NODE=B033

∆(1232) 3/2

$$U(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$
 Status: ****

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

∆(1232) POLE POSITIONS

REAL PART, MIXED	CHARGES	
VALUE (MeV)	DOCUMENT ID TE	ECN COMMENT
1209 to 1211 (~ 1210) (DUR ESTIMATE	
1209.5 ± 1.1	¹ HOFERICHT 24 RV	RVUE $\pi N \rightarrow \pi N$
$1211 \pm 1 \pm 1$	² SVARC 14 L-	$+P \pi N \to \pi N$
1210.5 ± 1.0	ANISOVICH 12A DI	PWA Multichannel
1210 ±1	CUTKOSKY 80 IP	PWA $\pi N \rightarrow \pi N$
\bullet \bullet We do not use the f	ollowing data for averages, fits, lim	mits, etc. • • •
1215 ±1	ROENCHEN 22 DI	PWA Multichannel
1212.4	HUNT 19 DI	PWA Multichannel
1218	ROENCHEN 15A DI	PWA Multichannel
1211 ± 1	ANISOVICH 10 DI	PWA Multichannel
1211	ARNDT 06 DI	PWA $\pi N \rightarrow \pi N$, ηN
1210	ARNDT 04 DI	PWA $\pi N \rightarrow \pi N$, ηN
1209	³ HOEHLER 93 AF	$ARGD \pi N \rightarrow \pi N$

¹Roy-Steiner equations applied to πN scattering amplitudes and pionic atom data 2 Fit to the amplitudes of HOEHLER 79.

 $^3\,\text{See}$ HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of πN elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.

-2×IMAGINARY PART, MIXED CHARGES

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		NODE=B033IM
98 to 102 (≈ 100) OUR ESTIM	IATE					ightarrow UNCHECKED 4
98.5±1.2	¹ HOFERICHT	24	RVUE	$\pi N \rightarrow \pi N$		
93 ±1	ROENCHEN	22	DPWA	Multichannel		
98 ± 2 ± 1	² SVARC	14	L+P	$\pi N \rightarrow \pi N$		
99 ±2	ANISOVICH	12A	DPWA	Multichannel		
100 ±2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$		
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. • • •		
96.8	HUNT	19	DPWA	Multichannel		
92	ROENCHEN	15A	DPWA	Multichannel		
100 ±2	ANISOVICH	10	DPWA	Multichannel		
99	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN		
100	ARNDT	04	DPWA	$\pi N \rightarrow \pi N, \eta N$		
100	³ HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$		
¹ Rov-Steiner equations applied	to πN scattering a	amplit	tudes and	d pionic atom data.	1	

¹Roy-Steiner equations applied to πN scattering amplitudes and pionic atom data. 2 Fit to the amplitudes of HOEHLER 79.

 $^3\,\text{See}$ HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of πN elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.

REAL PART, ∆(1232)++

VALUE (MeV)	DOCUMENT ID		COMMENT
• • • We do not use the following	data for averages	s, fits,	limits, etc. • • •
1212.50 ± 0.24	BERNICHA	96	Fit to PEDRONI 78

$-2 \times IMAGINARY PART, \Delta(1232)^{++}$ VALUE (MeV) DOCUMENT ID

• • • We do not ι	se the following data for average	ges, fits,	limits, etc. • • •
97.37±0.42	BERNICHA	96	Fit to PEDRONI 78

COMMENT

REAL PART, ∆(1232)+

REAL PART, ⊿(1232)+				NODE=B033RE+
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	NODE=B033RE+
\bullet \bullet We do not use the following	data for averages,	fits, limits, e	etc. • • •	
1211 ± 1 to 1212 ± 1	HANSTEIN	96 DPWA	$\gamma N \rightarrow \pi N$	
1206.9 \pm 0.9 to 1210.5 \pm 1.8	MIROSHNIC	79	Fit photoproduction	

NODE=B033

NODE=B033225

NODE=B033RE NODE=B033RE \rightarrow UNCHECKED \leftarrow

NODE=B033RE;LINKAGE=A NODE=B033RE;LINKAGE=SV NODE=B033RE;LINKAGE=HO

NODE=B033IM

L

NODE=B033IM;LINKAGE=A NODE=B033IM;LINKAGE=SV NODE=B033;LINKAGE=HO

NODE=B033R++ NODE=B033R++

NODE=B033I++ NODE=B033I++

	П, Д(1232) DOCUMENT ID	TECN COMMENT	NODE=B033IM+ NODE=B033IM+
• • • We do not use the fo	blowing data for averages, fits	limits, etc. $\bullet \bullet$	
102 + 2 to $99 + 2$	$\frac{1}{1}$ HANSTEIN 96	$DPWA \sim N \rightarrow \pi N$	
102 ± 2 to 33 ± 2 111.2 ± 2.0 to 116.6 ± 2.2	MIROSHNIC 79	Fit photoproduction	
1 The second (lower) value	is of HANSTEIN 06 here goes	with the second (higher) value of	
the real part in the prec	ceding data block.	with the second (lingher) value of	NODE=B033IM+;LINKAGE=HA
	0		
REAL PART, $\Delta(1232)^{\circ}$		CONVENT	NODE=B033RE0
VALUE (MeV)	<u>DOCOMENTID</u>		NODE=B033RE0
	showing data for averages, fits	, limits, etc. • • •	
1213.20 ± 0.66	BERNICHA 96	Fit to PEDRONI 78	
-2×IMAGINARY PAR	T, Δ(1232) ⁰		
VALUE (MeV)	DOCUMENT ID	COMMENT	NODE=B033IM0
• • • We do not use the fo	llowing data for averages, fits	, limits, etc. ● ● ●	
104.10 ± 1.01	BERNICHA 96	Fit to PEDRONI 78	
Δ()	1232) ELASTIC POLE RI	ESIDUES	NODE=B033230
VALUE (MeV)		TECN COMMENT	NODE=B033ABS NODE=B033ABS
49 to 52 (≈ 50) OUR ES			
51.3±0.9	¹ HOFERICHT 24	RVUE $\pi N \rightarrow \pi N$	
50 ±1	ROENCHEN 22	DPWA Multichannel	
50 ± 1 ± 1	² SVARC 14	$L+P$ $\pi N \rightarrow \pi N$	
51.6 ± 0.6	ANISOVICH 12A	DPWA Multichannel	
53 ± 2	CUTKOSKY 80	IPWA $\pi N \rightarrow \pi N$	
• • • We do not use the fo	blowing data for averages, fits	, limits, etc. ● ●	
46	ROENCHEN 15A	DPWA Multichannel	
52	ARNDI 06	DPVVA $\pi N \rightarrow \pi N, \eta N$	
50	HOFHIER 93	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
¹ Rov-Steiner equations a	applied to πN scattering ampli	tudes and pionic atom data	
2 Fit to the amplitudes of	f HOEHLER 79.		NODE=B033ABS;LINKAGE=SV
PHASE MIXED CHAR	REFS		
VALUE (°)	DOCUMENT ID	TECN COMMENT	NODE=B033PH NODE=B033PH
-48 to -45 (≈ -46) C	UR ESTIMATE		\rightarrow UNCHECKED \leftarrow
-47.4 ± 0.4	¹ HOFERICHT 24	RVUE $\pi N \rightarrow \pi N$	
-39 ± 1	ROENCHEN 22	DPWA Multichannel	
	0		
$-46 \pm 1 \pm 1$	² SVARC 14	$L + P \pi N \to \pi N$	
$-46 \pm 1 \pm 1$ -46 ± 1	² SVARC 14 ANISOVICH 12A	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel	
$\begin{array}{rrrr} -46 & \pm 1 & \pm 1 \\ -46 & \pm 1 \\ -47 & \pm 1 \\ \bullet \bullet \bullet \text{ We do not use the fr} \end{array}$	² SVARC 14 ANISOVICH 12A CUTKOSKY 80	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$ limits etc • • •	
$\begin{array}{rrrr} -46 & \pm 1 & \pm 1 \\ -46 & \pm 1 \\ -47 & \pm 1 \\ \bullet \bullet \bullet & \text{We do not use the fo} \\ -36 \end{array}$	² SVARC 14 ANISOVICH 12A CUTKOSKY 80 ollowing data for averages, fits	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$, limits, etc. • • •	
$-46 \pm 1 \pm 1$ -46 ± 1 -47 ± 1 ••• We do not use the fo -36 -47	 ² SVARC 14 ANISOVICH 12A CUTKOSKY 80 ollowing data for averages, fits ROENCHEN 15A ARNDT 06 	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$, limits, etc. • • • DPWA Multichannel DPWA $\pi N \rightarrow \pi N$ nN	
$-46 \pm 1 \pm 1$ -46 ± 1 -47 ± 1 ••• We do not use the fo -36 -47 -47	 ² SVARC 14 ANISOVICH 12A CUTKOSKY 80 ollowing data for averages, fits ROENCHEN 15A ARNDT 06 ARNDT 04 	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$, limits, etc. • • • DPWA Multichannel DPWA $\pi N \rightarrow \pi N, \eta N$ DPWA $\pi N \rightarrow \pi N, \eta N$	
$-46 \pm 1 \pm 1$ -46 ± 1 -47 ± 1 ••• We do not use the fo -36 -47 -47 -47 -48	 ² SVARC 14 ANISOVICH 12A CUTKOSKY 80 ollowing data for averages, fits ROENCHEN 15A ARNDT 06 ARNDT 04 HOEHLER 93 	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$, limits, etc. • • • DPWA Multichannel DPWA $\pi N \rightarrow \pi N, \eta N$ DPWA $\pi N \rightarrow \pi N, \eta N$ ARGD $\pi N \rightarrow \pi N$	
$\begin{array}{rrrr} -46 & \pm 1 & \pm 1 \\ -46 & \pm 1 \\ -47 & \pm 1 \\ \bullet & \bullet & \text{We do not use the fo} \\ -36 \\ -47 \\ -47 \\ -48 \\ & 1 \\ \text{Roy-Steiner equations a} \end{array}$	 ² SVARC 14 ANISOVICH 12A CUTKOSKY 80 Sollowing data for averages, fits ROENCHEN 15A ARNDT 06 ARNDT 04 HOEHLER 93 Sopplied to π N scattering ampli 	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$, limits, etc. • • • DPWA Multichannel DPWA $\pi N \rightarrow \pi N, \eta N$ DPWA $\pi N \rightarrow \pi N, \eta N$ ARGD $\pi N \rightarrow \pi N$ tudes and pionic atom data.	
$\begin{array}{rrrr} -46 & \pm 1 & \pm 1 \\ -46 & \pm 1 \\ -47 & \pm 1 \\ \bullet & \bullet & \mbox{We do not use the fo} \\ -36 \\ -47 \\ -47 \\ -48 \\ 1 \\ \mbox{Roy-Steiner equations a} \\ 2 \\ \mbox{Fit to the amplitudes of } \end{array}$	$\begin{array}{ccc} & ^2 {\rm SVARC} & 14 \\ & {\rm ANISOVICH} & 12{\rm A} \\ & {\rm CUTKOSKY} & 80 \\ \\ {\rm ollowing \ data \ for \ averages, \ fits } \\ & {\rm ROENCHEN} & 15{\rm A} \\ & {\rm ARNDT} & 06 \\ & {\rm ARNDT} & 04 \\ & {\rm HOEHLER} & 93 \\ \\ {\rm spplied \ to \ } \pi N \ {\rm scattering \ amplie } \\ {\rm f \ HOEHLER} \ 79. \end{array}$	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$, limits, etc. • • • DPWA Multichannel DPWA $\pi N \rightarrow \pi N, \eta N$ DPWA $\pi N \rightarrow \pi N, \eta N$ ARGD $\pi N \rightarrow \pi N$ tudes and pionic atom data.	NODE=B033PH;LINKAGE=A NODE=B033PH;LINKAGE=SV
$\begin{array}{rrrr} -46 & \pm 1 & \pm 1 \\ -46 & \pm 1 \\ -47 & \pm 1 \\ \bullet & \bullet & \mbox{We do not use the fo} \\ -36 \\ -47 \\ -47 \\ -48 \\ {}^1 \mbox{Roy-Steiner equations a} \\ {}^2 \mbox{Fit to the amplitudes of } \end{array}$	$\begin{array}{cccc} & 2 \text{ SVARC} & 14 \\ & \text{ANISOVICH} & 12\text{A} \\ & \text{CUTKOSKY} & 80 \\ \text{ollowing data for averages, fits} \\ & \text{ROENCHEN} & 15\text{A} \\ & \text{ARNDT} & 06 \\ & \text{ARNDT} & 04 \\ & \text{HOEHLER} & 93 \\ \text{opplied to } \pi N \text{ scattering amplie} \\ \text{f} \text{ HOEHLER 79.} \end{array}$	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$, limits, etc. • • • DPWA Multichannel DPWA $\pi N \rightarrow \pi N, \eta N$ DPWA $\pi N \rightarrow \pi N, \eta N$ ARGD $\pi N \rightarrow \pi N$ tudes and pionic atom data.	NODE=B033PH;LINKAGE=A NODE=B033PH;LINKAGE=SV
$\begin{array}{rrrr} -46 & \pm 1 & \pm 1 \\ -46 & \pm 1 \\ -47 & \pm 1 \\ \bullet & \bullet & \text{We do not use the fo} \\ -36 \\ -47 \\ -47 \\ -47 \\ -48 \\ 1 \\ \text{Roy-Steiner equations a} \\ 2 \\ \text{Fit to the amplitudes of} \end{array}$	² SVARC 14 ANISOVICH 12A CUTKOSKY 80 ollowing data for averages, fits ROENCHEN 15A ARNDT 06 ARNDT 04 HOEHLER 93 ipplied to πN scattering ampli f HOEHLER 79.	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$, limits, etc. • • • DPWA Multichannel DPWA $\pi N \rightarrow \pi N, \eta N$ DPWA $\pi N \rightarrow \pi N, \eta N$ ARGD $\pi N \rightarrow \pi N$ itudes and pionic atom data.	NODE=B033PH;LINKAGE=A NODE=B033PH;LINKAGE=SV NODE=B033205
$-46 \pm 1 \pm 1$ -46 ± 1 -47 ± 1 ••• We do not use the formation of the second se	² SVARC 14 ANISOVICH 12A CUTKOSKY 80 ollowing data for averages, fits ROENCHEN 15A ARNDT 06 ARNDT 04 HOEHLER 93 supplied to πN scattering ampli f HOEHLER 79.	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$, limits, etc. • • • DPWA Multichannel DPWA $\pi N \rightarrow \pi N, \eta N$ DPWA $\pi N \rightarrow \pi N, \eta N$ ARGD $\pi N \rightarrow \pi N$	NODE=B033PH;LINKAGE=A NODE=B033PH;LINKAGE=SV NODE=B033205
$-46 \pm 1 \pm 1$ -46 ± 1 -47 ± 1 ••• We do not use the formation of the second se	² SVARC 14 ANISOVICH 12A CUTKOSKY 80 ollowing data for averages, fits ROENCHEN 15A ARNDT 06 ARNDT 04 HOEHLER 93 upplied to πN scattering ampli f HOEHLER 79.	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$, limits, etc. • • • DPWA Multichannel DPWA $\pi N \rightarrow \pi N, \eta N$ DPWA $\pi N \rightarrow \pi N, \eta N$ ARGD $\pi N \rightarrow \pi N$ itudes and pionic atom data.	NODE=B033PH;LINKAGE=A NODE=B033PH;LINKAGE=SV NODE=B033205 NODE=B033M NODE=B033M
$-46 \pm 1 \pm 1$ -46 ± 1 -47 ± 1 •••We do not use the formation of the second sec	² SVARC 14 ANISOVICH 12A CUTKOSKY 80 ollowing data for averages, fits ROENCHEN 15A ARNDT 06 ARNDT 04 HOEHLER 93 upplied to π N scattering ampli f HOEHLER 79.	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$, limits, etc. • • • DPWA Multichannel DPWA $\pi N \rightarrow \pi N, \eta N$ DPWA $\pi N \rightarrow \pi N, \eta N$ ARGD $\pi N \rightarrow \pi N$ itudes and pionic atom data.	NODE=B033PH;LINKAGE=A NODE=B033PH;LINKAGE=SV NODE=B033205 NODE=B033M NODE=B033M \rightarrow UNCHECKED \leftarrow
$ \begin{array}{r} -46 \pm 1 \pm 1 \\ -46 \pm 1 \\ -47 \pm 1 \\ \bullet \bullet We do not use the for \\ -36 \\ -47 \\ -47 \\ -47 \\ -48 \\ {}^{1} \text{Roy-Steiner equations a} \\ {}^{2} \text{Fit to the amplitudes of } \\ \hline \\$	$\frac{^{2} \text{ SVARC}}{\text{ANISOVICH}} \frac{14}{\text{ANISOVICH}} \frac{12}{12} \text{CUTKOSKY} 80$ collowing data for averages, fits ROENCHEN 15A ARNDT 06 ARNDT 04 HOEHLER 93 applied to πN scattering amplif f HOEHLER 79. (1232) BREIT-WIGNER M DOCUMENT ID DOCUMENT ID 1 HUNT 19	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$, limits, etc. • • • DPWA Multichannel DPWA $\pi N \rightarrow \pi N, \eta N$ DPWA $\pi N \rightarrow \pi N, \eta N$ ARGD $\pi N \rightarrow \pi N$ itudes and pionic atom data.	NODE=B033PH;LINKAGE=A NODE=B033PH;LINKAGE=SV NODE=B033205 NODE=B033M NODE=B033M \rightarrow UNCHECKED \leftarrow
$\begin{array}{rrrr} -46 & \pm 1 & \pm 1 \\ -46 & \pm 1 \\ -47 & \pm 1 \\ \bullet & \bullet & \mbox{We do not use the fo} \\ -36 \\ -47 \\ -47 \\ -48 \\ {}^{1} \mbox{Roy-Steiner equations a} \\ {}^{2} \mbox{Fit to the amplitudes of} \\ \hline \end{tabular} \\ \hline \end{tabular}$	$\frac{2}{2} \text{ SVARC} \qquad 14$ ANISOVICH 12A CUTKOSKY 80 pollowing data for averages, fits ROENCHEN 15A ARNDT 06 ARNDT 04 HOEHLER 93 applied to πN scattering amplif f HOEHLER 79. (1232) BREIT-WIGNER M DOCUMENT ID DOCUMENT ID ANISOVICH 12A	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$, limits, etc. • • • DPWA Multichannel DPWA $\pi N \rightarrow \pi N, \eta N$ DPWA $\pi N \rightarrow \pi N, \eta N$ ARGD $\pi N \rightarrow \pi N$ itudes and pionic atom data.	NODE=B033PH;LINKAGE=A NODE=B033PH;LINKAGE=SV NODE=B033205 NODE=B033M NODE=B033M \rightarrow UNCHECKED \leftarrow
$\begin{array}{r} -46 \pm 1 \pm 1 \\ -46 \pm 1 \\ -47 \pm 1 \\ \bullet \bullet We do not use the form of the second state of the second stat$	$\frac{2}{3}$ SVARC 14 ANISOVICH 12A CUTKOSKY 80 ollowing data for averages, fits ROENCHEN 15A ARNDT 06 ARNDT 04 HOEHLER 93 opplied to πN scattering amplif f HOEHLER 79. (1232) BREIT-WIGNER N DOCUMENT ID UR ESTIMATE 1 HUNT 19 ANISOVICH 12A 1 ARNDT 06	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$, limits, etc. • • • DPWA Multichannel DPWA $\pi N \rightarrow \pi N, \eta N$ DPWA $\pi N \rightarrow \pi N, \eta N$ ARGD $\pi N \rightarrow \pi N$ itudes and pionic atom data.	NODE=B033PH;LINKAGE=A NODE=B033PH;LINKAGE=SV NODE=B033205 NODE=B033M NODE=B033M \rightarrow UNCHECKED \leftarrow
$\begin{array}{r} -46 \pm 1 \pm 1 \\ -46 \pm 1 \\ -47 \pm 1 \\ \bullet \bullet We do not use the form of the second seco$	² SVARC 14 ANISOVICH 12A CUTKOSKY 80 ollowing data for averages, fits ROENCHEN 15A ARNDT 06 ARNDT 04 HOEHLER 93 opplied to πN scattering amplif HOEHLER 79. DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID ANISOVICH 12A 1 ARNDT 06 CUTKOSKY 80	L+P $\pi N \rightarrow \pi N$ DPWA Multichannel IPWA $\pi N \rightarrow \pi N$, limits, etc. • • • DPWA Multichannel DPWA $\pi N \rightarrow \pi N, \eta N$ DPWA $\pi N \rightarrow \pi N, \eta N$ ARGD $\pi N \rightarrow \pi N$ itudes and pionic atom data.	NODE=B033PH;LINKAGE=A NODE=B033PH;LINKAGE=SV NODE=B033205 NODE=B033M NODE=B033M \rightarrow UNCHECKED \leftarrow

1231.1 \pm 0.21SHRESTHA12ADPWAMultichannel1230 \pm 2ANISOVICH10DPWAMultichannel1232.9 \pm 1.2ARNDT04DPWA $\pi N \rightarrow \pi N, \eta N$ 1228 \pm 1PENNER02cDPWAMultichannel

¹ Statistical error only.

⊿(1232) ⁺⁺ MASS		
VALUE (MeV)	DOCUMENT ID TECN COMMENT	NODE=B033M++ NODE=B033M++
• • • We do not use the following	ng data for averages, fits, limits, etc. • • •	
1230.55 ± 0.20	GRIDNEV 06 DPWA $\pi N \rightarrow \pi N$	
$1231.88 \!\pm\! 0.29$	BERNICHA 96 Fit to PEDRONI 78	
1230.5 ± 0.2	ABAEV 95 IPWA $\pi N \rightarrow \pi N$	
1230.9 ± 0.3	KOCH 80B IPWA $\pi N \rightarrow \pi N$	
1231.1 ± 0.2	PEDRONI 78 $\pi N \rightarrow \pi N$ 70–370 MeV	
⊿(1232) ⁺ MASS		
VALUE (MeV)	DOCUMENT ID COMMENT	NODE=B033M+
• • • We do not use the following	ng data for averages, fits, limits, etc. 🔹 🗉 🔹	
1234.9±1.4	MIROSHNIC 79 Fit photoproduction	
∠(1232)° MASS		
VALUE (MeV)	DOCUMENT ID TECN COMMENT	NODE=B033M0
• • • We do not use the following	ng data for averages, fits, limits, etc. \bullet \bullet	
1231.3 ± 0.6	BREITSCHOP06 CNTR Using new CHEX data	
1233.40 ± 0.22	GRIDNEV 06 DPWA $\pi N \rightarrow \pi N$	
1234.35 ± 0.75	BERNICHA 96 Fit to PEDRONI 78 $A PAEV = N + PV$	
1233.1 ± 0.3	ADAEV 95 IPVVA $\pi N \rightarrow \pi N$ KOCH 800 IPVVA $\pi N \rightarrow \pi N$	
1233.8 ± 0.2	PEDRONI 78 $\pi N \rightarrow \pi N$ 70–370 MeV	
	$m_{\Delta^0} - m_{\Delta^{++}}$	NODE=B033D
VALUE (MeV)	DOCUMENT ID TECN COMMENT	NODE=B033D
• • • We do not use the following	g data for averages, fits, limits, etc. ● ●	
286+030		
2.25 ± 0.68	BERNICHA 96 Fit to PEDRONI 78	
2.6 ±0.4	ABAEV 95 IPWA $\pi N \rightarrow \pi N$	
2.7 ±0.3	¹ PEDRONI 78 See the masses	
1 Using $\pi^\pm d$ as well, PEDRO	DNI 78 determine $(M^{-} - M^{++}) + (M^{0} - M^{+})/3 =$	
4.6 ± 0.2 MeV.		NODE-D000,EININGE-/
∆(1232) BREIT-WIGNER WIDTHS	NODE=B033210
VALUE (MeV)	DOCUMENT ID TECN COMMENT	NODE=B033W NODE=B033W
114 to 120 (≈ 117) OUR ESTI	MATE	\rightarrow UNCHECKED \leftarrow
110.9±0.8	¹ HUNT 19 DPWA Multichannel	,
110 ±3	ANISOVICH 12A DPWA Multichannel	
118.7 ± 0.6	1 ARNDT 06 DPWA π N $ ightarrow$ π N, η N	
120 ±5	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$	
116 ±5	HOEHLER 79 IPWA $\pi N \rightarrow \pi N$	
• • • We do not use the following	ng data for averages, fits, limits, etc. ● ●	
113.0 ± 0.5	¹ SHRESTHA 12A DPWA Multichannel	
112 ±4	ANISOVICH 10 DPWA Multichannel	
118.0 ± 2.2 106 +1	ARNDI 04 DPWA $\pi N \rightarrow \pi N, \eta N$ PENNER 020 DPWA Multichannel	
100 ± 1 1 Statistical error only.		
		NODE-D035W,EININAGE-A
∠(1232) ⁺⁺ WIDTH		NODE=B033W++
VALUE (MeV)	DUCUMENTID IECN COMMENT	NODE=BU33VV++
• • • vve ao not use the following	ng data for averages, fits, limits, etc. • • •	
112.2 ± 0.7	GRIDNEV 06 DPWA $\pi N \rightarrow \pi N$	
109.07 ± 0.48		
111.0 ± 1.0 111.3 ± 0.5	PEDRONI 78 $\pi N \rightarrow \pi N$ 70–370 MeV	
⊿(1232) ⁺ WIDTH		NODE=B033W+

 VALUE (MeV)
 DOCUMENT ID
 COMMENT

 • • We do not use the following data for averages, fits, limits, etc.
 • •

 131.1 ± 2.4

MIROSHNIC... 79 Fit photoproduction

NODE=B033W+

NODE=B033W0 NODE=B033W0

NODE=B033WD NODE=B033WD

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not use the followin	g data for avera	ges, f	its, limit	s, etc. ● ● ●
112.5 ± 1.9	BREITSCHOP.	.06	CNTR	Using new CHEX data
116.9 ± 0.7	GRIDNEV	06	DPWA	$\pi N \rightarrow \pi N$
117.58 ± 1.16	BERNICHA	96		Fit to PEDRONI 78
113.0 ± 1.5	КОСН	80 B	IPWA	$\pi N \rightarrow \pi N$
117.9 ± 0.9	PEDRONI	78		π N $ ightarrow~\pi$ N 70–370 MeV

Δ^0 - Δ^{++} WIDTH DIFFERENCE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
\bullet \bullet We do not use the following d	ata for averages	, fits,	limits, e	tc. • • •
4.66±1.0	GRIDNEV	06	DPWA	$\pi N \rightarrow \pi N$
8.45 ± 1.11	BERNICHA	96		Fit to PEDRONI 78
5.1 ± 1.0	ABAEV	95	IPWA	$\pi N \rightarrow \pi N$
6.6 ±1.0	PEDRONI	78		See the widths

Δ (1232) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)	
Γ_1	$N\pi$	99.4 %	D
Γ2	$N\gamma$	0.55–0.65 %	D
Γ3	$N\gamma$, helicity= $1/2$	0.11-0.13 %	D
Γ4	$N\gamma$, helicity=3/2	0.44-0.52 %	D
Γ ₅	p e ⁺ e ⁻	$(4.2\pm0.7) imes 10^{-5}$	D

△(1232) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{total}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.994 OUR ESTIMATE					
$0.9939 \!\pm\! 0.0001$	¹ HUNT	19	DPWA	Multichannel	
1.00	ARNDT	06	DPWA	π N \rightarrow π N, η N	
1.0	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
1.0	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
$\bullet \bullet \bullet$ We do not use the following	g data for average	s, fits,	limits, e	etc. • • •	
0.994	SHRESTHA	12A	DPWA	Multichannel	
1.0	ANISOVICH	10	DPWA	Multichannel	
1.000	ARNDT	04	DPWA	π N \rightarrow π N, η N	
1.00	PENNER	02C	DPWA	Multichannel	
¹ Statistical error only.					

$\Gamma(pe^+e^-)/\Gamma_{total}$

VALUE (units 10^{-5})

 $4.19 \pm 0.34 \pm 0.62$

-

 Γ_5/Γ

NODE=B033R00 NODE=B033R00

NODE=B033R1;LINKAGE=A

NODE=B033R00;LINKAGE=A

NODE-B033260

1 1

2 2

1 The systematic	uncertainty	includes	the	model	dependence	э.

△(1232) PHOTON DECAY AMPLITUDES AT THE POLE

DOCUMENT ID ¹ ADAMCZEW... 17

· · /						NODE=D000E	
$\Delta(1232) \rightarrow N\gamma$, helicity-1/2 amplitude A $_{1/2}$							А [.]
MODULUS (GeV ^{-1/2})	<i>РНАЅЕ (</i> °)	DOCUMENT ID		TECN	COMMENT	NODE=B033P	A:
$-0.126 \!\pm\! 0.002$	-18 ± 2	ROENCHEN	22	DPWA	Multichannel		
\bullet \bullet \bullet We do not use	the following data f	or averages, fits,	limit	s, etc. •	• •		
-0.117	-6.6	ROENCHEN	15A	DPWA	Multichannel		
Δ (1232) $\rightarrow N\gamma$, helicity-3/2 amplitude A _{3/2}						NODE=B033P	A
MODULUS (GeV $^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN	COMMENT	NODE=B033P	A2
$-0.245 \!\pm\! 0.004$	-0.7 ± 0.9	ROENCHEN	22	DPWA	Multichannel		
\bullet \bullet \bullet We do not use	the following data f	or averages, fits,	limit	s, etc. •	• •		
-0.226	2.8	ROENCHEN	15A	DPWA	Multichannel		

NODE=B033245;NODE=B033

NODE=B033

ESIG=1;OUR EST ESIG=3;OUR EST ESIG=4;OUR EST ESIG=5;OUR EST ESIG=6

NODE=B033250

```
NODE=B033R1
NODE=B033R1
\rightarrow UNCHECKED \leftarrow
```

△(1232)⁰ WIDTH

7/16/2025 11:27

NODE=B033255

NODE=B033255

NODE=B033A1 NODE=B033A1

 \rightarrow UNCHECKED \leftarrow

Δ (1232) BREIT-WIGNER PHOTON DECAY AMPLITUDES

Papers on γ N amplitudes predating 1981 may be found in our 2006 edition, Journal of Physics **G33** 1 (2006).

Δ (1232) $\rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

	,						
VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT			
-0.142 to -0.129 (≈ - 0.135) OUR ESTIMATE							
-0.146 ± 0.002	¹ HUNT	19	DPWA	Multichannel			
-0.131 ± 0.004	ANISOVICH	12A	DPWA	Multichannel			
-0.139 ± 0.002	¹ WORKMAN	12A	DPWA	$\gamma N \rightarrow N \pi$			
-0.139 ± 0.004	¹ DUGGER	07	DPWA	$\gamma N \rightarrow \pi N$			
-0.137 ± 0.005	AHRENS	04A	DPWA	$\vec{\gamma}\vec{p} \rightarrow N\pi$			
$-0.1357 \pm 0.0013 \pm 0.0037$	BLANPIED	01	LEGS	$\gamma p \rightarrow p \gamma, p \pi^0, n \pi^+$			
-0.131 ± 0.001	¹ BECK	00	IPWA	$\vec{\gamma} p \rightarrow p \pi^0, n \pi^+$			
-0.140 ± 0.005	KAMALOV	99	DPWA	$\gamma N \rightarrow \pi N$			
-0.1294 ± 0.0013	HANSTEIN	98	IPWA	$\gamma N \rightarrow \pi N$			
-0.1278 ± 0.0012	DAVIDSON	97	DPWA	$\gamma N \rightarrow \pi N$			
\bullet \bullet \bullet We do not use the following	data for averages	, fits,	limits, e	etc. • • •			
-0.137 ± 0.001	¹ SHRESTHA	12A	DPWA	Multichannel			
-0.136 ± 0.005	ANISOVICH	10	DPWA	Multichannel			
-0.140	DRECHSEL	07	DPWA	$\gamma N \rightarrow \pi N$			
-0.129 ± 0.001	ARNDT	02	DPWA	$\gamma p \rightarrow N \pi$			
-0.128	PENNER	0 2D	DPWA	Multichannel			
-0.1312	HANSTEIN	98	DPWA	$\gamma N \rightarrow \pi N$			
¹ Statistical error only.							

$\Delta(1232) \rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

• • • • • •	•	/-		
<u>VALUE (GeV^{-1/2})</u>	DOCUMENT ID		TECN	COMMENT
-0.262 to -0.248 (≈ -0.255)	OUR ESTIMATE			
-0.250 ± 0.002	¹ HUNT	19	DPWA	Multichannel
-0.254 ± 0.005	ANISOVICH	12A	DPWA	Multichannel
-0.262 ± 0.003	WORKMAN	12A	DPWA	$\gamma N \rightarrow N \pi$
-0.258 ± 0.005	DUGGER	07	DPWA	$\gamma N \rightarrow \pi N$
-0.256 ± 0.003	AHRENS	04A	DPWA	$\vec{\gamma}\vec{p} \rightarrow N\pi$
$-0.2669 \pm 0.0016 \pm 0.0078$	BLANPIED	01	LEGS	$\gamma p \rightarrow p \gamma, p \pi^0, n \pi^+$
-0.251 ± 0.001	BECK	00	IPWA	$ec{\gamma} p ightarrow p \pi^0$, $n \pi^+$
-0.258 ± 0.006	KAMALOV	99	DPWA	$\gamma N \rightarrow \pi N$
-0.2466 ± 0.0013	HANSTEIN	98	IPWA	$\gamma N \rightarrow \pi N$
-0.2524 ± 0.0013	DAVIDSON	97	DPWA	$\gamma N \rightarrow \pi N$
$\bullet~\bullet~\bullet$ We do not use the following	data for average	s, fits,	limits, e	tc. • • •
-0.251 ± 0.001	¹ SHRESTHA	12A	DPWA	Multichannel
-0.267 ± 0.008	ANISOVICH	10	DPWA	Multichannel
-0.265	DRECHSEL	07	DPWA	$\gamma N \rightarrow \pi N$
-0.243 ± 0.001	ARNDT	02	DPWA	$\gamma p \rightarrow N \pi$
-0.247	PENNER	02 D	DPWA	Multichannel
-0.2522	HANSTEIN	98	DPWA	$\gamma N \rightarrow \pi N$
¹ Statistical error only.				

Δ (1232) $\rightarrow N\gamma$, E_2/M_1 ratio

VALUE	DOCUMENT ID		TECN	COMMENT	NÖ
-0.028 to -0.022 ($pprox$ -0.025) O	UR ESTIMATE				\rightarrow l
$-0.0238 \!\pm\! 0.0016 \!\pm\! 0.0010$	MORNACCHI	24	DPWA	$\vec{\gamma}\vec{p} \rightarrow N\pi$	
$-0.0274 \pm 0.0003 \pm 0.0030$	AHRENS	04A	DPWA	$\vec{\gamma}\vec{p} \rightarrow N\pi$	
-0.020 ± 0.002	ARNDT	02	DPWA	$\gamma p \rightarrow N \pi$	
$-0.0307 \pm 0.0026 \pm 0.0024$	BLANPIED	01	LEGS	$\gamma p \rightarrow p \gamma$, $p \pi^0$, $n \pi^+$	
$-0.016 \pm 0.004 \pm 0.002$	GALLER	01	DPWA	$\gamma p \rightarrow \gamma p$	
$-0.025 \pm 0.001 \pm 0.002$	BECK	00	IPWA	$\vec{\gamma} p \rightarrow p \pi^0$, $n \pi^+$	
-0.0233 ± 0.0017	HANSTEIN	98	IPWA	$\gamma N \rightarrow \pi N$	OC
-0.015 ± 0.005	¹ ARNDT	97	IPWA	$\gamma N \rightarrow \pi N$	
-0.0319 ± 0.0024	DAVIDSON	97	DPWA	$\gamma N \rightarrow \pi N$	
\bullet \bullet \bullet We do not use the following of	data for averages	, fits,	limits, e	tc. • • •	
-0.022	DRECHSEL	07	DPWA	$\gamma N \rightarrow \pi N$	
-0.026	PENNER	0 2D	DPWA	Multichannel	
-0.0254 ± 0.0010	HANSTEIN	98	DPWA	$\gamma N \rightarrow \pi N$	
$-0.025 \pm 0.002 \pm 0.002$	BECK	97	IPWA	$\gamma N \rightarrow \pi N$	
$-0.030 \pm 0.003 \pm 0.002$	BLANPIED	97	DPWA	$\gamma N \rightarrow \pi N$, γN	

OCCUR=2

NODE=B033A1;LINKAGE=B

NODE=B033A2 NODE=B033A2

 \rightarrow UNCHECKED \leftarrow

OCCUR=2 NODE=B033A2;LINKAGE=B

NODE=B033EMR NODE=B033EMR

 \rightarrow UNCHECKED \leftarrow

OCCUR=2

NODE=B033EMR;LINKAGE=A

 1 This ARNDT 97 value is very sensitive to the database being fitted. The result is from a fit to the full pion photoproduction database, apart from the BLANPIED 97 cross-section measurements.

Δ (1232) $\rightarrow N\gamma$, al	bsolute value of E ₂ /M ₁	ratio at pole	NODE=B033EMA
• • • We do not use th	ne following data for average	es, fits, limits, etc. $\bullet \bullet \bullet$	
0.065±0.007 0.058	ARNDT HANSTEIN	97 DPWA $\gamma N \rightarrow \pi N$ 96 DPWA $\gamma N \rightarrow \pi N$	
Δ (1232) $\rightarrow N\gamma$, pl	hase of E ₂ /M ₁ ratio at	pole	NODE=B033EMP NODE=B033EMP
$\bullet \bullet \bullet$ We do not use the	ne following data for average	es, fits, limits, etc. • • •	
-122 ± 5 -127.2	ARNDT HANSTEIN	97 DPWA $\gamma N \rightarrow \pi N$ 96 DPWA $\gamma N \rightarrow \pi N$	
	∆(1232) MAGNETIC	MOMENTS	NODE=B033240
∆(1232) ⁺⁺ MAGNI	ETIC MOMENT		NODE=B033MM
The values are ex variety of differer	stracted from UCLA and SI at theoretical approximation	N data on $\pi^+ p$ bremsstrahlung using a s and methods. Our estimate is <i>only</i> a ont to lie within	NODE=B033MM
VALUE (μ_N)	DOCUMENT ID TECN	I COMMENT	NODE=B033MM
• • • We do not use th	e following data for average	es, fits, limits, etc. • • •	
$\begin{array}{l} 6.14 \pm 0.51 \\ 4.52 \pm 0.50 \pm 0.45 \\ 3.7 \text{to} \ 4.2 \\ 4.6 \text{to} \ 4.9 \\ 5.6 \text{to} \ 7.5 \\ 6.9 \text{to} \ 9.8 \\ 4.7 \text{to} \ 6.7 \end{array}$	LOPEZCAST01 DPW BOSSHARD 91 LIN 91B WITTMAN 88 HELLER 87 NEFKENS 78	$ \begin{array}{l} \forall A \ \pi^+ p \to \ \pi^+ p \gamma \\ \pi^+ p \to \ \pi^+ p \gamma \ (SIN \ data) \\ \pi^+ p \to \ \pi^+ p \gamma \ (from \ UCLA \ data) \\ \pi^+ p \to \ \pi^+ p \gamma \ (from \ SIN \ data) \\ \pi^+ p \to \ \pi^+ p \gamma \ (from \ UCLA \ data) \\ \pi^+ p \to \ \pi^+ p \gamma \ (from \ UCLA \ data) \\ \pi^+ p \to \ \pi^+ p \gamma \ (from \ UCLA \ data) \\ \end{array} $	OCCUR=2
∠(1232) ⁺ MAGNE ⁻	TIC MOMENT		
VALUE (μ_N)	DOCUMENT ID		NODE=B033MM+
• • • We do not use th	ne following data for average	es, fits, limits, etc. • • •	
$2.7^{+1.0}_{-1.3} \pm 1.5 \pm 3$	¹ KOTULLA	$02 \gamma p \rightarrow p \pi^0 \gamma'$	
¹ The second error is	systematic, the third is an e	estimate of theoretical uncertainties.	NODE=B033MM+;LINKAGE=A
	⊿(1232) REFER	ENCES	NODE=B033
For early refere	ences, see Physics Letters 1	11B 1 (1982).	NODE=B033
HOFERICHT 24 PL B8 MORNACCHI 24 PR C1 ROENCHEN 22 EPJ A	353 138698 M. Hoferichter 109 055201 E. Mornacchi 158 229 D. Roenchen	r et al. (BERN, MADU, BONN+) et al. (A2 Collab. at MAMI) et al. (JULI, GWU, BONN+)	REFID=63010 REFID=63005 REFID=61999

				(==:::;:::=;;=;::;;;
MORNACCHI	24	PR C109 055201	E. Mornacchi et al.	(A2 Collab. at MAMI)
ROENCHEN	22	EPJ A58 229	D. Roenchen et al.	(JULI, GWU, BONN+)
HUNT	19	PR C99 055205	B.C. Hunt, D.M. Manley	
ADAMCZEW	17	PR C95 065205	J. Adamczewski-Musch et	t al. (HADES Collab.)
ROENCHEN	15A	EPJ A51 70	D. Roenchen et al.	
PDG	14	CP C38 070001	K. Olive et al.	(PDG Collab.)
SVARC	14	PR C89 045205	A. Svarc <i>et al.</i>	(RBI Zagreb, UNI Tuzla)
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manle	y (KSU)
WORKMAN	12A	PR C86 015202	R. Workman et al.	(GWU)
ANISOVICH	10	EPJ A44 203	A.V. Anisovich et al.	(BONN, PNPI)
DRECHSEL	07	EPJ A34 69	D. Drechsel, S.S. Kamalo	v, L. Tiator (MAINZ, JINR)
DUGGER	07	PR C76 025211	M. Dugger et al.	(JLab CLAS Collab.)
ARNDT	06	PR C74 045205	R.A. Arndt et al.	(GWU)
BREITSCHOP	. 06	PL B639 424	J. Breitschopf et al.	(TUBIN, HEBR, CSUS)
GRIDNEV	06	PAN 69 1542	A.B. Gridnev et al.	(PNPI, BONN, GWU)
PDG	06	JP G33 1	WM. Yao et al.	(PDG Collab.)
AHRENS	04A	EPJ A21 323	J. Ahrens <i>et al.</i>	(A2 Collab.)
ARNDT	04	PR C69 035213	R.A. Arndt <i>et al.</i>	(GWU, TRIU)
ARNDT	02	PR C66 055213	R. A. Arndt et al.	(GWU)
KOTULLA	02	PRL 89 272001	M. Kotulla <i>et al.</i>	(MAMI TAPS Collab.)
PENNER	02C	PR C66 055211	G. Penner, U. Mosel	(GIES)
PENNER	02D	PR C66 055212	G. Penner, U. Mosel	(GIES)
BLANPIED	01	PR C64 025203	G. Blanpied et al.	(BNL LEGS Collab.)
GALLER	01	PL B503 245	G. Galler et al.	(Mainz LARA Collab.)
LOPEZCAST	01	PL B517 339	G. Lopez Castro, A. Maria	ano
Also		NP A697 440	G. Lopez Castro, A. Maria	ano
BECK	00	PR C61 035204	R. Beck et al.	(Mainz Microtron DAPHNE Col.)

REFID=63010
REFID=63005
REFID-61999
KEFID-59965
REFID=58156
REFID=58183
REFID=55687
REFID -55775
REFID - 54041
REFID=54802
REFID=54335
REFID=53280
REFID=52105
REFID-52039
REFID - 51535
REFID=52705
REFID=51416
REFID=51004
REFID=50136
REFID-40047
REFID - 40205
DEEID 40142
REFID=49143
REFID=49129
REFID=49130
REFID=48192
REFID-48098
REFID-48385
KEFID=48478
REFID=47594

KAMALOV	99	PRL 83 4494	S.S. Kamalov, S.N. Yang	(Taiwan U.)
HANSTEIN	98	NP A632 561	O. Hanstein, D. Drechsel, L. Tiator	
ARNDT	97	PR C56 577	R.A. Arndt, I.I. Strakovsky, R.L. Wo	orkman (VPI)
BECK	97	PRL 78 606	R. Beck et al. (MAII	NZ, SACL, PAVI, GLAS)
Also		PRL 79 4510	R.L. Beck, H.P. Krahn	(MAINZ)
Also		PRL 79 4512	R.L. Beck, H.P. Krahn	(MAINZ)
Also		PRL 79 4515 (errat.)	R.L. Beck et al. (MAII	NZ, SACL, PAVÌ, GLAS)
BLANPIED	97	PRL 79 4337	G.S. Blanpied et al.	(LEGS Collab.)
DAVIDSON	97	PRL 79 4509	R.M. Davidson, N.C.A. Mukhopadh	vav (RPI)
BERNICHA	96	NP A597 623	A. Bernicha, G. Lopez Castro, J. Pe	stieau (LOÙV+)
HANSTEIN	96	PL B385 45	O. Hanstein, D. Drechsel, L. Tiator	(MAINZ)
ABAEV	95	ZPHY A352 85	V.V. Abaev, S.P. Kruglov	(PNPI)
HOEHLER	93	πN Newsletter 9 1	G. Hohler	(ŘARL)
BOSSHARD	91	PR D44 1962	A. Bosshard et al.	(ZURI, LBL, VILL+)
Also		PRL 64 2619	A. Bosshard et al.	(CATH, LAUS, LBL+)
LIN	91B	PR C44 1819	D.H. Lin, M.K. Liou, Z.M. Ding	CUNY, CSOK)
Also		PR C43 R930	D. Lin, M.K. Liou	(CUNY)
WITTMAN	88	PR C37 2075	R. Wittman	(TRIU)
HELLER	87	PR C35 718	L. Heller <i>et al.</i>	(LANL, MIÌ, ILL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	CMU, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL)
KOCH	80B	NP A336 331	R. Koch, E. Pietarinen	(KARLT) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP
MIROSHNIC	79	SJNP 29 94	I.I. Miroshnichenko et al.) (KFTI) IJP
		Translated from YAF 29 18	38.	
NEFKENS	78	PR D18 3911	B.M.K. Nefkens et al.	(UCLA, CATH) IJP
PEDRONI	78	NP A300 321	E. Pedroni et al.	(SIN, ISNG, KARLE+) IJP

REFID=52218 REFID=46043 REFID=45043 REFID=45228 REFID=45727 REFID=45729 REFID=45729 REFID=45726 REFID=445730 REFID=44773 REFID=44773 REFID=44773 REFID=41606 REFID=41006 REFID=41005 REFID=41095 REFID=41095 REFID=30058 REFID=30058 REFID=30058 REFID=31032 REFID=31032 REFID=31032	
REFID=31026 REFID=31028	