QUARKS

The u-, d-, and s-quark masses are the $\overline{\rm MS}$ masses at the scale μ = 2 GeV. The c- and b-quark masses are the $\overline{\rm MS}$ masses renormalized at the $\overline{\rm MS}$ mass, i.e. $\overline{m} = \overline{m}(\mu = \overline{m})$. The t-quark mass is extracted from event kinematics (see the review "The Top Quark").

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $m_u=2.16\pm0.07$ MeV, CL =90% Charge $=\frac{2}{3}$ e $I_z=+\frac{1}{2}$ $m_u/m_d=0.462\pm0.020$, CL =90%

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $m_d=4.70\pm0.07$ MeV, CL =90% Charge $=-\frac{1}{3}$ e $I_z=-\frac{1}{2}$ $m_s/m_d=17$ –22 $\overline{m}=(m_u+m_d)/2=3.49\pm0.07$ MeV, CL =90%

$$I(J^P)=0(\tfrac{1}{2}^+)$$

 $m_s = 93.5 \pm 0.8$ MeV, CL = 90% Charge = $-\frac{1}{3}$ e Strangeness = -1 m_s / $((m_u+m_d)/2)=27.33^{+0.18}_{-0.14}$, CL = 90%

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $m_c=1.2730\pm0.0046$ GeV, CL =90% Charge $=\frac{2}{3}$ e Charm =+1 $m_b-m_c=3.45\pm0.05$ GeV

$$I(J^P)=0(\tfrac{1}{2}^+)$$

 $m_b=4.183\pm 0.007$ GeV, CL =90% Charge $=-\frac{1}{3}$ e Bottom =-1

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$\mathsf{Charge} = \tfrac{2}{3} \ e \qquad \qquad \mathsf{Top} = +1$$

Created: 4/29/2024 19:17

Mass (direct measurements) $m=172.57\pm0.29~{\rm GeV}^{[a,b]}~({\rm S}=1.5)$ Mass (from cross-section measurements) $m=162.5^{+2.1}_{-1.5}~{\rm GeV}^{[a]}$ Mass (Pole from cross-section measurements) $m=172.4\pm0.7~{\rm GeV}$ $m_t-m_{\overline{t}}=-0.15\pm0.20~{\rm GeV}~({\rm S}=1.1)$ Full width $\Gamma=1.42^{+0.19}_{-0.15}~{\rm GeV}~({\rm S}=1.4)$ $\Gamma(W\,b)/\Gamma(W\,q\,(q=b,\,s,\,d))=0.957\pm0.034~({\rm S}=1.5)$

t-quark EW Couplings

 $F_0 = 0.693 \pm 0.013$ $F_- = 0.315 \pm 0.010$ $F_+ = -0.005 \pm 0.007$ $F_{V+A} < 0.29$, CL = 95%

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)			
$\overline{Wq(q=b, s, d)}$			_			
W b			_			
$e \nu_e b$	(11.10±0.30) % -					
μu_{μ} b	(11.40±0.20) % -					
$ au u_{ au}$ $m{b}$	$(10.7 \pm 0.5)\%$					
q q b	(66.5 ± 1.4)	%	_			
$\gamma q(q=u,c)$	[c] < 4.5	$\times 10^{-5}$ 95%	_			
$\Delta T = 1$ we	ak neutral current (<i>T</i> .	1) modes				
Zq(q=u,c)	[d] < 1.2	× 10 ⁻⁴ 95%	_			
Hu 7	7 < 1.9	$\times10^{-4}$ 95%	_			
Hc 7	7 < 4.3	$\times10^{-4}$ 95%	_			
$\ell^+ \overline{q} \overline{q}'(q=d,s,b; q'=u,c)$ 7	71 < 1.6	\times 10 ⁻³ 95%	_			
Lepton Fami	ly number (<i>LF</i>) violat	ing modes				

Lepton Family number (LF) violating modes

	LF	< 8.9	$\times 10^{-7}$	_
$e^{\pm}\mu^{\mp}u$	LF	< 7	× 10 ⁻⁸	_

b' (4th Generation) Quark, Searches for

Mass m > 190 GeV, CL = 95% ($p\overline{p}$, quasi-stable b') Mass m > 1390 GeV, CL = 95% (B($b' \to Zb$) = 1) Mass m > 1350 GeV, CL = 95% (B($b' \to Wt$) = 1) Mass m > 1570 GeV, CL = 95% (B($b' \to Hb$) = 1) Mass m > 46.0 GeV, CL = 95% (e^+e^- , all decays)

Created: 4/29/2024 19:17

t' (4th Generation) Quark, Searches for

```
m(t'(2/3)) > 1280 GeV, CL = 95% (B(t' \to Zt) = 1) m(t'(2/3)) > 1295 GeV, CL = 95% (B(t' \to Wb) = 1) m(t'(2/3)) > 1310 GeV, CL = 95% (singlet t') m(t'(2/3)) > 1350 GeV, CL = 95% (t' in a weak isospin doublet (t',b')) m(t'(5/3)) > 1.460 \times 10^3 GeV, CL = 95% (t'(5/3) \to tW^+)
```

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
- [b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s}=7$ TeV. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- [c] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
- [d] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

Created: 4/29/2024 19:17