7/16/2025 11:26

NODE=B014

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Status: ****

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

N(1710) POLE POSITION

	DOCUMENT ID		TECN	COMMENT
$\frac{1660 + 1760}{1000}$ (~ 1700) OUP ES			TECN	COMMENT
$1050\ 10\ 1750\ (\approx 1700)\ OUR\ E$				
$1605\pm$ 7	ROENCHEN	22	DPWA	Multichannel
1690 ± 15	ANISOVICH	17A	DPWA	Multichannel
1697 ± 23	¹ ANISOVICH	17A	L+P	$\gamma p, \pi^- p \rightarrow K \Lambda$
$1770 \pm 5 \pm 2$	² SVARC	14	L+P	$\pi N \rightarrow \pi N$
1690 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet We do not use the follow	ing data for average	s, fits,	limits, e	etc. • • •
1615	HUNT	19	DPWA	Multichannel
1651	ROENCHEN	15A	DPWA	Multichannel
1690 ± 15	SOKHOYAN	15A	DPWA	Multichannel
1690 ± 15	GUTZ	14	DPWA	Multichannel
1670	SHKLYAR	13	DPWA	Multichannel
1687 ± 17	ANISOVICH	12A	DPWA	Multichannel
1711 ± 15	³ BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
1679	VRANA	00	DPWA	Multichannel
1690	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1698	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
1 Statistical armon and				

¹Statistical error only.

 2 Fit to the amplitudes of HOEHLER 79.

³BATINIC 10 finds evidence for a second P_{11} state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

-2×IMAGINARY PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
80 to 160 (≈ 120) OUR ESTIMA	TE			
$115\pm$ 5	ROENCHEN	22	DPWA	Multichannel
155 ± 25	ANISOVICH	17A	DPWA	Multichannel
84±34	¹ ANISOVICH	17A	L+P	$\gamma p, \pi^- p \rightarrow K \Lambda$
$98\pm$ 8 ± 5	² SVARC	14	L+P	$\pi N \rightarrow \pi N$
80±20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. • • •
169	HUNT	19	DPWA	Multichannel
121	ROENCHEN	15A	DPWA	Multichannel
170 ± 20	SOKHOYAN	15A	DPWA	Multichannel
170 ± 20	GUTZ	14	DPWA	Multichannel
159	SHKLYAR	13	DPWA	Multichannel
200 ± 25	ANISOVICH	12A	DPWA	Multichannel
174 ± 16	³ BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
132	VRANA	00	DPWA	Multichannel
200	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
88	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
88	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$

¹Statistical error only.

 2 Fit to the amplitudes of HOEHLER 79.

³BATINIC 10 finds evidence for a second P_{11} state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

N(1710) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
4 to 10 (≈ 7) OUR ESTIMATE				
5.5 ± 2.4	ROENCHEN	22	DPWA	Multichannel
6 ±3	SOKHOYAN	15A	DPWA	Multichannel
5 ± 1 ± 1	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
8 ±2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

NODE=B014220

NODE=B014IM;LINKAGE=A

NODE=B014IM;LINKAGE=SV

NODE=B014IM;LINKAGE=BA

NODE=B014RER NODE=B014RER \rightarrow UNCHECKED \leftarrow

NODE=B014

NODE=B014215

NODE=B014RE NODE=B014RE

 \rightarrow UNCHECKED \leftarrow

NODE=B014RE;LINKAGE=A

NODE=B014RE;LINKAGE=SV

NODE=B014RE;LINKAGE=BA

 $\begin{array}{l} \text{NODE}=\text{B014IM} \\ \text{NODE}=\text{B014IM} \\ \rightarrow \text{UNCHECKED} \leftarrow \end{array}$

OCCUR=2

OCCUR=2

NODE=B014RER;LINKAGE=SV

NODE=B014RER;LINKAGE=BA

NODE=B014IMR;LINKAGE=SV

NODE=B014IMR;LINKAGE=BA

NODE=B014250

NODE=B014250

NODE=B014IMR

NODE=B014IMR

 \rightarrow UNCHECKED \leftarrow

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

3.	2	ROENCHEN	15A	DPWA	Multichannel
6	± 3	GUTZ	14	DPWA	Multichannel
11		SHKLYAR	13	DPWA	Multichannel
6	± 4	ANISOVICH	12A	DPWA	Multichannel
24		² BATINIC	10	DPWA	$\pi N \rightarrow N \pi$, $N \eta$
15		HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
9		CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$

¹Fit to the amplitudes of HOEHLER 79.

 $^2\,{\rm BATINIC}$ 10 finds evidence for a second P_{11} state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

PHASE **\theta** VALUE (°) DOCUMENT ID TECN COMMENT 120 to 270 (\approx 190) OUR ESTIMATE -114 ± 29 ROENCHEN 22 DPWA Multichannel 130 ± 35 SOKHOYAN 15A DPWA Multichannel $-104\pm$ 7 ± 3 ¹ SVARC $\pi N \rightarrow \pi N$ 14 L+P CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ 175 ± 35 • • • We do not use the following data for averages, fits, limits, etc. • • • 55 ROENCHEN 15A DPWA Multichannel 120 ± 45 14 DPWA Multichannel GUTZ 13 DPWA Multichannel 9 SHKLYAR 120 ± 70 ANISOVICH 12A DPWA Multichannel ² BATINIC 20 10 DPWA $\pi N \rightarrow N \pi$, $N \eta$ CUTKOSKY 90 IPWA $\pi N \rightarrow \pi N$ -167 1 Fit to the amplitudes of HOEHLER 79.

²BATINIC 10 finds evidence for a second P_{11} state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

N(1710) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2$.

Normalized re MODULUS	esidue in $N\pi \rightarrow N($ <u>PHASE (°)</u>	$(1710) \rightarrow N\eta$	1	TECN	COMMENT	NODE=B014RS1 NODE=B014RS1
0.28 ± 0.13	91 ± 32	ROENCHEN	22	DPWA	Multichannel	
0.12 ± 0.04	0 ± 45	ANISOVICH	12A	DPVVA	Multichannel	
• • • vve do no	ot use the following dat	a for averages, fi	ts, IIn	iits, etc.	•••	
0.16	-180	ROENCHEN	15A	DPWA	Multichannel	
Normalized re	esidue in $N\pi ightarrow N($	1710) → Λk				NODE=B014RS2
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT	NODE=B014RS2
0.20 ± 0.10	-144 ± 39	ROENCHEN	22	DPWA	Multichannel	
$0.16 \!\pm\! 0.05$	-160 \pm 25	ANISOVICH	17A	DPWA	Multichannel	
$0.12^{+0.24}_{-0.12}$	-119 ± 83	¹ ANISOVICH	17A	L+P	$\gamma p, \pi^- p \rightarrow K \Lambda$	OCCUR=2
• • • We do no	ot use the following dat	a for averages, fi	ts, lin	nits, etc.	• • •	
0.12	- 32	ROENCHEN	15A	DPWA	Multichannel	
$0.17 \!\pm\! 0.06$	-110 ± 20	ANISOVICH	12A	DPWA	Multichannel	
¹ Statistical e	rror only.					NODE=B014RS2;LINKAGE=A
Normalized re	esidue in $N\pi \rightarrow N($	(1710) $\rightarrow \Sigma I$	K			
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT	NODE=B014A00
0.055 ± 0.024	162 ± 153	ROENCHEN	22	DPWA	Multichannel	
• • • We do no	ot use the following dat	a for averages, fi	ts, lin	nits, etc.	• • •	
0.004	-43	ROENCHEN	15A	DPWA	Multichannel	
Normalized re MODULUS 0.10±0.04	esidue in $N\pi \rightarrow N($ <u>PHASE (°)</u> 140 ± 40	$\begin{array}{c} (1710) \rightarrow N(1) \\ \underline{DOCUMENT \ ID} \\ GUTZ \end{array}$	1535) 14)π <u></u> DPWA	<u>COMMENT</u> Multichannel	NODE=B014RS3 NODE=B014RS3 OCCUR=3

N(1710) BREIT-WIGNER MASS

NODE=B014M

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	NODE=B014M
1680 to 1740 (≈ 1710) OUR EST	MATE				\rightarrow UNCHECKED \leftarrow
1648 ± 16	¹ HUNT	19	DPWA	Multichannel	
1715 ± 20	SOKHOYAN	15A	DPWA	Multichannel	
1737 ± 17	¹ SHKLYAR	13	DPWA	Multichannel	
1700 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
1723± 9	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
\bullet \bullet \bullet We do not use the following	data for averages	, fits,	limits, e	etc. • • •	
1715±20	GUTZ	14	DPWA	Multichannel	
1710 ± 20	ANISOVICH	12A	DPWA	Multichannel	
1662 ± 7	¹ SHRESTHA	12A	DPWA	Multichannel	
1729 ± 16	² BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$	
1752 ± 3	PENNER	02C	DPWA	Multichannel	
$1699\!\pm\!65$	VRANA	00	DPWA	Multichannel	
¹ Statistical error only. ² BATINIC 10 finds evidence fo	r a second P_{11} st	ate w	vith all p	parameters except for the	NODE=B014M;LINKAGE=A NODE=B014M;LINKAGE=BT

phase of the pole residue very similar to the parameters we give here.

N(1710) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
80 to 200 (\approx 140) OUR ESTIMA	TE			
$195\pm$ 46	¹ HUNT	19	DPWA	Multichannel
$175\pm~15$	SOKHOYAN	15A	DPWA	Multichannel
368 ± 120	¹ SHKLYAR	13	DPWA	Multichannel
93± 30	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
$90\pm$ 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$120\pm$ 15	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. • • •
$175\pm~15$	GUTZ	14	DPWA	Multichannel
$200\pm~18$	ANISOVICH	12A	DPWA	Multichannel
$116\pm~17$	¹ SHRESTHA	12A	DPWA	Multichannel
$180\pm~17$	² BATINIC	10	DPWA	π N \rightarrow N π , N η
$386\pm$ 59	PENNER	02C	DPWA	Multichannel
143 ± 100	VRANA	00	DPWA	Multichannel
¹ Statistical error only.				

²BATINIC 10 finds evidence for a second P_{11} state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

N(1710) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)	
Г1	Νπ	5–20 %	DESIG=1;OUR EST
Γ2	$N\eta$	10-50 %	DESIG=2;OUR EST
Γ ₃	$N\omega$	1–5 %	DESIG=12;OUR EST
Γ ₄	ΛΚ	5–25 %	DESIG=3;OUR EST
Γ ₅	ΣΚ	seen	DESIG=4;OUR EST
Γ ₆	$N\pi\pi$	14-48 %	DESIG=5;OUR EST
Γ ₇	$arDelta(1232) \pi$, $\it P$ -wave	3–9 %	DESIG=6
Γ ₈	$N\rho$, $S=1/2$, <i>P</i> -wave	11–23 %	DESIG=7
Γ ₉	Nσ	<16 %	DESIG=188
Γ ₁₀	$N(1535)\pi$	9–21 %	DESIG=187;OUR EST
Γ_{11}^{-1}	$p\gamma$, helicity=1/2	0.002-0.08 %	DESIG=10;OUR EST
Γ ₁₂	$n\gamma$, helicity=1/2	0.0-0.02%	DESIG=11;OUR EST

NODE=B014W

NODE=B014W

 \rightarrow UNCHECKED \leftarrow

NODE=B014225;NODE=B014

NODE=B014W;LINKAGE=A

NODE=B014W;LINKAGE=BA

NODE=B014

N(1710) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
5 to 20 (≈ 10) OUR ESTIM	IATE				
12± 6	¹ HUNT	19	DPWA	Multichannel	
5± 3	SOKHOYAN	15A	DPWA	Multichannel	
2± 2	¹ SHKLYAR	13	PWA	Multichannel	
20± 4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
12± 4	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
\bullet \bullet \bullet We do not use the following the	owing data for average	s, fits,	limits, e	tc. • • •	
5± 3	GUTZ	14	DPWA	Multichannel	
5± 4	ANISOVICH	12A	DPWA	Multichannel	
$15\pm$ 4	¹ SHRESTHA	12A	DPWA	Multichannel	
22 ± 24	² BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$	
14± 8	PENNER	02C	DPWA	Multichannel	
27 ± 13	VRANA	00	DPWA	Multichannel	
1					

¹Statistical error only.

²BATINIC 10 finds evidence for a second P_{11} state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

$\Gamma(N\eta)/\Gamma_{\rm total}$					Γ_2/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
10 to 50 (≈ 30) OUR ESTI	MATE				
18 ± 10	MUELLER	20	DPWA	Multichannel	
17± 8	¹ HUNT	19	DPWA	Multichannel	
45± 4	¹ SHKLYAR	13	DPWA	Multichannel	
17 ± 10	ANISOVICH	12A	DPWA	Multichannel	
\bullet \bullet \bullet We do not use the following the following the term of ter	llowing data for average	s, fits,	limits, e	tc. • • •	
$11\pm$ 7	¹ SHRESTHA	12A	DPWA	Multichannel	
6± 8	² BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$	
36 ± 11	PENNER	02C	DPWA	Multichannel	
$6\pm$ 1	VRANA	00	DPWA	Multichannel	
1					

¹Statistical error only.

²BATINIC 10 finds evidence for a second P_{11} state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

$\Gamma(N\omega)/\Gamma_{\text{total}}$					Г ₃ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
1 to 5 (\approx 3) OUR ESTIMATE					
2±2	DENISENKO	16	DPWA	Multichannel	
3±2	¹ SHKLYAR	13	DPWA	Multichannel	
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. • • •	
13 ± 2	PENNER	02C	DPWA	Multichannel	

 $^1\,\mathrm{Statistical}$ error only.

. .

Г(/	<i>\K</i>)/Γ _{total}					Γ <u>4</u> /Ι
VAL	UE (%)	DOCUMENT ID		TECN	COMMENT	
5	to 25 (\approx 15) OUR ESTIMATE	E				
1.8	\pm 1.5	¹ HUNT	19	DPWA	Multichannel	
23	± 7	ANISOVICH	12A	DPWA	Multichannel	
5	\pm 3	SHKLYAR	05	DPWA	Multichannel	
• •	\bullet We do not use the following	data for averages	, fits,	limits, e	tc. • • •	
8	± 4	¹ SHRESTHA	12A	DPWA	Multichannel	
5	± 2	PENNER	02C	DPWA	Multichannel	
10	± 10	VRANA	00	DPWA	Multichannel	
1	Statistical error only.					

$\Gamma(\Sigma K)/\Gamma_{total}$				Γ ₅ /Γ
VALUE (%)	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the follow	ving data for averages, f	fits, limits, e	etc. • • •	
7±7	PENNER 0	2c DPWA	Multichannel	

NODE=B014230

 $\begin{array}{l} \text{NODE}=\text{B014R1}\\ \text{NODE}=\text{B014R1}\\ \rightarrow \text{UNCHECKED} \leftarrow \end{array}$

NODE=B014R1;LINKAGE=A NODE=B014R1;LINKAGE=BA

NODE=B014R11 NODE=B014R11	
$ ightarrow$ UNCHECKED \leftarrow	-

NODE=B014R11;LINKAGE=A NODE=B014R11;LINKAGE=BA

 $\begin{array}{l} \text{NODE}=\text{B014R17}\\ \text{NODE}=\text{B014R17}\\ \rightarrow \text{UNCHECKED} \leftarrow \end{array}$

NODE=B014R17;LINKAGE=A

 $\begin{array}{l} \mathsf{NODE}{=}\mathsf{B014R15} \\ \mathsf{NODE}{=}\mathsf{B014R15} \\ \rightarrow \mathsf{UNCHECKED} \leftarrow \end{array}$

NODE=B014R16 NODE=B014R16

$\Gamma(\Delta(1232)\pi, P-wave)/\Gamma_{total}$	DOCUMENT ID	TECN	COMMENT	Γ ₇ /Γ	NODE=B014R13 NODE=B014R13
3–9 % OUR ESTIMATE 28±9	¹ HUNT	19 DPWA	Multichannel		$ ightarrow$ UNCHECKED \leftarrow
• • • We do not use the following	data for averages,	fits, limits, e	etc. • • •		
$\begin{array}{c} 6\pm3\\ 39\pm8\end{array}$	¹ SHRESTHA VRANA (12A DPWA 00 DPWA	Multichannel Multichannel		
1 Statistical error only.					NODE=B014R13;LINKAGE=A
$\Gamma(N_0, S=1/2, P-wave)/\Gamma_{max}$				Γ₀/Γ	
VALUE (%)	DOCUMENT ID	TECN	COMMENT	- 0/ -	NODE=B014R12 NODE=B014R12
11-23 % OUR ESTIMATE					\rightarrow UNCHECKED \leftarrow
17±9	¹ HUNT	19 DPWA	Multichannel		
• • • We do not use the following	data for averages,	fits, limits, e	etc. • • •		
17 ± 6	¹ SHRESTHA	12A DPWA	Multichannel		
17 ± 1	VRANA (00 DPWA	Multichannel		
¹ Statistical error only.					NODE=B014R12;LINKAGE=A
$\Gamma(N\sigma)/\Gamma_{total}$				Γο/Γ	
VALUE (%)	DOCUMENT ID	TECN	COMMENT	- 9/ -	NODE=B014R00 NODE=B014R00
<16 % OUR ESTIMATE					\rightarrow UNCHECKED \leftarrow
<16	¹ HUNT	19 DPWA	Multichannel		
1 Statistical error only.					NODE=B014R00:LINKAGE=A
				F /F	,
$I(N(1535)\pi)/I_{total}$				1 <u>10</u> /1	NODE=B014R01
VALUE (%)	DOCUMENT ID				
15±0	GUIZ .	14 DPWA	Multichannel		UCCUR=2
N(1710) PHOTON $N(1710) \rightarrow p\gamma$, helicity-1/2	DECAY AMPLIT amplitude A _{1/2}	UDES AT	THE POLE		NODE=B014260
MODULUS (GeV $^{-1/2}$) PHASE ($^{\circ}$)	DOCUMENT	ID TE	ECN COMMENT		NODE=B014PA1
-0.018 ± 0.010 40 ± 55	ROENCHE	N 22 D	PWA Multichan	nel	
ullet $ullet$ $ullet$ We do not use the following	g data for averages,	fits, limits, e	etc. • • •		
0.020 -83	ROENCHE	N 15A D	PWA Multichan	nel	
$N(1710) ightarrow n\gamma$, helicity-1/2	amplitude $A_{1/2}$				
MODULUS (GeV $^{-1/2}$) PHASE ($^{\circ}$)	DOCUMENT	ID TE	ECN COMMENT		NODE=B014A01
$\frac{1}{0.029 \pm 0.007} \qquad \frac{1}{80 \pm 20}$	ANISOVICI	H 17E D	PWA Multichan	nel	
N(1710) BREIT-WIG	SNER PHOTON	DECAY A	MPLITUDES		NODE=B014235
$N(1710) ightarrow p\gamma$, helicity-1/2	amplitude $A_{1/2}$				$NODE = B014\Delta1$
VALUE (GeV $^{-1/2}$)	DOCUMENT ID	TECN	COMMENT		NODE=B014A1
0.014±0.008	¹ HUNT	19 DPWA	Multichannel		
0.050 ± 0.010	SOKHOYAN	15A DPWA	Multichannel		
-0.050 ± 0.001	¹ SHKLYAR	13 DPWA	Multichannel		
$\bullet \bullet \bullet$ We do not use the following	g data for averages,	fits, limits, e	etc. • • •		
0.05 ± 0.01	GUTZ :	14 DPWA	Multichannel		
0.052 ± 0.015	ANISOVICH	12A DPWA	Multichannel		
-0.008 ± 0.003	¹ SHRESTHA	12A DPWA	Multichannel		
0.044	PENNER (J2D DPWA	Multichannel		
¹ Statistical error only.					NODE=B014A1;LINKAGE=B
$N(1710) \rightarrow n\gamma$, helicity-1/2	amplitude $A_{1/2}$				NODE=B014A2
VALUE (GeV ^{-1/2})	DOCUMENT ID	TECN	COMMENT		NODE=B014A2
$0.0053 \!\pm\! 0.0003$	¹ HUNT	19 DPWA	Multichannel		
-0.040 ± 0.020	ANISOVICH :	13b DPWA	Multichannel		

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

PENNER

¹ SHRESTHA 12A DPWA Multichannel

02D DPWA Multichannel

 $0.017 \ \pm 0.003$

 $^1\,\mathrm{Statistical}$ error only.

-0.024

NODE=B014A2;LINKAGE=A

N(1710) REFERENCES

For early references, see Physics Letters **111B** 1 (1982).

ROENCHEN MUELLER HUNT	22 20	EPJ A58 229 PL B803 135323 PR C00 055205	D. Roenchen <i>et al.</i> J. Mueller <i>et al.</i> B.C. Hunt, D.M. Manley,	(JULI, GWU, BONN+) (CBELSA/TAPS Collab.)
ANISOVICH	17A	PRL 119 062004	A.V. Anisovich <i>et al.</i>	
ANISOVICH	17E	PR C96 055202	A.V. Anisovich et al.	(BONN, PNPI, JLAB+)
DENISENKO	16	PL B755 97	I. Denisenko <i>et al.</i>	
ROENCHEN	15A	EPJ A51 70	D. Roenchen et al.	
SOKHOYAN	15A	EPJ A51 95	V. Sokhoyan <i>et al.</i>	(CBELSA/TAPS Collab.)
GUTZ	14	EPJ A50 74	E. Gutz <i>et al.</i>	(CBELSA/TAPS Collab.)
PDG	14	CP C38 070001	K. Olive <i>et al.</i>	(PDG Collab.)
SVARC	14	PR C89 045205	A. Svarc <i>et al.</i>	(RBI Zagreb, UNI Tuzla)
ANISOVICH	13B	EPJ A49 67	A.V. Anisovich et al.	
SHKLYAR	13	PR C87 015201	V. Shklyar, H. Lenske, U. Mosel	(GIES)
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSU)
BATINIC	10	PR C82 038203	M. Batinic et al.	(ZAGR)
SHKLYAR	05	PR C72 015210	V. Shklyar, H. Lenske, U. Mosel	(GIES)
PENNER	02C	PR C66 055211	G. Penner, U. Mosel	(GIES)
PENNER	02D	PR C66 055212	G. Penner, U. Mosel	(GIES)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H.	Lee (PITT, ANL)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	` (KARL)
CUTKOSKY	90	PR D42 235	R.E. Cutkosky, S. Wang	(CMU)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al.</i>	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP

NODE=B014 NODE=B014

REFID=61999 REFID=60391 REFID=57949 REFID=57949 REFID=57949 REFID=557949 REFID=56757 REFID=56757 REFID=56677 REFID=55687 REFID=557755 REFID=55104 REFID=554041 REFID=54042 REFID=54042 REFID=54041 REFID=54041 REFID=54041 REFID=54041 REFID=54041 REFID=47593 REFID=47593 REFID=47593 REFID=47593 REFID=47096 REFID=30058 REFID=30058 REFID=30058