td>	AL-KHARUSI	23	PR D107 012007	S. Al Kharusi <i>et al.</i>	(EXO-200 Collab.)
ANGLOHER 23 PR D107 122003 G. Angloher et al. (CRESST-III Collab.) APRILE 23 PRL 131 041003 E. Aprile et al. (XENONIT Collab.) ARNQUIST 23A PRL 103 041003 E. Aprile et al. (MIT, UCB, LBL+) GUO 23 PR D107 03047 JG. Cheng, YF. Liang, EW. Liang EVALIDATIONAL GUO 23 PR D107 03040 WQ. Guo et al. (MIT, UCB, LBL+) GUO 23 PR D108 043001 S. Li et al. (PandaX-4T Collab.) LAVIS 23 PR D103 011001 S. Li et al. (PandaX-4T Collab.) LAVIS 23 PRL 130 021001 S. Li et al. (PandaX-4T Collab.) NING 23A PRL 130 021001 S. Li et al. (PandaX-4T Collab.) NING 23A PRL 130 021002 W. Ma et al. (PandaX-4T Collab.) AAD 22P PL BE203 1305610 T. Shimada et al. (ATLAS Collab.) AAD 22P	AMBROSONE	23	PRL 131 111003	A. Ambrosone <i>et al.</i>	
APRILE 23 PRI. 130 251002 E. Aprile et al. (XENONIT Collab.) ARNUUST 23A PR. 130 171003 I. Arnquist et al. (DAMC Collab.) CHENG 23A PR. D107 103047 J.M. Foster et al. (MIT, UCB, LBL+) GUO 23A PR. D108 033001 X-K. Guo et al. (PandaX-4T Collab.) GUO 23A PR. D108 033001 X-K. Guo et al. (PandaX-4T Collab.) LAVIS 23 PRI 130 21001 D. Huang et al. (PandaX-4T Collab.) LAVIS 23 PRI 130 021001 X. Ning et al. (PandaX-4T Collab.) MA 23A PRI 130 021001 X. Ning et al. (PandaX-4T Collab.) SHIMADA 22P PLB292 31066 G. Aad et al. (ATLAS Collab.) ADD 22P JEP 2028 104 (ATLAS Collab.) AAD ADD PL JB11101 H. Abdala et al. (CATLAS Collab.) AAD ADD PL JB11101 H. Abdala et al. <t< td=""><td>ANGLOHER</td><td>23</td><td>PR D107 122003</td><td>G. Angloher <i>et al.</i></td><td>(CRESST-III Collab.)</td></t<>	ANGLOHER	23	PR D107 122003	G. Angloher <i>et al.</i>	(CRESST-III Collab.)
APRILE 23A PR. 131 041003 E. Aprile et al. (XENONT Collab.) ARNQUIST 23A PR. 1010 05015 JG. Cheng, YF. Ling, EW. Liang (DAMIC Collab.) GUO 23 PR D107 103041 WQ. Guo et al. (MIT, UCB, LBL+) GUO 23 PR D107 103011 WQ. Guo et al. (PandaX-4T Collab.) HUANG 23 PR D108 12350 N. Lavis et al. (PandaX-4T Collab.) LAVIS 23 PR D103 1130 11001 C. Lin et al. (PandaX-4T Collab.) NIA 23A PRL 130 012002 W. Ma et al. (PandaX-4T Collab.) NIMG 23A PRL 130 012002 W. Ma et al. (PandaX-4T Collab.) AMD 22P PL Besge 137066 G. Aad et al. (ATLAS Collab.) ABD 22P PL Besge 137066 G. Aad et al. (COSINE-100 Collab.) ADHIKAR 22P PR D106 GADMA (ABDALA PR D106 GADMA ADHIKAR 22P	APRILE	23	PRL 130 261002	E. Aprile <i>et al.</i>	(XENON1T Collab.)
ARNQUIST 23A PR. 130 17.003 I. Arnquist et al. (DAMIC Collab.) CHENG 23 PR D107 103047 J.M. Foster et al. (MIT, UCB, LBL+) GUO 23 PR D108 03001 X-K. Guo et al. (MIT, UCB, LBL+) GUO 23 PR D108 023001 X-K. Guo et al. (PandaX-4T Collab.) LAVIS 23 PR D108 025366 N. Lavis et al. (PandaX-4T Collab.) LAVIS 23 PRI. 130 011800 S. Li et al. (PandaX-4T Collab.) MA 23A PRI. 130 011800 X. Ning et al. (NEWAGE Collab.) AMD 23 PTEP 2028 104 R Ade et al. (MTLAS Collab.) AMD 22D PH B202 130661 G. Ade et al. (MECube Collab.) ABD 22D PR D120 120101 T. Shimada et al. (CECube Collab.) ABD 22D PR D105 022006 G. Adhikari et al. (COSINE-100 Collab.) ABDLIA 2PR D105 02300206<	APRILE	23A	PRL 131 041003	E. Aprile <i>et al.</i>	(XENONnT Collab.)
CHENG 23A PR D108 063015 JG. Cheng, YF. Ling, EW. Ling, M. (MT, UCB, LBL+) GUD 23 PR D107 103041 WQ. Guo et al. (MT, UCB, LBL+) GUD 23 PR D108 043001 XK. Guo et al. (PandaX-4T Collab.) LAWIS 23 PR D108 123536 N. Lavis et al. (PandaX-4T Collab.) LIN 23F PR D108 123536 N. Lavis et al. (PandaX-4T Collab.) MA 23A PR D130 011801 S. Li et al. (PandaX-4T Collab.) MA 23A PRI. 130 01201 T. Shimada et al. (PandaX-4T Collab.) SHIMDA 23 PTEP 2023 103F01 T. Shimada et al. (MTLAS Collab.) ADD 22P PL B820 137066 G. Aad et al. (ATLAS Collab.) ABAS 22B PR D106 062006 G. Aaditari et al. (COSIME-100 Collab.) ADHIKAR 22B PR D106 062006 G. Adhikari et al. (COSIME-100 Collab.) ADHIKAR 22B PR D106 052005 G. Adhikari et al. (COSIME-100 Collab.) ADHIKAR 22B PR D106 052005 G. Adhikari et al. (COMEENT Collab.) AGU	ARNQUIST	23A	PRL 130 171003	I. Arnguist <i>et al.</i>	(DAMIC Collab.)
FOSTER 23 PR D107 103047 J.W. Foster ² et al. (MIT, UCB, LBL+) GUO 23A PR D108 043001 X.K. Guo et al. (PandaX.4T Collab.) LAVIS 23 PR D108 125356 N. Lavis et al. (PandaX.4T Collab.) LAVIS 23 PR D108 125356 N. Lavis et al. (PandaX.4T Collab.) LIN 23C PRL 130 0118001 S. Li et al. (PandaX.4T Collab.) MA 23A PRL 130 0118001 X. Ning et al. (PandaX.4T Collab.) AAD 22D PL B629 137060 G. Aad et al. (ATLAS Collab.) AAD 22D PL B029 137060 G. Aad et al. (CCSINE-100 Collab.) ABD 22P PL B20 120 11101 H. Abdaila et al. (CESURE-Collab.) ABD 22P PR. 129 111101 H. Abdaila et al. (COSNE-100 Collab.) ADHIKAR 22B PR D106 022001 A. Alguin-Arevalo et al. (CCMCollab.) ADHIKAR	CHENG	23A	PR D108 063015	JG. Cheng. YF. Liang. EW. L	iang
CIUO 23 PR D107 103011 WG. Guo et al. (MAT Collab.) GUO 23 PR D108 04300 XK. Guo et al. (PandaX-4T Collab.) LAVIS 23 PR D108 123556 N. Lavis et al. (PandaX-4T Collab.) LIN 236 PRL 130 011001 S. Li et al. (PandaX-4T Collab.) JINNG 23A PRL 130 021002 W. Ma et al. (PandaX-4T Collab.) SHIMADA 230 PTEP 2023<103F01	FOSTER	23	PR D107 103047	IW Foster <i>et al</i>	(MIT UCB IBI +)
CUO 22A PR D108 043001 X.K. Guo et al. (PandaX.4T Collab.) HUANG 23 PR L 131 191002 D. Huang et al. (WITW, RHODE) LI 23F PR D108 123336 N. Lavis et al. (PandaX.4T Collab.) LI 23F PRL 130 21802 W. Ma et al. (PandaX.4T Collab.) MA 23A PRL 130 11801 C. Lin et al. (ROKCG Collab.) MA 23A PRL 130 102101 T. Shimada et al. (RendaX-4T Collab.) SHIMADA 23 PTEP 2023 103760 G. Aad et al. (ATLAS Collab.) ADD 22P PL B29 137066 G. Aad et al. (CALS Collab.) ADB 22P PL 129 11101 H. Abdalla et al. (DEAP Collab.) ADHIKAR 22 PRL 129 11101 H. Abdalla et al. (COSINE-100 Collab.) ADHIKAR 22 PR 128 01801 Magostini et al. (COSINE-100 Collab.) ADHIKAR 22 PR 1016 052001 A.A. Aguilar-Arevalo et al. (COSINE-100 Collab.) AGUIAR-AR 22A PR 1016 052001	GUO	23	PR D107 103011	W_{-0} Guo et al	(, 000, 202+)
HUMAG Case PRL 131 191002 D. Huang et al. (PandaX-4T Callab.) LAVIS 23 PR. D108 123336 N. Lavis et al. (PandaX-4T Callab.) LIN 235 PRL 130 261001 S. Li et al. (PandaX-4T Callab.) LIN 236 PRL 130 021800 W. Ma et al. (PandaX-4T Callab.) NING 23A PRL 130 021800 W. Ma et al. (PandaX-4T Callab.) NING 23A PRL 130 021800 W. Ma et al. (PandaX-4T Callab.) ADD 22D PL B829 137066 G. Aad et al. (ATLAS Callab.) ADD 22D PL B829 137066 G. Aad et al. (ATLAS Callab.) ABDALLA 22 PRL 129 111101 H. Abbasi et al. (COSINE-100 Callab.) ABDALA 22P PLP 129 111101 H. Abbasi et al. (CCOSINE-100 Callab.) ADHIKARI 22 PRL 129 019901 M. Agostini et al. (COSINE-100 Callab.) AGULAR-AR 22A PR 129 05901 M. Agostini et al. (COSINE-100 Callab.) AGULAR-AR 22A PR	GUO	230	PR D108 043001	X-K Guo et al	
Indust 23 PR D108 123022 Diff Diff Diff Diff LIVIS 23 PR D108 1230302 Diff Diff< <diff< td=""> Diff<td>HUANC</td><td>237</td><td>PRI 131 101002</td><td>D Huang at al</td><td>(PandaX AT Collab)</td></diff<>	HUANC	237	PRI 131 101002	D Huang at al	(PandaX AT Collab)
DAVIS 2.3 FN D105 D23030 S. Live et al. (Wint N100L) LI 23F PRL 130 261001 S. Live et al. (RandsX-4T Collab.) LIN 23C PRL 130 011800 C. Lin et al. (RandsX-4T Collab.) NING 23A PRL 131 041001 X. Ning et al. (PandsX-4T Collab.) SHIMADA 23 PTE P2023 103701 T. Shimada et al. (NEWAGE Collab.) ADD 22D PL B229 137066 G. Aad et al. (ATLAS Collab.) ADD 22D PL P2208 104 G. Aad et al. (ATLAS Collab.) ABDALLA 22 PRL 129 111101 H. Abbasi et al. (COSINE-100 Collab.) ADHIKARI 22 PRL 128 01801 P. Athikari et al. (COSINE-100 Collab.) AGGSTINI 22 JCAP 2212 012 M. Agostini et al. (COSINE-100 Collab.) AGGOSTINI 22 JCAP 2212 012 M. Agostini et al. (COCHECNT Collab.) AGULAR-AR 22A PR 129 089901 M. Agostini et al. (COCHECNT Collab.) AGULAR-AR 22A P		20	DD D100 102526	D. Huang et al.	
L1 23C PRL 130 20101 S. Let al. (PandaX-H Collab.) MA 23C PRL 130 111801 C. Lin et al. (ROTO Collab.) MA 23A PRL 130 021802 W. Ma et al. (PandaX-H Tollab.) NING 23A PRL 130 021802 W. Ma et al. (PandaX-H Tollab.) SHIMADA 23 PTEP 2023 103701 T. Shimada et al. (ATLAS Collab.) ADD 22D PL B29 137066 G. Aad et al. (ATLAS Collab.) ABBASI 22B PR D105 062004 R. Abbasi et al. (CCSINE-100 Collab.) ADHIKARI 22B PR D105 042006 G. Adhikari et al. (CCSINE-100 Collab.) AGOSTINI 22 JCA 2212 012 M. Agostini et al. (CCSINE-100 Collab.) AGOSTINI 22 JCA 2212 012 M. Agostini et al. (CCMC Collab.) AGULAR-RA. 22A PR D106 022001 A. Albert et al. (CCMC Collab.) AGULAR-RA. 22A PR D106 022001 E. Aprile et al. (CCHECNT Collab.) AGULAR-RA. 22A PR D106 022001 <td></td> <td>2J 22E</td> <td>DDI 120 261001</td> <td>N. Lavis et al.</td> <td>(MITW, KIUDE)</td>		2J 22E	DDI 120 261001	N. Lavis et al.	(MITW, KIUDE)
LIN 23C PRL 130 Liso Lino Charles (PandaX-4T Collab.) NING 23A PRL 131 041001 X. Ning et al. (PandaX-4T Collab.) SHIMADA 23 PTE 7023 103701 T. Shimada et al. (NEWAGE Collab.) AAD 22D PL B829 137066 G. Aad et al. (ATLAS Collab.) ABD 22D PL B208 104 G. Aad et al. (ATLAS Collab.) ABBALLA 22 PRL 128 011801 P. Adhikari et al. (DEAP Collab.) ADHIKAR 22 PRL 128 011801 P. Adhikari et al. (COSINE-100 Collab.) ADHIKAR 22 PRL 128 011801 P. Adhikari et al. (COSINE-100 Collab.) AGOSTIN 22 JCAP 2212 012 M. Agostini et al. (GERDA Collab.) AGOSTIN 22 JCAP 2210 0200 C. Adhikari et al. (COHERENT Collab.) AGULRA-AR. 22A PR D106 052004 C. Angioher et al. (COHERENT Collab.) ANGLOHER 22A PR D106 052004 C. Angioher et al. (CENESST-IIII Collab.) AGULRA-AR		23F	PRL 130 201001		
MA 23A PRL 130 021802 W. Ma et al. (PandaX-41 Collab.) SHIMADA 23 PTEP 2023 103F01 T. Shimada et al. (NEWAGE Collab.) AAD 22D PL B829 13706 G. Aad et al. (ATLAS Collab.) AAD 22P JHEP 2020 104 G. Aad et al. (ICCSCOLLAB) ABBASI 22B PL 105 0502004 R. Abbasi et al. (ICCSCOLLAB) ADHIKARI 22P PL 129 111101 H. Abdalla et al. (ICCSINE-100 Collab.) ADHIKARI 22P PL 129 0106 052005 G. Adhikari et al. (COSINE-100 Collab.) ADHIKARI 22P PR 129 0106 052005 G. Adhikari et al. (COSINE-100 Collab.) AGOSTINI 22 APR 212 012 M. Agostini et al. (CCM Collab.) AGOSTINI 22A PR 106 052004 A. Aimov et al. (COHENENT Collab.) AGUILAR-AR22A PR 106 052004 C. Aimov et al. (CMERST Collab.) AGUILAR-AR22A PR 106 052004 C. Angloher et al. (CMESTST Collab.) ANGLOHER 22 PR 1016 052004		230	PRL 130 111801	C. Lin et al.	
NING 23A PRE 131 041001 X. Ning et al. (PandaX-41 Collab.) AAD 22D PL B829 137066 G. Aad et al. (ATLAS Collab.) AAD 22P JHEP 2081 104 G. Aad et al. (ATLAS Collab.) ABBALLA 2P JHEP 2081 104 G. Aad et al. (IECscube Collab.) ABBALLA 2P PRL 129 111101 H. Abdalla et al. (IECscube Collab.) ADHIKARI 22 PRL 128 011801 P. Adhikari et al. (COSINE-100 Collab.) ADHIKARI 22D PR D106 052005 G. Adhikari et al. (COSINE-100 Collab.) AGOSTINI 22 JCAP 2212 012 M. Agostini et al. (CERDA Collab.) AGOSTINI 22 JCAP 2010 012001 A.A. Aguilar-Arevalo et al. (CCM Collab.) AGULRA-RA 2A PR D106 012001 A.A. Aguilar-Arevalo et al. (CCM Collab.) ANGLOHER 2A PR D106 022004 E. Aprile et al. (CMESST-Glab.) ANGLOHER 2A PR D106 022004 E. Aprile et al. (CMESST-Glab.) ANGLOHER 2A <td>MA</td> <td>23A</td> <td>PRL 130 021802</td> <td>VV. Ma et al.</td> <td>(PandaX-41 Collab.)</td>	MA	23A	PRL 130 021802	VV. Ma et al.	(PandaX-41 Collab.)
SHIMADA 23 PTEP 2023 105 Stimada et al. (NTLAS Collab.) AAD 22P JHEP 208 104 (ATLAS Collab.) ABBASI 228 PR 1005 062004 R. Abbasi et al. (IceCube Collab.) ABBASI 228 PR 1010 062004 R. Abbasi et al. (IceCube Collab.) ADHIKARI 22 PR 128 011801 P. Adhikari et al. (COSINE-100 Collab.) ADHIKARI 228 PR D105 042006 G. Adhikari et al. (COSINE-100 Collab.) AGOSTINI 22 AP PL120 M. Agostini et al. (CCMICOLlab.) AGOSTINI 22 AP D106<052005	NING	23A	PRL 131 041001	X. Ning et al.	(PandaX-41 Collab.)
AAD 22D PL B829 137066 G. Aad et al. (ATLAS Collab.) ABD 22P JHEP 2208 104 G. Aad et al. (ATLAS Collab.) ABDALLA 22P RLP 2208 104 G. Aad et al. (ILES.Collab.) ABDALLA 22P RL 129 111101 H. Abdalla et al. (ILES.Collab.) ADHIKARI 22P PR 128 011801 P. Athikari et al. (COSINE-100 Collab.) ADHIKARI 22D PR 1016 052005 G. Adhikari et al. (COSINE-100 Collab.) AGOSTINI 22 JCAP 2212 012 M. Agostini et al. (CCM Collab.) AGOSTINI 22 JCAP 2010 012001 A.A. Aguilar-Arevalo et al. (CCM Collab.) AGULAR-AR22A PR D106 022004 D. Akimov et al. (CMEEST-Collab.) ANGLOHER 22A PR D106 022001 E. Aprile et al. (XENONIT Collab.) ARMENGAUD 22 PR D106 022001 E. Aprile et al. (XENONIT Collab.) ARMENGAUD 22 PR D106 022001 E. Aprile et al. (XENONIT Collab.) ARMENGAUD 22 PR D106	SHIMADA	23	PTEP 2023 103F01	I. Shimada <i>et al.</i>	(NEWAGE Collab.)
AAD 22P JHEP 2208 104 G. Aad et al. (ATLAS Collab.). ABBASI 22B PR D105 062004 R. Abbasi et al. (IceCube Collab.). ADHIKARI 22P PR L129 111101 H. Abdalia et al. (DEAP Collab.). ADHIKARI 22P PR D105 042006 G. Adhikari et al. (COSINE-100 Collab.). ADHIKARI 22D PR D106 052005 G. Adhikari et al. (COSINE-100 Collab.). AGOSTINI 22 APR P120 089901 M. Agostini et al. (CERDA Collab.). AGULLAR-RA. 22A PR D106 052004 D. Akimov et al. (COHERENT Collab.). AGULAR-RA. 22A PR D106 052001 A. Aubert et al. (ANTARES Collab.). ANGLOHER 22 PR D106 052001 E. Aprile et al. (CEREST Collab.). ANGLOHER 22 PR D106 052001 E. Armengaud et al. (ENESST III Collab.). ANGLOHER 22 PR D106 052001 E. Armengaud et al. (ENESST Collab.). ANGLOHER 22 PR D106 052003 M. Eatraglieri et al. (ENESST Collab.). <td< td=""><td>AAD</td><td>22D</td><td>PL B829 137066</td><td>G. Aad <i>et al.</i></td><td>(ATLAS Collab.)</td></td<>	AAD	22D	PL B829 137066	G. Aad <i>et al.</i>	(ATLAS Collab.)
ABBASI 228 PR D105 062004 R. Abbasi et al. ((lccCube Collab.) ABDALLA 2 PR L129 111101 H. Abdalla et al. (HE.SS. Collab.) ADHIKARI 22 PR L128 011801 P. Adhikari et al. (COSINE-100 Collab.) ADHIKARI 220 PR D106 052005 G. Adhikari et al. (COSINE-100 Collab.) AGOSTINI 22 JCAP 2212 012 M. Agostini et al. (GERDA Collab.) AGOSTINI 22 JCAP 212 012 M. Agostini et al. (GERDA Collab.) AGULAR-AR 22A PR D106 052001 D. Akimov et al. (COHERENT Collab.) AGULAR-AR 22A PR D106 052001 D. Akimov et al. (CRESST Collab.) ANGLOHER 22 PR D106 052001 E. Armengaud et al. (RESST III Collab.) ANGLOHER 22 PR D106 052001 E. Aprile et al. (EDELWENTS Collab.) ARMENGAUD 22 PR D106 052001 M. Armengaud et al. (EDELWENTS Collab.) ANGLOHER 24 PR D106 072011 M. Battaglieri et al. (EDELWENT Collab.)	AAD	22P	JHEP 2208 104	G. Aad <i>et al.</i>	(ATLAS Collab.)
ABDALLA 22 PRL 129 111101 H. Abdalla <i>et al.</i> (HE.S.S. Collab.). ADHIKARI 22 PR 128 01801 P. Adhikari <i>et al.</i> (COSINE-100 Collab.). ADHIKARI 220 PR D105 042006 G. Adhikari <i>et al.</i> (COSINE-100 Collab.). AGOSTINI 22 APR P2120 M. Agostini <i>et al.</i> (CCMC Collab.). AGOSTINI 22 APR D106 012001 A. Arguitar-Arevalo <i>et al.</i> (CCM Collab.). AGULLAR-RA. 22A PR D106 052004 D. Akimov <i>et al.</i> (COHERENT Collab.). ANGLOHER 22 PR D106 052004 D. Akimov <i>et al.</i> (CRESST Collab.). ANGLOHER 22 PR D106 052001 E. Argeiga <i>et al.</i> (EDELWEISS Collab.). ANGLOHER 22 PR D106 02001 E. Armengaud <i>et al.</i> (EDELWEISS Collab.). ANGLOHER 22 PR D105 123013 D. Bose, T.N. Maity, T.S. Ray CHAN 22 PR D105 123013 D. Bose,	ABBASI	22B	PR D105 062004	R. Abbasi <i>et al.</i>	(IceCube Collab.)
ADHIKARI 22 PRL 128 011801 P. Adhikari et al. (DEAP Collab.) ADHIKARI 22D PR D105 042006 G. Adhikari et al. (COSINE-100 Collab.) AGOSTINI 22 JCAP 2212 012 M. Agostini et al. (GERDA Collab.) AGOSTINI 22A PR D106 052005 G. Adhikari et al. (GERDA Collab.) AGUILAR-AR 22A PR D106 052004 D. Akmov et al. (COM Collab.) AKIMOV 22 PR D106 052004 D. Akmov et al. (COHERENT Collab.) ANGLOHER 22 PR D106 052001 E. Armengaud et al. (CRESST Collab.) ANSLOHER 22 PR D106 052001 E. Aprile et al. (KENONIT Collab.) ARMENGAUD 22 PR D106 052001 E. Aprile et al. (EDELWEISS Collab.) ARMENGAUD 22 PR D106 052003 D. Bose, T.N. Maity, T.S. Ray (DAL GHAN 22 PR D105 123006 M.H. Chan, C.M. Lee (DAL (EBD) CUI 22 PR D105 123023 D. Bose, T.N. Maity, T.S. Ray (EBD) (DALB.)	ABDALLA	22	PRL 129 111101	H. Abdalla <i>et al.</i>	(H.E.S.S. Collab.)
ADHIKARI 22B PR D105 042005 G. Adhikari et al. (COSINE-100 Collab.) ADDIKARI 22D PR D106 052005 G. Adhikari et al. (GERDA Collab.) AGOSTINI 22 JCAP 2212 M. Agostini et al. (GERDA Collab.) AGULLAR-AR 22A PR D106 052004 D. Akimov et al. (CCHC Collab.) ALBERT 22A PR D106 052004 D. Akimov et al. (CCHSST Collab.) ANGLOHER 22 PR D106 052001 E. Arnegauet et al. (CRESST Collab.) ANGLOHER 22 PR D106 052001 E. Aprile et al. (EDELWEISS Collab.) ARMENGAUD 22 PR D106 052001 E. Arnegauet et al. (EDELWEISS Collab.) BATTAGLIERI 22 PR D105 123013 D. Bose, T.N. Maity, T.S. Ray CHU 22 P	ADHIKARI	22	PRL 128 011801	P. Adhikari <i>et al.</i>	(DEAP Collab.)
ADHIKARI 22D PR D106 052005 G. Adhikari et al. (COSINE-100 Collab.) AGOSTINI 22 JCAP 2212 012 M. Agostini et al. (GERDA Collab.) AGUSTINI 22A PR 129 089901 M. Agostini et al. (CCM Collab.) AGUILAR-AR 22A PR D106 052004 D. Akimov et al. (CCM Collab.) ALBERT 22A JCAP 2206 028 A. Albert et al. (CREST Collab.) ANGLOHER 22A PR <d106< td=""> 092008 G. Angloher et al. (CREST-III Collab.) APRILE 22 PR<d106< td=""> 092004 E. Aprile et al. (KENONIT Collab.) ARMENGAUD 22 PR<d106< td=""> 072011 M. Battaglieri et al. (EDELWEISS Collab.) BATTAGLIERI 22 PR<d105< td=""> 123013 D. Bose, T.N. Maity, T.S. Ray CHAN 22 PR<l129< td=""> 1160 023023 A.E. Egorov (LEBD) GU 22 PR<d106< td=""> 023023 A.E. Egorov (CDEX Collab</d106<></l129<></d105<></d106<></d106<></d106<>	ADHIKARI	22B	PR D105 042006	G. Adhikari <i>et al.</i>	(COSINE-100 Collab.)
AGOSTINI 22 JCAP 2212 012 M. Agostini et al. (GERDA Collab.) AGOSTINI 22A PRL 129 089901 M. Agostini et al. (GERDA Collab.) AGULLAR-AR 22A PR D106 012001 A.A. Aguilar-Arevalo et al. (CCM Collab.) AKIMOV 22 PR D106 052004 D. Akimov et al. (CCH Collab.) ANGLOHER 22A JCAP 2206 028 A. Albert et al. (CRESST Collab.) ANGLOHER 22A PR D106 092008 G. Angloher et al. (CRESST III Collab.) ANGLOHER 22 PR D106 092001 E. Aprile et al. (CRESST III Collab.) ARMENGAUD 22 PR D106 072011 M. Battaglieri et al. (EDELWEISS Collab.) BATTAGLIERI 22 PR D105 123013 D. Bose, T.N. Maity, T.S. Ray (DHAN CUI 22 PR D105 103029 D. Ghosh, A. Guha, D. Sachdeva (UEBD) GU 22 PR L129 11103 S. Manconi, A. Cuoco, J. Lesgourgues (Madx-4T Collab.) GU 22 PR L129 137487 Z. Huang et al. (CMS Collab.) TUMASYAN 22A PR L129 137487 Z. Huang et al. (CMS Collab.	ADHIKARI	22D	PR D106 052005	G. Adhikari <i>et al</i> .	(COSINE-100 Collab.)
AGOSTINI 22A PRL 129 Name Agostini et al. (GERDA Collab.) AGUILAR-AR 22A PR D106 012001 A.A. Aguilar-Arevalo et al. (CCM Collab.) AKIMOV 22 PR D106 052004 D. Akimov et al. (CCHERNT Collab.) ALBERT 22A JCAP 2206 028 A. Albert et al. (CRESST-Collab.) ANGLOHER 22 PR D106 092008 G. Angloher et al. (CRESST-Collab.) ANGLOHER 22 PR D106 092001 E. Aprile et al. (CRESST-Collab.) ARMENGAUD 22 PR <d106< td=""> 072011 M. Battaglieri et al. (EDELWEISS Collab.) BOSE 22 PR<d105< td=""> 123006 M.H. Chan, C.M. Lee (CHA (CDEX Collab.) CHAN 22 PR<d105< td=""> 103029 A. E. Egrov (CDEX Collab.) GU 22 PR<d105< td=""> 103029 A. Guet al. (PandaX-H Collab.) GHOSH 22 PR<d106< td=""> <t< td=""><td>AGOSTINI</td><td>22</td><td>ICAP 2212 012</td><td>M Agostini <i>et al</i></td><td>(GERDA Collab.)</td></t<></d106<></d105<></d105<></d105<></d106<>	AGOSTINI	22	ICAP 2212 012	M Agostini <i>et al</i>	(GERDA Collab.)
AGUILAR-AR 22A PR D106 012001 A.A. Aguilar-Arevalo et al. (CCM Collab.) AKIMOV 22 PR D106 052004 D. Akimov et al. (COHERENT Collab.) ALBERT 22A JCAP 2206 028 A. Albert et al. (CRESST Collab.) ANGLOHER 22 EPJ 682 207 G. Angloher et al. (CRESST Collab.) ANGLOHER 22 PR D106 092001 E. Aprile et al. (CRESST Collab.) ANGLOHER 22 PR D106 062004 E. Arrinegaud et al. (EDELWEISS Collab.) BATTAGLIERI 22 PR D106 062004 E. Arrinegaud et al. (EDELWEISS Collab.) BOSE 22 PR D105 123013 D. Bose, T.N. Maity, T.S. Ray (BDX-MINI Collab.) BOSE 22 PR D106 023023 A.E. Egorov (CDEX Collab.) CUI 22 PR D106 023023 A.E. Egorov (CDEX Collab.) GU 22 PR D106 013029 D. Ghosh, A. Guha, D. Sachdeva (CMS Collab.) GU 22 PR D106 013029 D. Ghosh, A. Guha, D. Sachdeva (CMS Collab.) GU 22 PR D105 09207 A. Tumasyan et al. (CMS Collab.)	AGOSTINI	22A	PRI 129 089901	M Agostini <i>et al</i>	(GERDA Collab.)
AKIMOV 22 PR D106 052004 D. Akimov et al. (COHERENT Collab.) ALBERT 22A JCAP 2206 028 A. Albert et al. (ANTARES Collab.) ANGLOHER 22 EPJ C82 207 G. Angloher et al. (CRESST-III Collab.) ANGLOHER 22 PR D106 092008 G. Angloher et al. (CRESST-Gollab.) ANGLOHER 22 PR D106 062004 E. Armengaud et al. (EDELWEISS Collab.) BATTAGLIERI 22 PR D105 123013 D. Bose, T.N. Maity, T.S. Ray (BDX-MINI Collab.) BOSE 22 PR D105 123006 M.H. Chan, C.M. Lee (PandaX-II Collab.) CUI 22 PRL 128 171801 X. Cui et al. (PandaX-II Collab.) GO 22 PR D105 103029 D. Ghosh, A. Guha, D. Sachdeva (EBD) GU 22 PR L 129 161803 L. Gu et al. (PandaX-4T Collab.) HOCHBERG 22 PR D106 112005 Y. Hochberg et al. (CMS Collab.) TUMASYAN 22A JHE 2206 156 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22A JHEP 2206 156 A. Tumasyan et al. (CMS Collab.) <tr< td=""><td>AGUII AR-AR</td><td>224</td><td>PR D106 012001</td><td>$\Delta \Delta \Delta \alpha$ aguilar-Arevalo et al</td><td>(CCM Collab.)</td></tr<>	AGUII AR-AR	224	PR D106 012001	$\Delta \Delta \Delta \alpha$ aguilar-Arevalo et al	(CCM Collab.)
ALBERT 22A JCAP 2206 D28 A. Albert et al. (CANTARES Collab.) ANGLOHER 22 EPJ G82 07 G. Angloher et al. (CRESST-Glab.) ANGLOHER 22 PR D106 092008 G. Angloher et al. (CRESST-Glab.) ANGLOHER 22 PR D106 092001 E. Aprile et al. (CRESST-Glab.) ANGLOHER 22 PR D106 092001 E. Aprile et al. (EDELWEISS Collab.) BATTAGLIER 22 PR D105 123013 D. Bose, T.N. Maity, T.S. Ray CHAN 22 PR D105 123016 M.H. Chan, C.M. Lee (DEX Collab.) GU 22 PR D105 103029 D. Ghosh, A. Guha, D. Sachdeva (LEBD) GU 22 PR D105 103029 D. Ghosh, A. Guha, D. Sachdeva (LEBD) GU 22 PR D105 103029 D. Ghosh, A. Guha, D. Sachdeva (CMS Collab.) GU 22 PR D105 103029 A. Tumasyan et al. (CMS Collab.) MANCONI 22 PR D106<		22/1	PR D106 052004	D Akimov et al	(COHERENT Collab.)
ALDLAT 22A JAAF 22A JAAF 22A JAAF 22A JAAF 22A JAAF 22A PJ C82 207 G. Angloher et al. (CRESST-Gliab.) ANGLOHER 22 PR D106 092008 G. Angloher et al. (CRESST-Gliab.) APRILE 22 PR D106 062004 E. Aprile et al. (CRESST-Gliab.) BATTAGLIERI 22 PR D106 072011 M. Battaglieri et al. (EDELWEISS Collab.) BOSE 22 PR D105 123006 M.H. Chan, C.M. Lee (DIATACL S Collab.) CUI 22 PR L129 21802 M.H. Chan, C.M. Lee (CDEX Collab.) GU 22 PR D105 103029 D. Ghosh, A. Guha, D. Sachdeva (EBD) GU 22 PR D106 112005 Y. Hochberg et al. (SNSPD Collab.) HUANG 22 PR D106 112005 Y. Hochberg et al. (CMS Collab.) TUMASYAN 22A JHEP 2206 156 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22A JHEP 2110 A. Tumasyan et al. (CMS Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) <tr< td=""><td>ALDEDT</td><td>22</td><td>ICAP 2206 029</td><td>A Albert et al</td><td>(ANTARES Collab.)</td></tr<>	ALDEDT	22	ICAP 2206 029	A Albert et al	(ANTARES Collab.)
ANGLOHER 22 FR D106 092008 G. Angloher et al. (CREST-II Collab.) ANGLOHER 22 PR D106 092001 E. Aprile et al. (CREST-II Collab.) APRILE 22 PR D106 072011 E. Aprile et al. (CREST-II Collab.) BATTAGLIERI 22 PR D105 123013 D. Bose, T.N. Maity, T.S. Ray (BDX-MINI Collab.) BOSE 22 PR D105 123013 D. Bose, T.N. Maity, T.S. Ray (CHLSDI Collab.) GUI 22 PR D105 123013 D. Bose, T.N. Maity, T.S. Ray (CDEX Collab.) GU 22 PR D106 022023 A.E. Egorov (LEBD) GHOSH 22 PR D106 103029 D. Ghosh, A. Guha, D. Sachdeva (SNSPD Collab.) GU 22 PR D106 112005 Y. Hochberg et al. (PandaX-4T Collab.) MANCONI 22 PR D105 052008 R. Tumasyan et al. (CMS Collab.) TUMASYAN 22A PR D105 052007 A. Tumasyan et al. (CMS Collab.) ZHANG 22 PR D106 052008 R. Ue al. (CDEX Collab.) ZHANG 22 PR D106 052008 R. Ue al. (CDEX Collab.) <td< td=""><td></td><td>224</td><td>EDI C82 207</td><td>C. Anglober et al</td><td>(CRESST Collab.)</td></td<>		224	EDI C82 207	C. Anglober et al	(CRESST Collab.)
ANGLOTER 22A PR D100 022001 G. Anglottel et al. (CRESST-Int Collab.) APRILE 22 PR D106 0622001 E. Aprile et al. (ENENST-Int Collab.) BATTAGLIERI 22 PR D106 072011 M. Battaglieri et al. (EDELWEISS Collab.) BATTAGLIERI 22 PR D105 123013 D. Bose. T.N. Maity, T.S. Ray CHAN 22 PR D105 123006 M.H. Chan, C.M. Lee (PandaX-II Collab.) CUI 22 PR D106 072023 A.E. Egorov (LEBD) GHOSH 22 PR D106 12005 Y. Hochberg et al. (SNSPD Collab.) HUANG 22 PR D106 12005 Y. Hochberg et al. (CMS Collab.) TUMASYAN 22A JHEP 2106 12005 Y. Hochberg et al. (CMS Collab.) TUMASYAN 22A PR 10105 S. Manconi, A. Cuoco, J. Lesgourgues (CMS Collab.) TUMASYAN 22A PR		22	DD D106 002009	G. Angloher et al.	(CRESST Collab.)
APRILE 22 PR D106 02201 E. Aprile et al. (EDELWEISS Collab.) BATTAGLIERI 22 PR D106 062004 E. Armengaud et al. (EDELWEISS Collab.) BOSE 22 PR D105 123013 D. Bose, T.N. Maity, T.S. Ray (BDX-MINI Collab.) BOSE 22 PR D105 123006 M.H. Chan, C.M. Lee (PandaX-II Collab.) CUI 22 PR L 128 171801 X. Cui et al. (PandaX-II Collab.) DAI 22A PR L 129 221802 W.H. Dai et al. (CDEX Collab.) GGOROV 22 PR D105 103029 D. Ghosh, A. Guha, D. Sachdeva (LEBD) GU 22 PR D105 103029 D. Ghosh, A. Guha, D. Sachdeva (SNSPD Collab.) HUANG 22 PR D105 102005 Y. Hochberg et al. (SNSPD Collab.) TUMASYAN 22A PR D105 092007 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22A PR D105 092007 A. Tumasyan et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) ZHANG 22 PR D106 052008 R. Xu et al. (CDEX Collab.) A		22A	PR D100 092008	G. Angioner et al.	
ARMENGAUD 22 PR D106 062004 E. Armengaud et al. (EDELWEISS Collab.) BATTAGLIER 22 PR D105 123013 D. Bose, T.N. Maity, T.S. Ray (BDX-MINI Collab.) BOSE 22 PR D105 123006 M.H. Chan, C.M. Lee (PandaX-II Collab.) CUI 22 PR D106 023023 A.E. Egorov (LEBD) GHOSH 22 PR D106 1023023 A.E. Egorov (LEBD) GU 22 PR D106 1020023 A.E. Egorov (PandaX-4T Collab.) HOANG 22 PR D106 112005 Y. Hochberg et al. (PandaX-4T Collab.) HUANG 22 PR L 129 161803 L. Gu et al. (PandaX-4T Collab.) HUANG 22 PR L 129 161803 L. Gu et al. (CMS Collab.) TUMASYAN 22A PRL 129 1206 156 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22A PR L 129 161804 D. Zhang et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XUMASYAN 22A PRL 129 21301 C.Y. Zhang et al. (CDEX Collab.) XUANG 22A	APRILE	22	PR D106 022001	E. Aprile et al.	(XENUNIT Collab.)
BAT IAGLIEM 22 PR D106 072011 M. Battaguen et al. (BDX-MINI Collab.) BOSE 22 PR D105 123013 D. Bose, T.N. Maity, T.S. Ray CHAN 22 PR D105 123006 M.H. Chan, C.M. Lee CUI 22 PR L 129 21802 W.H. Dai et al. (PandaX-II Collab.) DAI 22A PR L 129 21802 W.H. Dai et al. (CDEX Collab.) GU 22 PR D105 103029 D. Ghosh, A. Guha, D. Sachdeva (EEB) GU 22 PR D105 103029 D. Ghosh, A. Guha, D. Sachdeva (PandaX-4T Collab.) HOCHBERG 22 PR D105 112005 Y. Hochberg et al. (SNSPD Collab.) HUANG 22 PR D105 092007 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22A PR D105 092007 A. Tumasyan et al. (CMS Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XUA 22 PR D106 052008 R. Xu et al. (ATLAS Collab.) XUA 22A PRL 129 21301 Z.Y. Zhang et al. <td>ARMENGAUD</td> <td>22</td> <td>PR D106 062004</td> <td>E. Armengaud <i>et al.</i></td> <td>(EDELWEISS Collab.)</td>	ARMENGAUD	22	PR D106 062004	E. Armengaud <i>et al.</i>	(EDELWEISS Collab.)
BOSE 22 PR D105 123013 D. Bose, T.N. Marty, T.S. Ray CHAN 22 PR D105 123006 M.H. Chan, C.M. Lee (PandaX-II Collab.) DAI 22A PRL 129 221802 W.H. Dai et al. (CDEX Collab.) EGOROV 22 PR D105 103029 D. Ghosh, A. Guha, D. Sachdeva (LEBD) GU 22 PR D106 112005 Y. Hochberg et al. (PandaX-4T Collab.) HOCHBERG 22 PR L 129 161803 L. Gu et al. (PandaX-4T Collab.) HUANG 22 PR L 129 11103 S. Manconi, A. Cuoco, J. Lesgourgues (CMS Collab.) TUMASYAN 22AG PR D105 092007 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22AG PR D105 092007 A. Tumasyan et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XU 24 PRL 129 221301 ZY. Zhang et al. <td>BATTAGLIERI</td> <td>22</td> <td>PR D106 072011</td> <td>M. Battaglieri <i>et al.</i></td> <td>(BDX-MINI Collab.)</td>	BATTAGLIERI	22	PR D106 072011	M. Battaglieri <i>et al.</i>	(BDX-MINI Collab.)
CHAN 22 PR D105 123006 M.H. Chan, C.M. Lee CUI 22 PRL 128 171801 X. Cui et al. (PandaX-II Collab.) DAI 22A PRL 129 221802 W.H. Dai et al. (CDEX Collab.) EGOROV 22 PR D106 023023 A.E. Egorov (LEBD) GU 22 PR D105 103029 D. Ghosh, A. Guha, D. Sachdeva (PandaX-4T Collab.) HOCHBERG 22 PR D106 112005 Y. Hochberg et al. (PandaX-4T Collab.) HUANG 22 PR D105 1256 A. Tumasyan et al. (CMS Collab.) MANCONI 22 PR D105 092007 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22A PR D105 092007 A. Tumasyan et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XUA 22A PRL 129 161804 D. Zhang et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) ZHANG 22 PRL 129 221301 C.Y. Zhang et al. (ATLAS Collab.) AAD 21AZ JHEP 2111 209 G. Aad et al.	BOSE	22	PR D105 123013	D. Bose, T.N. Maity, T.S. Ray	
CUI 22 PRL 128 171801 X. Cui et al. (PandaX-II Collab.) DAI 22A PR 129 221802 W.H. Dai et al. (CDEX Collab.) GGOROV 22 PR D106 023023 A.E. Egorov (LEBD) GU 22 PR L 1016 023023 A.E. Egorov (PandaX-4T Collab.) HOCHBERG 22 PR D106 112005 Y. Hochberg et al. (PandaX-4T Collab.) MANCONI 22 PR B34 137487 Z. Huang et al. (PandaX-4T Collab.) MANCONI 22 PR L 129 111103 S. Manconi, A. Cuoco, J. Lesgourgues TUMASYAN 22AG EPJ C82 213 A. Tumasyan et al. (CMS Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XHANG 22 PR 129 161804 D. Zhang et al. (ATLAS Collab.) AAD 21AZ	CHAN	22	PR D105 123006	M.H. Chan, C.M. Lee	
DAI 22A PR L 129 221802 W.H. Dai et al. (CDEX Collab.) EGOROV 22 PR D106 023023 A.E. Egorov (LEBD) GU 22 PR D105 103029 D. Ghosh, A. Guha, D. Sachdeva (SNSPD Collab.) HOCHBERG 22 PR D106 112005 Y. Hochberg et al. (PandaX-4T Collab.) HUANG 22 PR B34 137487 Z. Huang et al. (PandaX-4T Collab.) MANCONI 22 PR L 129 111103 S. Manconi, A. Cuoco, J. Lesgourgues TUMASYAN 22AA JHEP 2206 156 A. Tumasyan et al. (CMS Collab.) XU 22 PR D106 052007 A. Tumasyan et al. (CMS Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XU 22 PR L129 161804 D. Zhang et al. (CDEX Collab.) AAD 21A PR L 120 164 ad al.	CUI	22	PRL 128 171801	X. Cui <i>et al.</i>	(PandaX-II Collab.)
EGOROV 22 PR D106 023023 A.E. Egorov (LEBD) GHOSH 22 PR D105 103029 D. Ghosh, A. Guha, D. Sachdeva (PandaX.4T Collab.) HOCHBERG 22 PR D106 112005 Y. Hochberg et al. (SNSPD Collab.) HUANG 22 PL B334 137487 Z. Huang et al. (PandaX.4T Collab.) MANCONI 22 PL B34 137487 Z. Huang et al. (CMS Collab.) TUMASYAN 22AA JHEP 2206 156 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22AG EPJ C82 213 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22G PR D105 092007 A. Tumasyan et al. (CMS Collab.) XU 22 PR D105 052008 R. Xu et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XU 22 PR D106 11200 G. Aad et al. (ATLAS Collab.) XHANG 22 PR D103 1200 G. Aad et al. (ATLAS Collab.) AD 21AZ JHEP 2110 013 G. Aad et al. (ATLAS Collab.) AAD 21B JHEP 21010 174	DAI	22A	PRL 129 221802	W.H. Dai <i>et al.</i>	(CDEX Collab.)
GHOSH 22 PR D105 103029 D. Ghosh, A. Guha, D. Sachdeva GU 22 PRL 129 161803 L. Gu et al. (PandaX-4T Collab.) HOCHBERG 22 PR D106 112005 Y. Hochberg et al. (SNSPD Collab.) MANCONI 22 PR B334 137487 Z. Huang et al. (PandaX-4T Collab.) MANCONI 22 PRL 129 111103 S. Manconi, A. Cuoco, J. Lesgourgues TUMASYAN 22AG EPJ C82 213 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22AG PP D105 092007 A. Tumasyan et al. (CMS Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) ZHANG 22 PR D106 052008 R. Xu et al. (CDEX Collab.) ADD 21AZ JHEP 2110 013 G. Aad et al. (ATLAS Collab.) AAD 21BB JHEP 2110 013 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 112006 G. Aad et al. (ATL	EGOROV	22	PR D106 023023	A.E. Egorov	(LEBD)
GU 22 PRL 129 161803 L. Gu et al. (PandaX-4T Collab.) HOCHBERG 22 PR D106 112005 Y. Hochberg et al. (SNSPD Collab.) HUANG 22 PL B834 137487 Z. Huang et al. (PandaX-4T Collab.) MANCONI 22 PR L 129 111103 S. Manconi, A. Cuoco, J. Lesgourgues TUMASYAN 22AA JHEP 2206 156 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22AG EPJ C82 213 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22AG PR D106 052008 R. Xu et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) ZHANG 22A PRL 129 21301 Z.Y. Zhang et al. (CDEX Collab.) AAD 21AZ JHEP 2110 013 G. Aad et al. (ATLAS Collab.) AAD 21D PR L 120 12802 G. Aad et al. (ATLAS Collab.) AAD 21D	GHOSH	22	PR D105 103029	D. Ghosh, A. Guha, D. Sachdeva	
HOCHBERG 22 PR D106 112005 Y. Hochberg et al. (SNSPD Collab.) HUANG 22 PL B834 137487 Z. Huang et al. (PandaX-4T Collab.) MANCONI 22 PRL 129 111103 S. Manconi, A. Cuoco, J. Lesgourgues TUMASYAN 22AA JHEP 2206 156 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22AG EPJ C82 213 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22G PR D105 092007 A. Tumasyan et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XHANG 22A PRL 129 21301 Z.Y. Zhang et al. (CDEX Collab.) AAD 21AZ JHEP 2110 013 G. Aad et al. (ATLAS Collab.) AAD 21B JHEP 2111 209 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 112006 G. Aad et al. (ATLAS Collab.) AAD 21F PR D	GU	22	PRL 129 161803	L. Gu <i>et al.</i>	(PandaX-4T Collab.)
HUANG 22 PL B834 137487 Z. Huang et al. (PandaX-4T Collab.) MANCONI 22 PRL 129 111103 S. Manconi, A. Cuoco, J. Lesgourgues TUMASYAN 22AG EPJ C82 213 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22G PR D105 092007 A. Tumasyan et al. (CMS Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) ZHANG 22 PR L 129 161804 D. Zhang et al. (PandaX-4T Collab.) ZHANG 22 PRL 129 221301 Z.Y. Zhang et al. (CDEX Collab.) AAD 21AZ JHEP 2110 013 G. Aad et al. (ATLAS Collab.) AAD 21B JHEP 2111 209 G. Aad et al. (ATLAS Collab.) AAD 21D PRL 126 121802 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 112006 G. Aad et al. (ATLAS Collab.) AAD 21F JHEP 2104 174 G. Aad et al. (ATLAS Collab.) AAD 21O JHEP 2104 165 G. Aad et al.	HOCHBERG	22	PR D106 112005	Y. Hochberg <i>et al.</i>	(SNSPD Collab.)
MANCONI 22 PRL 129 111103 S. Manconi, A. Cuoco, J. Lesgourgues TUMASYAN 22AA JHEP 2206 156 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22AG EPJ C82 213 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22G PR D105 092007 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22G PR D106 052008 R. Xu et al. (CDEX Collab.) ZHANG 22 PR L129 161804 D. Zhang et al. (PandaX-4T Collab.) ZHANG 22A PRL 129 221301 Z.Y. Zhang et al. (ATLAS Collab.) AAD 21AZ JHEP 2110 013 G. Aad et al. (ATLAS Collab.) AAD 21BB JHEP 2111 209 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 112006 G. Aad et al. (ATLAS Collab.) AAD 21K JHEP 2102 226 G. Aad et al. (ATLAS Collab.) AAD 21S JHEP 2104 174 G. Aad et al. (ATLAS Collab.) AAD 21S JHEP 2105 093 G. Aad et al. (ATLAS Collab.) AAD 21S JHEP 10103 102002 H.	HUANG	22	PL B834 137487	Z. Huang et al.	(PandaX-4T Collab.)
TUMASYAN 22AA JHEP 2206 156 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22AG EPJ C82 213 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22G PR D105 092007 A. Tumasyan et al. (CMS Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) ZHANG 22 PRL 129 161804 D. Zhang et al. (PandaX-4T Collab.) ZHANG 22A PRL 129 221301 Z.Y. Zhang et al. (CDEX Collab.) AAD 21AZ JHEP 2110 013 G. Aad et al. (ATLAS Collab.) AAD 21BB JHEP 2111 209 G. Aad et al. (ATLAS Collab.) AAD 21D PRL 126 121802 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 112006 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 112006 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 102022 G. Aad et al. (ATLAS Collab.) AAD 21F <td>MANCONI</td> <td>22</td> <td>PRL 129 111103</td> <td>S. Manconi, A. Cuoco, J. Lesgoury</td> <td>gues</td>	MANCONI	22	PRL 129 111103	S. Manconi, A. Cuoco, J. Lesgoury	gues
TUMASYAN 22AG EPJ C82 213 A. Tumasyan et al. (CMS Collab.) TUMASYAN 22G PR D105 092007 A. Tumasyan et al. (CMS Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) ZHANG 22 PR L 129 161804 D. Zhang et al. (PandaX-4T Collab.) ZHANG 22A PRL 129 221301 Z.Y. Zhang et al. (CDEX Collab.) AAD 21AZ JHEP 2110 013 G. Aad et al. (ATLAS Collab.) AAD 21BB JHEP 2111 209 G. Aad et al. (ATLAS Collab.) AAD 21D PRL 126 121802 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 112006 G. Aad et al. (ATLAS Collab.) AAD 21K JHEP 2104 226 G. Aad et al. (ATLAS Collab.) AAD 21O JHEP 2104 174 G. Aad et al. (ATLAS Collab.) AAD 21O JHEP 2104 165 G. Aad et al. (ATLAS Collab.) AAD 21S JHEP 2104 165 G. Aad et al. (ATLAS Collab.) ABDALLAH 21 PR D103 102002 H. Abdallah e	TUMASYAN	22AA	JHEP 2206 156	A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN 22G PR D105 092007 A. Tumasyan et al. (CMS Collab.) XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) ZHANG 22 PRL 129 161804 D. Zhang et al. (PandaX-4T Collab.) ZHANG 22A PRL 129 221301 Z.Y. Zhang et al. (CDEX Collab.) AAD 21AZ JHEP 2110 013 G. Aad et al. (ATLAS Collab.) AAD 21BB JHEP 2111 209 G. Aad et al. (ATLAS Collab.) AAD 21D PRL 126 121802 G. Aad et al. (ATLAS Collab.) AAD 21D PRL 126 12100 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 112006 G. Aad et al. (ATLAS Collab.) AAD 21S JHEP 2104 174 G. Aad et al. (ATLAS Collab.) AAD 21O JHEP 2104 165 G. Aad et al. (ATLAS Collab.) AAD 21S JHEP 2105 093 G. Aad et al. (ATL	TUMASYAN	22AG	EPJ C82 213	A. Tumasvan <i>et al.</i>	(CMS_Collab.)
XU 22 PR D106 052008 R. Xu et al. (CDEX Collab.) ZHANG 22 PRL 129 161804 D. Zhang et al. (PandaX-4T Collab.) ZHANG 22A PRL 129 221301 Z.Y. Zhang et al. (CDEX Collab.) AAD 21AZ JHEP 2110 013 G. Aad et al. (ATLAS Collab.) AAD 21BB JHEP 2111 209 G. Aad et al. (ATLAS Collab.) AAD 21D PRL 126 121802 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 112006 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 112006 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 10206 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 10206 G. Aad et al. (ATLAS Collab.) AAD 21O JHEP 2104 174 G. Aad et al. (ATLAS Collab.) AAD 21S JHEP 2104 174 G. Aad et al. (ATLAS Collab.) AAD 21S JHEP 2105 093 G. Aad et al. (ATLAS Collab.) AERIB 21A PR D103 102002 H. Abdallah et al. <	TUMASYAN	22G	PR D105 092007	A Tumasyan <i>et al</i>	(CMS_Collab_)
AND22PRL 129 161804D. Zhang et al.(PandaX-4T Collab.)ZHANG22APRL 129 221301Z.Y. Zhang et al.(CDEX Collab.)AAD21AZJHEP 2110 013G. Aad et al.(ATLAS Collab.)AAD21BBJHEP 2111 209G. Aad et al.(ATLAS Collab.)AAD21DPRL 126 121802G. Aad et al.(ATLAS Collab.)AAD21FPR D103 112006G. Aad et al.(ATLAS Collab.)AAD21FPR D103 10202G. Aad et al.(ATLAS Collab.)AAD21OJHEP 2104 174G. Aad et al.(ATLAS Collab.)AAD21SJHEP 2105 093G. Aad et al.(ATLAS Collab.)AAD21SJHEP 2105 093G. Aad et al.(ATLAS Collab.)ABDALLAH21PR D103 102002H. Abdallah et al.(H.E.S.S. Collab.)AKERIB21APR D104 012011D.S. Akerib et al.(LUX Collab.)AKERIB21BPR D104 062005D.S. Akerib et al.(LUX Collab.)AMARE21PR D103 102005J. Amare et al.(ANAIS Collab.)AMARE21PR D104 012009M. Andriamirado et al.(PROSPECT Collab.)AMARE21PR D104 012009M. Andriamirado et al.(PROSPECT Collab.)APRILE21PRL 126	XU	22	PR D106 052008	R Xu et al	(CDEX Collab.)
ZHANG22PRC 129 221301Z.Y. Zhang et al.(CDEX Collab.)AAD21AZJHEP 2110 013G. Aad et al.(ATLAS Collab.)AAD21BBJHEP 2111 209G. Aad et al.(ATLAS Collab.)AAD21DPRL 126 121802G. Aad et al.(ATLAS Collab.)AAD21FPR D103 112006G. Aad et al.(ATLAS Collab.)AAD21FPR D103 112006G. Aad et al.(ATLAS Collab.)AAD21KJHEP 2102 226G. Aad et al.(ATLAS Collab.)AAD21OJHEP 2104 174G. Aad et al.(ATLAS Collab.)AAD21OJHEP 2104 165G. Aad et al.(ATLAS Collab.)AAD21SJHEP 2105 093G. Aad et al.(ATLAS Collab.)AAD21SJHEP 2105 093G. Aad et al.(ATLAS Collab.)ABDALLAH21PR D103 102002H. Abdallah et al.(HLE.S.S. Collab.)AKERIB21APR D104 012011D.S. Akerib et al.(LUX Collab.)AKERIB21BPR D104 062005D.S. Akerib et al.(LUX Collab.)AKERIB21PRL 127 061801I. Alkhatib et al.(SuperCDMS Collab.)AMARE21PR D103 102005J. Amare et al.(PROSPECT Collab.)AMARE21PR D104 012009M. Andriamirado et al.(PROSPECT Collab.)AMARE21PR D103 063028E. Aprile et al.(XENON1T Collab.)APRILE21APR D103 063028E. Aprile et al.(XENON1T Collab.)APRILE21 <td< td=""><td>ZHANG</td><td>22</td><td>PRI 120 161804</td><td>D Zhang et al</td><td>(PandaX-AT Collab.)</td></td<>	ZHANG	22	PRI 120 161804	D Zhang et al	(PandaX-AT Collab.)
AAD21AZJHEP 21102.1.2.1.2.1.2.1.(CDLX Collab.)AAD21AZJHEP 2110013G. Aad et al.(ATLAS Collab.)AAD21BBJHEP 2111209G. Aad et al.(ATLAS Collab.)AAD21DPRL 126121802G. Aad et al.(ATLAS Collab.)AAD21FPR D103112006G. Aad et al.(ATLAS Collab.)AAD21KJHEP 2102226G. Aad et al.(ATLAS Collab.)AAD210JHEP 2104174G. Aad et al.(ATLAS Collab.)AAD219JHEP 2104165G. Aad et al.(ATLAS Collab.)AAD215JHEP 2105093G. Aad et al.(ATLAS Collab.)AAD215JHEP 2105093G. Aad et al.(ATLAS Collab.)ABDALLAH21PR D103102002H. Abdallah et al.(HE.S.S. Collab.)AKERIB21APR D104012011D.S. Akerib et al.(LUX Collab.)AKERIB21BPR D104062005D.S. Akerib et al.(LUX Collab.)ALKHATIB21PR D103102005J. Amare et al.(ANAIS Collab.)AMARE21PR D104012009M. Andriamirado et al.(PROSPECT Collab.)ANDRIAMIR21APR D103063028E. Aprile et al.(XENON1T Collab.)APRILE21PRL 126211803C. Cheng et al.(PandaX-II Collab.)	ZHANG	22	PRI 120 221301	7 V Thang et al	(CDEX Collab.)
AAD21A2JHEI2110013G. Aad et al.(ATLAS Collab.)AAD21BBJHEP2111209G. Aad et al.(ATLAS Collab.)AAD21DPRL126121802G. Aad et al.(ATLAS Collab.)AAD21FPR D103112006G. Aad et al.(ATLAS Collab.)AAD21KJHEP2102226G. Aad et al.(ATLAS Collab.)AAD210JHEP2104174G. Aad et al.(ATLAS Collab.)AAD210JHEP2104165G. Aad et al.(ATLAS Collab.)AAD215JHEP2105093G. Aad et al.(ATLAS Collab.)AAD215JHEP2105093G. Aad et al.(ATLAS Collab.)ABDALLAH21PR D103102002H. Abdallah et al.(HE.S.S. Collab.)AKERIB21APR D104012011D.S. Akerib et al.(LUX Collab.)AKERIB21BPR D104062005D.S. Akerib et al.(LUX Collab.)AMARE21PR D103102005J. Amare et al.(ANAIS Collab.)AMARE21PR D104012009M. Andriamirado et al.(PROSPECT Collab.)APRILE21PRL126091301E. Aprile et al.(XENON1T Collab.)APRILE21PR D103063028E. Aprile et al.(XENON1T Collab.)CHENG21PRL126211803C. Cheng et al.(PandaX-II Collab.)		227	IHED 2110 013	C And at al	(ATLAS Collab.)
AAD 21BB JHEP 2111 209 G. Aad et al. (ATLAS Collab.) AAD 21D PRL 126 121802 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 112006 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 112006 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 112006 G. Aad et al. (ATLAS Collab.) AAD 21K JHEP 2104 226 G. Aad et al. (ATLAS Collab.) AAD 210 JHEP 2104 174 G. Aad et al. (ATLAS Collab.) AAD 21S JHEP 2104 165 G. Aad et al. (ATLAS Collab.) AAD 21S JHEP 2105 093 G. Aad et al. (ATLAS Collab.) ABDALLAH 21 PR D103 102002 H. Abdallah et al. (ATLAS Collab.) AKERIB 21A PR D104 012011 D.S. Akerib et al. (LUX Collab.) AKERIB 21B PR D104 062005 D.S. Akerib et al. (LUX Collab.) ALKHATIB 21 PR D103 102005 J. Amare et al. (ANAIS Collab.) AMARE 21 PR D104 012009 M. Andriamir		21AL	JIEI 2110 013	G. Add et al.	(ATLAS Collab.)
AAD 21D PRL 120 121802 G. Aad et al. (ATLAS Collab.) AAD 21F PR D103 112006 G. Aad et al. (ATLAS Collab.) AAD 21K JHEP 2102 226 G. Aad et al. (ATLAS Collab.) AAD 210 JHEP 2102 226 G. Aad et al. (ATLAS Collab.) AAD 210 JHEP 2104 174 G. Aad et al. (ATLAS Collab.) AAD 21P JHEP 2104 165 G. Aad et al. (ATLAS Collab.) AAD 21S JHEP 2105 093 G. Aad et al. (ATLAS Collab.) ABDALLAH 21 PR D103 102002 H. Abdallah et al. (H.E.S.S. Collab.) AKERIB 21A PR D104 012011 D.S. Akerib et al. (LUX Collab.) AKERIB 21B PR D104 062005 D.S. Akerib et al. (LUX Collab.) ALKHATIB 21 PR 127 061801 I. Alkhatib et al. (SuperCDMS Collab.) ALKHATIB 21 PR D104 012005 J. Amare et al. (ANAIS Collab.) ANDRIAMIR 21A PR D104 012009 M. Andriamirado et al. (PROSPECT Collab.) ANDRIAMIR 21A <td< td=""><td></td><td>2100</td><td>JHEP 2111 209</td><td>G. Aad et al.</td><td>(ATLAS COND.)</td></td<>		2100	JHEP 2111 209	G. Aad et al.	(ATLAS COND.)
AAD 21F PR D103 112000 G. Aad et al. (ATLAS Collab.) AAD 21K JHEP 2102 226 G. Aad et al. (ATLAS Collab.) AAD 210 JHEP 2104 174 G. Aad et al. (ATLAS Collab.) AAD 210 JHEP 2104 174 G. Aad et al. (ATLAS Collab.) AAD 217 JHEP 2104 165 G. Aad et al. (ATLAS Collab.) AAD 218 JHEP 2105 093 G. Aad et al. (ATLAS Collab.) AAD 215 JHEP 2105 093 G. Aad et al. (ATLAS Collab.) ABDALLAH 21 PR D103 102002 H. Abdallah et al. (HE.S.S. Collab.) AKERIB 218 PR D104 012011 D.S. Akerib et al. (LUX Collab.) AKERIB 219 PR L127 061801 I. Alkhatib et al. (SuperCDMS Collab.) ALKHATIB 21 PR L127 061801 I. Alkhatib et al. (SuperCDMS Collab.) AMARE 21 PR D104 012005 J. Amare et al. (ANAIS Collab.) AMARE 21 PR D104 012009 M. Andriamirado et al. (PROSPECT Collab.) APRILE 21 PR D103 0630		210	PRL 120 121002	G. Aad et al.	(ATLAS COND.)
AAD 21K JHEP 2102 220 G. Aad et al. (ATLAS Collab.) AAD 210 JHEP 2104 174 G. Aad et al. (ATLAS Collab.) AAD 210 JHEP 2104 165 G. Aad et al. (ATLAS Collab.) AAD 215 JHEP 2105 093 G. Aad et al. (ATLAS Collab.) ABDALLAH 21 PR D103 102002 H. Abdallah et al. (H.E.S.S. Collab.) AKERIB 21A PR D104 012011 D.S. Akerib et al. (LUX Collab.) AKERIB 21B PR D104 062005 D.S. Akerib et al. (LUX Collab.) AKERIB 21 PR L 127 061801 I. Alkhatib et al. (SuperCDMS Collab.) AMARE 21 PR D103 102005 J. Amare et al. (PROSPECT Collab.) AMARE 21 PR D104 012009 M. Andriamirado et al. (PROSPECT Collab.) ANDRIAMIR 21A PR D103 063028 E. Aprile et al. (XENON1T Collab.) APRILE 21A PR D103 063028 E. Aprile et al. (YENON1T Collab.) CHENG 21 PRL 126 211803 C. Cheng et al. (PandaX-II Collab.)	AAD	215	PR D103 112000	G. Aad et al.	(ATLAS COLLAD.)
AAD 210 JHEP 2104 174 G. Aad et al. (ATLAS Collab.) AAD 21P JHEP 2104 165 G. Aad et al. (ATLAS Collab.) AAD 21S JHEP 2105 093 G. Aad et al. (ATLAS Collab.) ABDALLAH 21 PR D103 102002 H. Abdallah et al. (H.E.S.S. Collab.) AKERIB 21A PR D104 012011 D.S. Akerib et al. (LUX Collab.) AKERIB 21B PR D104 062005 D.S. Akerib et al. (LUX Collab.) ALKHATIB 21 PR D103 102005 J. Amare et al. (ANAIS Collab.) AMARE 21 PR D103 102005 J. Amare et al. (PROSPECT Collab.) ANDRIAMIR 21A PR D104 012009 M. Andriamirado et al. (PROSPECT Collab.) APRILE 21 PRL 126 091301 E. Aprile et al. (XENON1T Collab.) APRILE 21A PR D103 063028 E. Aprile et al. (XENON1T Collab.) CHENG 21 PRL 126 211803 C. Cheng et al. (PandaX-II Collab.)	AAD	21K	JHEP 2102 220	G. Aad et al.	(ATLAS Collab.)
AAD 21P JHEP 2104 165 G. Aad et al. (ATLAS Collab.) AAD 21S JHEP 2105 093 G. Aad et al. (ATLAS Collab.) ABDALLAH 21 PR D103 102002 H. Abdallah et al. (H.E.S.S. Collab.) AKERIB 21A PR D104 012011 D.S. Akerib et al. (LUX Collab.) AKERIB 21B PR D104 062005 D.S. Akerib et al. (LUX Collab.) ALKHATIB 21 PR D103 102005 J. Akerib et al. (SuperCDMS Collab.) AMARE 21 PR D103 102005 J. Amare et al. (ANAIS Collab.) AMARE 21 PR D104 012009 M. Andriamirado et al. (PROSPECT Collab.) ANDRIAMIR 21A PR D104 012009 M. Andriamirado et al. (PROSPECT Collab.) APRILE 21 PRL 126 091301 E. Aprile et al. (XENON1T Collab.) APRILE 21A PR D103 063028 E. Aprile et al. (XENON1T Collab.) CHENG 21 PRL 126 211803 C. Cheng et al. (PandaX-II Collab.)	AAD	210	JHEP 2104 174	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 21S JHEP 2105 093 G. Aad et al. (ATLAS Collab.) ABDALLAH 21 PR D103 102002 H. Abdallah et al. (H.E.S.S. Collab.) AKERIB 21A PR D104 012011 D.S. Akerib et al. (LUX Collab.) AKERIB 21B PR D104 062005 D.S. Akerib et al. (LUX Collab.) ALKHATIB 21 PR D103 102005 J. Amare et al. (SuperCDMS Collab.) AMARE 21 PR D103 102005 J. Amare et al. (ANAIS Collab.) ANDRIAMIR 21A PR D104 012009 M. Andriamirado et al. (PROSPECT Collab.) APRILE 21 PRL 126 091301 E. Aprile et al. (XENON1T Collab.) APRILE 21A PR D103 063028 E. Aprile et al. (XENON1T Collab.) CHENG 21 PRL 126 211803 C. Cheng et al. (PandaX-II Collab.)	AAD	21P	JHEP 2104 165	G. Aad <i>et al.</i>	(ATLAS Collab.)
ABDALLAH 21 PR D103 102002 H. Abdallah et al. (H.E.S.S. Collab.) AKERIB 21A PR D104 012011 D.S. Akerib et al. (LUX Collab.) AKERIB 21B PR D104 062005 D.S. Akerib et al. (LUX Collab.) AKERIB 21B PR D104 062005 D.S. Akerib et al. (LUX Collab.) ALKHATIB 21 PRL 127 061801 I. Alkhatib et al. (SuperCDMS Collab.) AMARE 21 PR D103 102005 J. Amare et al. (ANAIS Collab.) ANDRIAMIR 21A PR D104 012009 M. Andriamirado et al. (PROSPECT Collab.) APRILE 21 PRL 126 091301 E. Aprile et al. (XENON1T Collab.) APRILE 21A PR D103 063028 E. Aprile et al. (XENON1T Collab.) CHENG 21 PRL 126 211803 C. Cheng et al. (PandaX-II Collab.)	AAD	215	JHEP 2105 093	G. Aad <i>et al.</i>	(ATLAS Collab.)
AKERIB 21A PR D104 012011 D.S. Akerib et al. (LUX Collab.) AKERIB 21B PR D104 062005 D.S. Akerib et al. (LUX Collab.) ALKHATIB 21 PRL 127 061801 I. Alkhatib et al. (SuperCDMS Collab.) AMARE 21 PR D103 102005 J. Amare et al. (ANAIS Collab.) ANDRIAMIR 21A PR D104 012009 M. Andriamirado et al. (PROSPECT Collab.) APRILE 21 PRL 126 091301 E. Aprile et al. (XENON1T Collab.) APRILE 21A PR D103 063028 E. Aprile et al. (XENON1T Collab.) CHENG 21 PRL 126 211803 C. Cheng et al. (PandaX-II Collab.)	ABDALLAH	21	PK D103 102002	H. Abdallah <i>et al.</i>	(H.E.S.S. Collab.)
AKERIB 21B PR D104 062005 D.S. Akerib et al. (LUX Collab.) ALKHATIB 21 PRL 127 061801 I. Alkhatib et al. (SuperCDMS Collab.) AMARE 21 PR D103 102005 J. Amare et al. (ANAIS Collab.) ANDRIAMIR 21A PR D104 012009 M. Andriamirado et al. (PROSPECT Collab.) APRILE 21 PRL 126 091301 E. Aprile et al. (XENON1T Collab.) APRILE 21A PR D103 063028 E. Aprile et al. (XENON1T Collab.) CHENG 21 PRL 126 211803 C. Cheng et al. (PandaX-II Collab.)	AKERIB	21A	PR D104 012011	D.S. Akerib <i>et al.</i>	(LUX Collab.)
ALKHATIB 21 PRL 127 061801 I. Alkhatib et al. (SuperCDMS Collab.) AMARE 21 PR D103 102005 J. Amare et al. (ANAIS Collab.) ANDRIAMIR 21A PR D104 012009 M. Andriamirado et al. (PROSPECT Collab.) APRILE 21 PRL 126 091301 E. Aprile et al. (XENON1T Collab.) APRILE 21A PR D103 063028 E. Aprile et al. (XENON1T Collab.) CHENG 21 PRL 126 211803 C. Cheng et al. (PandaX-II Collab.)	AKERIB	21B	PR D104 062005	D.S. Akerib <i>et al.</i>	(LUX Collab.)
AMARE 21 PR D103 102005 J. Amare et al. (ANAIS Collab.) ANDRIAMIR 21A PR D104 012009 M. Andriamirado et al. (PROSPECT Collab.) APRILE 21 PRL 126 091301 E. Aprile et al. (XENON1T Collab.) APRILE 21A PR D103 063028 E. Aprile et al. (XENON1T Collab.) CHENG 21 PRL 126 211803 C. Cheng et al. (PandaX-II Collab.)	ALKHATIB	21	PRL 127 061801	I. Alkhatib <i>et al.</i>	(SuperCDMS Collab.)
ANDRIAMIR 21A PR D104 012009 M. Andriamirado et al. (PROSPECT Collab.) APRILE 21 PRL 126 091301 E. Aprile et al. (XENON1T Collab.) APRILE 21A PR D103 063028 E. Aprile et al. (XENON1T Collab.) CHENG 21 PRL 126 211803 C. Cheng et al. (PandaX-II Collab.)	AMARE	21	PR D103 102005	J. Amare <i>et al.</i>	(ANAIS Collab.)
APRILE 21 PRL 126 091301 E. Aprile et al. (XENON1T Collab.) APRILE 21A PR D103 063028 E. Aprile et al. (XENON1T Collab.) CHENG 21 PRL 126 211803 C. Cheng et al. (PandaX-II Collab.)	ANDRIAMIR	21A	PR D104 012009	M. Andriamirado <i>et al.</i>	(PROSPECT Collab.)
APRILE 21A PR D103 063028 E. Aprile <i>et al.</i> (XENON1T Collab.) CHENG 21 PRL 126 211803 C. Cheng <i>et al.</i> (PandaX-II Collab.)	APRILE	21	PRL 126 091301	E. Aprile <i>et al.</i>	(XENON1T Collab.)
CHENG 21 PRL 126 211803 C. Cheng <i>et al.</i> (PandaX-II Collab.)	APRILE	21A	PR D103 063028	E. Aprile <i>et al.</i>	(XENON1T Collab.)
	CHENG	21	PRL 126 211803	C. Cheng <i>et al.</i>	(PandaX-II Collab.)

CIRELLI	21	PR D103 063022	M. Cirelli <i>et al.</i>	
IKEDA	21	PTEP 2021 063F01	T. Ikeda <i>et al.</i>	(NEWAGE Collab.)
JOHN	21	JCAP 2112 007	I. John, T. Linden	(STOH)
MENG	21B	PRL 127 261802	Y. Meng <i>et al.</i>	(PandaX-41 Collab.)
	21A	EFJ COL 13 EPI (81 333 (errat)	A.W. Sirunyan et al.	(CMS Collab.)
TUMASYAN	21D	JHEP 2111 153	A. Tumasvan <i>et al.</i>	(CMS Collab.)
WANG	21K	SCPMA 64 281011	Y. Wang <i>et al.</i>	(CDEX Collab.)
AARTSEN	20C	EPJ C80 819	M.G. Aartsen et al.	(IceCube, PICO Collabs)
ABAZAJIAN	20	PR D102 043012	K.N. Abazajian <i>et al.</i>	(UCI, VPI, TOKY+)
ABDALLAH	20	PR D102 062001	H. Abdallah <i>et al.</i>	(H.E.S.S. Collab.)
ABDELHAME	20A	EPJ C80 834	A.H. Abdelhameed <i>et al.</i>	(CRESST Collab.)
	20G 20	PR D102 072002 PR D102 082001	P. Adhikari et al	(DEAP-3600 Collab.)
AGOSTINI	20	PRL 125 011801	M. Agostini <i>et al.</i>	(GERDA Collab.)
AGUILAR-AR	20C	PRL 125 241803	A. Aguilar-Arevalo	(DAMIC Collab.)
AKERIB	20	PR D101 012003	D.S. Akerib et al.	(LUX Collab.)
AKERIB	20A	PR D101 042001	D.S. Akerib et al.	(LUX Collab.)
ALBERT	20	PR D101 103001	A. Albert <i>et al.</i>	(HAWC Collab.)
	20A	PL B805 135439	A. Albert et al.	(ANTARES COllab.)
	200	ICAP 2009 004	A. Albert <i>et al.</i> (All	TARES and recube conab.)
AMARAI	20	PR D102 091101	DW Amaral et al	(SuperCDMS_Collab_)
ANDRIANAV	20	PR D102 042001	A. Andrianavalomahefa <i>et al</i>	/. (FUNK Collab.)
APRILE	20	PR D102 072004	E. Aprile <i>et al.</i>	(XENON Collab.)
ARNAUD	20	PRL 125 141301	Q. Arnaud et al.	(EDELWEISS Collab.)
BARAK	20	PRL 125 171802	L. Barak <i>et al.</i>	(SENSEI Collab.)
CLARK	20	PR D102 123026	M. Clark <i>et al.</i>	(PURD)
	20	LIMP A35 2030005	M. Clark <i>et al.</i>	(SIMPLE Callab.)
HOOF	20	ICAP 2002 012	S Hoof A Geringer-Sameth	B Trotta (GOFT+)
MAZZIOTTA	20	PR D102 022003	M.N. Mazziotta <i>et al.</i>	
SIRUNYAN	20X	JHEP 2003 025	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
WANG	20G	CP C44 125001	Q. Wang et al.	(PandaX-II Collab.)
AABOUD	19AA	EPJ C79 120	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19AI	PL B793 499	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19AL	PRL 122 231801	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19Q 19V	IHEP 1905 142	M Aaboud et al.	(ATLAS Collab.)
ABDELHAME	19	EPJ C79 630	A.H. Abdelhameed <i>et al.</i>	(CRESST Collab.)
ABDELHAME	19A	PR D100 102002	A.H. Abdelhameed <i>et al.</i>	(CRESST Collab.)
ABE	19	PL B789 45	K. Abe <i>et al.</i>	(XMASS Collab.)
ABEYSEKARA	19	JCAP 1907 022	A.U. Abeysekara <i>et al.</i>	(HAWC Collab.)
ABRAMOFF	19	PRL 122 161801	O. Abramoff <i>et al.</i>	(SENSEI Collab.)
	19	PRL 123 031302	G. Adhikari <i>et al.</i>	(COSINE-100 Collab.)
	19A 10A	PR D99 002001 PRI 123 181802	A Aguilar-Arevalo et al	(CDMS Collab.)
A IA I	197	PR D100 022004	R Aiai et al	(DEAP-3600 Collab.)
AKERIB	19	PRL 122 131301	D.S. Akerib <i>et al.</i>	(LUX Collab.)
ALBERT	19B	JCAP 1904 E01	A. Albert <i>et al.</i>	(HÀWC Collab.)
AMARE	19	PRL 123 031301	J. Amare <i>et al.</i>	(ANAIS Collab.)
AMOLE	19	PR D100 022001	C. Amole <i>et al.</i>	(PICO Collab.)
ANGLOHER	19	EPJ C79 43	G. Angloher <i>et al.</i>	(CRESST-II Collab.)
	19	PRL 122 071301	E. Aprile <i>et al.</i>	(XENONIT Collab.)
	19A 10C	PRI 122 141501 PRI 123 241803	E. Aprile et al.	(XENONIT Collab.)
APRILE	19D	PRL 123 251801	E. Aprile <i>et al.</i>	(XENON1T Collab.)
ARMENGAUD	19	PR D99 082003	E. Armengaud <i>et al.</i>	(EDELWEISS Collab.)
BANERJEE	19	PRL 123 121801	D. Banerjee <i>et al.</i>	(NA64 Collab.)
BRINGMANN	19	PRL 122 171801	T. Bringmann, M. Pospelov	(OSLO, VICT)
BRUNE	19	PR D99 096005	T. Brune, H. Pas	(DORT)
	19	PL B789 137	K. Cheung et al.	
	19	PR D00 123027	M Di Mauro et al	(30113)
HA	19	PRL 122 131802	C. Ha et al.	(COSINE-100 Collab)
JOHNSON	19	PR D99 103007	C. Johnson et al.	(
KIM	19A	JHEP 1903 194	K.W. Kim <i>et al.</i>	(KIMS Collab.)
KLOPF	19	PRL 122 222503	M. Klopf <i>et al.</i>	(PERKEO II Collab.)
KOBAYASHI	19	PL B795 308	M. Kobayashi <i>et al.</i>	(XMASS Collab.)
	19D 10B	PRI 123 161201	J. LI ET al.	(CDEV Callab)
LIU	190	INC 123 101301	L.L. LIU CL al.	(CDLA Collab.)

Page 49

NG	19	PR D99 083005	KCY Ng et al	
OUEIR07	19	ICAP 1904 048	ES Queiroz C Siqueira	
SEONG	10	PRI 122 011801	IS Seong et al	(BELLE Collab.)
SIRLINVAN	10AN	FP1 (70 280	A M Sirunyan et al	(CMS Collab.)
SIRUNYAN	19RC	PI B795 76	A M Sirunyan et al	(CMS Collab.)
SIRUNYAN	19BO	PL B793 520	A M Sirunyan et al	(CMS Collab.)
SIRUNYAN	1900	PRI 122 011803	A M Sirunyan et al	(CMS Collab.)
SIRUNYAN	190	IHEP 1902 074	A M Sirunyan et al	(CMS Collab.)
SIRUNYAN	19X	IHEP 1903 141	A M Sirunyan et al	(CMS Collab.)
SUZUKI	19	ASP 110 1	T Suzuki et al	(XMASS Collab.)
XIA	19A	PL B792 193	I Xia et al	(PandaX-II Collab.)
YAGUNA	19	ICAP 1904 041	C Yaguna	(1 41144) (11 6611451)
YANG	19	PRL 123 221301	L.T. Yang et al.	(CDEX Collab.)
AABOUD	18	PL B776 318	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18A	EPJ C78 18	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18CA	JHEP 1810 180	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18I	JHEP 1801 126	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AARTSEN	18D	EPJ C78 831	M.G. Aartsen <i>et al.</i>	(ÌceCube Collab.)
ABDALLAH	18	PRL 120 201101	H. Abdallah <i>et al.</i>	(H.E.S.S. Collab.)
ABE	18C	PR D97 102006	K. Abe <i>et al.</i>	(XMASS Collab.)
ABE	18F	PL B787 153	K. Abe <i>et al.</i>	(XMASS Collab.)
ADHIKARI	18	NAT 564 83	G. Adhikari <i>et al.</i>	(COSINE-100 Collab.)
AGNES	18	PRL 121 081307	P. Agnes <i>et al.</i>	(DarkSide-50 Collab.)
AGNES	18A	PR D98 102006	P. Agnes <i>et al.</i>	(DarkSide-50 Collab.)
AGNES	18B	PRL 121 111303	P. Agnes <i>et al.</i>	(DarkSide-50 Collab.)
AGNESE	18	PR D97 022002	R. Agnese <i>et al.</i>	(SuperCDMS Collab.)
AGNESE	18A	PRL 120 061802	R. Agnese <i>et al.</i>	(SuperCDMS Collab.)
AGNESE	18B	PRL 121 051301	R. Agnese <i>et al.</i>	(SuperCDMS Collab.)
Also		PRL 122 069901 (errat.)	R. Agnese <i>et al.</i>	(SuperCDMS Collab.)
AGUILAR-AR	18B	PR D98 112004	A.A. Aguilar-Arevalo	(MiniBooNE Collab.)
AHNEN	18	JCAP 1803 009	M.L. Ahnen <i>et al.</i>	(MAGIC Collab.)
AKERIB	18A	PR D98 062005	D.S. Akerib <i>et al.</i>	(LUX Collab.)
ALBERT	18B	JCAP 1806 043	A. Albert <i>et al.</i>	(HAWC Collab.)
ALBERI	18C	PR D98 123012	A. Albert <i>et al.</i>	(HAWC Collab.)
AMAUDRUZ	18	PRL 121 0/1801	P.A. Amaudruz <i>et al.</i>	(DEAP-3600 Collab.)
APRILE	18	PRL 121 111302	E. Aprile <i>et al.</i>	(XENON11 Collab.)
ARMENGAUD	18	PR D98 082004	E. Armengaud <i>et al.</i>	(EDELVVEISS-III Collab.)
	10	ASP 97 54	Q. Arnaud <i>et al.</i>	(INEVVS-G COIIAD.)
	10A 10	PR D90 123004	L.J. Chang, M. Lisanti, S. M. Cricler et al	(PRIN)
	10	PRI 120 241301	H lippe of al	(CDEX Collab.)
	10	PRI 120 221301	C Kachulis et al	(Super-Kamiokande Collab.)
KHACHATRY	18	PR D97 099903	V Khachatryan <i>et al</i>	(CMS Collab.)
LISANTI	18	PRI 120 101101	M Lisanti <i>et al</i>	(PRIN MIT MICH)
ΜΑΖΖΙΟΤΤΑ	18	PR D98 022006	M Mazziotta <i>et al</i>	(Fermi-LAT Collab.)
RFN	18	PRI 121 021304	X Ren et al	(PandaX-II Collab.)
SIRUNYAN	18BF	JHEP 1806 027	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18BO	JHEP 1808 130	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18BV	EPJ C78 291	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18C	PR D97 032009	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18CU	JHEP 1801 056	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18DH	JHEP 1809 046	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18S	PR D97 092005	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
YANG	18	CP C42 023002	L.T. Yang <i>et al.</i>	(ČDEX Collab.)
AABOUD	17A	PL B765 11	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17AM	PRL 119 181804	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	17AQ	PR D96 112004	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	17BD	EPJ C77 765	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	17R	EPJ C77 393	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AARTSEN	17	EPJ C77 82	M.G. Aartsen <i>et al.</i>	(IceCube Collab.)
AARTSEN	17A	EPJ C77 146	M.G. Aartsen <i>et al.</i>	(IceCube Collab.)
Also	1-0	EPJ C79 214 (errat.)	M.G. Aartsen <i>et al.</i>	(IceCube Collab.)
AARISEN	17C	EPJ C77 627	M.G. Aartsen <i>et al.</i>	(IceCube Collab.)
AGUILAR-AR	174	PKL 118 141803	A. Aguilar-Arevalo <i>et al.</i>	(DAMIC Collab.)
AGUILAK-AK	17A	PKL 118 221803	A.A. Aguilar-Arevalo <i>et al.</i>	(MiniBooNE Collab.)
	174	PKL 110 021303	D.S. Akerib <i>et al.</i> D S. Akerib <i>et al.</i>	(LUX Collab.)
	17A	PRL 110 201302	Albort at al	(LUX COIIAD.)
	IIA	DI B706 249	A Albert et al.	(ANTARES COUDD.)
	17	PRI 118 253 (erral.)	C Amole et al	(ANTARES COUDD.)
ANGLOHER	17A	EPJ C77 637	G. Angloher <i>et al.</i>	(CRESST Collab.)
			0	(

APRILE APRILE APRILE APRILE APRILE APRILE ARCHAMBAU AVRORIN BANERJEE BARBOSA-D BATTAT BEHNKE BOUDAUD	17 17A 17D 17G 17H 17K 17 17 17 17 17 17 17 17 17	PRL 118 101101 PR D96 022008 PR D96 042004 PRL 119 181301 PR D96 122002 JCAP 1710 039 PR D95 082001 JETP 125 80 PRL 118 011802 PR D95 032006 ASP 91 65 ASP 90 85 PRL 119 021103		E. E. E. E. S. A.I D. E. J.E K.	Aprile et al. Aprile et al. Aprile et al. Aprile et al. Aprile et al. Aprile et al. Archambault et al. D. Avrorin et al. Banerjee et al. Barbosa de Souza et 3.R. Battat et al. Behnke et al. Boudaud, J. Lavalle,	<i>al.</i> P. Salat	(XENON100 (XENON100 (XENON100 (XENON100 (XENON100 (VERITAS (BAIKAL (NA64 (DM17 (DRIFT-IId (PICASSO	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
CHEN	17E	PR D96 102007		X.	Chen <i>et al.</i>		(PandaX-II (PandaX-II	Collab.)
FU	17	PRL 118 071301		С.	Fu et al.		(PandaX-II	Collab.)
Also		PRL 120 049902 (errat	.)	С.	Fu <i>et al.</i>		(PandaX-II	Collab.)
KHACHATRY	17A	PRL 118 021802		V.	Khachatryan <i>et al.</i>		(CMS	Collab.)
SIRUNYAN	17 17	JHEP 1702 135 IHEP 1703 061		V.	Khachatryan <i>et al.</i> M Sirunyan <i>et al</i>		(CMS)	Collab.)
SIRUNYAN	17AP	JHEP 1710 180		A.I	M. Sirunyan <i>et al.</i>		(CMS	Collab.)
SIRUNYAN	17AQ	JHEP 1710 073		A.I	M. Sirunyan <i>et al.</i>		(CMS	Collab.)
SIRUNYAN	17BB	EPJ C77 845		A.I	M. Sirunyan <i>et al.</i>		(CMS	Collab.)
SIRUNYAN	17G 17U	JHEP 1707 014 JHEP 1709 106		A.I A.I	M. Sirunyan <i>et al.</i> M. Sirunyan <i>et al.</i>		(CMS	Collab.)
AABOUD	16AD	PL B763 251		M.	Aaboud <i>et al.</i>		(ATLAS	Collab.)
AABOUD	16D	PR D94 032005		М.	Aaboud <i>et al.</i>		ATLAS	Collab.)
AABOUD	16⊢ 16∆F	JHEP 1606 059 IHEP 1601 172		M.	Aaboud <i>et al.</i>		(ATLAS	Collab.)
AAD	16AG	JHEP 1602 062		G.	Aad <i>et al.</i>		(ATLAS	Collab.)
AAD	16M	PR D93 072007		G.	Aad <i>et al.</i>		(ATLAS	Collab.)
AARTSEN	16C	JCAP 1604 022		M.	G. Aartsen <i>et al.</i>		(IceCube	Collab.)
ABDALLAH	16D	PRI 117 111301		IVI. H	G. Aartsen <i>et al.</i> Abdallah <i>et al</i>		(IceCube (H F S S	Collab.)
ABDALLAH	16A	PRL 117 151302		Η.	Abdallah <i>et al.</i>		(H.E.S.S.	Collab.)
ADRIAN-MAR	.16	PL B759 69		S.	Adrian-Martinez et al		(ANTARES	Collab.)
ADRIAN-MAR	.16B 16	JCAP 1605 016 PR D93 081101		5. Р	Adrian-Martinez et al		(AN TARES (DarkSide-50	Collab.)
AGNESE	16	PRL 116 071301		R.	Agnese <i>et al.</i>		(SuperCDMS	Collab.)
AGUILAR-AR	16	PR D94 082006		Α.	Aguilar-Arevalo et al.) (DAMIC	Collab.)
AHNEN	16	JCAP 1602 039		M.	L. Ahnen <i>et al.</i>	(MAGIC	and Fermi-LAT	Collab.)
AKERIB	16 16A	PRL 116 161301 PRL 116 161302		D.:	S. Akerib <i>et al.</i>		(LUX (LUX	Collab.)
AMOLE	16	PR D93 052014		C.	Amole <i>et al.</i>		(PICO	Collab.)
AMOLE	16A	PR D93 061101		C.	Amole <i>et al.</i>		(PICO	Collab.)
ANGLOHER	16 16A	EPJ C76 25		G.	Angloher et al.		(CRESST-II	Collab.)
APRILE	16	PR D94 092001		Б.	Aprile <i>et al.</i>		(XENON100	Collab.)
APRILE	16B	PR D94 122001		Ε.	Aprile <i>et al.</i>		(XENON100	Collab.)
	16	JCAP 1605 019		E.	Armengaud <i>et al.</i>		(EDELWEISS-III	Collab.)
CAPUTO	16	PR D93 062004		R.	Caputo <i>et al.</i>		(BAINAL	Collab.)
FORNASA	16	PR D94 123005		М.	Fornasa <i>et al.</i>		(Fermi-LAT	Collab.)
HEHN	16	EPJ C76 548		L.	Hehn <i>et al.</i>		(EDELWEISS-III	Collab.)
KHACHATRY	16RZ	IHEP 1612 083		V. V	Khachatryan <i>et al.</i> Khachatryan <i>et al</i>		(CMS)	Collab.)
Also	1002	JHEP 1708 035 (errat.))	V.	Khachatryan <i>et al.</i>		(CMS	Collab.)
KHACHATRY	16CA	JHEP 1612 088		V.	Khachatryan <i>et al.</i>		(CMS	Collab.)
KHACHATRY	16N 16	PL B755 102		V. N	Khachatryan <i>et al.</i>		(CMS	Collab.)
LI	16	PR D93 043518		S.	Li et al.			
LI	16A	JCAP 1612 028		Ζ.	Li <i>et al.</i>			
LIANG	16	PR D94 103502		Y	-F. Liang <i>et al.</i>			
SHIRASAKI	10	PR D93 103517 PR D94 063522		M	Q. LU, H-S. Zong Shirasaki <i>et al</i>			
TAN	16	PR D93 122009		Τ.	H. Tan <i>et al.</i>		(PandaX	Collab.)
TAN	16B	PRL 117 121303		Α.	Tan <i>et al.</i>		(PandaX	Collab.)
	16 1575	PK D93 092003		W.	. Zhao <i>et al.</i> And <i>et al</i>		(CDEX (ATLAS	Collab.)
AAD	15A5 15BH	EPJ C75 299		G.	Aad et al.		(ATLAS	Collab.)
Also		EPJ C75 408 (errat.)		G.	Aad <i>et al.</i>		(ATLAS	Collab.)

AAD	15CF	PRL 115 131801	G. Aad <i>et al.</i>	(ATLAS	Collab.)
AAD	15CS	PR D91 012008	G. Aad <i>et al.</i>	(ATLAS	Collab.)
Also		PR D92 059903 (errat.)	G. Aad <i>et al.</i>	(ATLAS	Collab.)
AARISEN	15C	EPJ C75 20	M.G. Aartsen <i>et al.</i>	(IceCube	Collab.)
	10E 15	PPI 114 091301	A Abramowski ot al		Collab.)
	15	PR D01 122002	A. Adramowski et al. M. Ackermann et al	(Fermi-LAT	Collab.)
ACKERMANN	15 15Δ	ICAP 1509 008	M Ackermann et al	(Fermi-LAT	Collab.)
ACKERMANN	15B	PRL 115 231301	M. Ackermann <i>et al.</i>	(Fermi-LAT	Collab.)
ADRIAN-MAR	.15	JCAP 1510 068	S. Adrian-Martinez et al.	ANTARES	Collab.)
AGNES	15	PL B743 456	P. Agnes <i>et al.</i>	(DarkSide-50	Collab.)
AGNESE	15A	PR D91 052021	R. Agnese et al.	(SuperCDMS	Collab.)
AGNESE	15B	PR D92 072003	R. Agnese <i>et al.</i>	(SuperCDMS	Collab.)
AMOLE	15	PRL 114 231302	C. Amole <i>et al.</i>	(PICO	Collab.)
APRILE	15	PRL 115 091302	E. Aprile <i>et al.</i>	(XENON	Collab.)
APRILE	15A	SCI 349 851	E. Aprile <i>et al.</i>	(XENON	Collab.)
	15	PRL 114 141301	K. Choi et al.	(Super-Kamiokande	Collab.)
	15AG	JHEP 1300 121 EDI C75 235	V. Khachatryan et al.	(CMS	Collab.)
KHACHATRY	157L	PR D91 092005	V Khachatryan <i>et al</i>	(CMS	Collab.)
NAKAMURA	15	PTEP 2015 4 043E01	K Nakamura <i>et al</i>	(NEWAGE	Collab.)
XIAO	15	PR D92 052004	X. Xiao <i>et al.</i>	(PandaX	Collab.)
AAD	14AI	JHEP 1409 037	G. Aad et al.	(ATLAS	Collab.)
AAD	14BK	PRL 112 041802	G. Aad <i>et al.</i>	(ATLAS	Collab.)
AAD	14K	PR D90 012004	G. Aad <i>et al.</i>	(ATLAS	Collab.)
AAD	140	PRL 112 201802	G. Aad <i>et al.</i>	(ATLAS	Collab.)
ACKERMANN	14	PR D89 042001	M. Ackermann <i>et al.</i>	(Fermi-LAT	Collab.)
AGNESE	14	PRL 112 241302	R. Agnese <i>et al.</i>	(SuperCDMS	Collab.)
AGNESE	14A	PRL 112 041302	R. Agnese <i>et al.</i>	(SuperCDMS	Collab.)
AKERIB	14	PRL 112 091303	D.S. Akerib et al.		Collab.)
	14	FDI C74 3184	G Anglobor of al		Collab.)
	14 14A	ASP 54 11	F Aprile $et al$	(XENON100	Collab.)
AVRORIN	14	ASP 62 12	A.D. Avrorin <i>et al.</i>	(BAIKAL	Collab.)
FELIZARDO	14	PR D89 072013	M. Felizardo <i>et al.</i>	(SIMPLE	Collab.)
LEE	14A	PR D90 052006	H.S. Lee <i>et al.</i>	(KIMS	Collab.)
LIU	14A	PR D90 032003	S.K. Liu <i>et al.</i>	(CDEX	Collab.)
UCHIDA	14	PTEP 2014 063C01	H. Uchida <i>et al.</i>	(XMASS	Collab.)
YUE	14	PR D90 091701	Q. Yue <i>et al.</i>	(CDEX	Collab.)
AAD	13AD	JHEP 1304 075	G. Aad <i>et al.</i>	(ATLAS	Collab.)
AAD	13C	PRL 110 011802	G. Aad <i>et al.</i>	(ATLAS	Collab.)
	13 13	PR D88 012002 PRI 110 131302	C.E. Aalseth <i>et al.</i> M.G. Aartsen <i>et al.</i>	(Logen I	Collab.)
AARTSEN	130	PR D88 122001	M.G. Aartsen et al	(IceCube	Collab.)
ABE	13B	PL B719 78	K. Abe <i>et al.</i>	(XMASS	Collab.)
ABRAMOWSKI	13	PRL 110 041301	A. Abramowski <i>et al.</i>	(H.E.S.S.	Collab.)
ACKERMANN	13A	PR D88 082002	M. Ackermann <i>et al.</i>	(Fermi-LAT	Collab.)
ADRIAN-MAR	.13	JCAP 1311 032	S. Adrian-Martinez et al.	(ANTARES	Collab.)
AGNESE	13	PR D88 031104	R. Agnese <i>et al.</i>	(CDMS	Collab.)
AGNESE	13A	PRL 111 251301	R. Agnese <i>et al.</i>	(CDMS	Collab.)
APRILE	13	PRL 111 021301	E. Aprile <i>et al.</i>	(XENON100	Collab.)
BERNABEI	13A 12	EPJ C/3 2648	R. Bernabei <i>et al.</i>	(DAMA	Collab.)
BOLIEV	13 12D	JCAP 1309 019 DDI 110 261201	WI. Bollev et al.		Collab)
	130	PAN 76 1367	OV Suvereva et al	(TEXONO	(INRM)
JUVUNUVA	15	Translated from YAF 76	1433.		(1111111)
ZHAO	13	PR D88 052004	W. Zhao <i>et al.</i>	(CDEX	Collab.)
AALTONEN	12K	PRL 108 201802	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
AALTONEN	12M	PRL 108 211804	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
ABBASI	12	PR D85 042002	R. Abbasi <i>et al.</i>	(IceCube	Collab.)
ABRAMOWSKI	12	APJ 750 123	A. Abramowski <i>et al.</i>	(H.E.S.S. (Eamai LAT	Collab.)
	12	PR D80 022002 DI P700 14	N. Ackermann <i>et al.</i>	(Fermi-LAT	Collab.)
	12	PR D85 062001	E Aliu et al	(VERITAS	Collab.)
ANGLOHER	12	FPI C72 1971	G Angloher et al	(CRFSST-II	Collah)
APRILE	12	PRL 109 181301	E. Aprile <i>et al.</i>	(XENON100	Collab.)
ARCHAMBAU	.12	PL B711 153	S. Archambault <i>et al.</i>	(PICASSO	Collab.)
ARMENGAUD	12	PR D86 051701	E. Armengaud <i>et al.</i>	(EDELWEISS	Collab.)
BARRETO	12	PL B711 264	J. Barreto <i>et al.</i>	(DAMIC	Collab.)
BEHNKE	12	PR D86 052001	E. Behnke <i>et al.</i>	(COUPP	Collab.)
Also		PR D90 079902 (errat.)	E. Behnke <i>et al.</i>	(COUPP	Collab.)

	10	DD D05 001201		A Brown at al	()	
	12	PK D05 021501		A. Brown et al.		
CHATRCHYAN	12AP	JHEP 1209 094		S. Chatrchyan <i>et al.</i>	(CMS Co	liab.)
CHAIRCHYAN	121	PRL 108 261803		S. Chatrchyan <i>et al.</i>	(CMS Co	llab.)
DAHL	12	PRL 108 259001		C.E. Dahl, J. Hall, W.	H. Lippincott (CHIC, F	NAL)
DAW	12	ASP 35 397		E. Daw <i>et al.</i>	(DRIFT-IId Co	llab.)
FELIZARDO	12	PRL 108 201302		M. Felizardo <i>et al.</i>	(SIMPLE Co	llab.)
KIM	12	PRI 108 181301		SC Kim et al	(KIMS Co	llah)
	11	DDI 106 121201		$C \in A_{alcoth} at al$		llab.)
AALCETH	11 4	FRE 100 131301				
AALSETH	IIA	PRL 107 141301		C.E. Aalseth <i>et al.</i>	(CoGeNT Co	liab.)
ABBASI	11C	PR D84 022004		R. Abbası <i>et al.</i>	(IceCube Co	llab.)
ABRAMOWSKI	11	PRL 106 161301		A. Abramowski <i>et al.</i>	(H.E.S.S. Co	llab.)
ACKERMANN	11	PRL 107 241302		M. Ackermann et al.	(Fermi-LAT Co	llab.)
AHLEN	11	PL B695 124		S. Ahlen <i>et al.</i>	`(DMTPC Co	llab.)
AHMED	11	PR D83 112002		7 Ahmed et al	CDMS Co	llah)
	11 1	PR D84 011102		7 Abmod at al	(CDMS and EDELWEISS Col	labe)
	11A 11D	DDI 106 121202		Z. Ahmed et al.		1105.)
		PRL 100 151502		Z. Anmed <i>et al.</i>		
AJELLO	11	PR D84 032007		M. Ajello <i>et al.</i>	(Fermi-LAT Co	llab.)
ANGLE	11	PRL 107 051301		J. Angle <i>et al.</i>	(XENON10 Co	llab.)
Also		PRL 110 249901 (errat.)	J. Angle <i>et al.</i>	(XENON10 Co	llab.)
APRILE	11	PR D84 052003		E. Aprile et al.	(XENON100 Co	llab.)
APRILE	11A	PR D84 061101		E. Aprile <i>et al.</i>	(XENON100 Co	llab.)
APRILE	11R	PRI 107 131302		E Aprile et al	(XENON100 Co	llah)
	11	DI D702 220		E Armongoud at al		llab.)
	11	FL D/02 329				
BEHINKE	11	PRL 100 021303		E. Bennke <i>et al.</i>	(COUPP Co	liab.)
GERINGER-SA.	.11	PRL 107 241303		A. Geringer-Sameth, S.	M. Koushiappas	
HORN	11	PL B705 471		M. Horn <i>et al.</i>	(ZEPLIN-III Co	llab.)
TANAKA	11	APJ 742 78		T. Tanaka <i>et al.</i>	(Super-Kamiokande Co	llab.)
ABBASI	10	PR D81 057101		R. Abbasi <i>et al.</i>	(IceCube Co	llab.)
AHMED	10	SCI 327 1619		7 Ahmed et al	(CDMS II Co	llah)
	10	DR D82 122004		DS Akorib at al		llab.)
	10	DL D602 122004		D.S. Akerib et al.		
AKIIVIOV	10	PL B092 180		D.YU. AKIMOV et al.	(ZEPLIN-III Co	liab.)
APRILE	10	PRL 105 131302		E. Aprile <i>et al.</i>	(XENON100 Co	llab.)
ARMENGAUD	10	PL B687 294		E. Armengaud <i>et al.</i>	(EDELWEISS-II Co	llab.)
FELIZARDO	10	PRL 105 211301		M. Felizardo <i>et al.</i>	(The SIMPLE Co	llab.)
MIUCHI	10	PL B686 11		K. Miuchi <i>et al.</i>	NEWAGE Co	llab.)
ABBASI	09B	PRI 102 201302		R Abbasi <i>et al</i>	(IceCube Co	llah)
	00	DRI 102 011301		7 Abmod at al		llab.)
	09	DD D00 11501		L Annieu et al.	(VENONIO Co	llah)
	09	FR D60 115005		J. Aligie et al.		
ANGLUHER	09	ASP 31 270		G. Angloner et al.	(CRESSI Co	liab.)
ARCHAMBAU	. 09	PL B682 185		S. Archambault <i>et al.</i>	(PICASSO Co	llab.)
LEBEDENKO	09A	PRL 103 151302		V.N. Lebedenko <i>et al.</i>	(ZEPLIN-III Co	llab.)
LIN	09	PR D79 061101		S.T. Lin <i>et al.</i>	(TEXONO Co	llab.)
AALSETH	08	PRL 101 251301		C.E. Aalseth <i>et al.</i>	(CoGeNT Co	llab.)
Also		PRI 102 109903 (errat)	C E Aalseth et al	(CoGeNT Co	llah)
	087	DRI 101 001301	cirut.)	Angle et al	(XENON10 Co	llab.)
	007	DAN 71 111	V	J. Aligie et al. A Badmuskau H.D. Kla		nau.)
DEDINTAROV	00	Translated from VA	Г 71 1	А. Deuriyakov, П.Р. Кіа 10	ipdor-Kleingrothaus, I.v. Krivo	osneina
	07	DI DEE2 161		12.		11-1-)
ALNER	07	PL B053 101		G.J. Alner <i>et al.</i>	(ZEPLIN-II Co	liab.)
LEE	07A	PRL 99 091301		H.S. Lee <i>et al.</i>	(KIMS Co	llab.)
MIUCHI	07	PL B654 58		K. Miuchi <i>et al.</i>		
AKERIB	06	PR D73 011102		D.S. Akerib et al.	(CDMS Co	llab.)
SHIMIZU	06A	PL B633 195		Y. Shimizu <i>et al.</i>		,
AKERIB	05	PR D72 052009		D.S. Akerib <i>et al.</i>	(CDMS Co	llab.)
ALNER	05	PI B616 17		G Alner et al	(UK Dark Matter Co	llah)
	05	DI D624 196		M Parpaha Haidar at		llab.)
	.05	FL D024 100		A Danait at al		
BENULL	05	PL B010 25		A. Benoit et al.	(EDELWEISS Co	liab.)
GIRARD	05	PL B021 233		I.A. Girard et al.	(SIMPLE Co	llab.)
GIULIANI	05	PRL 95 101301		F. Giuliani		
GIULIANI	05A	PR D71 123503		F. Giuliani, T.A. Girard		
KLAPDOR-K	05	PL B609 226		H.V. Klapdor-Kleingrotl	naus, I.V. Krivosheina, C. Tor	nei
GIULIANI	04	PL B588 151		F. Giuliani. T.A. Girard		
GIULIANI	04A	PRI 93 161301		F Giuliani		
MILICHI	03	ASD 10 125		K Miuchi at al		
	0.0	DI DE70 1/E		A Takada at al		
	03	FL D3/2 145		A. Takeda et al.		
ANGLUHER	02	ASP 18 43		G. Angloher <i>et al.</i>	(CRESST Co	liab.)
BELLI	02	PK D66 043503		P. Belli <i>et al.</i>		
BERNABEI	02C	EPJ C23 61		R. Bernabei <i>et al.</i>	(DAMA Co	llab.)
GREEN	02	PR D66 083003		A.M. Green	•	-
BAUDIS	01	PR D63 022001		L. Baudis <i>et al.</i>	(Heidelberg-Moscow Co	llab.)
SMITH	01	PR D64 043502		D. Smith N Weiner	(,
	01	IHEP 0107 044		P Ullio M Kamionko	vski P Vogel	
0	~-					

Page 53

BENOIT	00	PL B479 8	A. Benoit <i>et al.</i>	(EDELWEISS Collab.)
BERNABEI	00D	NJP 2 15	R. Bernabei <i>et al.</i>	(DAMA Collab.)
COLLAR	00	PRL 85 3083	J.I. Collar <i>et al.</i>	(SIMPLE Collab.)
AMBROSIO	99	PR D60 082002	M. Ambrosio <i>et al.</i>	(Macro Collab.)
BERNABEI	99	PL B450 448	R. Bernabei <i>et al.</i>	(DAMA Collab.)
BERNABEI	99D	PRL 83 4918	R. Bernabei <i>et al.</i>	(DAMA Collab.)
BRHLIK	99	PL B464 303	M. Brhlik, L. Roszkowski	
DERBIN	99	PAN 62 1886	A.V. Derbin <i>et al.</i>	
		Translated from YAF 62 2	2034.	
KLIMENKO	98	JETPL 67 875	A.A. Klimenko <i>et al.</i>	
C 4 D C 4		Iranslated from ZEIFP 6	07 835.	(7454)
SARSA	97	PR D56 1856	M.L. Sarsa <i>et al.</i>	(ZARA)
ALESSAND	96	PL B384 316	A. Alessandrello <i>et al.</i>	(MILA, MILAI, SASSO)
BELLI	96	PL B387 222	P. Belli <i>et al.</i>	(DAMA Collab.)
Also		PL B389 783 (errat.)	P. Belli <i>et al.</i>	(DAMA Collab.)
BELLI	96C	NC C19 537	P. Belli <i>et al.</i>	(DAMA Collab.)
BERNABEI	96	PL B389 757	R. Bernabei <i>et al.</i>	(DAMA Collab.)
COLLAR	96	PRL 76 331	J.I. Collar	(SCUC)
SARSA	96	PL B386 458	M.L. Sarsa <i>et al.</i>	(ZARA)
Also		PR D56 1856	M.L. Sarsa <i>et al.</i>	(ZARA)
SMITH	96	PL B379 299	P.F. Smith <i>et al.</i>	(RAL, SHEF, LOIC+)
SNOWDEN	96	PRL 76 332	D.P. Snowden-Ifft, E.S. Freem	nan, P.B. Price (UCB)
GARCIA	95	PR D51 1458	E. Garcia <i>et al.</i>	(ZARA, SCUC, PNL)
QUENBY	95	PL B351 70	J.J. Quenby <i>et al.</i>	(LOIC, RAL, SHEF+)
SNOWDEN	95	PRL 74 4133	D.P. Snowden-Ifft, E.S. Freem	nan, P.B. Price (UCB)
Also		PRL 76 331	J.I. Collar	(SCUC)
Also		PRL 76 332	D.P. Snowden-Ifft, E.S. Freem	nan, P.B. Price (UCB)
BECK	94	PL B336 141	M. Beck <i>et al.</i>	(MPIK, KIAE, SÁSSO)
BACCI	92	PL B293 460	C. Bacci et al.	Beijing-Roma-Saclay Collab.)
REUSSER	91	PL B255 143	D. Reusser et al.	(NEUC, CIT, PSI)
CALDWELL	88	PRL 61 510	D.O. Caldwell et al.	(ÙCSB, UCB, LBL)